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Abstract

We define a measure of ambiguity aversion for ambiguity-averse utility

functions in a way analogous to the Arrow-Pratt measure of risk aversion.

The measure is determined by the second Peano derivative, which exists even

for non-differentiable functions, such as maximin and Choquet expected util-

ity functions. Unlike the standard notion of comparative ambiguity aversion,

it allows us to compare ambiguity aversion between two utility functions

exhibiting different risk attitudes. We introduce a notion of ambiguity pre-

mium and show that our measure is related to the second-order, as opposed

to the first-order, ambiguity premium. We also show that it is related to the

first-order impact on matching probabilities of the size of prizes.

JEL Classification Codes: C38, D81, G11.

Keywords: Expected utility functions, risk aversion, ambiguity aver-

sion, ambiguity premium, matching probabilities, Peano derivative.

1 Introduction

A decision maker in the face of uncertainty is said to perceive ambiguity in an

event if he cannot attach any single reliable probability to the event, and, thus,
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needs to take multiple probabilities into consideration for decision making. If the

decision maker tends to prefer state-contingent consequences whose distributions

are independent of the choice of these relevant probabilities to those whose distri-

butions are not, then he is said to be ambiguity-averse. Ambiguity aversion has

been well documented ever since the experiments by Ellsberg (1961). It has been

given a theoretical foundation in the form of axiomatization by Schmeidler (1989),

Gilboa and Schmeidler (1989), and their followers. Its implications on portfolio

choice and asset pricing have been explored by Dow and Werlang (1992), Epstein

and Wang (1994), and many others. More recent studies, such as Ju and Miao

(2011), Chen, Ju, and Miao (2014), Jahan-Parvar and Liu (2014), and Gallant,

Jahan-Parvar, and Liu (2019), and Collard, Mukerji, Sheppard, and Tallon (2018)

have shown not only that introducing ambiguity aversion solves otherwise unex-

plainable puzzles, such as the home bias puzzle, but also how much ambiguity

aversion is needed to solve such puzzles. A typical quantitative exercise there is

to fix a form of the decision maker’s ambiguity-averse utility function and, then,

infer values of ambiguity aversion parameters necessary to solve the puzzle based

on experimental evidence or market data.

While these quantitative exercises undoubtedly help us grasp a better under-

standing of the role of ambiguity aversion in decision making, their approach has

a problem. To see what it is, note that inference of the ambiguity aversion param-

eter often comes with that of the risk aversion parameter. If two pairs of inferred

or calibrated values of risk and ambiguity aversion parameters, say (θ1, γ1) and

(θ2, γ2), involve two different values of risk aversion parameter, θ1 6= θ2, then, even

when one ambiguity aversion parameter is greater than the other, γ1 > γ2, we

cannot conclude that the decision maker (θ1, γ1) is more ambiguity-averse than

the decision maker (θ2, γ2). This is because the notion of comparative ambigu-

ity aversion employed by Epstein (1999, Section 2.3), Ghirardato and Marinacci

(2002, Definition 7), and the subsequent literature is restricted the case where the

two decision makers share the same risk attitudes, with a couple of exceptions to

which we will come back later. Let us illustrate the limitation that the restriction

imposes on the analysis in the setting of the home bias puzzle.

Imagine that there are two Japanese investors of equal wealth, say 10 million

yen, who invest in a Japanese stock, an American stock, and the bond. Suppose

that they perceive no ambiguity in the return on the Japanese stock, but they

perceive ambiguity in the return on the American stock. Their portfolios are
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presented in Table 1. That is, investor 1 puts just a half of the money into the

American stock (1 million yen) that he invests into the Japanese stock (2 million

yen), while investor 2 allocates the same amount of money in the two stocks (4

million yen each). Then it seems reasonable to think of investor 1 as being more

ambiguity-averse than investor 2. However, since the total amount that he invests

in the two stock is 3 million yen, which is much less than the total amount (8 million

yen) that investor 2 invests in the two stocks, it seems equally reasonable to think

of investor 1 as being more risk-averse than investor 2.1 But, if this is indeed the

case, then we cannot say that investor 1 is more ambiguity-averse than investor

2, because we could do so only when they are equally risk-averse according to

the standard notion of comparative ambiguity aversion.2 In other words, we have

no theoretical foundation to attribute the difference in the allocation of wealth

between the two stocks to the difference in the degree of the investors’ ambiguity

aversion.

Table 1: Two Japanese investors with equal wealth invest into a Japanese stock,
an American stock, and the bond. The figures are in million yen.

Investor 1 Investor 2
Japanese stock 2 4
American stock 1 4

bond 7 2
total 10 10

The purpose of this paper is to introduce a measure of ambiguity aversion

along the lines of Arrow-Pratt measure of risk aversion3 under the assumption

that the risk attitude can be represented by an expected utility function. It allows

us to compare ambiguity attitudes of two decision makers who do not have the

same risk attitudes. In Table 1, for example, the measure offers the scope for

concluding that investor 1 is more risk-averse and ambiguity-averse than investor

2. It also allows us to compare ambiguity attitudes of two decision makers whose

1It was also found in the experiments by Bossaerts et al (2010) that those who invest more in
stocks (Arrow securities) invest proportionally more in stocks whose returns are ambiguous than
in stocks whose returns are unambiguous.

2Bossaerts et al (2010) postulated that the investors have α-maximin expected utility functions
of Ghirardato, Maccheroni, and Marinacci (2004) and used the inferred values of α alone to
compare their degrees of ambiguity aversion with no reference to risk aversion.

3Sujoy Mukerji kindly suggested the title of the paper.
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ambiguity attitudes are represented by utility functions of different forms. To see

this second point, recall that the literature on ambiguity has endeavored to clarify

the relationship between particular forms of utility functions and particular (less

demanding) variants of the independence axiom in the expected utility theory.

Within a class of ambiguity-averse utility functions of the same form, equivalent

conditions have been given, in term of parameters in the common functional form,

for one decision maker to be more ambiguity-averse than another.4 Since our

measure of ambiguity aversion can be defined without relying on any particular

functional forms, it can also be used to compare two decision makers who are

ambiguity-averse but satisfy, say, different variants of the independence axiom.

A technical contribution of this paper is to use second Peano derivatives5 to

accommodate some important classes of ambiguity-averse utility functions, most

notably Choquet expected utilities of Schmeidler (1989) and maximin expected

utilities of Gilboa and Schmeidler (1989), which are not even differentiable in the

standard sense. The second Peano derivative is defined as twice the coefficient

of the second-order term in the Taylor approximation up to the second order. It

does exist under fairly weak conditions and is sufficient for our purpose, because

we are interested not in the second derivative of the utility function per se (which

is defined as the derivative of derivatives) but in the second-order approximation

that it provides.

While our measure of ambiguity aversion is defined in terms of utility functions,

it can be characterized in terms of choice behavior, such as matching probabilities

and ambiguity premiums. The matching probability is defined as follows. Let x be

a baseline consumption level and ε be the value of the prize of a bet on an event

A. Then, the decision maker consumes x+ ε on A and x outside A. The matching

probability ρ(A) is defined so that the decision maker is indifferent between this

binary act and the lottery in which x+ε is obtained with probability ρ(A) and x is

obtained with probability 1− ρ(A). In general, the matching probabilities depend

on the choice of x and ε. We will show (in Section 5) that the marginal change

in matching probabilities due to a marginal increase in prizes ε is approximately

proportional to our measure of ambiguity aversion. The ambiguity premium is

4The α-maximin expected utility functions mentioned in Footnote 2 constitute such an exam-
ple.

5Mukhopadhyay (2012) is a textbook giving some definitions and facts on Peano derivatives.
Evans and Weil (1981-82) is an accessible survey. They are both concerned only with the univari-
ate case. Massimo Marinacci kindly pointed out to me that the notion of second right-derivatives
that I introduced in an earlier version was, in fact, a multivariate version of the Peano derivative.

4



defined as the maximum consumption level that the decision maker is willing to

give up in exchange for the assurance that the true probability coincides with his

benchmark probability in the sense of Ghirardato and Marinacci (2002). Define

the risk premium as the maximum consumption level the decision maker is willing

to give up in exchange for full insurance under the benchmark probability. We will

show (in Section 6) that our measure of ambiguity aversion is approximately equal

to the ratio of the ambiguity premium to the risk premium.

Let us now turn to some earlier works that are most relevant to this one. Dim-

mock, Kouwenberg, and Wakker (2016, Section 3) defined a measure of ambiguity

aversion as the shortfall of the matching probabilities ρ(A) defined for various

events A from the subjective probabilities that he would attach to unambiguous

acts.6 They assumed that for preferences in the source method, ρ(A) is uniquely

determined by A, independently of the choice of the baseline consumption level

x and the prize ε.7 This uniqueness property holds also for all biseparable pref-

erences in the sense of Ghirardato and Marinacci (2002, Definition 2), including

those represented by Choquet expected utilities and α-maximin expected utilities

of Ghirardato, Maccheroni, and Marinacci (2004).

Wang (2019) used an ingenious idea of restricting preference comparison on a

set of “aligned” acts to give a notion of a decision maker as being more ambiguity-

averse than another that neither requires nor implies common risk attitudes. His

notion relies on matching probabilities. But, for non-biseparable preferences, such

as the smooth ambiguity model of Klibanoff, Marinacci, and Mukerji (2005, here-

after KMM), the matching probabilities depend on the choice of the baseline con-

sumption level x and the prize ε; and so does Wang’s definition (Definition 5 of

his paper) of the more-ambiguity-averse-than relation. This fact suggests that for

general preferences, the matching probability, as well as the measure of ambiguity

aversion, should be amended by specifying the baseline consumption level x and

6In their setting, the decision maker may use a probability weighting function to calculate
expected utility levels. When he does, the subjective probabilities here should be replaced by the
values of the probability weighting function taken at the subjective probabilities.

7If the subjective probability of an event A is denoted by P (A), then the shortfall is equal to
P (A)−ρ(A). In the case of differentiable utility functions, P is defined as (a scalar multiple of) the
gradient of the utility function at a constant act. In some experiments, as in the case of Ellsberg’s
two-color urn, it is defined based on some type of symmetry consideration (exchangeability). For
natural, non-experimental events, Abdellaoui, Baillon, Placido, and Wakker (2011, Section IV)
offered a way to identify it. Denoting the complement of A by Ac, the shortfall of ρ(A) + ρ(Ac)
from one can also be taken as a measure of ambiguity aversion; and it can be identified even when
P is unknown. This method of eliciting ambiguity aversion without identifying P was explored
by Baillon, Huang, Selim, and Wakker (2018) and Baillon, Bleichrodt, Li, and Wakker (2021)
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the prize ε. This is precisely what we will do in this paper.

Cerreia-Vioglio, Maccheroni, and Marinacci (2022) gave a quadratic approxi-

mation of the uncertainty premium for ambiguity-averse utility functions. They

assumed twice continuous Gateaux differentiability, thereby excluding maximin

and Choquet expected utility functions. They characterized the quadratic approx-

imation of the uncertainty premium with a possibly infinite state space, but did not

discuss its relation to matching probabilities or other characteristics of preferences,

such as the curvatures of indifference curves.

The rest of this paper is organized as follows. Section 2 gives the setup of the

paper. Section 3 defines a measure of ambiguity aversion. Section 4 characterizes

the measure of ambiguity aversion in terms of utility functions and the curvatures of

indifference curves. Section 5 relates it to matching probabilities. Section 6 relates

it to ambiguity premiums. Section 7 shows how it can be rewritten for the smooth

ambiguity model of KMM, and presents a work-out example of the home bias puz-

zle. All the results so far are obtained under the assumption of twice continuous

differentiability in the standard sense. Section 8 introduces the notion of Peano

differentiability, extends the measure of ambiguity aversion to non-differentiable

but twice Peano differentiable utility functions, and generalizes the results on am-

biguity premiums and matching probabilities in the preceding sections. Section 9

suggests directions of future research. The appendix gathers proofs for the main

results in the twice continuously differentiable case. The online appendix consists

of three sections. The first one contains proofs for the application to the smooth

ambiguity model. The second one presents an extension of the measure of ambi-

guity aversion and its relation to matching probabilities and ambiguity premiums

to the case where the decision maker’s risk attitude cannot be represented by any

expected utility function.8 The last one gathers lemmas and and the extension to

the non-differentiable case.

2 Setup

The state space is a finite set S. By an abuse of notation, we also write its cardinal-

ity as S. As it is finite, the σ-field is the power set and every random variable can

be regarded as a vector in RS. Denote by e the vector in RS whose coordinates are

all equal to one. It represents a profile of state-independent consumption or utility

8Peter Wakker encouraged me to work on this extension.
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levels. Write ∆ = {p ∈ RS
+ | p · e = 1}. Then, ∆ is the set of all probabilities on

the state space. Each g ∈ RS can be regarded as a random variable on the state

space, and its expectation under p ∈ ∆, Ep[g] is equal to the dot product p · g.
Let T be a nonempty open interval ofR. It is the set of all possible consumption

levels. We assume that the decision maker has an expected utility function for

pure risk (without ambiguity) and denote by v : T → R his Bernoulli utility

function, following the terminology of Mas-Colell, Whinston, and Green (1995).

Let I : v(T )S → R and assume that I is increasing and normalized, that is,

I(ye) = y for every y ∈ v(T )S. We refer to I as the aggregator.

Let Π(T ) be the set of all (Borel) probability measures on T . For each f : S →
Π(T ), or f ∈ Π(T )S, denote by v ◦ f the vector in v(T )S whose s-th coordinate

is equal to the expected utility level
∫
T
v(x) d(f(s))(x) given by the lottery f(s) ∈

Π(T ). Define V : Π(T )S → R by letting V (f) = I(v ◦ f) for every f ∈ Π(T )S.

This is the form of utility functions that we study in this paper. We then say

that V is defined by (S, T, v, I), or, simply, by (v, I). By Proposition 1 of Cerreia-

Vioglio, Ghirardato, Maccheroni, Marinacci, and Siniscalchi (2011), such an I

exists for each transitive, complete, continuous, and increasing preference relation

that satisfy the independence axiom on the set of lottery acts, to be defined shortly.

An element of Π(T )S, which assigns a lottery to each state, is known as

an Anscombe-Aumann act (named after Anscombe and Aumann (1963)). An

Anscombe-Aumann act f for which f(s) is independent of s is called a lottery act,

and the set of lottery acts can be identified with Π(T ). Since the aggregator I is

normalized, the preference restricted on Π(T ) is represented by an expected utility

function with a Bernoulli utility function v. The subjective expected utility is the

case where I is the expectation operator under some probability on S. In contrast,

an element of T S assigns a (deterministic) consumption level to each state and is

termed a monetary act by Marinacci, Maccheroni, and Rustichini (2006, Section

3.5). We call an act a constant act if it a lottery act and, at the same time, a

monetary act. That is, a constant act gives a common deterministic consumption

level over all states. The set of constant acts can thus be identified with T . The

measure of ambiguity aversion we introduce in this paper is a local measure that

represents ambiguity attitudes around constant acts.

While the use of Anscombe-Aumann acts in the theory of choice may be ques-

tionable, as voiced by Kreps (1988, Chapter 7) and Epstein (1999, Section 5), we

have opted for the domain of Anscombe-Aumann acts, rather than that of mone-
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tary acts, because, then, V specifies risk attitudes by ranking lottery acts. Once

the Bernoulli utility function v is known, the subsequent analysis is valid (and

simpler) even when the utility function V is restricted to the set of monetary acts.

Bear in mind, though, that the separation between the Bernoulli utility function v

and the aggregator I is incomplete on the set of monetary acts: It is possible that a

pair (v1, I1) defines V1, another, different, pair (v2, I2) defines V2, and, yet, V1 = V2

on T S. Since our measure of ambiguity aversion depends on how V is decomposed

into v and I, we have chosen the set of Anscombe-Acts as the domain of the utility

function V to circumvent the problems arising from this inseparability.

We assume throughout this paper that v is twice continuously differentiable

and satisfies v′′ ≤ 0 < v′. Then v(T ) is a nonempty open interval of R. We also

assume that v′′ < 0, except in Section 5, where we explore the relationship of our

measure of ambiguity aversion to matching probabilities. In addition, we assume

that I is twice continuously differentiable until Section 8, where we deal with the

case of non-differentiable aggregators. The assumption of twice continuous differ-

entiability is violated by the maximin expected utility of Gilboa and Schmeidler

(1989) and Choquet expected utility of Schmeidler (1989), but satisfied by the

smooth ambiguity-averse utility functions of KMM and the relative entropy used

by Hansen and Sargent (2001), among others.

3 Measure of ambiguity aversion

In Section 2, we defined a utility function V : Π(T )S → R based on a Bernoulli

utility function v : T → R and a aggregator I : v(T )S → R. In this section,

we define a measure of ambiguity aversion that is analogous to the Arrow-Pratt

measure of risk aversion for Bernoulli utility functions.

Let x ∈ T and write p = ∇I(v(x)e). Since I is non-decreasing and normalized,

p ∈ ∆. For each z ∈ RS, denote the variance of z under p by Varp[z]. It is

equal to
∑

s p(s)z(s)
2 − (

∑
s p(s)z(s))

2 and, thus, to Ep[z2]− (Ep[z])2, where z2 =

((z(s))2)s ∈ RS.

Definition 1 Let x ∈ T and z ∈ RS. Write p = ∇I(v(x)e) and suppose that
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Varp[z] > 0. Then, we define

Hx(z) =

−z
⊤ (v′(x)∇2I(v(x)e)) z

Varp[z]

−v
′′(x)

v′(x)

. (1)

The denominator of the right-hand side of (1) is nothing but the Arrow-Pratt

measure of risk aversion of the Bernoulli utility function v at x. The numerator

is determined, in part, by the Hessian of the aggregator I at v(x)e. In the case

of a subjective expected utility function, I is linear, the Hessian is zero, and our

measure is also equal to zero. It can, thus, be considered as representing how much

the utility function V is different from the subjective expected utility functions.

The denominator of the right-hand side of (1) is invariant to the affine trans-

formations of v. By Proposition 1 of Cerreia-Vioglio, Ghirardato, Maccheroni,

Marinacci, and Siniscalchi (2011), the numerator is also invariant as long as I is

transformed along with an affine transformation of v so that I is normalized and V

represents the same preference. Thus, the value of Hx(z) is uniquely determined

by the risk attitudes and the preference relation on T S. The measure Hx(z) is

invariant to scalar multiplications and addition of constant acts to z. Hence, to

identify the values of Hx(z) for all z, it suffices to know the values of Hx(z) for

the z with zero mean and unit variance.

A curious aspect of the definition (1) is that while the ambiguity aversion

seems fully captured by the numerator of the right-hand side, the definition also

involves the denominator, which is determined solely by the risk aversion. There

are two reasons for employing this definition. First, as we will see in Sections 5, 6,

and 8, this definition allows us to obtain tractable asymptotic results on ambiguity

premiums and matching probabilities, even when I is not differentiable. Second, in

many applications of ambiguity-averse utility functions, most notably in the home

bias puzzle, which we will take up in Section 7.2, the ambiguity aversion in excess

of the risk aversion is more important than the ambiguity aversion itself. In any

case, we will give equivalent expressions of the numerator in terms of derivatives of

ambiguity premiums and matching probabilities in the subsequent analysis. They

may well be helpful for the potential use of the numerator, on its own, as a measure

of ambiguity aversion.

The measure of ambiguity aversion can be best interpreted in terms of bench-
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mark preferences and benchmark measures in the sense of Ghirardato and Mari-

nacci (2002, Section 2.2). All subjective expected utility functions are ambiguity-

neutral, and suppose that there is one that is less ambiguity-averse than V accord-

ing to their Definition 7. Such a subjective expected utility function is called a

benchmark preference of V , and the subjective probability is called a benchmark

measure. As discussed in the introduction, a benchmark preference exhibits the

same risk attitudes as V , which is represented by v. Since the aggregator I is

(twice continuously) differentiable, the benchmark measure, which we will also re-

fer to as the benchmark probability, is unique and coincides with ∇I(v(x)e) for

any x ∈ T .9 Hence, the measure of ambiguity aversion is equal to the quadratic

form of the Hessian of I divided by the Arrow-Pratt measure of risk aversion and

the variance of deviations from a constant act relative to its benchmark prefer-

ence. In the rest of this paper, we sometimes refer to ∇I(v(x)e) as the benchmark

probability, even when there is no benchmark preference, as a shorthand for the

subjective probability implicit at the constant act xe.

4 Utility functions and indifference curves over

monetary acts

In this section, we give an equivalent expression of the measure of ambiguity aver-

sion, (1), in terms of the utility function V . When its domain is restricted to the

set of monetary acts, since it is a subset of RS, we can apply the classical demand

theory to find its illustrative properties.

Let x ∈ T and p = ∇I(v(x)e). Let Ī be the expectation operator under p and

V̄ be defined by (v, Ī). Define V ∗ = v−1◦V and V̄ ∗ = v−1◦ V̄ . Then, V ∗ represents

the same preference as V , and V̄ ∗ represents the same preference as V̄ . Moreover,

if V ∗ is concave, then it is a least concave utility function in the sense of Debreu

(1976),10 and the same can be said for V̄ ∗. In the following theorem, the utility

9When there is a benchmark preference, ∇I(v(x)e) is independent of the choice of x ∈ T .
This property is equivalent to Axiom 7, Translation Invariance at Certainty, of Rigotti, Shannon,
and Strzalecki (2008), as their Proposition 8 showed.

10We need to assume here that V ∗ is concave because it need not be so under the set of
assumptions given so far. Additional assumptions on v necessary to guarantee concavity are
given in Hardy, Littlewood, and Polya (1952, Section 3.16). In fact, then, a property stronger
than least concavity can be obtained: Every concave function that represents the same preference
as V is a concave transformation of V ∗. This follows from the fact that V ∗ is linear on the set of
constant acts and least concave utility functions are affine transformations of each other.
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functions V ∗ and V̄ ∗ should be thought as being defined on the set T S of monetary

acts and their Hessians as S × S matrices.

Theorem 1 For all x ∈ T and z ∈ RS,

z⊤∇2V ∗(xe)z = z⊤
(
v′(x)∇2I(v(x)e)

)
z +

v′′(x)

v′(x)
Varp[z]. (2)

Since V̄ is a subjective expected utility function under p, a well known result

of Pratt (1964) implies that

z⊤∇2V̄ ∗(xe)z =
v′′(x)

v′(x)
Varp[z]. (3)

Thus, this theorem implies the following equivalent expression of the measure of

ambiguity aversion.

Corollary 1 For all x ∈ T and z ∈ RS with Varp[z] > 0,

Hx(z) =
z⊤∇2V ∗(xe)z − z⊤∇2V̄ ∗(xe)z

z⊤∇2V̄ ∗(xe)z
. (4)

That is, Hx(z) can be obtained by dividing the difference between two quadratic

forms z⊤∇2V ∗(xe)z and z⊤∇2V̄ ∗(xe)z by the latter. Thus, the measure of am-

biguity aversion is the ratio of the difference in the second-order effects on least

concave utility levels between the preferences represented by V and V̄ to that of

the preference represented by V̄ .

A simple but useful insight can be obtained from Corollary 1 by applying the

second-order Taylor approximation. Note that ∇V ∗(xe)z = ∇V̄ ∗(xe)z = Ep[z]

and assume that Ep[z] = 0. Then,

(V ∗(xe)− V ∗(xe+ εz))− (V̄ ∗(xe)− V̄ ∗(xe+ εz))

V̄ ∗(xe)− V̄ ∗(xe+ εz)
→ Hx(z)

as ε → 0. Since V ∗(xe + εz) < V ∗(xe) and V̄ ∗(xe + εz) < V̄ ∗(xe), the asymp-

totic result says that the reduction is larger for V ∗ than for V̄ ∗, by the factor

approximately equal to Hx(z).

We now give yet another equivalent expression of the measure of ambiguity

aversion in terms of indifference curves, which admits a particularly illuminating

graphical representation. For each z ∈ RS with Ep[z] = 0 and Varp[z] > 0, let
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L(z) be the plane spanned by e and z. Then, T S ∩ L(z) is an open subset of

L(z) that contains xe for every x ∈ T . Then the intersection of L(z) with the

indifference hypersurfaces that contain xe,
{
f ∈ T S ∩ L(z) | V (f) = V (xe)

}
and{

f ∈ T S ∩ L(z) | V̄ (f) = V̄ (xe)
}
, are twice continuously differentiable curves on

L(z). Denote their curvatures by cx(z) and c̄x(z).

Theorem 2 For every x ∈ T and every z ∈ RS with Ep[z] = 0 and Varp[z] > 0,

cx(z) = −S1/2

(
z⊤ (v′(x)∇2I(v(x)e)) z

Varp[z]
+
v′′(x)

v′(x)

)
,

c̄x(z) = −S1/2v
′′(x)

v′(x)

This theorem immediately gives the following equivalent expression for Hx(z).

Corollary 2 For every x ∈ T and every z ∈ RS with Ep[z] = 0 and Varp[z] > 0,

Hx(z) =
cx(z)− c̄x(z)

c̄x(z)
.

Since the curvature of a curve at a point measures how much curved it is

around the point, this corollary that the measure of ambiguity aversion represents

how much more curved, in proportion, the indifference curves of V is than that of

V̄ in the direction z of deviation at the constant act xe.

We can now illustrate the measure of ambiguity aversion in terms of the indif-

ference curves of the utility function V on the set of monetary acts along the lines

of Yaari (1969). Let S = 2. Let x ∈ T and consider the constant act xe. The

corresponding vector of Bernoulli utility profiles, v ◦ (xe), coincides with v(x)e.

The indifference curves of I and Ī that go through v(x)e are shown on the left

panel of Figure 1. The indifference curve of I is convex to the origin, which rep-

resents ambiguity aversion, while that of Ī is a straight line with normal vector

p = ∇I(v(x)e). These two indifference curves correspond to the two indifference

curves of V and V̄ that go through the constant act xe on the right panel. Since v

is concave, both are convex to the origin, but the indifference curve of V is more

convex to the origin than the indifference curve of V̄ due to the concavity of I.

How much more convex the former is than the latter is represented by their cur-

vatures; and Corollary 1 shows that the measure of ambiguity aversion represents

how much more curved, in proportion, the indifference curve of V is than that of

12



V̄ .

Figure 1: Measure of ambiguity aversion represented on the indifference curves of
V and V̄ .

I and I V and V

I
I VV

Bernoulli utility in state 2

Bernoulli utility in state 1

consumption in state 2

consumption in state 1

p p

v(x)e xe● ●

There are only two states (S = 2). On the left panel, the solid curve is the
indifference curve of I that goes through the (Bernoulli) utility profile v(x)e of the
constant act xe, and the dotted line is the indifference curve of Ī that goes through
the same profile. Since v is concave, these indifference curves are transformed
into more concave ones on the set (plane) of monetary acts on the right panel,
but they are still tangent to the line with normal vector p = ∇I(v(x)e). The
measure of ambiguity aversion quantifies how much more curved, in proportion,
the indifference curves of V is at xe than that of V̄ .

5 Matching probabilities

In Section 3, we defined our measure of ambiguity aversion, (1), in terms of the

Hessians of aggregators. In this section, we explore its behavioral characteriza-

tion. Specifically, we show that it is equal to the ratio of the derivative of the

matching probability and its deviation from the derivative of the fictitious match-

ing probability, which is derived from a utility function that coincides with the

utility function V on the set T S of monetary acts but exhibits risk neutrality. We
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then give an asymptotic result, establishing that it is approximately equal to the

ratio of the matching probability and its deviation from the fictitious matching

probability when acts are almost constant.

Let A ⊂ S and x ∈ T . Denote by eA the indicator function of A, that is,

eA(s) = 1 for every s ∈ A and eA(s) = 0 otherwise. For each ε > 0, εeA represents

a bet on the event A with the prize ε, and xe+ εeA is a binary act that represents

the consumption plan for a decision maker who holds a benchmark consumption

level x and places the bet. For each r ∈ [0, 1], denote by fx(ε, r) ∈ Π(T ) the

lottery that assigns probability r to x+ ε and 1− r to x. Then, regarding fx(ε, r)

as a lottery act, define ρx(ε, A) by

V (fx(ε, ρx(ε, A))) = V (xe+ εeA). (5)

Thus, (5) means that the decision maker is indifferent between the lottery with the

winning probability ρx(ε, A) and the bet on A. The winning probability ρx(ε, A) is

called the matching probability of the event A at the consumption level x with the

prize ε, because the equality means that the probabilistic assessment the decision

maker gives to the winning event A is equal to ρx(ε, A). Since V is an expected

utility function on the set of lottery acts, (5) can be rewritten as

ρx(ε, A)v(x+ ε) + (1− ρx(ε, A))v(x) = V (xe+ εeA). (6)

This shows that ρx(ε, A) is a continuously differentiable function of ε > 0.

Even when ε < 0 (and x+ ε ∈ T ), we define ρx(ε, A) as in (5) and (6). In this

case, since xe + εeA = (x + ε)e − εeS\A, the bet is on the complementary event

S \A with the prize −ε, and the decision maker’s initial deterministic consumption

level is x+ ε. It can then be shown that

ρx(ε, A) = 1− ρx+ε(−ε, S \ A), (7)

where, since −ε > 0, the right-hand side was defined as in the previous paragraph.

This shows that ρx(ε, A) is a continuously differentiable function of ε < 0.

For ε = 0, we set ρx(0, A) = p(A), where p(A) = ∇I(v(x)e)eA. Thus p(A) is the
probability of A under the subjective probability implicit at the constant act xe.

We have thus defined the function ε 7→ ρx(ε, A) on an open interval containing 0. If

V represents a subjective expected expected utility function, then ρx(ε, A) = 0 for
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every ε and ∂ρx(0, A)/∂ε = 0. The next theorem asserts, more generally, that this

function is differentiable at 0 and the derivative is equal to half the denominator

of Hx(eA).

Theorem 3 Let A ⊂ S and x ∈ T . Then the function ε 7→ ρx(ε, A) is differen-

tiable at 0 and

∂ρx

∂ε
(0, A) =

1

2
e⊤A
(
v′(x)∇2I(v(x)e)

)
eA.

To obtain an expression of the numerator of Hx(eA) in terms of matching

probabilities, write I = v−1 ◦ V . Then, I gives the certainty equivalents in terms

of constant acts. It is defined on Π(T )S but think of its domain as restricted on

the set T S of monetary acts for the subsequent analysis. Then, it is continuous,

increasing, and normalized. Let v be the identity function on T and define a utility

function V by (v, I).11 Since v ◦ f = f and, hence, V (f) = I(v ◦ f) = v−1(V (f))

for every f ∈ T S, V represents the same preference as V on the set of monetary

acts. But, since V is risk-neutral, they differ from each other outside the set

of monetary acts. Moreover, any aversion to non-constant acts exhibited by V

is attributed entirely to ambiguity aversion. Thus, any difference in ambiguity

aversion, and hence in matching probabilities, between V and V is attributed

to the risk aversion represented by the Bernoulli function v. Define ρx(ε, A) as

in (5) for ε 6= 0 using V in place of V , and let ρx(0, A) = ∇I(v(x))eA. Since

∇I(v(x))eA = ∇I(v(x))eA = p(A), ρx(0, A) is equal to p(A). Theorem 3 holds

for (v, I). In particular, ε 7→ ρx(ε, A) is differentiable at 0. By combining ρx(ε, A)

with ρx(ε, A), we obtain the following expression for Hx(z).

Corollary 3 Let A ⊂ S and x ∈ T and suppose that 0 < p(A) < 1, then

Hx(eA) =

∂ρx

∂ε
(0, A)

∂ρx

∂ε
(0, A)− ∂ρx

∂ε
(0, A)

. (8)

The first-order Taylor approximation shows that

p(A)− ρx(ε, A)(
p(A)− ρx(ε, A)

)
− (p(A)− ρx(ε, A))

→ Hx(z) (9)

11The Bernoulli utility function v violates the assumption of negative second derivatives, stated
in Section 2. This, however, will not cause any problem for the analysis in this section.
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as ε → 0. This asymptotic result can be explained as follows. The difference

p(A)−ρx(ε, A) is the reduction in the matching probabilities of the event A caused

by an increase in prizes of bets on the event. The difference p(A)− ρx(ε, A) is also

the reduction in the matching probabilities of the event A but measured for the

fictitious utility function V . Since V and V represent the same preference for mon-

etary acts but the latter is risk-neutral, the reduction in the matching probabilities

of A for V is due not only to the ambiguity aversion represented by I but also,

erroneously, to the risk aversion represented by v (as it is missed out by v). Thus

the difference
(
p(A)− ρx(ε, A)

)
− (p(A)− ρx(ε, A)) in the reductions of matching

probabilities for V and V is due solely to the risk aversion of v. Thus, it can ap-

proximate the Arrow-Pratt measure of risk aversion of v. Corollary 3 shows that

the ratio of the reduction in the matching probabilities due to ambiguity aversion

and the reduction in the fictitious matching probabilities due to risk aversion is

approximately equal to our measure of ambiguity aversion.

As any statement on derivatives is hard to test when there are only finitely many

observations (such as investors’ portfolio choices in asset markets and subjects’

responses in laboratory experiments), this asymptotic result may be useful when

identifying the decision maker’s ambiguity attitude from his choice behavior. The

availability of such an asymptotic result is one of the reasons, stated in Section 3,

why we include the Arrow-Pratt measure in the definition (1) of the measure of

ambiguity aversion.

6 Ambiguity premiums

In this section, we explore another behavioral characterization of the measure of

ambiguity aversion. We show that it is equal to the ratio of the second derivatives of

the risk and ambiguity premiums. We then give an asymptotic result, establishing

that it is approximately equal to the ratio of the risk and ambiguity premiums

when acts are almost constant. Finally, we give a graphical illustration of the

ambiguity premium.

Let x ∈ T and p = ∇I(v(x)e). Let z ∈ T S. For each ε close to 0, denote

by fx(ε, z) ∈ Π(T ) the lottery that coincides with the distribution on T of the

monetary act x + εz under the probability p. Then, regarding fx(ε, z) as a lot-

tery act, define κx(ε, z) by V
(
fx−κx(ε,z)(ε, z)

)
= V (xe + εz). That is, κx(ε, z) is

the maximum consumption level that the decision maker is willing to give up in
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exchange for the assurance that the true probability coincides with his benchmark

probability. It can, thus, be called the ambiguity premium of the act xe+ εz with

respect to the utility function V .

As in Section 3, let Ī be the expectation operator under p and define V̄ by

(v, Ī). Since V coincides with V̄ on the set of lottery acts, κx(ε, z) can also be

defined by

V̄ ((x− κx(ε, z)) e+ εz) = V (xe+ εz). (10)

By applying the implicit function theorem to (10), we can see that κx(ε, z) is a twice

continuously differentiable function of ε. In particular, if V represents a subjective

expected utility function, then κx(ε, z) = 0 for every ε and ∂2κx(0, z)/∂ε2 = 0.

The following theorem, more generally, relates the numerator of the measure of

ambiguity aversion (1) to the second derivative of the ambiguity premium.

Theorem 4 For all x ∈ T and z ∈ RS,

κx(0, z) = 0

∂κx

∂ε
(0, z) = 0,

∂2κx

∂ε2
(0, z) = −z⊤

(
v′(x)∇2I(v(x)e

)
z.

In the terminology analogous to that of Segal and Spivak (1990), the equality

∂κx(0, z)/∂ε = 0 means that the utility function V is second-order ambiguity-

averse.

The Arrow-Pratt measure of absolute risk aversion, which appears in the de-

nominator of the definition (1) of the measure of ambiguity aversion, can be written

in terms of the second derivative of the risk premium. This is a well known re-

sult due to Pratt (1964, Section 3), but we reproduce the argument here for the

subsequent analysis.

Define κ̄x(ε, z) by V̄ ((x− κ̄x(ε, z)) e) = V̄ (xe + εz). Then κ̄x(ε, z) is the risk

premium, that is, x− κ̄x(ε, z) is equal to the certainty equivalent of the monetary
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act xe+ εz under the probability p. Pratt (1964) showed that if Ep[z] = 0, then

∂κ̄x

∂ε
(0, z) = 0, (11)

∂2κ̄x

∂ε2
(0, z) = −v

′′(x)

v′(x)
Varp[z]. (12)

Hence, Theorem 4 leads to the following characterization of Hx(z) in terms of

ambiguity and risk premiums.

Corollary 4 For all x ∈ T and z ∈ RS with Ep[z] = 0,

Hx(z) =

∂2κx

∂ε2
(0, z)

∂2κ̄x

∂ε2
(0, z)

.

By applying the second-order Taylor approximation, we can show that as ε→ 0,

κx(ε, z)

κ̄x(ε, z)
→ Hx(z) (13)

That is, our measure of ambiguity aversion, Hx(z), is approximately equal to the

ratio of the ambiguity premium κx(ε, z) to the risk premium κ̄x(ε, z). This corollary

will be useful for the quantitative analysis of ambiguity premiums, just as Corollary

3 will be useful for the quantitative analysis of matching probabilities, because any

statement on (second) derivatives, in Theorem 3 or 4, is hard to test when there

are only finitely many observations.

Before giving a graphical illustration of the ambiguity premium, let us introduce

another type of premium, which can be called the uncertainty premium. Define

κ̌x(ε, z) by V ((x− κ̌x(ε, z)) e) = V (xe + ε). That is, x − κ̌x(ε, z) is the certainty

equivalent of xe + εz with respect to the utility function V , which reflects both

risk and ambiguity aversion. We could define the part of the uncertainty aversion

that cannot be attributed to risk aversion, κ̌x(ε, z) − κ̄x(ε, z), as the ambiguity

premium. Although this is, in general, not equal to κx(ε, z), they are equal up to

the first- and second-order. In particular,

∂2κx

∂ε2
(0, z) =

∂2κ̌x

∂ε2
(0, z)− ∂2κ̄x

∂ε2
(0, z).

Hence, Theorem 4 can be restated using the right-hand side of the above equality.
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We can now give a graphical representation of the risk premium and the am-

biguity premium. Assume that S = 2. Let x ∈ T and write p = ∇I(v(x)e). Let z
represent a deviation such that Ep[z] = 0. Let ε > 0. The constant act xe and the

monetary act xe+ εz are depicted on Figure 2. The solid curve is the indifference

curve of the utility function V ; the upper dotted curve is the indifference curve of

the benchmark utility function V̄ ; and the dashed line is the iso-expectation line,

all going through xe+ εz. By the definition of the uncertainty premium, the solid

indifference curve intersects the 45-degree line at (x− κ̌x(ε, z)) e; by the definition

of the risk premium, the upper dotted indifference curve intersects the 45-degree

line at (x− κ̄x(ε, z)) e; and since Ep[z] = 0, the dashed iso-expectation line goes

though xe. Thus, the risk premium κ̄x(ε, z) is the distance between the upper

dotted indifference cure and the dashed iso-expectation line, measured along the

45-degree line. The lower dotted curve is the indifference curve of the benchmark

utility function V̄ that goes through (x− κ̌x(ε, z)) e. It is tangent to the solid

indifference curve, because they are both tangent to the iso-expectation line. It

also goes through (x− κx(ε, z)) e+ εz, because

V̄ ((x− κ̌x(ε, z)) e) = V ((x− κ̌x(ε, z)) e) = V (xe+ εz) = V̄ ((x− κx(ε, z)) e+ εz) .

Thus, the ambiguity premium κx(ε, z) is the distance between the upper and lower

dotted curves as measured along the 45-degree line going through xe+εz. Corollary

4 shows that our measure of ambiguity aversion is approximately equal to the

ratio of the distance between the dashed iso-expectation line and the upper dotted

indifference curve and the distance between the upper and lower dotted indifference

curves.

7 Smooth ambiguity model

In this section, we deal with the smooth ambiguity model of KMM, as it is the

prime example of twice continuously differentiable aggregators. We show that it

admits an insightful equivalent expression of the measure of ambiguity aversion,

and, then, give a simple numerical example to illustrate how much ambiguity

aversion needs to be introduced to solve the home bias puzzle.
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Figure 2: Risk premium, ambiguity premium, and the indifference curves of V and
V̄ .

consumption in state 2

consumption in state 1

p

● (x - κx(ε,z))e
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xe
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xe+εz

   (xe + εz) - κx(ε,z)e

●

●

V

(x - Ǩx(ε,z))e

V

The solid curve is the indifference curve of the utility function V ; the upper dotted
curve is the indifference curve of the benchmark utility function V̄ ; and the dashed
line is the iso-expectation line, all going through xe+εz. The measure of ambiguity
aversion is approximately equal to the ratio of the distance between the dashed
iso-expectation line and the upper dotted indifference curve, measured along the
45-degree line going through the origin versus the distance between the upper and
lower dotted indifference curves, measured along the 45-degree line going through
xe+ εz.

7.1 Equivalent expression of the measure of ambiguity aver-

sion

Let v : T → R be a Bernoulli utility function be as in Section 2, ϕ : v(T ) → R

be a twice continuously differentiable function that satisfy ϕ′′ ≤ 0 < ϕ′, and µ

be a probability measure on ∆ such that
∫
∆
p dµ(p) ∈ RS

++. This is the reduced

probability of µ and denoted by pI . Define I : v(T )S → R by letting

I(g) = ϕ−1

(∫
∆

ϕ (Ep[g]) dµ(p)

)
(14)
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for every g ∈ v(T )S. As in Section 2, define V : T S → R by (v, I). Then,

ϕ(V (f)) =

∫
∆

ϕ (Ep(v ◦ f)) dµ(p). (15)

This is the smooth ambiguity model axiomatized by KMM. Rigotti, Shannon,

and Strzalecki (2008, Proposition 5) showed that the reduced probability pI is its

benchmark probability.

Let w = ϕ ◦ v, then (15) can be rewritten as

ϕ(V (f)) =

∫
∆

w
(
v−1 (Ep(v ◦ f))

)
dµ(p).

While ϕ is a Bernoulli utility function over expected utility levels, w is a Bernoulli

utility function over certainty equivalents. Denote by E ·[z] the random variable

p 7→ Ep[z] defined on the probability space (∆,B(∆), µ). Denote by Eµ and Varµ

be the expectation operator and the variance operator for the random variance

defined on ∆ under the probability µ. In this class of smooth ambiguity-averse

utility functions, the measure of ambiguity aversion can be written as follows.

Proposition 1 If I is defined by (14), then

Hx(z) =

−w
′′(x)

w′(x)

−v
′′(x)

v′(x)

− 1

 Varµ[E ·[z]]

Varp
I
[z]

(16)

for all x ∈ T and z ∈ RS with Varp
I

[z] > 0.

This proposition shows that in the case of the smooth ambiguity utility func-

tions, the measure Hx(z) of ambiguity aversion consists of two terms. The first

term of (16) represents how much in proportion the decision maker is more averse

to the variability in certainty equivalents under different probabilities on the state

space than to the variability that is independent of the choice of such probabili-

ties. This term is independent of the second-order belief µ and also of the choice

of z. The second term is dependent on the choice of z. Since its numerator is

the variance of the random variable E ·[z] : p 7→ Ep[z] under the probability µ on

∆, it measures how much uncertainty is perceived in the distribution of z. The

denominator is a normalizing factor, as the law of total variance guarantees that
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the fraction lies in [0, 1].12 Since pI is the reduced probability of the second-order

belief, the second term is determined by the second-order belief, and represents

how much ambiguity is perceived in the direction the profile z of state-dependent

utility levels. Thus, the measure of ambiguity aversion can be decomposed into

two parts, the first part determined by the decision maker’s inherent aversion to

ambiguity, and the second part determined by the decision maker’s perception of

ambiguity in the environment he is in.13

7.2 Application to the home bias puzzle

We now turn to a simple work-out example in which the measure of ambiguity aver-

sion can be inferred from the observed portfolio choice in the home bias puzzle.

In the following specification of utility functions, the robust quadratic approxima-

tion Maccheroni, Marinacci, and Ruffino (2013) is exact. The general case of an

arbitrary number of assets was considered by Hara and Honda (2022).

Three types of assets, the home stock, the foreign stock, and the risk-free bond,

can be bought and sold. The state space S coincides with the set of all possible

realizations of a bivariate random variable R = (R1, R2) of home and foreign stocks

returns. The return of the risk-free bond is denoted by Rf .

In the specification (v, w, µ) of a KMM utility function, we assume that v has a

constant coefficient θ of absolute risk aversion, and w has a constant coefficient γ

of absolute risk aversion, with θ ≤ γ. Write η = γ/θ − 1. The second-order belief

µ is defined as follows. Let σ > 0 and τ ∈ (0, 3/4], and define a 2× 2 matrix ΣR|M

by

ΣR|M =

(
σ2 (1/2)σ2

(1/2)σ2 (1− τ)σ2

)
.

Since τ ≤ 3/4, ΣR|M is positive semidefinite. Then, for each m ∈ R2, let the

bivariate normal distribution N (m,ΣR|M) be a first-order belief, that is, a proba-

12This point can be most clearly seen when z = eA, that is, z is the indictor function of an event
A. Then, the denominator of the second term is equal to pI(A)(1− pI(A)), while the numerator
is equal to the variance of p 7→ p(A) under µ, which does indeed measure the variability of the
probability of A due to ambiguity perception. Jewitt and Mukerji (2017) gave a comprehensive
analysis on more-ambiguous-than relations between two acts and events.

13The phrase, “inherent aversion of ambiguity”, has a narrower sense than “ambiguity aversion”
in the “measure of ambiguity aversion”, as the latter includes the perception of ambiguity but
the former does not.
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bility measure on the state space.14 We let the support of the second-order belief

be the set of all these bivariate normal distributions. As such, it is parameterized

by m ∈ R2. Let R̄ > Rf and write

ΣM =

(
0 0

0 τσ2

)
.

Let the second-order belief µ in terms of the parameters m ∈ R2 be the bivariate

normal distribution N (R̄1,ΣM), where 1 = (1, 1) ∈ R2. Write

ΣR =

(
σ2 (1/2)σ2

(1/2)σ2 σ2

)
,

then ΣR = ΣR|M + ΣM and, by the law of total variance, the joint distribution

of R = (R1, R2) under the reduced probability of µ, which coincides with the

benchmark probability, is N
(
R̄1,ΣR

)
.

The second-order belief µ has the following features. Under the benchmark

probability, the home and foreign stocks share the same expected return R̄ and

the same variance σ2, and their correlation coefficient is equal to 1/2. Lewis (1999,

Table 2, Panel A), for example, reported that the mean and standard deviation

of the annualized monthly returns of the home (US) stock from January 1970 to

December 1996 are 11.14% and 15.07%, those of the foreign (Europe, Australia, and

Far East, measured in dollars) stocks are 12.12% and 16.85%, and the correlation

coefficient between the returns of the two stocks is 0.48. As such, the assumptions

that the two stock returns share the same mean R̄ and the same variance σ2 and

that their correlation coefficient is 1/2 are not overly unrealistic.

The decision maker perceives no ambiguity in the return of the home stock,

but he is unsure of the expected return of the foreign stock. In particular, he

perceives that the expected return itself is normally distributed and the variance

of the foreign stock return due to this ambiguity has a proportion τ in the (total)

variance under the benchmark probability.

Denoting his total wealth by W , we formulate the decision maker’s portfolio

14This assumption implies that the state space S is infinite and, thus, violates a maintained
assumption of this paper. This, however, causes no problem because our analysis is concentrated
on the linear subspace spanned by R1, R2, and the constant-valued function in the set of all
random variables on S.
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choice problem as the problem of maximizing∫
R2

w

(
v−1

(∫
R2

v(a0Rf + a · r) dN (m,ΣR|M)(r)

))
dN (R̄1,ΣM)(m), (17)

where r = (r1, r2), a = (a1, a2), and a · r = a1r1 + a2r2, by choosing the money

amounts invested, (a0, a1, a2) ∈ R3, subject to the budget constraint a0+a1+a2 ≤
W . We can then derive the following one-to-one relation between the measure of

ambiguity aversion and the fraction of the wealth invested in the foreign stock out

of the total wealth invested in the two stocks.

Proposition 2 For every x ∈ R, Hx(R1) = 0 and Hx(R2) = ητ . Moreover, if

(a0, a1, a2) ∈ R3 is the solution to (17), then

a2
a1 + a2

=
1

2 (1 + ητ)
.

The expected consumption level under the benchmark probability is equal to

a0Rf + a1R̄ + a2R̄. The proposition shows that the equalities Hx(R1) = 0 and

Hx(R2) = ητ hold not only for x = a0Rf + a1R̄ + a2R̄ but also for any other

x, and that the measure of ambiguity aversion in the direction of R2 and the

fraction invested in the foreign stock depend on the CARA coefficient γ of the

outer Bernoulli utility function v only through η = γ/θ−1. This substantiates our

claim, made right after the definition (1) of the measure of ambiguity aversion, that

the ambiguity aversion in excess of the risk aversion is often more important than

the ambiguity aversion itself. The proof shows that of the measure Hx(R2) = ητ ,

η is equal to the first term, and τ is equal to the second term, on the right-hand

side of (16).

The proposition provide us with simple but interesting quantitative implica-

tions. First, the fraction of investment in the foreign stock is a decreasing function

of the measure of ambiguity aversion, starting from 1/2 in the case of ambiguity

neutrality and converging to 0 in the case of unboundedly high ambiguity aversion.

Second, by reverting the equality, we can infer the measure of ambiguity aversion

from the (observed) fraction of the investment into the foreign stock. Lewis (1999)

reported that the fraction was just 8% in the US data, which implies that the

representative American’s measure of ambiguity aversion is equal to 5.25.

The possibility of inferring the measure of ambiguity aversion from observable

choice behavior is of considerable help in any quantitative analysis of ambiguity
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aversion. Recall, as shown by Corollaries 3 and 4, that the measure of ambiguity

aversion is related to the ambiguity premium and the matching probabilities. Thus,

we can check, by comparing the inferred values with those derived from laboratory

experiments, whether the inferred value is derived solely from ambiguity aversion

or contaminated by institutional factors, such as incomplete asset markets and

transaction costs in the context of the home bias puzzle.

8 Extension to the non-differentiable case

8.1 Background and motivation

To define the measure of ambiguity aversion in (1), we assumed that the aggregator

I is twice continuously differentiable. This assumption excludes, most notably,

maximin expected utility of Gilboa and Schmeidler (1989) and Choquet expected

utility of Schmeidler (1989). As they have significant behavioral implications,

such as the inertia in portfolio choice, we extend the definition of the measure of

ambiguity aversion to such non-differentiable aggregators and generalize the results

on matching probabilities and ambiguity premiums in Sections 5 and 6. This allows

us to compare the ambiguity aversion exhibited by non-differentiable aggregators

on the same footing with the ambiguity aversion exhibited by differentiable ones.

The extension to the non-differentiable case involves two additional considera-

tions that were unnecessary for the twice continuously differentiable case. The first

one is to give a notion of twice differentiability that can accommodate maximin

expected utility and Choquet expected utility. Since these utility functions are not

even differentiable, we need to give one that is particularly suited to our purpose.

Our definition is based on Peano right-derivatives.

The second consideration we need specifically for the non-differentiable case is

the choice of the benchmark probability in the sense of Ghirardato and Marinacci

(2002). As is well known, for concave but non-differentiable aggregators, there may

be multiple benchmark probabilities. When defining the measure of ambiguity

aversion, the choice of the benchmark probability p affects the ambiguity measure

Hx(z) through the variance Varp[z] of the deviation z from the constant act xe. In

our extended definition, we will allow p to depend on the choice of z (even after we

fix the deterministic consumption level x), but require p to minimize its mean Ep[z]

among all supergradients and, in addition, to maximize its variance Varp[z] among
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all such mean-minimizing supergradients, for a reason that we will elaborate on in

the next subsection.

8.2 Definitions

We assume that the aggregator I is continuous, non-decreasing, normalized, con-

cave, but not necessarily twice continuously differentiable. Then, I is locally Lip-

schitz continuous. It follows from Theorem 3.6(ii) and Theorem 4.8 of Chapter

3 of Delfour (2019) that I is Hadamard right-differentiable at every point in all

directions in the sense of Definition 3.1(ii) in Section 3 of Chapter 3 of Delfour

(2019). Denote the Gateaux and Hadamard right-derivative of I at g in the

direction z by dGI(g; z) and dHI(g; z). They are positively homogeneous, but

not necessarily linear, in z. They coincide whenever the latter exists. They are

linear in z if I is differentiable in the standard sense; and we can then write

dGI(g; z) = dHI(g; z) = ∇I(g)z using the gradient vector ∇I(g) of I at g.

Below are two versions of twice right-differentiability that we use in this paper.

It is given in terms of a general function F defined on an open subset A of an

Euclidean space RN of arbitrary dimension, as it will be used not only for the

aggregator I also for other functions such as the ambiguity premium.

Definition 2 Let a ∈ A and b ∈ RN .

1. We say that F is twice Peano-Gateaux right-differentiable at a in the direction

b if F is Gateaux right-differentiable at a in the direction b and there is an

L ∈ R such that

F (a+ εb)− (F (a) + εdGF (a; b))

ε2
→ L

as ε→ 0+. We denote 2L by d2
GF (a; b) and call it the second Peano-Gateaux

right-derivative of F at a in the direction b.

2. We say that F is twice Peano-Hadamard right-differentiable at a in the di-

rection b if F is Hadamard right-differentiable at a in all directions near b

and there is an L ∈ R such that

F (a+ εz)− (F (a) + εdHF (a; z))

ε2
→ L
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as ε → 0+ and z → b. We denote 2L by d2
GF (a; b) and call it the second

Peano-Hadamard right-derivative of F at a in the direction b.

Both of the two definitions require the function F to satisfy the second-order

Taylor approximation, but they are different in that the twice Peano-Gateaux right-

differentiability is met whenever the direction b of deviation from a is fixed through-

out the limiting operation while the twice Peano-Hadamard right-differentiability

requires the existence of the limit even when the direction of deviation itself varies

around b. The twice Peano-Hadamard right-differentiability implies twice Peano-

Gateaux right-differentiability, and, then, the second Peano-Hadamard and Peano-

Gateaux right-derivatives coincide. They also coincide whenever N = 1, and we

then refer to them simply as the second Peano right-derivative. They are posi-

tively homogeneous of degree two, but not necessarily quadratic, in b. They are

quadratic in b if F is twice differentiable in the standard sense; and we can then

write d2
GF (a; b) = d2

HF (a; b) = b⊤∇2F (a)b using the Hessian ∇2F (a).

The above definition of twice right-differentiability weaker than other known

definitions of twice right-differentiability, such as Definition 3.12 in Section 3 of

Chapter 3 of Delfour (2019), Theorem 2.3 of Rockafellar (2000), and Definition

13.1 of Rockafellar and Wets (1998), mainly in that the differentiability of the

(first) right-derivative on a neighborhood of the point a is not a prerequisite. For

example, Definition 3.12 in Section 3 of Chapter 3 of Delfour (2019) goes as follows:

If F is Gateaux right-differentiable at every point near a in all directions, and there

is an L ∈ R such that

dGF (a+ εc; b)− dGF (a; b)

ε
→ L

as ε → 0+, then F is said to be twice right-differentiable at a in the direction

(b, c). Unfortunately, this condition is not satisfied by maximin expected utilities

of Gilboa and Schmeidler (1995).

To extend the measure of ambiguity aversion to the non-differentiable case,

we give the following notation. For each y ∈ v(T ) and z ∈ RS, denote by ∆y
I

the set of all supergradients of I at ye, by ∆y
I(z) the set of all p ∈ ∆y

I such that

p · z ≤ q · z (that is, Ep[z] ≤ Eq[z]) for every q ∈ ∆y
I , and by Λy

I(z) as the set of

all p ∈ ∆y
I(z) such that p · z2 ≥ q · z2 (that is, Ep[z2] ≥ Eq[z2], which is equivalent

to Varp[z] ≥ Varq[z]) for every q ∈ ∆y
I(z), where z

2 = ((z(s))2)s ∈ RS. These sets

are nonempty and compact.

27



Definition 3 Let x ∈ T and z ∈ RS. Suppose that I is twice Peano-Gateaux

right-differentiable at v(x)e in the direction z and let p ∈ Λ
v(x)
I (z). Then, we

define

Hx(z) =

−v
′(x)d2

GI(v(x)e; z)

Varp[z]

−v
′′(x)

v′(x)

. (18)

If I is twice continuously differentiable, then Λ
v(x)
I = {∇I(v(x)e)} and d2

HI(v(x)e; z) =

z⊤∇2I(v(x)e)z. Thus, the above definition of Hx(z) is, indeed, an extension of (1).

The use of a p ∈ Λ
v(x)
I (z) in the definition of Hx(z) can be justified as follows.

For each p ∈ ∆
v(x)
I , let Īp be the expectation operator under p and V̄p be defined by(

v, Īp
)
. Then, V̄p represents a benchmark preference of (the preference represented

by) V , and V̄p ≥ V . Thus, the best approximation of V among the V̄p over p ∈ ∆
v(x)
I

is the one that minimizes the values of V̄p. By the Taylor’s theorem,

V̄p(xe+ εz) ≈ V̄p(xe) +
∑
s

p(s)

(
v′(x)εz(s) +

1

2
v′′(x)(εz(s))2

)
= v(x) + v′(x)Ep[z]ε+

1

2
v′′(x)Ep[z2]ε2.

To minimize the first-order impact on V̄p(xe+εz), we need to minimize the second-

term on the far right-hand side, that is, choose a p ∈ ∆
v(x)
I (z). Once this is done,

V̄p(xe+εz) is minimized when the last term is minimized. This is true when Ep[z2]

is maximized, that is, when p ∈ Λ
v(x)
I . Note here that the risk aversion, v′′ < 0,

is crucial: When choosing a benchmark preference and probability, we should not

ignore the second-order impact on V arising from risk aversion. If we did, then

Hx(z) would overestimate the ambiguity aversion represented by I.

8.3 Matching probabilities

In this subsection, we generalize the characterization of the measure of ambiguity

aversion in terms of matching probabilities (Theorem 3 and Corollary 3). For a

sufficiently small ε > 0, define the matching probability ρx(ε, A) just as in (5). For

ε = 0, we now let ρx(0, A) = p(A), where p ∈ ∆
v(x)
I (eA) and p(A) = p · eA. The

value of p(A) is independent of the choice of p ∈ ∆
v(x)
I (eA).

28



Theorem 5 Let A ⊂ S and x ∈ T . If I is twice Peano-Gateaux right-differentiable

at v(x)e in the direction eA, then ρ
x( ·, A) is right-differentiable at 0 and

dGρ
x(0, A) =

1

2
v′(x)d2

GI(v(x)e; eA). (19)

In many cases of interest, a symmetry consideration suggests that there is a

“natural” benchmark probability in ∆
v(x)
I that is outside ∆

v(x)
I (eA). For example,

in the case of the two-color Ellsberg urn, the natural probability assigns probability

1/2 to the event of drawing a ball of the winning color, while the probability in

∆
v(x)
I (eA) assigns the lowest probability, among all benchmark probabilities, to the

winning event, which is less than 1/2. Let p∗ be the natural benchmark probability

and p be in ∆
v(x)
I (eA), then the difference p∗(A)− p(A) is often taken as a measure

of ambiguity aversion. Our measure of ambiguity aversion differs from this one,

as it is related to further decrease in matching probabilities ρx(ε, A) as the value

of the prize, ε, increases. When coupled with the often-used measure, however, it

can improve the approximation of the difference between the natural benchmark

probability and the matching probability via

p∗(A)− ρx(ε, A) ≈ (p∗(A)− p(A))− ε

2
v′(x)d2

GI(v(x)e; eA).

for a small ε > 0, because ρx(0, A) = p(A) for any p ∈ ∆
v(x)
I (eA).

Define I, v, V , and ρ as in Section 5, that is, I = v−1 ◦ V , v is the identify

function, V is defined by (v, I), and ρ is the matching probability for the utility

function V . Corollary 3 can be extended to the non-differentiable case as follows.

Corollary 5 Under the assumptions of Theorem 5, I also satisfies the assumptions

of Theorem 5 and

Hx(eA) =
dGρ

x(0, A)

dGρx(0, A)− dGρx(0, A)
. (20)

The asymptotic result (9) can also be extended to the non-differentiable case.

Corollary 6 Under the assumptions of Theorem 5, for every p ∈ ∆
v(x)
I (z),

p(A)− ρx(ε, A)(
p(A)− ρx(ε, A)

)
− (p(A)− ρx(ε, A))

→ Hx(eA)
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as ε→ 0.

8.4 Biseparable preferences

In this subsection, we prove that for the utility functions that represent bisepa-

rable preferences, the extended measure of ambiguity aversion is always equal to

zero and, then, compare this fact, graphically, with the case of twice continuously

differentiable utility functions.

The following definition of biseparability is due to Ghirardato and Marinacci

(2001, Section 2.2) and Ghirardato and Marinacci (2002, Section 1).

Definition 4 We say that V is biseparable if, for every A ⊂ S, there is a ρ(A) ∈
[0, 1] such that ρx(ε, A) = ρ(A) for every x ∈ T and every ε > 0.

According to this definition, a utility function is biseparable if the matching

probability of any event A does not depend on the consumption levels on A or

outside A, as long as the former is higher than the latter. Examples of biseparable

preferences include Choquet expected utility functions of Schmeidler (1989) and

α-maximin expected utility functions of Ghirardato, Maccheroni, and Marinacci

(2004).

Proposition 3 Suppose that V is defined by (v, I) and biseparable. Then, for all

x ∈ T and A ⊂ S, I is twice Peano-Gateaux right-differentiable at v(x)e in the

direction eA and d2
GI(v(x)e; eA) = 0. If 0 < p(A) < 1 for any p ∈ Λ

v(x)
I (eA), then

Hx(eA) = 0.

It can be easily shown that for Choquet expected utility functions and α-

maximin expected utility functions, the aggregator I is, in fact, twice Peano-

Hadamard right-differentiable, and d2
HI(v(x)e; eA) = 0.

We now turn to the illustration of matching probabilities for biseparable, twice

continuously differentiable but ambiguity-averse, and subjective expected utility

functions. Let V1 and V2 be two utility functions defined by (v1, I1) and (v2, I2).

Suppose that the preference represented by V2 is a benchmark preference of the

preference represented by V1, with p the benchmark probability. Then, they share

the same risk attitudes, by which we can assume that v1 = v2 and write v in

place of v1 and v2. Moreover, by Theorem 12 of Ghirardato and Marinacci (2002),

p ∈ ∆
v(x)
I1

for every x ∈ T . By the definition of ρx(0, A), ρx(0, A) ≤ p(A) and

30



ρx(0, S \A) ≤ p(S \A). Thus, ρx(0, A) + ρx(0, S \A) ≤ 1. The argument so far is

applicable regardless of whether V1 is biseparable or smooth.

Suppose now that V1 is biseparable and A is an ambiguous event for the

preference in the sense of Ghirardato and Marinacci (2002, Section 4). Then,

ρx(ε, A) = ρ(A) for every ε > 0. Moreover, by the definition of ρx(0, A), this

equality holds even when ε = 0. By Proposition 22 of Ghirardato and Marinacci

(2002), ρ(A) + ρ(S \A) < 1. Hence, ρ(A) ≤ p(A) ≤ 1− ρ(S \A), and at least one

of these two weak inequalities holds as a strict inequality. As for the case where

ε < 0, by (7), ρx(ε, A) = 1− ρ(S \A). For a biseparable preference, therefore, the

graph of the matching probability, ε 7→ ρx(ε, A), jumps down at zero, crossing the

benchmark probability p(A), but is constantly equal to ρ(A) on the right of zero,

and to 1− ρ(S \ A) on the left of zero.

Suppose, instead, that V1 is twice continuously differentiable and A is an am-

biguous event for V1 in the sense that Hx(eA) > 0. Then ρx(0, A) = p(A), where

p = ∇I1(v(x)e), the unique benchmark probability for V1. Thus, the graph of

the matching probability ε 7→ ρx(ε, A) goes through the benchmark probability

p(A) at 0. Moreover, by Theorem 3, it is differentiable at ε = 0 and, by (8),

the derivative is negative. For a twice continuously differentiable utility function,

therefore, the graph of the matching probability, ε 7→ ρx(ε, A), is differentiable and

downward-sloping around 0, where it is equal to the benchmark probability.

These observations are gathered in Figure 3, in which we consider a biseparable

utility function VB, a twice continuously differentiable utility function VS, and an

expected utility function VE. Assume that VE represents a benchmark preference

for VB and also for VS. Let p be the benchmark probability corresponding to VE.

Let A ⊂ S. Assume that A is an ambiguous event for both VB and VS, that is,

ρB(A) + ρB(S \ A) < 1 and Hx
S (eA) > 0.

Then, the matching probability ρE(ε, A) for the expected utility function VE is

equal to p(A) for every ε. Its graph is horizontal and intercepts the vertical axis at

p(A). The matching probability ρS(ε, A) for the twice continuously differentiable

utility function VS is equal to p(A) at ε = 0 and decreasing around ε = 0. Its

graph intercepts the vertical axis at p(A) and slopes downwards around there.

The matching probability ρB(ε, A) for the biseparable utility function VB is equal

to ρB(A) at every ε ≥ 0 and to 1 − ρB(S \ A) at every ε < 0. The graph of

the matching probability has a downward jump on the vertical axis, passing p(A),

although it is horizontal in either side of the vertical axis.
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Figure 3: Matching probabilities for a biseparable utility function, a twice conti-
nously differentiable utility function, and an expected utility function
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The dashed lines, with a gap on the vertical axis, constitute the graph of the
matching function for a biseparable utility function. The solid downward-sloping
smooth curve is the graph of the matching probability for a twice continuously dif-
ferentiable utility function. The dotted horizontal line is the graph of the matching
function of an expected utility function, which represents a benchmark preference
for the two ambiguity-averse utility functions.

The graphs of matching probabilities can help us distinguish the nature of

ambiguity aversion of twice continuously differentiable utility functions from that

of biseparable preferences. For a biseparable preference, at every constant act,

there is a range of probabilities of an ambiguous event that is the decision maker

deems possible or relevant. When it comes to betting on an event (which induces a

non-constant act), however, his assessment of the likelihood of the event goes, dis-

continuously, down to the minimum of these probabilities, with no further decrease

in the assessment when the prize goes up. In contrast, for a twice continuously

differentiable utility function, at every constant act, the decision maker believes

in a single probability, which coincides with the benchmark probability. As the

prize goes up, his assessment of the likelihood of the event keeps, smoothly, go-

ing down. Therefore, for a sufficiently small prize, a biseparable preference is, in

terms of matching probabilities, more ambiguity-averse than a twice continuously
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differentiable utility function; but an increase in prizes may well cause the former

less ambiguity-averse than the latter.

8.5 Minimum over twice continuously differentiable func-

tions

We would now like to study ambiguity premiums for the non-differentiability case,

but, as we will elaborate on in the next subsection, the analysis is more subtle

than that of matching probabilities because the second-order impact of risk aver-

sion, v′′ < 0, is harder to evaluate than in the analysis of matching probabilities.

To ease the analysis, we concentrate on the case where the non-differentiable ag-

gregator I is the minimum of the twice continuously differentiable functions. This

class of aggregators I is of particular interest, as it includes maximin expected

utility functions of Gilboa and Schmeidler (1989) and more general one for which

the matching probability jumps down for any, however small, positive prize and

decreases further as the value of the prize increases.

Assumption 1 There is a set J of twice continuously differentiable (C2), in-

creasing, normalized, and concave real-valued functions defined on v(T )S that

is compact with respect to the C2 compact-open topology and satisfies I(g) =

minJ∈J J(g) for every g ∈ v(T )S.

The set of C2 real-valued functions defined on v(T )S is endowed with the weak

topology in Hirsch (1976, Section 1 of Chapter 2), which is also referred to as the

C2 compact-open topology in Mas-Colell (1985, Section K.1 of Chapter 1). With

respect to this topology, a sequence of functions Jn (n = 1, 2, . . . ) converges to

a function J if and only if, on every compact subset B of v(T )S, the sequences

of the Jn and all of the derivatives up to the second order of the Jn converge,

uniformly over B, to J and all of the derivatives up to the second order of J . The

compactness assumption guarantees that for every g ∈ v(T )S, minJ∈J J(g) indeed

exists. The assumption implies that I is continuous, increasing, normalized, and

concave.

Assumption 1 requires every element of J to be normalized. This is in-

tended to make the class of aggregators under consideration a generalization of

the class of maximin expected utility functions. This should be contrasted with

the dual expression of utility functions by Cerreia-Vioglio, Maccheroni, Marinacci,

and Montrucchio (2011, Theorem 3). They showed that every uncertain-averse
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aggregator can be written as I(g) = minp∈∆G(E
p[g], p) for some grounded func-

tion G : R ×∆ → R (that is, minp∈∆G(y, p) = y for every y). But, the (partial)

functions g 7→ G(Ep[g], p) in this expression need not be normalized.

Equally important for the subsequent analysis is that the topology with respect

to which J is required to be compact is the C2 compact-open topology. If J

were required to be compact only with respect to the C1 compact-open topology,

every increasing and concave I could satisfy this assumption with a set J that

consists of functions with zero Hessians at a given point,15 which indicates that

there is no way to relate the second Peano derivatives of I with the Hessians of

the elements of J .

We now give a sufficient condition for I to be twice Hadamard right-differentiable

under Assumption 1. Note that ∆y
I = conv {∇J(ye) | J ∈ J } for each y ∈ v(T ).

For each y ∈ v(T ) and each z ∈ RS, define J (y, z) as the set of all J ∈ J that

satisfy ∇J(ye)z ≤ ∇K(ye)z for all K ∈ J . Then, J (y, z) is nonempty and

compact, because J is compact, and ∆y
I(z) = conv {∇J(ye) | J ∈ J (y, z)}.

Proposition 4 Let y ∈ v(T ) and z ∈ RS. Under Assumption 1, I is Hadamard

right-differentiable at ye in the direction z, and dHI(ye; z) = ∇J(ye)z for any

J ∈ J (y, z). If, in addition, z⊤∇2J(ye)z = z⊤∇2K(ye)z for all J ∈ J (y, z)

and K ∈ J (y, z), then I is twice Peano-Hadamard right-differentiable at ye in

the direction z, and d2
HI(ye; z) = z⊤∇2J(ye)z for any J ∈ J (y, z).

Since the sufficient condition in this proposition for twice Peaon-Hadamard

right-differentiability will be used in the sequal, we put it up as an assumption.

Assumption 2 Let y ∈ v(T ) and z ∈ RS. The aggregator I satisfies Assumption

1 and z⊤∇2J(ye)z = z⊤∇2K(ye)z for all J ∈ J (y, z) and K ∈ J (y, z)

The following two examples satisfy Assumption 2 and, hence, twice Peano-

Hadamard right-differentiability.

Example 1 1. Let Λ a strictly convex and compact subset of ∆, where the

strict convexity is with respect to the relative topology on ∆. Let J : RS ×
Λ → R be twice continuously differentiable. Assume that for every p ∈ ∆,

the partial function J( · , p) : RS → R is increasing, normalized, and concave,

and that ∇gJ(ye, p) = p⊤ for every y, where ∇g denote the partial derivative

15Think of J as consisting of convolutions of piecewise-linear utility functions that approxi-
mate I as in Afriat’s (1967) construction of utility functions.
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(Jacobian) with respect to the first coordinate. Define J = {J( · , p) | p ∈
Λ}.

2. Denote by Π the set of all permutations on S. For each p ∈ ∆ and π ∈ Π,

denote (p(π(s)))s ∈ ∆ by p◦π. Let p∗ ∈ ∆ and Λ = {p∗◦π | π ∈ Π}. Let γ >
0. For each p ∈ Λ, let Jp : RS → R be a twice continuously differentiable,

increasing, normalized, and concave function that satisfy Jp(g) = Ep[g] −
(γ/2)Varp[g] for every g in some open set that includes the diagonal {ye |
y ∈ R}. Let J = {Jp | p ∈ Λ}.

The first example differs from maximin expected utility functions as it allows

the Hessians ∇2
gJ(ye, p) to be non-zero and, yet, requires the set Λ of relevant

probabilities to be strictly convex. The strict convexity is obtained when Λ is the

set of all probabilities whose distance from some reference probability is at most

some small threshold, and the distance is a strictly convex function, as in the case

of the Euclidean norm and the relative entropy. The second example is, locally,

a mean-variance utility function under ambiguity, in the sense that the decision

maker has a mean-variance utility function but is unsure of which probability to use

to evaluate mean and variance. The set of relevant probabilities, Λ, is symmetric, in

the sense that any probability distribution that the decision maker deems relevant

is still relevant after swapping the probabilities of any two states.

8.6 Ambiguity premium

In this subsection, we extend the characterization result (Theorem 4) of our ambi-

guity measure in terms of the ambiguity premium under Assumption 2. Let x ∈ T ,

z ∈ RS, and p ∈ ∆
v(x)
I . For each ε ≥ 0, denote by fx

p (ε, z) ∈ Π(T ) the lottery

that coincides with the distribution of the monetary act x + εz on T under the

probability p. Regarding fx
p (ε, z) as a lottery act, define the ambiguity premium

κxp(ε, z) under p by

V
(
fx−κx

p(ε,z)(ε, z)
)
= V (xe+ εz).

Let Īp be the expectation operator under p and define V̄p by (v, Īp). Then, κ
x
p(ε; z)

can equivalently defined by

V̄p
(
(x− κxp(ε; z))e+ εz

)
= V (xe+ εz).
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This definition of the ambiguity premium is different from the original definition

(10) in that we specify the benchmark probability p under which the lottery act

fx
p (ε, z) is defined. We need to do so because there are multiple benchmark prob-

abilities when I is not (twice continuously) differentiable but concave.

Theorem 6 Let x ∈ T and z ∈ RS.

1. Let p ∈ ∆
v(x)
I . Under Assumption 1, the function ε 7→ κxp(ε; z) is right-

differentiable at 0 and dHκ
x
p(0; z) = p · z − q · z for any q ∈ ∆

v(x)
I (z).

2. Let p ∈ Λ
v(x)
I (z). Under Assumption 2, the function ε 7→ κxp(ε; z) is twice

Peano right-differentiable at 0, dHκ
x
p(0; z) = 0, and d2

Hκ
x
p(0; z) = −v′(x)d2

HI(v(x)e; z).

In a terminology analogous to that of Segal and Spivak (1990), Part 1 pins

down the source of the first-order ambiguity aversion, and Part 2 relates, in the

absence of the first-order ambiguity aversion, the second-order ambiguity aversion

to our extended measure of ambiguity aversion. More specifically, part 1 shows that

the first-order ambiguity aversion emerges as the positive first right-derivative of

the ambiguity premium only if the benchmark probability p used in its evaluation

lies outside ∆
v(x)
I (z). This would be the case if there is a “natural” benchmark

probability (in ∆
v(x)
I but) outside ∆

v(x)
I (z), as we explained after Theorem 5. If,

instead, we use a benchmark probability in Λ
v(x)
I (z) to evaluate the ambiguity

premium, then the first-order ambiguity aversion disappears and the second-order

ambiguity aversion can be related to the ambiguity aversion via

κxp(ε, z) ≈ −1

2
v′(x)d2

HI(v(x)e; z)

for a small ε > 0.

It is worth noting here that the condition needed for I in Theorem 5 was much

weaker than that needed for I in Theorem 6. In Theorem 5, we only required I to

be twice Gateaux right-differentiable, while, in Theorem 6, we impose Assumption

2. The difference is due to the ease with which to assess the impact of the deviation

in the direction the indicator function eA of any event A in Theorem 5. Specifically,

the vector of changes in realized utility levels caused by εeA, v◦(xe+εeA)−v◦(xe),
is equal to (v(x + ε) − v(x))eA, which is a scalar multiple of eA regardless of the

value of ε. Thus, the directions of these changes are invariant, which makes the

difference between twice Hadamard and Gateaux right-differentiability irrelevant

as far as the change in utility, V (xe+ εeA)− V (xe), is concerned. This is not the
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case for Theorem 6, because the direction of the vector v ◦ (xe+ εz)− v ◦ (xe) in
RS varies as ε→ 0+.

Denote by κ̄xp(ε; z) the risk premium of the benchmark utility function V̄p. We

then obtain the following characterization of Hx(z) in the non-differentiable case

from Theorem 6 and (12).

Corollary 7 Let x ∈ T , z ∈ RS, and p ∈ Λ
v(x)
I (z). Suppose that Varp[z] > 0.

Under Assumption 2,

Hx(z) =
d2
Hκ

x
p(0; z)

∂2κ̄x

∂ε2
(0, z)

.

The asymptotic result (13) can be extended to the non-differentiable case,

thanks to the definition of the second Peano right-derivative.

Corollary 8 Let x ∈ T , z ∈ RS, and p ∈ Λ
v(x)
I (z). Suppose that Varp[z] > 0.

Under Assumption 2,

κxp(ε, z)

κ̄xp(ε, z)
→ Hx(z)

as ε→ 0+.

9 Conclusion

In this paper, we introduced an Arrow-Pratt-type measure of ambiguity aversion

for a class of twice right-differentiable utility functions. The notion of twice right-

differentiability we employed is so weak that the class include not only smooth

ambiguity models but also maximin and Choquet expected utility functions and

other one that are neither differentiable in the standard sense nor biseparable.

While we assumed in the main body of the paper that the risk attitude can be rep-

resented by an expected utility function, the definitions and results are extended,

in an appendix, to the case where it cannot.

This type of measure is particularly useful for a quantitative analysis where the

magnitude of ambiguity aversion is estimated, inferred, or calibrated from labora-

tory findings or market data. Our measure makes it possible to compare ambiguity

attitudes of two decision makers even when they apparently have different risk at-
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titudes. Moreover, when the estimated/inferred/calibrated values of our measure

are significantly different between two settings, such as laboratory experiments ver-

sus asset markets, they indicate that there is room for further improvement in the

settings, such as the contents of questionnaires in experiments and the assumption

of complete markets on asset markets.

A Lemmas and proof for the differentiable case

Proof of Theorem 1 For each w ∈ RS, denote by [w] the S×S matrix of which

the s-th diagonal entry is equal to the s-th coordinate of w and the off-diagonal

entries are all equal to zero. By the chain rule differentiation,

∇V (f) = ∇I(v ◦ f)[v′ ◦ f ], (21)

for every f ∈ T S, where the gradients are row vectors. Thus,

∇2V (f) = [v′ ◦ f ]∇2I(v ◦ f)[v′ ◦ f ] + [∇I(v ◦ f)][v′′ ◦ f ] (22)

for every f ∈ T S. Thus, if f = xe for some x ∈ T , then v◦f = v(x)e, v′◦f = v′(x)e

and ∇V (f) = p. Since [e] coincides with the I × I identity matrix,

V (xe) = v(x),

∇V (xe) = v′(x)p⊤, (23)

∇2V (xe) = (v′(x))2∇2I(v(x)e) + v′′(x)[p]. (24)

Since v(V ∗(f)) = V (f), v′(V ∗(f))∇V ∗(f) = ∇V (f) and

v′′(V ∗(f))∇V ∗(f)⊤∇V ∗(f) + v′(V ∗(f))∇2V ∗(f) = ∇V 2(f)

for every f ∈ T S. Thus, if f = xe for some x ∈ T , then

V ∗(xe) = x, (25)

∇V ∗(xe) = p⊤, (26)

v′′(x)pp⊤ + v′(x)∇2V ∗(xe) = ∇2V (xe). (27)
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By (24) and (27),

∇2V ∗(xe) = v′(x)∇2I(v(x)e) +
v′′(x)

v′(x)
([p]− pp⊤) (28)

Thus, (2) follows from z⊤([p]− pp⊤)z = Varp[z]. Since ∇2Ī(v(x)e) = 0, (3) can be

similarly proved. ///

Proof of Theorem 2 For each ε ∈ R with xe + εz ∈ T S, define λ(ε)

by V ∗(xe + λ(ε)S−1/2e + ε‖z‖−1z) − V ∗(xe) = 0, where ‖z‖ = (
∑

s(z(s))
2)

1/2
,

which is also equal to (Varp[z])1/2 because Ep[z] = 0. Then, λ(0) = 0 and the

curve
{
f ∈ T S ∩ L(z) | V (f) = V (xe)

}
is parameterized by ε 7→ xe+λ(ε)S−1/2e+

ε‖z‖−1z. By the implicit function theorem, λ(ε) is a twice continuously differen-

tiable function of ε, λ′(0) = 0, and

λ′′(0) = −S1/2

(
z⊤ (v′(x)∇2I(v(x)e)) z

Varp[z]
+
v′′(x)

v′(x)

)
.

Since the curve
{
f ∈ T S ∩ L(z) | V (f) = V (xe)

}
is parameterized by ε 7→ xe +

λ(ε)S−1/2e + ε‖z‖−1z on the plane L(z), cx(z) is equal to its curvature when it is

regarded as a subset of the plane L(z) with an orthonormal basis (S−1/2e, ‖z‖−1z).

Thus

cx(z) =
|λ′′(0)|

((λ′(0))2 + 1)3/2
= |λ′′(0)| = S1/2

∣∣∣∣z⊤ (v′(x)∇2I(v(x)e)) z

Varp[z]
+
v′′(x)

v′(x)
Varp[z]

∣∣∣∣ .
Since I is quasi-concave and Ep[z] = 0, z⊤ (v′(x)∇2I(v(x)e)) z ≤ 0. Since v′′ <

0 < v′, v′′(x)/v′(x) < 0. Thus,

cx(z) = −S1/2

(
z⊤ (v′(x)∇2I(v(x)e)) z

Varp[z]
+
v′′(x)

v′(x)

)
.

We can similarly show that

c̄x(z) = −S1/2v
′′(x)

v′(x)
.

///

The proof of Theorem 3 is based on the following lemma. It can be proved

based on Taylor’s theorem, and we omit the proof.
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Lemma 1 Let D be an open interval in R that contains 0. Let F : D → R be

twice differentiable and satisfy F (0) = 0. Define G : D → R by

G(δ) =

 F ′(0) if δ = 0,
F (δ)

δ
otherwise.

Then G is differentiable at 0 and G′(0) = (1/2)F ′′(0).

Proof of Theorem 3 Let D be the set of all δ ∈ R such that v(x) + δ ∈ v(T ),

then D is an open interval that contains 0. For each δ ∈ D, define F : D → R by

F (δ) = I(v(x)e+ δeA)− v(x). Then F (0) = 0, F ′(0) = ∇I(v(x)e)eA, and

F ′′(0) = e⊤A∇2I(v(x)e)eA. (29)

Define G : D → R as in Lemma 1, then

ρx(ε, A) =
I (v(x)e+ (v(x+ ε)− v(x))eA)− v(x)

v(x+ ε)− v(x)

=
F (v(x+ ε)− v(x))

v(x+ ε)− v(x)
= G(v(x+ ε)− v(x)).

By Lemma 1, the right-hand side is a function of ε that is differentiable at ε = 0,

and the derivative at ε = 0 is equal to (1/2)F ′′(0)v′(x). By (29), this completes

the proof ///

The proof of Corollary 3 requires the following lemma.

Lemma 2 Let A ⊂ S and x ∈ T , then

e⊤A
(
v′(x)∇2I(xe)

)
eA = e⊤A

(
v′(x)∇2I(v(x)e)

)
eA +

v′′(x)

v′(x)
Varp[eA]. (30)

Proof of Lemma 2 Since v(I(f)) = V (f) for every f ∈ T S, v′(I(f))∇I(f) =
∇V (f) for every f ∈ T S. Hence v′′(I(f))∇I(f)⊤∇I(f) + v′(I(f))∇2I(f) =

∇2V (f) for every f ∈ T S. When f = xe, these equalities can be rewritten as

v′(x)∇I(v(x)e) = ∇V (xe) and v′′(x)∇I(xe)⊤∇I(xe) + v′(x)∇2I(xe) = ∇2V (xe).

By (23) and (24), ∇I(xe) = ∇I(v(x)e) = p and

v′′(x)pp⊤ + v′(x)∇2I(xe) = (v′(x))2∇2I(v(x)e) + v′′(x)[p].
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Thus,

∇2I(xe) = v′(x)∇2I(v(x)e) +
v′′(x)

v′(x)

(
[p]− pp⊤

)
.

Hence,

e⊤A∇2I(xe)eA = e⊤A
(
v′(x)∇2I(v(x)e)

)
eA +

v′′(x)

v′(x)
Varp[eA].

Since v′(x) = 1 by definition, this establishes (30). ///

Proof of Corollary 3 Apply Theorem 3 to (v, I) and (v, V ), then, by (30),

∂ρx

∂ε
(0, A) =

∂ρx

∂ε
(0, A) +

1

2

v′′(x)

v′(x)
Varp[eA]. (31)

By rearranging this, we obtain the denominator of Hx(eA) and complete the proof.

///

Proof of Theorem 4 Define V ∗ = v−1 ◦V and V̄ ∗ = v−1 ◦ V̄ . By (25), (10) can

be rewritten as V̄ ∗ ((x− κx(ε, z)) e+ εz) = V ∗(xe + εz). By differentiating both

sides with respect to ε, we obtain

∇V̄ ∗ ((x− κx(ε, z)) e+ εz)

(
−∂κ

x

∂ε
(ε, z)e+ z

)
= ∇V ∗(xe+ εz)z. (32)

By letting ε = 0 and using (26), we obtain

∂κx

∂ε
(0, z) = 0 (33)

By differentiating both sides of (32) with respect to ε, we obtain(
−∂κ

x

∂ε
(ε, z)e+ z

)⊤

∇2V̄ ∗ ((x− κx(ε, z)) e+ ze)

(
−∂κ

x

∂ε
(ε, z)e+ z

)
+∇V̄ ∗ ((x− κx(ε, z)) e+ ze)

(
−∂

2κx

∂ε2
(ε, z)e

)
= z⊤∇2V ∗(xe+ εz)z. (34)

41



By letting ε = 0 and using (26) and (33), we obtain

z⊤∇2V̄ ∗ (xe) z − ∂2κx

∂ε2
(0, z) = z⊤∇2V ∗(xe)z.

Thus,

∂2κx

∂ε2
(0, z) = z⊤

(
∇2V̄ ∗ (xe)−∇2V ∗(xe)

)
z. (35)

By using (28) and an analogous result for ∇2V̄ (xe) (for which ∇2Ī(v(x)e) = 0),

we complete the proof. ///
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Online Appendix

B Proofs on the smooth ambiguity model

Proof of Proposition 1 The twice continuous differentiability of I follows from

that of v and ϕ. If g = ye for some y ∈ v(T ), then p ·g = y = I(g) for every p ∈ ∆.

Thus, I is normalized. By differentiating both sides of ϕ(I(g)) =
∫
∆
ϕ (p · g) dµ(p)

with respect to g, we obtain

ϕ′(I(g))∇I(g) =
∫
∆

ϕ′ (p · g) p⊤dµ(p) (36)

Since ϕ′ > 0 and
∫
∆
p dµ(p) ∈ RS

++, ∇I(g) ∈ RS
++. If g = ye for some y ∈ v(T ),

the equality is reduced to ∇I(ye) =
∫
∆
p⊤dµ(p) = (pI)⊤.

By differentiating both sides of (36) with respect to g, we obtain

ϕ′′(I(g))∇I(g)⊤∇I(g) + ϕ′(I(g))∇2I(g)⊤ =

∫
∆

ϕ′′ (p · g) pp⊤ dµ(p).

Thus,

∇2I(g) =
1

ϕ′(I(g))

(∫
∆

ϕ′′ (p · g) pp⊤ dµ(p)− ϕ′′(I(g))∇I(g)⊤∇I(z)
)
. (37)

In particular, for every y ∈ v(T ),

∇2I(ye) =
ϕ′′(y)

ϕ′(y)

(∫
∆

pp⊤ dµ(p)− pI(pI)⊤
)

=
ϕ′′(y)

ϕ′(y)

∫
∆

(p− pI)(p− pI)⊤ dµ(p).

(38)

Thus, for every x ∈ T and every z ∈ RS,

z⊤∇2I(v(x)e)z =
ϕ′′(v(x))

ϕ′(v(x))

∫
∆

(
(p− pI) · z

)2
dµ(p). (39)

Since Eµ[E ·[z]] = EpI [z] by the law of iterated expectation, the law of total vari-

ance implies that∫
∆

(
(p− pI) · z

)2
dµ(p) =

∫
∆

(
Ep[z]− EpI [z]

)2
dµ(p) = Varµ[E ·[z]]. (40)
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Recall that w(x) = ϕ(v(x)) for every x ∈ T . By differentiating both sides with

respect to x, we obtain

w′(x) = ϕ′(v(x))v′(x). (41)

By differentiating both sides with respect to x, we obtain

w′′(x) = ϕ′′(v(x))(v′(x))2 + ϕ′(v(x))v′′(x). (42)

By dividing each side of (42) by the same side of (41), we obtain

w′′(x)

w′(x)
=
ϕ′′(v(x))

ϕ′(v(x))
v′(x) +

v′′(x)

v′(x)
,

that is,

ϕ′′(v(x))

ϕ′(v(x))

v′′(x)

v′(x)

v′(x) =

−w
′′(x)

w′(x)

−v
′′(x)

v′(x)

− 1.

Thus, by (39) and (40),

Hx(z) =

−v′(x)ϕ
′′(v(x))

ϕ′(v(x))

Varµ[E ·[z]]

Varp
I
[z]

−v
′′(x)

v′(x)

=

−w
′′(x)

w′(x)

−v
′′(x)

v′(x)

− 1

 Varµ[E ·[z]]

Varp
I
[z]

.

///

Proof of Proposition 2 Since v and w have constant coefficients θ and γ of

absolute risk aversion,

−w
′′(x)

w′(x)

−v
′′(x)

v′(x)

− 1 =
γ

θ
− 1 = η.

Second, since the second-order belief and the reduced probability are N (R̄1,ΣM)
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and N (R̄1,ΣR), Var
µ[E ·[R1]] = 0 and

Varµ[E ·[R2]]

Varp
I
[R2]

=
τσ2

σ2
= τ.

By Proposition 1, Hx(R1) = 0 and Hx(R2) = ητ .

Hara and Honda (2022, equation (8)) showed that the solution to (17) is given

by

x =

(
x1

x2

)
=

R̄−Rf

(τη + 3/4)σ2θ

(
1/2 + τη

1/2

)

and x0 = W − (x1 + x2). Thus, the share of the wealth invested in the foreign

stock in the wealth invested in the two stocks is

1/2

(1/2 + τη) + 1/2
=

1

2(1 + τη)
.

///

C Extension to the non-expected utility case

We assumed throughout this paper that the decision maker has an expected utility

function on the set Π(T ) of lotteries. In this appendix, we extend the definition

of the measure of ambiguity aversion to the case where he does not, in three

steps. First, we present a general approach to a measure of ambiguity aversion

once an ambiguity-neutral preference against which we evaluate the measure is

given. When the decision maker has an expected utility function over lottery

acts, this benchmark ambiguity-neutral preference is represented by a subjective

expected utility function. When he does not, however, the choice of a benchmark

ambiguity-neutral preference requires careful consideration. In the second step,

we construct such a benchmark ambiguity-neutral preference, which would respect

his preference over lottery acts (not representable by expected utility functions) if

there were no ambiguity on the state space. Third, we take this ambiguity-neutral

preference as the benchmark preference in the general approach to arrive at our

extended measure of ambiguity aversion. We then touch on the nature of the twice

continuous differentiability that is needed in this argument. Finally, we discuss

how the results on the relation to matching probabilities and ambiguity premiums

45



can be extended to the non-expected utility case.

Suppose that there are a utility function u : Π(T ) → R that is continuous with

respect to the weak topology and strictly increasing with respect to the first-order

stochastic dominance, and an aggregator I : u(Π(T ))S → R that is increasing

and normalized. For each f = (f(s))s ∈ Π(T )S, with f(s) ∈ Π(T ) for every s,

write u ◦ f = (u(f(s)))s ∈ u(Π(T ))S. Define a utility function V : Π(T )S → R

by letting V (f) = I(u ◦ f) for every f ∈ Π(T )S. This definition of V is the same

as the definition of V that we have used so far, except that there need not be an

expected utility function over lottery acts, that is, there need not be a Bernoulli

utility function v : T → R such that u(P ) =
∫
T
v(x) dP (x) for every P ∈ Π(T ) (or

any monotone transformation of the right-hand side).

Let ū, Ī and V̄ be just as u, I, and V . We assume that V is at least as

ambiguity-averse as V̄ in the sense of Epstein (1999). Then, u and ū represents

the same preference over lottery acts and, thus, we can assume that u = ū. Assume

that for each p ∈ ∆, the function f 7→ u(p−1 ◦f) defined on the set T S of monetary

acts is twice continuously differentiable and its derivative in the direction e is

strictly positive. Define v : T → R by equating v(x) equal to the value of u at

the degenerate probability on x. Then, v is twice continuously differentiable and

v′ > 0. By the inverse function theorem, it has an inverse v−1. If u were an expected

utility function, then v would the corresponding Bernoulli utility function, but it

is not so in the case of non-expected utility functions.

Let x ∈ T and p = ∇I(v(x)e). Since V (xe) = v(x) = V̄ (xe) and V is at least as

ambiguity-averse as V̄ , p = ∇Ī(v(x)e). Let z ∈ RS and assume that Varp[z] > 0.

Then, the measure of ambiguity aversion for V against V̄ is defined as

Hx(z) =
−z⊤ (v′(x)∇2I(v(x)e)) z + z⊤

(
v′(x)∇2Ī(v(x)e)

)
z

−v
′′(x)

v′(x)
Varp[z]− z⊤

(
v′(x)∇2Ī(v(x)e)

)
z

. (43)

This differs from the original definition (1) in that the new term z⊤
(
v′(x)∇2Ī(v(x)e)

)
z

is added and subtracted in the numerator and the denominator on the right-hand

side. The original definition corresponds to the case where (v is a Bernoulli utility

function and) Ī is the expectation operator under p. Hence, ∇2Ī(v(x)e) = 0 and

the original definition is a special case of the above definition.

We saw that the original measure (1) of ambiguity aversion is invariant to any

increasing and affine transformation of v when it is coupled with an increasing
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transformation of I in such a way that the resulting aggregator is normalized and

the resulting utility function represents the same preference as V . We skip the

proof, but this extended measure is invariant to any increasing transformation of

u when it is coupled with an increasing transformation of I in such a way that the

resulting aggregator is normalized and the resulting utility function represents the

same preference as V . Note here that as u is a utility function over the set Π(T ) of

lotteries, we should not limit ourselves to affine transformations but accommodate

all increasing transformations to check the invariance of the extended measure.

Having defined the measure of ambiguity aversion of V against an arbitrary V̄ ,

we now define an ambiguity-neutral utility function V̄ via letting Ī(g) = u(p◦(v−1◦
g)−1) for every g ∈ v(T )S, where v−1 ◦ g is the function defined on S that takes

values v−1(g(s)) at each s and p ◦ (v−1 ◦ g)−1 is the probability on T induced from

the probability p on the state space S by v−1 ◦ g. We then define V̄ (f) = Ī(u ◦ f).
Our choice of Ī and V̄ can be understood as follows. For each monetary act

f = (f(s))s ∈ T S, with f(s) ∈ T for every s, write v ◦ f = (v(f(s)))s ∈ v(T )S.

For each Anscombe-Aumann act f ∈ Π(T )S, let f̄ ∈ T S be the monetary act

of certainty equivalents of f , that is, f̄(s) = v−1(u(f(s))) for every s. Then,

v ◦ f̄ = u ◦ f and, thus, V̄ (f) = Ī(v ◦ f̄) = u(p ◦ f̄−1) for every f ∈ Π(T )S. That is,

V̄ represents a fictitious preference on the set of two-stage lotteries that shares the

same preference as V on the set of simple lotteries, regardless of whether they are

given at the first stage (in which case they are monetary acts under p) or the second

stage (in which case they are lottery acts). In the terminology of Segal (1990), V̄

satisfies the time-neutrality. It also satisfies the compound independence axiom,

because V̄ (f) depend on f only through f̄ , just as V (f) = I(v ◦ f̄).16 For these

reasons, it is appropriate to define the measure of ambiguity aversion for V as a

deviation from V̄ .

For this choice of Ī, the Hessian ∇2Ī(v(x)e) can be written as

∇2Ī(v(x)e) =
1

(v′(x))2
(
∇2

fu(p ◦ (xe)−1)− v′′(x)[p]
)
,

where ∇2
fu(p ◦ (xe)−1) is the Hessian of the function f 7→ u(p ◦ f) defined on the

set T S of monetary acts at the constant act xe. By plugging this into (43), we can

16There are other utility functions defined on the set Π(T )S of Anscombe-Aumann acts that
represents the same preference over lotteries as V . Segal (1990) gave such an example that
satisfies the reduction of compound lotteries axiom but violates the compound independence
axiom.
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also write

Hx(z) =

−z⊤ (v′(x)∇2I(v(x)e)) z + z⊤
(

1

v′(x)
∇2

fu(p ◦ (xe)−1)

)
z − v′′(x)

v′(x)
Ep[z2]

−v
′′(x)

v′(x)
Varp[z]− z⊤

(
1

v′(x)
∇2

fu(p ◦ (xe)−1)

)
z +

v′′(x)

v′(x)
Ep[z2]

.

(44)

This is the extended measure of ambiguity aversion to the case where the preference

over lottery acts may not be represented by any expected utility function.

We simply assumed in the preceding argument that the function f 7→ u(p ◦ f)
defined on the set T S of monetary acts is twice continuously differentiable. Machina

(1982) gave a notion of Fréchet differentiability of utility functions over cumula-

tive distribution functions based on the L1 norm. Allen (1987), instead, used L2

norm and Wang (1993) used Lp norm with p ≥ 1. The utility function v over

consumption levels (constant acts) that we defined is different from the local ex-

pected utility function (Riesz representation of the Fréchet derivative) of Machina

(1982), but, at every consumption level x, our function v and the local expected

utility function of Machina at the cumulative distribution function degenerate on

x share the same derivative. Segal and Spivak (1997) showed that the risk aver-

sion exhibited by a local expected utility function of Machina is of the first order

(that is, the derivative of the risk premium at 0 is strictly positive) if and only if

the local utility function at the cumulative distribution function degenerate at x

is non-differentiable at x. No sufficient condition for twice differentiability of the

function f 7→ u(p ◦ f), however, seems to have been given in the literature.

We now explain how the results on the measure of ambiguity aversion in the

expected utility case can be extended to the non-expected utility case. As in the

first step of defining the measure of ambiguity aversion in the non-expected utility

case, take a non-expected utility function u and two aggregators I and Ī. Define v,

V , and V̄ as before. Define, also, V ∗ = v−1◦V and V̄ ∗ = v−1◦V̄ . Then, (28) is valid

for (I, V ∗) and also for (Ī , V̄ ∗). This implies that Corollary 1 can be extended to

the non-expected utility case. As for the ambiguity premium, define κx(ε, z) and

κ̄x(ε, z) (the risk premium) as in Section 6. Then, (35) holds. Moreover, since

x − κ̄x(ε, z) = V̄ ∗(xe + εz), by differentiating both sides twice and evaluating at
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ε = 0, we obtain

∂2κ̄x

∂ε2
(0, z) = −z⊤∇2V̄ ∗(xe)z.

Combining these two results and applying the extension of Corollary 1, we can

extend Corollary 4 to the non-expected utility case.

As for the matching probabilities, note that Theorem 3 shows that the deriva-

tive of the matching probability is equal to the numerator, multiplied by −1/2,

of the measure (1) of ambiguity aversion in the expected utility case. In the non-

expected utility case, we aim at proving that

∂ρx

∂ε
(0, A) =

1

2

(
e⊤A
(
v′(x)∇2I(v(x)e)

)
eA − e⊤A

(
1

v′(x)
∇2

fu(p ◦ (xe)−1)

)
eA +

v′′(x)

v′(x)
p(A)

)
,

(45)

because Ep[e2A] = p(A). To do so, define ρx(ε, A) as in (5). Then, (6) is replaced

by u(fx(ε, ρx(ε, A))) = V (xe + εeA). For each (ε, r), write wx(ε, r) = u(fx(ε, r)).

Then, wx is twice continuously differentiable, and satisfies wx(0, r) = v(x) for every

r ∈ [0, 1] and

wx(ε, ρx(ε, A)) = V (xe+ εeA) (46)

for every ε. Assume that ∂2wx(0, p(A))/∂ε∂r = v′(x). This assumption is met

by expected utility functions and also by utility functions that are quadratic in

probabilities in the sense of Machina (1982). By differentiating both sides of (46)

with respect to ε twice and evaluating at ε = 0, we obtain

∂2wx

∂ε2
(0, ρx(0, A)) + 2

∂2wx

∂r∂ε
(0, ρx(0, A))

∂ρx

∂ε
(0, ρx(0, A))

+
∂2wx

∂r2
(0, ρx(0, A))

(
∂ρx

∂ε
(0, ρx(0, A))

)2

+
∂wx

∂r
(0, ρx(0, A))

∂2ρx

∂ε2
(0, ρx(0, A))

= e⊤A∇2V (xe)eA. (47)

Note that ρx(0, A) = p(A), ∂wx(0, p(A))/∂r = 0, ∂2wx(0, p(A))/∂r2 = 0, and

∂2wx(0, p(A))/∂ε∂r = v′(x). Also, by the definition of wx(ε, r),

∂2wx

∂ε2
(0, p(A)) = e⊤A∇fu(p ◦ (xe)−1)eA.

Thus, by applying (24) to the right-hand side of (47) and noting that Ep[e2A] =
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p(A), we obtain

e⊤A∇fu(p ◦ (xe)−1)eA + 2v′(x)
∂ρx

∂ε
(0, ρx(0, A)) = (v′(x))2e⊤A∇2I(v(x)e)eA + v′′(x)p(A).

By rearranging the above equality, we obtain (45).

The presence of the last two terms on the right-hand side of (45) distinguishes

(45) from Theorem 3. It is easy to see that some sort of additional terms is

necessary because the matching probability may be different from the benchmark

probability even for lottery acts when the preference over lottery acts cannot be

represented by any expected utility function. What is more intriguing is that the

last two terms are equal to the change in matching probabilities of lottery acts in

the following sense: Define ρ̄x(ε, r) by

ρ̄x(ε, r)v(x+ ε) + (1− ρ̄x(ε, r))v(x) = wx(ε, r),

then

∂ρ̄x

∂ε
(0, p(A)) =

1

2

(
e⊤A

(
1

v′(x)
∇2

fu(p ◦ (xe)−1)

)
eA − v′′(x)

v′(x)
p(A)

)
.

Thus,

∂ρx

∂ε
(0, A) =

1

2
e⊤A
(
v′(x)∇2I(v(x)e)

)
eA − ∂ρ̄x

∂ε
(0, p(A)).

Thus, if ∂ρ̄x(0, p(A))/∂ε < 0, then the first term of the right-hand side, which

would be equal to ∂ρx(0, A)/∂ε in the expected utility case, overestimates the

impact of ambiguity aversion on the reduction of matching probabilities as the

prize ε goes up, and the second term ∂ρ̄x(0, A)/∂ε needs to be subtracted to correct

it.

D A theorem and proofs for the non-differentiable

case

Proof of Theorem 5 By the definition (5),

ρx(ε, A) =
I (v(x)e+ (v(x+ ε)− v(x))eA)− I(v(x)e)

v(x+ ε)− v(x)
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Since I is Gateaux right-differentiable at x in the direction eA, ρ
x(ε, A) → dGI(v(x)e; eA)

as ε → 0+. Since dGI(v(x)e; eA) = p(A) = ρx(0, A) for every p ∈ ∆
v(x)
I (eA), this

shows that ρx( ·, A) is right-continuous at 0. Moreover,

ρx(ε, A)− ρx(0, A)

ε

=

I (v(x)e+ (v(x+ ε)− v(x))eA)− I(v(x)e)

v(x+ ε)− v(x)
− dGI(v(x)e; eA)

ε

=
I (v(x)e+ (v(x+ ε)− v(x))eA)− I(v(x)e)− (v(x+ ε)− v(x))dGI(v(x)e; eA)

(v(x+ ε)− v(x))2

× v(x+ ε)− v(x)

ε
.

As ε → 0+, the far right-hand side converges to (1/2)v′(x)d2
GI(v(x)e; eA). This

completes the proof. ///

We now establish a chain rule for the second derivative of the composite of two

twice Peano-differentiable functions. To do so, we need to introduce some notation.

For a function F that is Hadamard right-differentiable at a point a in all directions

near a point b, if the Hadamard right-derivative dHF (a; ·) is Hadamard right-

differentiable at b in a direction c, then we write the Hadamard right-derivative

dH(dHF (a; ·))(b; c) of dHF (a; ·) at b in the direction c as dHF (a; b; c). If dHF (a, ·)
is linear (as in the case where F is differentiable), then

dHF (a; b+ εz)− dHF (a; b)

ε
=
εdHF (a; z)

ε
= dHF (a; z) → dHF (a; c)

as (ε → 0 and) z → c. Thus, dHF (a; b; c) = dHF (a; c). The need for the defini-

tion of dHF (a; b; c), therefore, arises from the nonlinearity of dHF (a, ·), which is

often the case for Hadamard right-derivatives of non-differentiable functions. For

a mapping G taking values in RM withM ≥ 1, if, for each m, the m-th coordinate

function Gm is twice Peano-Gateaux right-differentiable at a point a in a direction

b, then we denote by dGG(a; b) the vector in RM of which the m-th row is equal

to dGGm(a; b) and by d2
GG(a; b) the vector in RM of which the m-th coordinate is

equal to d2
GGm(a; b).

Theorem 7 Let N and M be positive integers, A be an open subset of RN , C be

an open subset of RM , F : C → R, and G : A → C. Let a ∈ A and b ∈ RN .

Suppose that the m-th coordinate function Gm of G is twice Peano-Gateaux right-
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differentiable at a in the direction b for every m. Suppose also that F is twice

Peano-Hadamard right-differentiable at G(a) in all directions near dGG(a; b), and

dHF (a; ·) is Hadamard right-differentiable at dGG(a; b) in the direction d2
GG(a; b).

Define H = F ◦ G. Then, H is twice Peano-Gateaux right-differentiable at a in

the direction b and

d2
GH(a; b) = d2

HF (G(a); dGG(a; b)) + dHF (G(a); dGG(a; b); d
2
GG(a; b)).

While the function F is assumed to be twice Peano-Hadamard right-differentiable,

the composite functionH is shown to be only twice Peano-Gateaux right-differentiable.

The assumption cannot be weakened to twice Peano-Gateaux right-differentiability.

Indeed, Delfour (2019, Example 3.9 in Section 3 of Chapter 3) gave an example of

a Gateaux differentiable F and an infinitely differentiable function G such that H

does not even satisfy one-sided continuity.

The assumption imposed on dGF (a; ·) in Theorem 7 is satisfied whenever F is

differentiable, concave, or convex. Indeed, if F is differentiable, then dHF (a, ·) :

RM → R is linear and, hence, differentiable. If F is concave or convex, then, by

Theorem 4.6 of Section 4 of Chapter 3 of Delfour (2019), it is Hadamard right-

differentiable and the Hadamard right-derivative, dHF (a, ·) : RM → R, is concave

or convex. Thus, it is Hadamard right-differentiable at every point in all directions.

The following proof is based on the proof of Proposition 3.1 of Ren and Sen

(2001) but differs from it in that the limit operation is one-sided (ε > 0) and neither

the linearity of the first derivative nor the quadraticity of the second derivative is

assumed or implied.

Proof of Theorem 7 By Theorem 3.5 in Section 3 of Chapter 3 of Delfour

(2019), H is Gateaux right-differentiable at a in the direction b, and dGH(a; b) =

dGF (G(a), dHG(a; b)). For each sufficiently small ε > 0, write

Ψ(ε) =
1

ε2

(
G(a+ εb)−G(a)− εdGG(a, b)−

ε2

2
d2
GG(a, b)

)
∈ RM .

By the definition of the second Peano-Gateaux right-differentiability, Ψ(ε) → 0 as

ε→ 0. Note that

H(a+ εb)−H(a)− εdGH(a; b)

ε2
=
K1(ε)

ε2
+
K2(ε)

ε2
, (48)
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where

K1(ε) = H(a+ εb)−H(a)− εdHF
(
G(a); dGG(a; b) +

ε

2
d2
GG(a; b) + εΨ(ε)

)
,

K2(ε) = εdHF
(
G(a); dGG(a; b) +

ε

2
d2
GG(a; b) + εΨ(ε)

)
− εdGH(a; b).

Since

dGG(a; b) +
ε

2
d2
G(a; b) + εΨ(ε) → dGG(a; b)

as ε → 0+ and since F is twice Peano-Hadamard right-differentiable at G(a) in

the direction dGG(a; b),

K1(ε)

ε2
=

1

ε2

(
F
(
G(a) + ε

(
dGG(a, b) +

ε

2
d2
GG(a; b) + εΨ(ε)

))
− F (G(a))

− εdHF
(
G(a); dGG(a; b) +

ε

2
d2
GG(a; b) + εΨ(ε)

))
→ 1

2
d2
HF (G(a); dGG(a; b))

as ε → 0+. Since dHF (a; ·) is Hadamard right-differentiable at dHG(a; b) in the

direction d2
HG(a; b),

K2(ε)

ε2
=

dHF
(
G(a); dGG(a; b) + ε

(
1
2
d2
G(a; b) + Ψ(ε)

))
− dHF (G(a); dGG(a; b))

ε

→ 1

2
dHF (G(a); dGG(a; b); d

2
GG(a; b))

as ε→ 0+. Hence,

K1(ε) +K2(ε)

ε2
→ 1

2

(
d2
HF (G(a); dGG(a; b)) + dHF (G(a); dGG(a; b); d

2
G(a; b))

)
as ε→ 0+. By (48), this completes the proof. ///

Proof of Corollary 5 Note, first, that

V (xe+ εz)− V (xe)

ε
=
I (v(x)e+ (v(x+ ε)− v(x))eA)− I(v(x)e)

v(x+ ε)− v(x)

v(x+ ε)− v(x)

ε
.

Since I is Gateaux right-differentiable at v(x)e in the direction eA, as ε → 0+,

the right-hand side converges to v′(x)dGI(v(x)e; eA). Hence, V is Gateaux right-

differentiable at xe in the direction eA and dGV (xe; eA) = v′(x)dGI(v(x)e; eA).
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Write

ψ(ε) =
1

ε

(
v(x+ ε)− v(x)− εv′(x)− ε2

2
v′′(x)

)
.

By Taylor’s theorem, ψ(ε) → 0 as ε→ 0. Note, in addition, that

V (xe+ εeA)− V (xe)− εdGV (xe; eA)

ε2
=
K1(ε)

ε2
+
K2(ε)

ε2
,

where

K1(ε) = V (xe+ εeA)− V (xe)− ε
(
v′(x) +

ε

2
v′′(x) + εψ(ε)

)
dHI (v(x)e; eA) ,

K2(ε) = ε
(
v′(x) +

ε

2
v′′(x) + εψ(ε)

)
dHI (v(x)e; eA)− εdGV (xe; eA).

Then, K1(ε)/ε
2 is equal to

I
(
v(x)e+ ε

(
v′(x) + ε

2
v′′(x) + εψ(ε)

)
eA
)
− I(v(x)e)− ε

(
v′(x) + ε

2
v′′(x) + εψ(ε)

)
dHI (v(x)e; eA)(

ε
(
v′(x) + ε

2
v′′(x) + εψ(ε)

))2
×

(
ε
(
v′(x) + ε

2
v′′(x) + εψ(ε)

)
ε

)2

Since I is twice Peano-Gateaux right-differentiable at v(x)e in the direction eA,

this converges to (1/2)(v′(x))2d2
GI(v(x)e; eA) as ε→ 0+. Note also that

K2(ε)

ε2
=
ε
(
v′(x) + ε

2
v′′(x) + εψ(ε)

)
dHI (v(x)e; eA)− εv′(x)dGI(v(x)e; eA)

ε2

=

(
1

2
v′′(x) + ψ(ε)

)
dHI (v(x)e; eA) →

1

2
v′′(x)dHI (v(x)e; eA)

as ε→ 0+. Hence,

V (xe+ εeA)− V (xe)− εdGV (xe; eA)

ε2
→ 1

2
(v′(x))2d2

GI(v(x)e; eA) +
1

2
v′′(x)dGI(v(x)e; eA)

as ε → 0+. Thus, V is twice Peano-Gateaux right-differentiable at xe in the

direction eA and

d2
GV (xe; eA) = (v′(x))2d2

GI(v(x)e; eA) + v′′(x)dGI(v(x)e; eA).

Since v−1 is (twice continuously) differentiable and V is twice Peano-Gateaux
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right-differentiable at xe in the direction eA on the set T S of monetary acts, by

applying Theorem 7 to v−1 and V in place of F and G, we can show that Ī is twice

Peano-Gateaux right-differentiable at xe in the direction eA, and

d2
GI(xe; eA)

=d2
Hv

−1(V (xe); dGV (xe; eA)) + dHv
−1(V (xe), dGV (xe; eA); d

2
GV (xe; eA))

= (v−1)′′(v(x))(v′(x)dGI(v(x)e; eA))
2

+ (v−1)′(v(x))
(
(v′(x))2d2

GI(v(x)e; eA) + v′′(x)dGI(v(x)e; eA)
)

= − v′′(x)

v′(x)
(dGI(v(x)e; eA))

2 + v′(x)d2
GI(v(x)e; eA) +

v′′(x)

v′(x)
dGI(v(x)e; eA)

= v′(x)d2
GI(v(x)e; eA) +

v′′(x)

v′(x)
dGI(v(x)e; eA)(1− dGI(v(x)e; eA))

Since dGI(v(x)e; eA) = p(A) for any p ∈ ∆
v(x)
I (eA) and v

′(x) = 1, this implies that

d2
GI(xe; eA) = v′(x)d2

GI(v(x)e; eA) +
v′′(x)

v′(x)
p(A)(1− p(A)),

that is,

v′(x)d2
GI(v(x)e; eA)− v′(x)d2

GI(xe; eA) = −v
′′(x)

v′(x)
p(A)(1− p(A)).

By applying Theorem 5 to ρ and ρ, we obtain (20). ///

Proof of Proposition 3 Since V is biseparable,

ρ(A) =
V (xe+ εeA)− V (xe)

V ((x+ ε)e)− V (xe)

for every sufficiently small ε > 0. The right-hand side of this equality is equal to

I(v(x)e+ (v(x+ ε)− v(x))eA)− I(v(x)e)

v(x+ ε)− v(x)
.

Thus,

ρ(A) =
I(v(x)e+ δeA)− I(v(x)e)

δ
. (49)

for every sufficiently small δ > 0. Hence, I is Gateaux right-differentiable at v(x)e
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in the direction eA, and dGI(v(x)e; eA) = ρ(A). Thus,

I(v(x)e+ δeA)− (I(v(x)e) + dGI(v(x)e; δeA))

δ2

=
I(v(x)e+ δeA)− (I(v(x)e) + ρ(A)δ)

δ2
= 0

by (49). Hence, I is twice Peano-Gateaux right-differentiable at v(x)e in the di-

rection eA, and d2
GI(v(x)e; eA) = 0. Since 0 < ρ(A) < 1 and ρ(A) = p(A) for any

p ∈ Λ
v(x)
I (eA), Var

p[eA] > 0 for any p ∈ Λ
v(x)
I (eA). Thus, H

x(eA) = 0. ///

Proof of Proposition 4 First, we introduce some definitions. For each positive

integer n, define Kn(y, z) as the set of all J ∈ J for which there are an ε > 0

and a w ∈ RS such that ε ≤ 1/n, ‖w − z‖ ≤ 1/n, and J(ye + εw) ≤ K(ye + εw)

for every K ∈ J (y, z). Then, Kn(y, z) is nonempty and compact for every n,

because so is J . Define K (y, z) =
⋂

n Kn(y, z). Then, K (y, z) is nonempty

and compact because so is Kn(y, z) for every n. Moreover, K (y, z) ⊆ J (y, z).

Indeed, let J ∈ K (y, z) and K ∈ J . Then, for each n, there are an εn and a

zn ∈ RS such that εn ≤ 1/n, ‖zn − z‖ ≤ 1/n, and J(ye + εnzn) ≤ K(ye + εnzn).

Since J(ye) = y = K(ye),

J(ye+ εnzn)− J(ye)

εn
≤ K(ye+ εnzn)−K(ye)

εn
.

By taking the limits of both sides as n → ∞, we obtain ∇J(ye)z ≤ ∇K(ye)z.

Hence J ∈ J (y, z).

Let (εn)n and (zn)n be sequences such that εn → 0+ and zn → z as n → ∞.

To show the Hadamard right-differentiability, it suffices to show that for any J ∈
J (y, z),

J(ye+ εnzn)− J(ye)

εn
→ ∇J(ye)z

as n → ∞. Then, for each n, there is a Jn ∈ J such that I(ye + εnzn) =

Jn(ye+ εnzn). Since I(ye) = y = Jn(ye),

I(ye+ εnzn)− I(ye)

εn
=
Jn(ye+ εnzn)− Jn(ye)

εn
.
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By the mean-value theorem, for each n, there is a θn ∈ [0, 1] such that

Jn(ye+ εnzn)− Jn(ye)

εn
= ∇Jn(ye+ θnεnzn)zn.

Since ye + θnεnzn → ye and J is compact with respect to the C1 compact-open

topology, the set {∇Jn(ye+ θnεnzn)zn | n = 1, 2, . . . } is bounded. Thus, it suffices

to prove that every convergent subsequence of (∇Jn(ye+ θnεnzn)zn)n converges

to ∇J(ye)z for any J ∈ J (y, z). To ease notation, assume that (∇Jn(ye +

θnεnzn)zn)n is itself convergent. We can further assume, without loss of generality,

that (Jn)n is convergent, because J is compact. Denote its limit by J . Then J ∈
J and, since ∇Jn → ∇J uniformly on every compact set, ∇Jn(ye+ θnεnzn)zn →
∇J(ye)z.

It now remains to prove that J ∈ J (y, z). Since εn → 0+ and zn → z,

for every m, there is an Nm such that Jn ∈ Km(y, z) for every n > Nm. Since

Km(y, z) is compact, J ∈ Km(y, z). Since this is true for every m, J ∈ K (y, z).

Since K (z) ⊆ J (y, z), J ∈ J (y, z).

We now move on to the proof of the twice Peano-Hadamard right-differentiability.

Let (εn)n and (zn)n be sequences such that εn → 0+ and zn → z as n → ∞. It

suffices to show that for any J ∈ J (y, z),

I(ye+ εnzn)− (I(ye) + dHI(ye; z)εn)

ε2n
→ 1

2
z⊤∇2J(ye)z

as n → ∞. Then, for each n, there is a Jn ∈ G such that I(ye + εnzn) =

Jn(ye + εnzn). Since J(ye) = y = Jn(ye) and, by the preceding result on the

Hadamard right-derivative, dHI(ye; zn) ≤ ∇Jn(ye)zn,

I(ye+ εnzn)− (I(ye) + dHI(ye; zn)εn)

ε2n

≥ Jn(ye+ εnzn)− (Jn(ye) +∇Jn(ye)znεn)
ε2n

.

By Taylor’s theorem, for every n, there is a θn ∈ [0, 1] such that

Jn(ye+ εnzn)− (Jn(ye) +∇Jn(ye)znεn)
ε2n

=
1

2
z⊤n∇2Jn(ye+ θnεnzn)zn.

Since J is compact, the set of the values on the right-hand side over all n is
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bounded. Thus, it has a convergent subsequence. Moreover, every subsequence

has a further subsequence of which the corresponding Jn’s constitute a convergent

sequence. Let J be the limit of such a subsequence. Then, as in the previous

paragraph, we can show that J ∈ J (y, z). Moreover, the limit of the further

subsequence of the values on the right-hand side is equal to (1/2)z⊤∇2J(x)z, which

is, by assumption, independent of the choice of J ∈ J (y, z). Thus, the values on

left-hand side is bounded and the limit of every convergent subsequence of these

values is equal to (1/2)z⊤∇2J(ye)z for any J ∈ J (y, z). Thus,

lim inf
n

I(ye+ εnzn)− (I(ye) + dHI(ye; zn)εn)

ε2n
≥ 1

2
z⊤∇2J(ye)z

for any J ∈ J (y, z).

It now remains to prove that

lim sup
n

I(ye+ εnzn)− (I(ye) + dHI(ye; zn)εn)

ε2n
≤ 1

2
z⊤∇2J(ye)z (50)

for any J ∈ J (y, z). To do so, for each n, we now let Jn ∈ J (y, zn), that is,

dHI(ye; zn) = ∇Jn(ye)zn. Since I(ye + εnzn) ≤ Jn(ye + εnzn) and I(ye) = y =

Jn(ye),

I(ye+ εnzn)− (I(ye) + dHI(ye; zn)εn)

ε2n

≤ Jn(ye+ εnzn)− (Jn(x) +∇Jn(ye)znεn)
ε2n

.

By Taylor’s theorem, for every n, there is a θn ∈ [0, 1] such that

Jn(ye+ εnzn)− (Jn(ye) +∇Jn(ye)znεn)
ε2n

=
1

2
z⊤n∇2Jn(ye+ θnεnzn)zn.

Since J is compact, the set of the values on the right-hand side over all n is

bounded. Thus, it has a convergent subsequence. Moreover, every subsequence

has a further subsequence of which the corresponding Jn’s constitute a convergent

sequence. Let J be the limit of such a subsequence. Then, it can be easily shown

that J ∈ J (z). Moreover, the limit of the further subsequence of the values on the

right-hand side is equal to (1/2)z⊤∇2J(ye)z, which is, by assumption, independent

of the choice of J ∈ J (y, z). Thus, the values on left-hand side is bounded and the
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limit of every convergent subsequence of these values is equal to (1/2)z⊤∇2J(x)z

for any J ∈ J (y, z). Thus, (50) holds. ///

Proof of Example 1 1. Since J is twice continuously differentiable on RS ×Λ,

if pn → p, then J( · pn) → J( · , p) with respect to the C2 compact-open topology.

Since Λ is compact, so is J . If z is a scalar multiple of e, then z⊤∇2Jp(ye)z = 0 for

every p ∈ Λ because Jp is normalized. If not, then J (y, z) is a singleton because

Λ is strictly convex. Thus, Assumption 2 is met.

2. Since Π is finite, J is compact. To show that Assumption 2 is met, let

y ∈ R and z ∈ RS. Define a partition {S1, S2, . . . , SN} of S as follows. There are

z1, z2, . . . , zN such that z(s) = zn for all s ∈ Sn and n, and z1 < z2 < · · · < zN .

For each p, ∇Jp(ye) = p⊤ and, hence, ∇Jp(ye)z = Ep[z]. Let p ∈ Λ. If there

are an s and t such that z(s) < z(t) and p(s) < p(t), let τ be the transposition of

swapping s and t. Then ∇Jp◦τ (ye)z < ∇Jp(ye)z. Hence, for every p ∈ J (y, z), if

z(s) < z(t), then p(s) ≥ p(t). We now show that the converse also holds, that is, if

p(s) ≥ p(t) whenever z(s) < z(t), then p ∈ J (y, z). Indeed, then, p(s) ≥ p(t) for

all n = 1, 2, . . . , N , s ∈ S1∪S2∪ · · · ∪Sn and t ∈ Sn+1∪Sk+2∪ · · · ∪SN . Thus, the

|S1|+|S2|+· · ·+|Sn| largest coordinates of p must coincide with (p(s))s∈S1∪S2∪···∪Sn .

Thus, ∑
s∈S1∪S2∪···∪Sn

p(s) ≥
∑

s∈S1∪S2∪···∪Sn

p(π(s))

for every π ∈ Π. Since every q ∈ Λ can be written as q = p◦π for some π ∈ Π, this

implies that the distribution of z under p is first-order stochastically dominated by

that under q ∈ Λ for every q ∈ Λ. Since Ep[z] = ∇Jp(ye)z, Jp ∈ J (y, z).

Note that the above characterization of J (y, z) implies that Jp ∈ J (y, z) if

and only if, for each n, (p(s))s∈Sn coincides with the (|S1|+ · · ·+ |Sn−1|+ 1)-th to

the (|S1|+ · · ·+ |Sn−1|+ |Sn|)-th largest coordinates of p. Since

Ep[z] =
∑
s

p(s)z(s) =
∑
n

(∑
s∈Sn

p(s)

)
zn,

Ep[z2] =
∑
s

p(s)(z(s))2 =
∑
n

(∑
s∈Sn

p(s)

)
z2n,
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they do not depend on the choice of Jp ∈ J (y, z). Since

z⊤∇2Jp(ye)z =
γ

2
z⊤
(
[p]− pp⊤

)
z =

γ

2

∑
s

p(s)(z(s))2 −

(∑
s

p(s)z(s)

)2
 ,

z⊤∇2Jp(ye)z does not depend on the choice of Jp ∈ J (y, z). Hence, Assumption

2 is met. ///

The following lemma characterizes the second Peano-Gateaux derivative of

V under Assumption 2, and will be used in the proof of Theorem 6. For each

y ∈ v(T ), z ∈ RS, and w ∈ RS, denote by J (y, z, w) the set of all J ∈ J (g, z)

such that ∇J(ye)w ≤ ∇K(ye)w for all K ∈ J (g, z). Note that J (y, z, w) is

different from J (y, w) in that the latter requires the last inequality to hold for all

K ∈ J , not just for K ∈ J (y, z).

Lemma 3 Under Assumption 2,

d2
GV (xe; z) = (v′(x))2z⊤∇2J(v(x)e)z + v′′(x)∇J(v(x)e)z2

for all x ∈ T , z ∈ RS, and J ∈ J (v(x), v′(x)z, v′′(x)z2), where z2 = (z(s)2)s ∈
RS.

In the first term of the right-hand side, J can indeed be any element of J (v(x), z).

Hence, the additional constraint that J is an element of J (v(x)e, v′(x)z, v′′(x)z2)

is needed to correctly evaluate the second term.

Proof of Lemma 3 By Proposition 4, I is twice Peano-Hadamard right-

differentiable at v(x)e in the direction z. By applying Theorem 7 to I and v

in place of F and G and using the fact that the first and second derivatives of the

mapping ε 7→ v ◦ (xe+ εz) = (v(x+ εz(s)))s of R into RS are equal to v′(x)z and

v′′(x)z2, we can show that V is twice Peano-Gateaux right-differentiable at xe in

the direction z and

d2
GV (xe; z) = d2

HI(v(x)e; v
′(x)z) + dHI(v(x)e; v

′(x)z; v′′(x)z2).

By Proposition 4,

d2
HI(v(x)e; v

′(x)z) = (v′(x)z)⊤∇2J(v(x))(v′(x)z) = (v′(x))2z⊤∇2J(v(x))z
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for every J ∈ J (v(x)e, v′(x)z). It thus remains to show that

dHI(v(x)e; v
′(x)z; v′′(x)z2) = ∇J(v(x)e)(v′′(x)z2) = v′′(x)∇J(v(x)e)z2

for every J ∈ J (v(x)e; v′(x)z; v′′(x)z2). For this, it suffices to establish the fol-

lowing, more general, fact: dHI(ye; z;w) = ∇J(ye)w for all y ∈ v(T ), z ∈ RS,

w ∈ RS, and J ∈ J (y, z, w).

Denote by K (y, z, w) the set of all J ∈ J for which there are sequences (εn)n

and (wn)n such that εn → 0+ and wn → w as n→ ∞, and J ∈ J (y, z+εnwn) for

every n. We claim that K (y, z, w) ⊆ J (y, z, w). (The reverse inclusion also holds

but it is not necessary in the subsequent proof.) Indeed, let J ∈ K (y, z, w). Then,

there are sequences (εn)n and (wn)n such that εn → 0+ and wn → w as n → ∞,

and J ∈ J (x; y+εnzn) for every n. Hence, ∇J(ye)(z+εnwn) ≤ ∇K(ye)(z+εnwn)

for all K ∈ J and n. As n→ ∞, we obtain ∇J(ye)z ≤ ∇K(ye)z for all K ∈ J .

Thus, J ∈ J (y, z). Hence, ∇J(ye)z = ∇K(ye)z for all K ∈ J (y, z). Since

∇J(ye)(z + εnwn) ≤ ∇K(ye)(z + εnwn), ∇J(ye)wn ≤ ∇K(ye)wn for all K ∈
J (y, z) and n. As n→ ∞, we obtain ∇J(ye)w ≤ ∇K(ye)w for all K ∈ J (y, z).

Thus, J ∈ J (y, z, w). Hence, K (y, z, w) ⊆ J (y, z, w).

Let two sequences (εn)n and (zn)n be such that εn → 0+ and zn → z as

n → ∞. By Proposition 4, for every n, there is a Jn ∈ J (y, z + εnwn) such that

dHI(ye; z + εnwn) = ∇Jn(ye)(z + εnwn). By taking a subsequence if necessary, we

can assume that the sequence (Jn)n is convergent, and denote its limit by J . As in

the proof of Proposition 4, we can show that J ∈ K (y, z, w). Since K (y, z, w) ⊆
J (y, z, w), J ∈ J (y, z, w). Moreover, since ∇Jn → ∇J uniformly on every

compact set, ∇Jn(ye)(z + εnwn) → ∇J(ye)z. Hence, dHI(ye; z) = ∇J(ye)z. On

the other hand, by Proposition 4, dHI(ye; z) = ∇K(ye)z for every K ∈ J (y, z).

In particular, dHI(ye; z) = ∇J(ye)z. Thus,

1

εn
(dHI(ye; z + εnwn)− dHI(ye; z)) =

1

εn
(∇J(ye)(z + εnwn)−∇J(ye)z) = ∇J(ye)wn

for every n. As n→ ∞, the right-hand side converges to ∇J(ye)w. Thus, so does

the left-hand side. Hence, dHI(ye; z;w) = ∇J(ye)w. ///

Proof of Theorem 6 1. Let (εn)n and (zn)n be sequences such that εn → 0+

and zn → z as n → ∞. Let q ∈ ∆
v(x)
I (z). To show the right-differentiability of
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κx(·, z) at 0, and its differential is equal to p · z− q · z, it is sufficient to prove that

κxp(εn, z)− κxp(0, z)

εn
→ p · z − q · z (51)

as n→ ∞. Suppose that

lim sup
n

κ
v(x)
p (εn, z)− κ

v(x)
p (0, z)

εn
> p · z − q · z.

Let δ satisfy

lim sup
n

κ
v(x)
p (εn, z)− κ

v(x)
p (0, z)

εn
> δ > p · z − q · z.

By taking a subsequence if necessary, we can assume that

κ
v(x)
p (εn, z)− κ

v(x)
p (0, z)

εn
> δ

for every n. Since κ
v(x)
p (0, z) = 0, κ

v(x)
p (εn, z) ≥ δεn for every n. Thus,

V̄p((x− δεn)e+ εnz) > V (xe+ εnz),

and, hence,

V̄p((x− δεn)e+ εnz)− V̄p(xe)

εn
>
V (xe+ εnz)− V (xe)

εn
.

As n→ ∞, the left-hand side converges to v′(x)(p · z − δ) and the right-hand side

converges to dHV (xe; z), which is equal to v′(x)(q · z) by Proposition 4. Thus,

p · z − δ ≥ q · z, but this is a contradiction. Hence,

lim sup
n

κ
v(x)
p (εn, z)− κ

v(x)
p (0, z)

εn
≤ p · z − q · z.

We can analogously show that

lim inf
n

κ
v(x)
p (εn, z)− κ

v(x)
p (0, z)

εn
≥ p · z − q · z.

This complete the proof of part 1.
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2. The statement on the right-differentiability and the right-derivative fol-

lows from part 1 and the assumption that p ∈ ∆
v(x)
I (z). To show the twice

right-differentiability of κx(·, z) at 0, and its second right-derivative is equal to

−v′(x)d2
HI(v(x)e; z), let (εn)n and (zn)n be sequences such that εn → 0+ and

zn → z as n → ∞. Since κ
v(x)
p (0, z) = 0 and (∂κ

v(x)
p /∂ε)(0, z) = 0, it is sufficient

to prove that for any J ∈ J (v(x), z) and p ∈ ∆
v(x)
I (z),

κ
v(x)
p (εn, z)

ε2n
→ −1

2
z⊤
(
v′(x)∇2J(v(x)e)

)
z (52)

as n→ ∞. Suppose that

lim sup
n

κ
v(x)
p (εn, z)

ε2n
> −1

2
z⊤
(
v′(x)∇2J(v(x)e)

)
z.

Let δ satisfy

lim sup
n

κ
v(x)
p (εn, z)

ε2n
> δ > −1

2
z⊤
(
v′(x)∇2J(v(x)e)

)
z.

By taking a subsequence if necessary, we can assume that

κ
v(x)
p (εn, z)

ε2n
> δ

for every n. Then, κ
v(x)
p (εn, z) > δε2n for every n. Thus,

V̄p((x− δε2n)e+ εnz) > V (xe+ εnz).

By the chain rule for derivatives,

d

dε
V̄p((x− δε2)e+ εz)

∣∣
ε=0

= v′(x)p · z.

By the chain rule for Hadamard right-derivatives,

dHV (xe; z) = dHI(v(x)e; v
′(x)z) = v′(x)p · z.
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Hence,

lim
n

V̄p((x− δε2n)e+ εnz)− V̄p(xe)

εn
= v′(x)p · z = lim

n

V (xe+ εnz)− V (xe)

εn
.

Furthermore, for z2 = ((z(s))2)s ∈ RS,

d2

dε2
V̄p((x− δε)e+ εz)

∣∣
ε=0

= v′(x)p · z2 − 2δv′(x),

d2
HV (xe; z) = (v′(x))2d2

HI(v(x)e; z) + v′′(x)p · z2

by the chain rule for derivatives and Lemma 3. By Taylor’s theorem,

lim
n

V̄p((x− δε2n)e+ εnz)− (V̄p(xe) + v′(x)p · z)
ε2n

=
1

2

(
v′′(x)p · z2 − 2δv′(x)

)
.

By definition,

lim
n

V (xe+ εnz)− (V (xe) + v′(x)p · z)
ε2n

=
1

2

(
(v′(x))2z⊤∇2J(v(x)e)z + v′′(x)p · z2

)
.

Since

lim
n

V̄p((x− δε2n)e+ εnz)− (V̄p(xe) + v′(x)p · z)
ε2n

≥ lim
n

V (xe+ εnz)− (V (xe) + v′(x)p · z)
ε2n

,

this implies that

v′′(x)p · z2 − 2δv′(x) ≥ (v′(x))2z⊤∇2J(v(x)e)z) + v′′(x)p · z2,

that is,

δ ≤ −1

2
z⊤
(
v′(x)∇2J(v(x)e)

)
z.

This is contradiction. Hence,

lim sup
n

κ
v(x)
p (εn, z)

ε2n
≤ −1

2
z⊤
(
v′(x)∇2J(v(x)e)

)
z.
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We can analogously show that

lim inf
n

κ
v(x)
p (εn, z)

ε2n
≥ −1

2
z⊤
(
v′(x)∇2J(v(x)e)

)
z.

Thus, (52) follows. ///
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