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1 Introduction

Population aging has accelerated in many countries. Figure 1 displays changes in the population

share of older adults aged 65 years and above in several countries in Asia and Europe (and the

United States) from 1950 to 2020. The graphs also show the predicted population share up to

2040. In Japan, which is one of the most rapidly aging countries worldwide, the population

share of older adults aged 65 years and above increased from 10% in 1980 to 29.2% in 2020 and

is predicted to reach 35% in 2040. These graphs indicate that an upward trend in population

aging could be observed even in emerging countries with large populations such as China and

India.

[Figure 1]

Population aging results from the extension of life expectancy and a decrease in the fertility

rate. Table 1 shows the changes in the average life expectancy of the Japanese population, and

Table 2 displays the total fertility rate in Japan. Table 1 shows that the average life expectancy

of the Japanese people has increased substantially in the last 50 years. In addition, according to

Table 2, the total fertility rate in Japan was lower than 2.0 in 1975 and continued to decrease to

reach 1.32 in 20201. As a result, the total population in Japan has been decreasing since 2008.

The �gures in Tables 1 and 2 reveal that both the extension of life expectancy and the decline

in the fertility rate yield substantial population aging in Japan. Inspecting changes in the life

expectancy and the total fertility rate in other aging countries listed in Figure 1, we see that

the pattern of population aging in those countries is essentially the same as that in Japan.

Year 1970 1980 1990 2000 2010 2020

Female 74,6 78.6 81.9 84.4 86.4 89.6

Male 69.4 73.3 75,8 77,6 81.2 83.2

Table 1: The average lifee xpectancy in Japan(years)

Year 1970 1980 1990 2000 2010 2020

2.28 1.81 1.58 1.41 1.39 1.32

Table2: Fertility rate in Japan2

1The total fertility rate means the average number of children born to women between the ages of 15 and 49.
2Sources of Tables 1 and 2 are based on the Report of Vital Statistics 2022 issued by the Japanese Ministry of

Health, Labor, and Welfare.
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As population aging may yield signi�cant e¤ects on a wide range of economic activities, the

issue has been attracting considerable attention. Recent studies explored the impact of

demographic change caused by population aging on economic growth (Maestas et al. 2022),

labor markets (Abraham and Kearney 2020), structural transformation (Cravino, et al. 2022),

social security (Heer et al. 2020, Yakita 2018), and �rm dynamics (Peter and Walsh 2021,

Hopenhayn et al. 2022)3. In this study, we focus on the e¤ect of population aging on income

and wealth distribution. To inspect the distribution e¤ect of demographic change in a

tractable manner, we use the overlapping generations (OLG) model. Speci�cally, we construct

a continuous-time, perpetual youth model in which each household faces the probability of

death. Thus, in our model, households are heterogeneous in terms of their age and wealth

holding. We combine this setting with a simple semi-endogenous growth model in which

persistent growth in per capita income is sustained by external increasing returns. We allow

population changes so that a decrease in the birth rate (i.e., the growth rate of newly born

agents) and a reduction in the mortality rate promote population aging.

Given this analytical framework, we characterize the stationary distribution of income and

wealth. Then, we examine how population aging alters the distribution pro�les. First, we

con�rm that the stationary distributions of income and wealth exhibit the Pareto pro�le and

the shape parameter of the distribution function decreases with the steady-state rate of return

on capital. Because the reciprocal of the shape parameter measures the degree of distributional

inequality among households, a higher rate of return increases inequality. More precisely, the

inequality index is the product of the growth-adjusted net rate of return on capital and the

degree of population aging. In our OLG setting, older households accumulate larger wealth than

younger ones; hence, population aging increases capital accumulation, which lowers the steady-

state rate of return on capital. Hence, in this respect, population aging decreases distributional

inequality. At the same time, it has a direct positive e¤ect on inequality, and thus its total e¤ect

on the degree of inequality depends on the relative strength of these opposite e¤ects. To explore

this issue further, we examine numerical examples. Our quantitative experiments reveal that

given empirically plausible parameter values, population aging caused by the extension of life

expectancy lowers inequality, whereas that caused by a decrease in the population growth rate

3See Lee (2016) for a broad overview of the impacts of population aging.
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increases inequality. This quantitative di¤erence stems from the fact that in our semi-endogenous

growth model, a change in the population growth rate a¤ects the steady-state growth rate of

income, but changes in the mortality rate do not a¤ect the long-run growth rate of per capita

income.

In addition to the baseline analysis mentioned so far, we conduct three extensions to the

base model. First, we introduce the exogenous technical progress. Since exogenous productivity

growth does not a¤ect the rate of population change, it alters income and wealth distribution

without a¤ecting the degree of population aging. We �nd that a permanent drop in exogamous

productivity growth enhances inequality.

In the second extension, we reconsider the labor supply behavior of households. The baseline

model assumes that each agent supplies one unit of labor at each moment until he or she

dies. By contrast, the second extended model considers the possibility of retirement from labor

participation. We assume that each household may retire according to a given probability

distribution. Since many people in aging economies tend to postpone their retirement, we

consider the distribution e¤ect of a decrease in retirement probability. We can con�rm that a

lower probability of retirement decreases inequality in stationary equilibrium.

The �nal extension endogenizes the household labor supply. For analytical simplicity, we

assume that agents have the Greenwood-Hercowitz-Hu¤man (GHH) preferences under which

labor supply is independent of the wealth e¤ect. We �nd that the distributions of income and

wealth become more unequal as the elasticity of the labor supply increases. We discuss the

relationship between �exibility of labor supply and population aging.

Our study is related to the existing contributions that characterize income and wealth distri-

butions in the context of dynamic models with heterogeneous agents and idiosyncratic shocks.

Benhabib et l. (2011) and Benhabib et al. (2016) explore OLG models with a bequest motive in

which idiosyncratic income shocks hit individual agents. The authors reveal that the stationary

distribution of wealth exhibits a double Pareto distribution. Similarly, based on a simple model

with the birth and death of agents, Jones (2014) shows that the stationary income distribution

is Pareto. His main concern is to study a recent rise in top income inequality emphasized by

Piketty (2014). Using a continuous-time OLG model, Hiraguchi (2019) also considers Piketty�s

claims by examining the relationship between income growth and inequality. Nirei and Aoki

(2016) study a neoclassical growth model with idiosyncratic investment shocks and drive a sta-
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tionary Pareto distribution of wealth. More recently, Moll et al. (2022) obtain a similar outcome

in the neoclassical growth model with idiosyncratic preference shocks4. Their primary concern

is to study the e¤ect of automation technology on the distribution of income and wealth. The

model examined by Moll et al. (2022) is complex, but the mechanics that generate the Pareto

distribution of income and wealth are essentially the same as that in the foregoing studies5.

None of the studies mentioned thus far consider the e¤ect of population aging on income and

wealth destitutions.

From an analytical viewpoint, Hiraguchi (2019) is the closest to our study. The author

also utilizes the Blanchard-Yaari-type perpetual youth model to characterize the stationary

distribution of income. Although our research concern and the analytical framework overlap

with Hiraguchi (2019), our study departs from his contribution in three important aspects.

First, we employ a semi-endogenous growth model in which the population growth rate a¤ects

the steady-state growth rate of income, whereas Hiraguchi (2018) treats a neoclassical growth

model in which the steady-state growth rate of per capita income is speci�ed exogenously.

Second, Hiratuchi (2019) focuses on the relationship between income growth rate, rate of return

on capital, and inequality, whereas our concern is the distributional e¤ect of demographic change.

Third, we characterize the stationary distributions of income and wealth in a more general and

detailed manner than Hiraguchi (2019).

The remainder of this paper proceeds as follows. Section 2 sets up the baseline model and

examines its dynamic properties. Focusing on the steady-state growth equilibrium, Section 3

explores the linkage between population aging and income and wealth inequality. Section 4

examines the extended models mentioned above. Finally, Section 5 concludes the paper.

4Moll et al. (2022) assume that when a �dissipation shock� hits an agent, she consumes all of her wealth
instantaneously. As pointed out by the authors, their setting is essentially the same as that of the Blanchard-
Yaari-type perpetual youth model in which each agent faces a death shock at every moment.

5The models examined by the above-mentioned studies are variants of the dynamic models with random shocks
in which the stationary distribution of income follows the power law. Our model also belongs to this class of
models. See Gabaix (2009) for a useful survey of this class of models.

5



2 Model

2.1 Production

The production side of our setting is a simple semi-endogenous growth model in which external

increasing returns sustain persistent growth of per capita income. There is a continuum of

identical �rms with a unit mass. The aggregate production function is

Yt = AKt
�K

t N

1��
t ; 0 < � < 1; 
 > 0; �+ 
 < 1; (1)

where Yt; Kt and Nt denote output, capital and labor, respectively. Here, �K


t represents external

e¤ects associated with the aggregate capital. Since the number of �rms is normalized to one,

it holds that �Kt = Kt for all t � 0: Hence, the social production function that internalizes the

external e¤ects is expressed as

Yt = AK�+

t N1��

t : (2)

The social production function exhibits increasing returns to scale, but the marginal product of

capital is diminishing under the assumption of �+ 
 < 1:

The factor markets are competitive, and the factor prices are determined by

rt = �
Yt
Kt

� �; (3)

wt = (1� �)
Yt
Nt
; (4)

where rt is the net rate of return on capital, where � 2 (0; 1) is the capital depreciation rate,

and wt denotes the real wage.

2.2 Households

Population Dynamics and Age Distribution

Time is continuous. At each moment, new households are born and their size is Bt. We

assume that Bt changes at a constant rate of b so that Bt = B0e
bt: Each household may die at

each moment according to a Poisson process with an intensity denoted by m: Hence, the size of
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households born at time s and surviving at t (� s), denoted by Nt;s, is

Nt;s = Bte
�m(t�s) = B0e

(b+m)se�mt;

and the total population (total labor force) is given by

Nt =

Z t

�1
Nt;sds = B0e

�mt
Z t

�1
e(b+m)sds:

Thus, the total population changes according to

_Nt = Bt �mNt: (5)

Suppose that the total population is su¢ ciently large. Then, the low of large number means

that mNt denotes the number of agents who die at t; hence, (5) expresses the instantaneous

change in the total population at t: As a result, if Nt changes at a constant rate, it should hold

that _Nt=Nt = _Bt=Bt = b: We focus on the steady state of the population dynamics, and hence,

we obtain the following relation:

Nl =
B0e

bt

b+m
: (6)

We allow a negative population growth rate (b < 0) ; but we assume that b+m > 0 to maintain

the total population positive. By setting B0 = b+m; we obtain Nt = ebt:

To characterize the age distribution in the steady state of population dynamics, de�ne the

complementary cumulative distribution function (tail distribution function) such that

G (v; t) = Pr (age � v) :

This function represents the share of households with ages above v; and satis�es the following
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Kolmogorov forward equation6:

@G (v; t)

@t
= � (b+m)G (v; t)� @G (v; t)

@v
: (7)

The stationary distribution is independent of time so that it ful�lls

G0 (v) = � (b+m)G (v) :

The solution of this ordinary di¤erential equation is written as

G (v) = e�(b+m)v:

Conversely, the stationary cumulative distribution of households with ages lower than v is given

by

Pr (age � v) = 1�G (v) = 1� e�(b+m)v:

The density of this function is G0 (v) = (b+m) e�(b+m)v: Hence, the average age of the house-

holds is given by

Z 1

0
v (b+m) e�(b+m)dv = (b+m)

"
�e

�(b+m)v

(b+m)2

#1
0

=
1

b+m
:

Consequently, when the birth rate b or the mortality rate m decreases, the average age of

households increases. Namely, 1= (b+m) represents the index of population aging in the steady

state of population dynamics.

Blanchard (1985) and many subsequent studies assume that the total population is constant

over time. This means that from (5) ; b = 0; m > 0; and it holds that Bt = mN for all t � 0: To

con�rm that the key outcomes of OLG models do not stem from the �nite horizon of agents,

6From t to t + �t; the population share of households whose ages are higher than v changes from G (v; t)
to G (v; t+�t) : Given v; the share of households who die during t and t+�t is approximated by mG (v; t)�t;
whereas the share of households born during that time is bG (v; t)�t. Additionally, setting �t = �v; the change in
the population share of households whose ages increase from v��v to v is expressed as G (v ��v; t)�G (v; t) : In
sum, we obtain the following relation:

G (v; t+�t)�G (v; t)

�t
= � (b+m)G (v; t) +

G (v ��v; t)�G (v; t)

�v
:

Letting �t! 0 and �v ! 0 leads to (7) :
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Weil (1989) assumes that households live forever, that is, b > 0 and m = 0: Buiter (1989) treats

the general case where b > 0 and m > 07:We follow Buiter�s (1989) setting, but we assume that

the growth rate of the number of newborns, b; can be negative.

Households�Optimization Problem

Households�behavior is based on the perpetual youth model developed by Blanchard (1985)

and Yaari (1965). Faced with the probability of death, the objective function of the households

born at time s is

Us =

Z 1

s
e�(�+m)(t�s) log ct;sdt; (8)

where ct;s is consumption of cohort s at time t; and � (> 0) is the time discount rate. The �ow

budget constraint of the household is

_at;s = (rt +m) at;s + wt � ct;s; (9)

where at;s is the asset holding of cohort s at time t; rt is the net rate of return on capital

determined by (3) ; and wt denotes the real wage rate given by (4) : Following Blanchard (1985)

and Yaari (1965), we assume the presence of fair insurance under which the assets of households

who die at t are distributed among the surviving households at that time. Hence, the rate of

return on assets includes the risk premium, m: We also assume that households do not have a

bequest motive, implying that the initial condition of the asset holding is

as;s = 0: (10)

Households maximize Us by choosing fct;sg1t=s subject to (9) and (10) ; together with the no-
7Our formulation of population dynamics follows Buiter (1989) who analyzes a continuous-time OLG model

with population change. Buiter (1989) assumes that the number of newly born agents is proportional to the
current population in such a way that Bt = �Nt, where � > 0 is the birth rate. In this formulation, the
population growth rate is given by n = ��m, indicating that (5) means _Nt=Nt = ��m = n:Thus, if the birth
rate, �; is higher (resp. lower) than the mortality rate, m; then the total population increases (resp. decreases).
Notice that the presence of a proportional relation between Bt and Nt means that the population dynamics is in
its steady state. In this sense, as Jones (2014) points out, � represents the long-run birth rate, and it corresponds
to b+m in our model. Consequently, there is no substantial di¤erence between our formulation and that of Buiter
(1989).
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Ponzi-game condition such that

lim
v!1

exp

�
�
Z v

t
(r� +m) d�

�
av;s � 0:

The optimal consumption must satisfy the following Euler equation:

_ct;s = ct;s (rt � �) : (11)

When both the no-Ponzi-game and transversality conditions are ful�lled, the intertemporal

budget constraint at t is given by

Z 1

t
exp

�
�
Z v

t
(r� +m) d�

�
cvt;sdv =

Z 1

t
exp

�
�
Z v

t
(r� +m) d�

�
wvdv: (12)

Using (11) and (12) ; we obtain

ct;s = (�+m) (at;s + ht) ; (13)

where ht expresses the human wealth de�ned by

ht =

Z 1

t
exp

�
�
Z v

t
(r� +m)d�

�
wvdv: (14)

2.3 Equilibrium Dynamics

Dynamic System

The aggregate consumption and asset levels are expressed as

Ct =

Z t

�1
ct;sNt;sds; At =

Z t

�1
at;sNt;sds:

Then, (13) presents

Ct = (�+m) (At +Ht) ; (15)

whereHt = htNt: Similarly, summing up the individual �ow budget constraint (9) ; the aggregate
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asset changes according to

_At = (rr +m)At + wtNt � Ct �mAt = rtAt + wtNt � Ct: (16)

Note that the assets left by households who die at t are mAt; which are transferred to living

households. Thus, the aggregate net revenue from the assets received by the household sector

is rtAt: In a closed economy, the equilibrium condition for the asset market is

At = Kt: (17)

From (3) ; (4) ; and (17) ; we can con�rm that (16) also represents the market equilibrium con-

dition for �nal goods:

Yt = Ct + _Kt + �Kt: (18)

Di¤erentiating both sides of (15) with respect to time gives

_Ct = (�+m)
�
_At + _Ht

�
: (19)

Equation ( 14) presents _ht = (rt +m)ht � w; which leads to

_Ht = _Ntht +Nt
_ht = bHt + (rt +m)Ht � wtNt: (20)

Therefore, substituting (16), (16) and (20) into (19) ; we obtain the following:As

_Ct = (�+m) [rtAt + wtNt � Ct + (rt +m+ b)Ht � wtNt]

= (�+m) [(rt +m+ b) (At +Ht)� Ct � (b+m)At]

= (�+m)

�
rt +m+ b

�+m
Ct � Ct � (�+m) (b+m)At

�
= (rt + b� �)Ct � (�+m) (b+m)At:

The above equation indicates that If b = m = 0 so that households live forever and there are

no newborns, the aggregate consumption follows _Ct = (rt � �)Ct; which is the Euler equation

of aggregate consumption in the representative-gent economy with �xed population. The above
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result also means that from At = Kt; the aggregate consumption changes according to

_Ct =

�
�
Yt
Kt

+ b� �� �
�
Ct � (�+m) (b+m)Kt: (21)

Moreover, the dynamic behavior of the aggregate capital is determined by (18) in such a way

that

_Kt = Yt � Ct � �Kt: (22)

Now de�ne Yt
Kt
= xt;

Ct
Kt
= zt. Then, the rate of change of Kt Yt; and Ct are respectively

written as

_Kt

Kt
= xt � zt � �;

_Yt
Yt
= (�+ 
) (xt � zt � �) + (1� �) b;

_Ct
Ct
= �xt + b� (�+ �)� (�+m) (b+m)

1

zt
:

Hence, a complete dynamic system that depicts the equilibrium dynamics of our economy con-

sists of the following di¤erential equations:

_xt
xt
= (�+ 
 � 1) (xt � zt � �) + (1� �) b; (23)

_zt
zt
= (�� 1)xt + zt � (�+m) (b+m)

1

zt
+ b� �: (24)

Note that if m = b = 0; then the initial households live forever, and new households will not

appear. In this case, the model reduces to a representative agent setting, and the dynamic

system becomes the following:

_xt
xt
= (�+ 
 � 1) (xr � zt � �) ;

_zt
zt
= (�� 1)xt + zt � �:

Stability of the Steady-State Growth Equilibrium

In the steady-state growth equilibrium, Kt; Yt; and, Ct change at a common rate, so that

xt and zt stay constant over time. From (2) ; the steady-state growth equilibrium establishes
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gY = (�+ 
) gK + (1� �) b; where gx denotes the steady-growth rate of variable xt: Using this

relation and a steady-state growth condition, gY = gK = g; we obtain

gY = gK = gC =
(1� �) b
1� �� 
 : (25)

Because rt = �xt and wt = (1� �) YtNt ; in the steady-state growth equilibrium, rt stays constant

and wt changes at the rate of gy: Hence, it holds that

gy = gw = gY � b =

b

1� �� 
 : (26)

When we express the steady-state value of a variable, we drop the time subscript. The steady-

state values of xt and zt ful�ll the following conditions:

_x = 0 locus: x = z + � +
(1� �) b
1� �� 
 ; (27)

_z = 0 locus: x =
z

1� � �
(�+m) (b+m)

(1� �)z +
b� �
1� �: (28)

Equations (27) and (28) present

�

1� �z
2 �

�
b� �
1� � � � �

(1� �) b
1� �� 


�
z � (�+m) (b+m)

1� � = 0:

It is easy to con�rm that under our restrictions on the parameter values, this quadratic equation

of z has real roots, one of which is positive and the other is negative. This implies that the

phase diagram of (23) and (24) can be depicted as Figure 2 in which there is a unique feasible

steady state with positive x and z:

[Figure 2]

As shown in the �gure, the stationary state of the dynamic system has a saddle point property.

There are stable saddle paths converging to the steady state, which are expressed as

zt = � (xt) ; �
0 (xt) > 0 and lim

xt!x
� (xt) = z:

Since the initial levels ofK0 andN0 (= 1) are exogenously speci�ed, x0 = Y0=K0 = AK�+
�1
0 N1��

0 is

given, whereas z0 = C0=K0 is not predetermined. Thus, the initial value of zt (so the initial

13



value of Ct) is determined by z0 = � (x0).

Proposition 1 There exists a unique steady-state growth equilibrium that satis�es saddle-

point stability.

3 Population Aging and Inequality

In this and the next sections, we focus on the steady-state growth equilibrium de�ned in the

previous section.

3.1 Stationary Distribution of Income and Wealth

In the steady-state growth equilibrium, rt stays constant over time, so that from (14) ; the per

capita human wealth is given by

ht =

Z 1

t
e�(r+m)(v�t)wvdv: (29)

In the steady-state growth equilibrium, wv changes at the rate of gy; implying that wve�gyv =ew remains constant over time. Hence, (29) yields
eh =

ew
r +m� gy

; (30)

where eh = e�gytht; which is constant over time. We assume that

r +m > gy: (31)

to keep eh positive. Similarly, denoting az;te�gyt = eat;s and cs;te�gyt = ect:s; and using (30) ; on
the steady-growth path, the �ow budget constraint for households in cohort s is expressed as

d

dt
eat;s = (r +m� gy)eat;s + ew � ect:s

= (r +m� gy)
�eat;s + eh�� (�+m)�eat;s + eh� :

14



Following Moll et al. (2021), we de�ne the household�s �e¤ective wealth�on the steady-state

growth path as follows:

!t;s = eat;s + eh;
which measures the sum of �nancial assets and human wealth held by the household. Since eh is
constant in the steady-state growth equilibrium, we obtain

_!t;s =
d

dt
eat;s = (r � �� gy)!t;s; (32)

implying that !s;t changes at the rate of r � �� gy in the steady-state growth equilibrium.

Now de�ne the complementary cumulative distribution function (CCDF) of !s;t as follows:

� (!; t) = Pr (!t;s � !) for ! 2 [eh;1):
This function represents the share of households with e¤ective wealth larger than !: Function

� (!; t) satis�es the following Kolmogorov forward equation:

@� (!; t)

@t
= � @

@!
�(!; t) [(r � �� gy)!]� (b+m) � (!; t) : (33)

An intuitive implication of this equation is as follows. The change in the share of households

with e¤ective wealth larger than ! between t and t+�t is � (!; y +�t)�� (!; t) : This change

�rst stems from the fact that households with ! � �! increase their e¤ective wealth up to

! between t and t + �t: This e¤ect is approximated as [� (! ��!; t) � � (!; t)]�!: Second,

the share of households who die between t and t+�t is approximated as m� (!; t)�t; and the

population share of new households who are born during that time is b� (!; t)�t: Because the

e¤ective wealth held by the new households is less than !; the population share that is excluded

from the household group with !t;s � ! is (b+m)� (!; t)�t: Consequently, noting that from

(32) ; the change in ! is approximated by �! = (r � �� gy)!�t; we see that the rate of change

� (!; t) from t to t+� can be approximated as follows:

� (!; t+�t)� � (!; t)
�t

=
�(! ��!; t)� � (!; t)

�!
(r � �� gy)! � (m+ b) � (!; t) :

Then, letting �t! 0 and �! ! 0; we obtain (33) :
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Here, we focus on the stationary distribution of e¤ective wealth. The stationary distribution

is independent of time, and the Kolmogorov forward equation of the stationary CCDF ful�lls

�0 (!) (r � �� gy)! + (b+m) � (!) = 0: (34)

Suppose that the solution of (34) is written as � (!) = �!�� ; where � and � are undetermined

constants. Substituting this into (34) yields � (r � �� gy) = b+m; meaning that

� =
b+m

r � �� gy
: (35)

By de�nition, �
�eh� = �

�eh��� = 1; so that � = eh� : This shows that � (!) is speci�ed as
� (!) =

�
!eh
�� b+m

r���gy for ! 2 [eh;1): Hence, the stationary cumulative distribution function is
1�� (!) : That is, the stationary distribution of the e¤ective wealth exhibits a Pareto distribution

with a shape parameter b+m
r���gy and a support

eh: Moreover, the stationary distribution of the
growth-adjusted �nancial asset, eat;s; satis�es

Pr (eat;s � ea) = Pr�eat;s + eh � ea+ eh� = Pr (!t;s � !) =

�
!eh
�� b+m

r���gy
:

Similarly, the stationary distribution of the growth-adjusted income de�ned as eyt:s = (r +m� gy)eat:s+ew follows
Pr (eyt;s � ey) = Pr� eyt;s

r +m� gy
� ey
r +m� gy

�
= Pr

�eat:s + ew
r +m� gy

� ey
r +m� gy

�
= Pr

�eat:s + eh � !
�
=

�
!eh
�� b+m

r���gy
:

Therefore, the stationary distributions of �nancial assets and income have the same pro�le as

that of the e¤ective wealth.

Proposition 2 In the steady-state growth equilibrium, the cumulative distribution function of

e¤ective wealth, asset holdings, and income is Pareto with the support eh and the shape parameter
� = b+m

r����gy :
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3.2 Distributional Impact of Population Aging

The reciprocal of the shape parameter (tail index) is given by

1

�
=
r � �� gy
b+m

= growth rate of individual wealth� level of population aging

Namely, other factors being equal, when individual wealth grows faster and/or population aging

progresses, income and wealth distribution becomes more unequal. Speci�cally, 1=� is expressed

as
1

�
=
(1� �� 
) (r � �)� 
b
(1� �� 
)(b+m) : (36)

A larger 1=� means that the stationary distribution function has a fatter and longer tail so

that inequality of income and wealth distribution rises. Thus, a higher r means a higher degree

of inequality. Moreover, given r; a lower b or a lower m increases inequality. However, since

r depends on b and n; we should consider how a change in the degree of population aging a¤ects

the steady-state level of the rate of return on capital.

To �nd the equilibrium level of r; note that Kt changes at gy + b on the steady-state growth

path. Therefore, using At = Kt and (22), in the steady-state growth equilibrium, we obtain

(gy + b)Kt = rKt + wtNt � (�+m) (Kt +Ntht): (37)

Now de�ne qt = Kt=wtNt; which is constant in the steady-state growth equilibrium. Using this

notation, (37) yields

q =
1

gy + b+ �+m� r

�
1� �+m

r +m� gy

�
: (38)

This relationship expresses the supply side of capital per wtNt: From (3) and (4) ; the demand

side of capital is given by
wt

rt + �
=

�
1� �
�

�
Kt

Nt
:

In the steady-state growth equilibrium, the above equation is expressed as

q =
�

(1� �) (r + �) : (39)
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Combining (38) and (39) yields the following equation:

�

(1� �) (r + �) =
1

gy + b+ �+m� r

�
1� �+m

r +m� gy

�
: (40)

The left-hand side (LHS) of (40) corresponds to the demand side of the capital, while the right-

hand side (RHS) expresses the supply side of the capital. Figure 3 shows the graphs of LHS)

and RHS, As the �gure depicts, if we assume that � + gy > 0 and m > gy; (40) has a unique

solution denoted by r�:

[Figure 3]

Moreover, as depicted in Figure 4, ifm or b; increases, the graph of RHS in (40) shifts downward,

which increases the steady-state level of r: Conversely, acceleration of population aging caused

by a decrease in b or m lowers r�:

[Figure 4]

Population aging increases the population share of older agents who accumulate larger levels

of wealth than younger households. Hence, population aging accelerates the accumulation of

aggregate capital, which lowers the steady-state rate of return on capital. This indicates that

population aging may contribute to lowering the degree of inequality represented by 1=� through

a decrease in r�: The total e¤ect of a change in m on 1=� is given by

d

dm

�
1

�

�
=

1

(b+m)2

�
(b+m)

dr�

dm
� (r� � �) + 
b

1� �� 


�
: (41)

As dr�=dm > 0 and r� � � > 0; the sign of the right-hand side of the above equation is

analytically indeterminate. As mentioned previously, the index of inequality, 1=�; is the product

of the net growth rate of individual wealth, r� � � � gy; and the degree of population aging,

1= (b+m) : Thus, population aging caused by a decrease in the mortality rate, m; reduces the

net growth rate of individual e¤ective wealth and raises the degree of population aging. The

total e¤ect of population aging on inequality depends on the relative strength of those opposite

outcomes.
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Similarly, the e¤ect of a change in b is shown by

d

db

�
1

�

�
=

1

(b+m)2

�
(b+m)

dr�

db
� (r� � �)� 
m

1� �� 


�
: (42)

Again, the sign of the right-hand side of the above is analytically ambiguous. Note that a change

in the birth rate, b; directly a¤ects the steady-state growth rate of per capita income, gy; while a

change in the mortality rate, m; will not a¤ect the long-term growth rate of per capita income.

Such a di¤erence is captured by the last terms of the right-hand sides of (41) and (42) : In (41) ;

the last term 
b= (b+m) is positive (negative) if the birth rate is positive (negative), whereas

the last term in (42) ; �
m= (1� �� 
) ; is strictly negative.

Proposition 3 Population aging lowers the rate of return on capital in the steady-state growth

equilibrium. The long-run impact of population aging on inequality depends on the relative

strength of its indirect, negative e¤ect on the rate of return on capital and its positive, direct

e¤ect on the index of inequality.

We now examine numerical examples to inspect if population aging raises inequality under

plausible parameter values. As the baseline setting, we specify that the income share of capital

is � = 0:35; the degree of external e¤ect 
 = 0:3; the time discount rate � = 0:02; and the capital

depreciation rate � = 0:075. The magnitudes of �; �; and � are conventional. The value of 


is selected to make the steady-state growth rate of per capita income is gy = 
b= (1� �� 
)

= 0:0174 under b = 0:02: The graph in Figure 5 shows the relationship between m and 1=�:

In this �gure, we set b at 0:02 and change m from 0 to 0:05. The graphs indicate that 1=�

monotonically increases with m: This means that population aging caused by a decline in the

mortality rate,m; lowers the degree of inequality in income and wealth under plausible parameter

values.

[Figure 5]

Similarly, Figure 6 illustrates the relationship between b and 1=�: In this case, we �x m

at 0:02 and change b from �0:01 to 0:05: The graph reveals that 1=� monotonically decreases

with b: Hence, population aging caused by a decline in the birth rate enhances inequality in the

steady-state growth equilibrium. As shown above, a decrease in b lowers the steady-state level

of the rate of return on capital, r�: At the same time, a lower b reduces the growth rate of per
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capita income; hence, the detrended rate of return, r��gy may not decrease signi�cantly or may

even increase. Therefore, the degree of inequality may increase with a drop in the birth rate.

[Figure 6]

4 Extensions

In this section, we modify assumptions in the baseline model. We inspect how these modi�cations

a¤ect the main outcomes obtained in the base model.

4.1 Exogenous Productivity Growth

In our semi-endogenous growth setting, the steady-state growth rate of income is proportional

to the rate of population change. Hence, persistent growth of per capita income fails to hold

without population expansion. To relax such a restrictive setting, suppose that in addition

to productivity growth sustained by external increasing returns, there is exogenous technical

progress. Speci�cally, we assume that the total productivity in (2) increases at a �xed rate of

x; that is, At = A0w
xt: In this case, the steady-state growth rate of per capita income is

gy =
x+ 
b

1� �� 
 :

Thus, even if b < 0; the per capita income can grow if x > �
b: Now, let us denote z = r � gy:

Then (40) is expressed as

�

(1� �) (z + gy + �)
=

1

b+ �+m� z

�
1�

�
�+m

z +m

��
: (43)

Figure 7 shows the graphs of LHS and RHS in (43) We see that a rise in x increases gy; which

leads to a downward shift of the graph of LHS. As a result, the steady-state level of z = r�� gy
decreases.

[Figure 7]
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Because (35) can be expressed as 1� =
z���
b+m ; the impact of a change in x on 1=� is evaluated by

d

dx

�
1

�

�
=
dz�=dx

b+m
;

which means that a higher x lowers the degree of inequality and that its impact is larger as the

degree of population aging, 1= (b_m) ; has a higher value. Conversely, a reduction in x increases

inequality and its e¤ect is larger under a higher 1= (b+m). As a numerical example, we set

the levels of �; �; 
; �; m; and b at their baseline values mentioned in Section 3.2, we plot the

relationship between 1=� and x : see Figure 8.

[Figure 8]

Proposition 4 If the exogenous productivity growth rate increases, then the gap between the

rate of return on capital and the growth rate of per capita income is lowered, which reduces

inequality.

There is a large body of empirical studies on the relationship between population aging

and productivity growth. Most of the previous investigations suggest that population aging

negatively a¤ects productivity growth: see, for example, Daniele et al. (2020) and Maestas et

al. (2022). Applying the empirical �ndings to our model, we may conjecture that a lower x may

be associated with a larger 1= (b+m) ; which gives rise to a higher inequality in the steady-state

growth equilibrium.

4.2 Retirement of Agents

Thus far, we have assumed that households supply one unit of labor at each moment until they

die. Although this assumption simpli�es the model analysis, it fails to capture the household

life-cycle decisions emphasized in the standard, discrete-time OLG models. Here, we consider the

retirement of agents from labor participation. Following Blanchard (1985), we assume that the

probability of retirement follows a Poisson process with intensity  (> 0) : In this formulation,

the labor supply at t o¤ered by the household born at s is

ls;t = e� (t�s) � 1;
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where e (t�s) denotes the probability that the household born at s remains in the workforce at

t (� s) 8: Thus, noting that Bt = B0e
bt; we see that the aggregate labor supply at t is given by

Lt =

Z t

�1
ls;tNs;tds =

Z t

�1
e� (t�s)B0e

(b+m)se�mtds =
b+m

b+m+  
Nt:

Hence, it holds that Lt = Nt for  = 0; and a smaller  means an increase in the labor

participation rate, Lt=Nt.

The �ow budget for each household is given by

_at;s; = (rt +m) at;s + e
� (t�s)wt � ct;s:

As before, optimal consumption follows (11) and the consumption at t is given by (13) ; where

the human wealth on the steady-state growth path is

ht =

Z 1

t
e�(gy�r�m� )(v�t)wtdv =

wt
r +m+  � gy

:

Thus, the aggregate consumption in the balanced-growth equilibrium is expressed as

Ct = (�+m) [Kt + htLt] = (�+m)

�
Kt +

wtLt
r +m+  � gy

�
:

As a result, (37) is replaced with

(gy + b)Kt = rKt + wtLt � (�+m) (Kt +
wtLt

r +m+  � gy
):

By denoting Kt=wtLt = q; which is constant on the balanced growth path, the above equation

yields

q =
1

gy + b+m+ �� r

�
1� �+m

r +m+  � gy

�
:

As before, wt
r+� =

(1��)Kt

�Lt
presents (39) ; meaning that (40) is replaced with

�

(1� �) (r + �) =
1

gy + b+ �+m� r

�
1� �+m

r +m+  � gy

�
: (44)

8Blanchard (1985) considers the case in which the labor productivity of an agent decreases exponentially at a
constant rate, His formulation can be interpreted as a model in which the retirement opportunity arrives at each
moment according to a Poisson process.
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Figure 9 depicts the graphs of LHS and RHS of (44) : If the labor participation rate increases

because of a reduction in  ; the graph of RHS shifts downward, and thus the steady-state rate

of return on capital, r�; rises.

[Figure 9]

Since the level of  does not directly a¤ect 1=�; if the retirement probability declines, income

and wealth inequalities increase in the steady-state growth equilibrium. Intuitively, a decrease

in the retirement probability yields a uniform rise in the labor participation of all cohorts,

which increases the aggregate labor supply and promotes the substitution of capital with labor.

Consequently, the real wage falls, whereas the rate of return on capital increases9.

Proposition 5 A lower probability of retirement enhances inequality in the long run.

In the last 25 years, the labor force participation of older adults has been increasing in many

advanced countries. For example, according to the Aging Society White Paper 2017 issued by

the Japanese Cabinet O¢ ce, the labor force�s share of Japanese older persons aged 65 years and

above increased from 5.9% in 1980 to 11.8% in 2016. Currently, more than 50% of Japanese

male adults aged 65�69 years engage in full-time or part-time jobs. The increase in the older

persons�labor force participation may re�ect the rises in the life expectancy and health status of

the older adults and from changes in the social environment that raise the activeness of the older

people. Additionally, many researchers claim that the recent increase in the labor participation

of older persons in advanced countries stems from social security reforms conducted in those

countries that are less bene�cial for older adults10. The above proposition indicates that in our

setting, a lower probability of retirement associated with population aging increases inequality.

9An alternative formulation of the retirement of agents in continuous-time OLG models is to assume that each
agent works for a �nite length of time. In this case, the lifetime budget constraint for an agent born at s is written
as Z 1

s

exp

�
�
Z t

s

(r� +m) d�

�
cs;tdt =

Z s+R

s

exp (� (rt +m))wtdt;

where R is the length of the workforce participation. This formulation is used by, for example, Khun and Prettner
(2022). We can con�rm that the e¤ect of a rise in R on the stationary distributions of income and wealth is
essentially the same as that caused by a fall in  :
10See, for example, Berkel and Börsch-Supan (2004), Shimizutani and Oshio (2013), and Coil (2015).
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4.3 Endogenous Labor Supply

The baseline model assumes that each household supplies one unit of labor at each moment.

In this subsection, we allow labor-leisure choices of the households. We replace the objective

function of the household given by (8) with the following:

Us =

Z 1

s
e�(�+m)(t�s) log

0@ct;s � n
1+ 1




t;ss

1 + 1



1A dt; 
 > 0;

where nt;s denotes the hours worked at t by the agent in cohort s: Here, we assume that the

instantaneous utility function of the household takes the GHH form provided by Greenwood et

al. (1998) which has been frequently used in the business cycle literature11. As shown below,

under the GHH preferences, the households�labor supply is independent of the income (wealth)

e¤ect, which substantially simpli�es the analytical discussion. The household maximize Us by

choosing fcs;t; ns;tg1t=s subject to the �ow budget constraint

_at;s = (rt +m) at;s + wtnt;s � ct;s: (45)

Denoting the utility value of the assets by qt;s; the �rst-order conditions for an optimum

include the following:

0@ct;s � n
1+ 1




t;s

1 + 1



1A�1

= qt;s; (46)

n
1



t;s

0@ct;s � n
1+ 1




t;s

1 + 1



1A�1

= wtqt;s; (47)

_qt;s = qt;s0 (�� rt) qt;s; (48)

together with the transversality condition: limt!1 e�(�+m)tqt;sat;s = 0: Conditions (46) and (47)

give

nt;s = w
t ; (49)

11Ascari and Rankin (2007) point out that the standard instantaneous utility function in which leisure is a
normal good, the labor supply of old agents with large wealth could be negative. They con�rm that the GHH
preferences are free from such a de�ciency.
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which represents the labor supply of each household. The labor supply is independent of the

income e¤ect, and the elasticity of the labor supply is 
: When 
 = 0; each household supplies

one unit of labor at each moment.

Using (49) ; we de�ne the �net�consumption in the following manner:

ect;s = ct;s �

w1+
t

1 + 

:

We restrict our attention to the case where ecs;t > 0: From (46) and (48) ; the Euler equation of

the net consumption is
d

dt
ect;s = (rt � �)ect;s: (50)

Additionally, the �ow budget constraint (45) is rewritten as

_at;s = (rt +m) at;s +
1

1 + 

w1+
t � ect;s: (51)

Hence, when both the no-Ponzi-game and transversality conditions are satis�ed, the intertem-

poral budget constraint at time t can be expressed as

Z 1

t
exp

�
�
Z v

t
(r� +m) d�

�ecv;sdv = at;s +

Z 1

t
exp

�
�
Z v

t
(r� +m) d�

�
1

1 + 

w1+
v dv: (52)

From (50) and (52) ; we obtain

ect;s = (�+m) (at;s + ht) ; (53)

where ht is a modi�ed human wealth de�ned as

ht =

Z 1

t
exp

�
�
Z v

t
(r� +m) d�

�
w1+
v

1 + 

dv:

Consequently, the optimal consumption at time t is

ct;s = (�+m) (as;t + ht) +

w1+
t

1 + 

: (54)

Denoting the aggregate labor employment by Lt; the production function of �nal goods is
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given by

Yt = A �K

t K

�
t L

1��
t ;

and the factor prices are determined by rt = �Yt=Kt � � and wt = (1� �)Yt=Lt: Equation

(49) means that the labor market equilibrium condition is

Lt = w
tNt: (55)

The aggregate capital changes according to

_Kt = rtKt + wtLt � Ct; (56)

and from (54) ; Ct is given by

Ct = (�+m) (At + htNt) +

w1+
t

1 + 

Nt: (57)

From (56) and (57), in the steady-state growth equilibrium, (22) presents

bKt = rKt + w
1+
Nt � (�+m)

�
Kt +

w1+


(1 + 
) (r +m)
Nt

�
� 
w1+


1 + 

Nt: (58)

De�ne Kt=w
1+

t Nt = xt; which is constant in the steady-state growth equilibrium. Then (58)

can be written as

x =
1

(1 + 
)(b+m+ �� r)

�
1� �+m

(r +m)

�
; (59)

where x expresses the steady-state value of xt: Moreover, noting that wt
rt+�

=
�
1��
�

�
Kt
Lt
; from

(55) ; we obtain the following relation in the steady-state growth eauilibriu:

x =
�

(1� �) (r + �) : (60)

Combining (59) and (60) ; we obtain

�

(1� �) (r + �) =
1

(1 + 
) (b+m+ �� r)

�
1� �+m

(r +m)

�
: (61)
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Figure 10 displays the graphs of the left-hand side (LHS) and the right-hand side (RHS) of (61) :

As the �gure shows, (61) has a unique solution denoted by r�: Note that a rise in 
 shifts the

graph of RHS downward, leading to a higher r�:

[Figure 10]

The degree of inequality is still given by (35) : Since we have found that r� increases with the

elasticity of labor supply 
; �exible labor supply increases inequality in the long run. Intuitively,


wt
1+
= (1 + 
) in (54) plays the same role as subsistence consumption in the Stone-Geary

utility function. Thus, its aggregate level, 
w1+
= (1 + 
)Nt; involved in the right-hand side

of (58) corresponds to the aggregate subsistence consumption. This additional consumption

reduces capital accumulation, which yields a higher rate of return on capital in the steady state

than the model with a �xed labor supply. Furthermore, other things being equal, a higher


 yields a larger subsistence consumption, meaning that r� increases with the elasticity of labor

supply.

Proposition 6 If each agent has the GHH preference, a more �exible labor supply increases

inequality in the steady-state growth equilibrium.

As noted in the previous subsection, the labor force participation of older adults has been

increasing in many advanced countries. Compared to young people, older persons tend to be

sensitive to labor-leisure choices, so the elasticity of the labor supply of old workers would be

higher than that of young workers. This fact implies that population aging may increase the

average elasticity of the labor supply function. In our model, this suggests that economies with

a higher degree of population aging may hold a higher level of the average elasticity of labor

supply, which may enhance inequality in income and wealth distribution.

5 Conclusion

This study explores the impact of population aging on income and wealth distribution in the

context of a continuous-time OLG model with semi-endogenous growth. We show that the

stationary distributions of income and wealth exhibit a Pareto pro�le and its shape parameter

is a¤ected by the degree of population aging. Analytically, both the extension of life expectancy
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and a fall in the population growth rate decrease the rate of return on capital in the steady-state

growth equilibrium, which lowers inequality of income and wealth. Simultaneously, population

aging directly increases the long-run inequality; hence the total e¤ect of population aging on

inequality depends on the relative strength of these opposite e¤ects. We numerically con�rm

that the total e¤ect of the extension of life expectancy on inequality is negative, whereas the

total e¤ect of the fall in the population growth rate is positive. That is, a smaller mortality

rate decreases inequality, but a reduction in the population growth rate enhances inequality. In

addition to the baseline analysis, we examine the extended models with exogenous productivity

growth, agent retirement, and �exible labor supply. In each extended model, we examine the

inequality in the steady-state growth equilibrium and discuss the implications of the outcomes

from the prospect of population aging.

This study uses a simple semi-endogenous growth model in which external increasing returns

sustain the persistent growth of per capita income. In this setting, the long-run growth rate

of per capita income is proportional to the rate of change in population speci�ed exogenously.

Introducing the R&D activities of �rms and the endogenous population change would enrich

the analytical outcomes of this study. In addition, we have not discussed the policy issues in

our study. Examination of the distributional e¤ects of income tax and intergenerational transfer

programs in our model would deserve further study.
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Figure 1: Changes in the population share in European and Asian countries
and the United States
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Figure 2:  Phase diagram of the dynamic system
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Figure 3:  Dtermination of the steady-state rate of rerurn
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Figure 4 : The effect of a fall in  m

LHS
RHS



m

b

Figure 5 : Relationship between the fertility rate and the degree of inequality

Figure 6: Relashionship between the birth rate and the degee inequality
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Figure 7: Determination of the steady-state level of z

Figure 8: Relationship between the productivity growth rate and the degee of inequality
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Figure 9: The effect of a fall in 
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Fiigure 10: Determination of the steady-state level of  rate of return
under alternative values of  γ
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