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Abstract

We incorporate the external effects of capital in production and endoge-
nous technology choice into the standard overlapping generations model. We
demonstrate that our model can exhibit a poverty trap, a middle-income trap,
and perpetual growth paths. We also show that, under some economic con-
ditions, an economy exhibits all three of these phenomena, depending on its
initial capital level, and that the economy caught in the middle-income trap
can exhibit chaotic fluctuations in the long run. In obtaining these results
in the standard overlapping generations model, the combination of technology
choice and externalities in production plays a crucial role.
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1 Introduction

In the real world, continued fluctuations in macroeconomic variables, such as GDP

(gross domestic product), investment, and consumption have been observed. These

phenomena are called business cycles, and are one of the main research topics in

macroeconomics. By extending a standard textbook model (Diamond, 1965) in two

directions, external effects and technology choice (as discussed below in detail), this

paper explains, in a unified manner, various patterns of business cycles, including

complex dynamics that have been considered in the literature.

In the relevant literature, theories attempting to explain business cycle phenom-

ena can be broadly divided into two categories: exogenous and endogenous business

cycle theories. Exogenous business cycle theory attributes the fundamental source of

economic fluctuations to stochastic shocks. Exogenous business cycle theory, espe-

cially the dynamic stochastic general equilibrium approach, has played a dominant

role in business cycle research for decades. However, after the global financial crisis,

interest in endogenous business cycle theory has been renewed (e.g., Beaudry et al.,

2020, Deng et al., 2021, and Schmitt-Grohé and Uribe, 2021).1 Almost simultane-

ously, theoretical research on the complexity of business cycle fluctuations has been

gaining momentum (e.g., Matsuyama 2013 and Matsuyama et al. 2016). To further

investigate the roles of nonlinearity, this paper adopts the endogenous business cycle

approach.

In this line of research, the role of technology choice in endogenous business cycles

has attracted much attention. From the end of the 1990s, it has been analyzed by

several authors, including Aghion et al. (1999), Iwaisako (2002), and Matsuyama

(2007). These studies showed the possibility of various patterns of dynamics in their

models. However, they basically relied on graphical analysis and did not characterize

the properties of the equilibrium dynamics in detail. Mathematically rigorous char-

acterizations have recently been made by Asano et al. (2012), Asano et al. (2022b),

1In endogenous business cycle theory, economic fluctuations occur spontaneously as a result of
nonlinear factors within the economy, without any shocks from outside the economy. Early studies
in this line include Benhabib and Day (1982), Grandmont (1985), Benhabib and Nishimura (1985),
and Nishimura and Yano (1995).
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Matsuyama et al. (2016, 2018), Sushko et al. (2014, 2016) and Umezuki and Yokoo

(2019a). These studies assumed neoclassical, constant returns to scale technologies.2

In reality, however, as Caballero and Lyons (1990) and many other studies have

found,3 there would be external effects4 in production, especially in manufacturing.

This fact contradicts the assumption of constant returns to scale. Thus, the role of

the external effects in business cycles should be considered.

Externalities or external effects play a significant role in economics, particularly

in theories of economic growth and urban economics.5 Externalities that occur in the

accumulation of knowledge obtained by firms or workers (knowledge externalities)

are important for firms or countries to grow in the long run. The existence of these

external effects allows the cases of increasing marginal productivity of capital or

increasing returns to scale, which, combined with technology choice, can be a source

of a rich variety of complex dynamics. The role of increasing returns to scale has long

been analyzed in the field of international trade (Negishi, 1969). Since the 1990s, the

role of increasing returns has attracted attention in various fields. For example,

studies in the field of economic growth have shown that increasing returns to scale

(or external effects) are an engine of long-run economic growth (Romer, 1986; Lucas,

1988), and they have become one of the foundations of modern economic growth

theory. Furthermore, the field of urban economics has shown that increasing returns

to scale underlie the phenomenon of urban agglomeration (Fujita and Thisse, 1996;

Fujita et al., 1999). For example, Fujita and Thisse (1996) stated that “We can

therefore safely conclude that increasing returns to scale are essential for explaining

the geographical distribution of economic activities.” In the current urban economics,

increasing returns to scale have become one of its fundamental components.

2Iwaisako (2002) is an exception. He considered two possible technologies: a constant returns
to scale technology and an increasing returns to scale technology. However, he relied exclusively on
graphical analysis.

3For example, see Baxter and King (1991), Caballero and Lyons (1992), and Lindström (2000).
4In general, external effects or externalities mean that the action of an agent affects other agents’

costs or benefits without going through the market transactions. For example, knowledge accumu-
lation has positive externalities for society (e.g., newly obtained mathematical theorems are freely
available to everyone). On the other hand, crime is an example of a negative externality with social
costs.

5For example, see Klenow and Rodŕıguez-Clare (2005) and Moretti (2004).
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Constructing an overlapping generations (OLG) model with external effects and

two technologies (one of which is chosen endogenously), we show that our model can

generate several growth patterns, including a poverty trap, a middle-income trap, and

a perpetual growth path, and that under certain economic environments, an economy

exhibits each of these three growth patterns depending on the initial capital level.

A poverty trap is an economic development situation in which a low-income country

cannot escape poverty in the long run.6 In this study, we use the term middle-income

trap to indicate a situation in which a country that has achieved a certain income

in the middle-income category becomes stuck at that level.7 A perpetual growth

path is defined as one in which a country moves toward a high-income category and

continues to grow in the long run. In fact, we show that if the external effect is mildly

large in at least one technology, enough to generate a slight increase in the marginal

productivity of capital, then the economy can exhibit chaotic business cycles.8 Under

the standard Cobb–Douglas technologies, in which externalities are absent, whenever

we observe long-run fluctuations, they are almost certainly periodic, as shown in

Umezuki and Yokoo (2019a). It should be emphasized that in obtaining long-run

chaotic fluctuations in the Diamond model with a Cobb–Douglas technology choice,

the introduction of externalities in production plays a crucial role.

It should be noted that our model is a so-called piecewise smooth model. Complex

dynamics of piecewise smooth models have been analyzed in the literature. For

example, Gardini et al. (2008) and Matsuyama et al. (2016) adopt the relatively

new theory of border-collision bifurcation to prove that their macroeconomic models

can exhibit chaotic behaviors. Fortunately, our model can be transformed into a

piecewise linear model, which is a subclass of piecewise smooth models. In general,

piecewise linear models provide clearer and sharper analytical results of complex

6For example, see Azariadis and Stachurski (2005) for a survey.
7As a recent theoretical work, Hu et al. (2022) show that the degree of externalities plays

a significant part in technology choice and makes it possible to explain the empirically observed
development patterns (a poverty trap, a middle-income trap, and a flying geese pattern of economic
development) in a unified way. See also Asano et al. (2022a) and references therein for details.

8If both external effects of the two technologies are sufficiently small, our model can exhibit
periodic fluctuations, which have been extensively studied, for example by Ishida and Yokoo (2004),
Asano et al. (2012), and Umezuki and Yokoo (2019a).
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dynamics than piecewise smooth models, which is adopted in our paper.

The remainder of this paper is organized as follows. Section 2 presents the settings

of our model. Section 3 provides the main results, and Section 4 concludes this paper.

Most of the proofs are relegated to appendices.

2 Settings of the model

This section describes the structure of our model, in terms of a household’s and firm’s

behavior and the equilibrium dynamics.

2.1 Household’s behavior

The basic setup follows the standard Diamond-type OLG model. Time is discrete

and extends from 0 to infinity. Population is assumed to be constant over time and

normalized to 1. Each generation lives two periods, supplying one unit of labor

inelastically only when young. The household maximizes its Cobb–Douglas utility

according to the following problem:

max
cyt ,c

o
t+1,st

(1− s) log cyt + s log cot+1, s ∈ [0, 1]

s.t. st + cyt = wt, cot+1 = rt+1st.

Here, cyt denotes the consumption when young, cot+1 denotes the consumption when

old, st denotes savings, wt denotes the real wage rate, rt+1 is the real rate of return

on the loan maturing at t+1, and the subscript t denotes time. Utility maximization

implies that:

st = swt.

2.2 Firm’s behavior

We introduce two additional factors into our model: externalities in production and

multiple technologies. The firm is assumed to behave both as an owner and as a

manager.9 This economy has two available production technologies. We assume that
9Regarding another possible interpretation, we may assume that the firm chooses its production

technology in a discrete manner in the first stage and then chooses optimal inputs in the second
stage.
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the firm, as the owner, has to choose one technology that maximizes the return on

capital, whereas the firm manager attempts to maximize the firm’s profit, which is

driven away by competition. To capture our idea in the simplest possible settings,

we employ Cobb–Douglas technologies, as follows:

Fi(k,K, L) = Aik
ηiKαiL1−αi , i ∈ {1, 2}, Ai > 0, αi ∈ (0, 1), and ηi ≥ 0,

where subscript i denotes the i-th technology, K denotes capital, L denotes labor,

and k is the capital–labor ratio. Each manager regards k as given. This formulation

follows that of Azariadis and Reichlin (1996).10 The first argument of Fi is related

to externalities. If ηi > 0, then positive externalities, such as knowledge spillovers,

exist in production. If ηi = 0, then externalities are absent, and Fi is a standard

Cobb–Douglas production function. To avoid unnecessary complications, we ignore

the case of negative externalities, that is, ηi < 0. Given the first argument in Fi

and L = 1, in a symmetric equilibrium, competition implies the following first-order

conditions:

rt =
∂Fi(kt, kt, 1)

∂Kt

≡ ri(kt) = αiAik
ηi+αi−1
t , (1)

wt =
∂Fi(kt, kt, 1)

∂Lt

≡ wi(kt) = (1− αi)Aik
ηi+αi
t .

Thus, the shape of the marginal productivity of capital depends on the value of ηi+αi.

Note that r(k), given by (1), is an increasing function with respect to k if the external

effect is sufficiently large, that is, η + α > 1.

Upon entering the market, the representative firm’s owner in period t, who was

born in period t− 1, chooses a technology that, given kt, yields the highest return in

10Several studies measure external effects by estimating the percentage increase in a firm’s output
caused by a 1% increase in aggregate inputs (or aggregate output), keeping an individual firm’s
inputs unchanged. Caballero and Lyons (1989, 1992) estimated the external effect in the US man-
ufacturing industry and obtained values ranging from 0.49 to 0.89 and from 0.32 to 0.49 in their
1989 and 1992 studies, respectively. Caballero and Lyons (1990) also provided estimates for Eu-
ropean countries ranging from 0.29 to 1.40. Moreover, the values estimated by Lindström (2000)
for Swedish manufacturing range from 0.16 to 0.53. By contrast, using the industry-level manu-
facturing data for the United Kingdom, Oulton (1996) found no evidence of either external effects
or increasing returns to scale. These results show that the degree of external effects varies across
countries and industries.
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a discrete manner (see Appendix). Thus, the owner’s maximization problem is given

by

max
i∈{1,2}

ri(kt).

For notational simplicity, we sometimes write:

βi = ηi + αi.

2.3 Equilibrium dynamic model

Considering the market equilibrium and optimization results in the previous subsec-

tions, we can represent our model in a general form:

kt+1 = swm(kt), (2)

m = arg max
i∈{1,2}

ri(kt), (3)

k0 > 0 : given, and t = 0, 1, 2, · · · . (4)

Without loss of generality, we assume throughout the paper that:

β2 > β1. (5)

We claim the following.

Claim 1. If (5) is satisfied, then r1(k) > r2(k) if and only if 0 < k < θ, where the

threshold θ is the unique positive solution of r1(θ) = r2(θ), that is:

θ =

[
α1A1

α2A2

]1/(β2−β1)

.

Proof. A simple calculation reveals that r′1(θ) < r′2(θ) if and only if β2 > β1.

Using this claim, we can rewrite our model given by (2)-(4) as the following

mapping from R+ = {x ∈ R |x ≥ 0} into itself:

T : R+ → R+, (6)

kt+1 = T (kt) =

{
T1(kt) = s(1− α1)A1k

β1
t if kt ≤ θ,

T2(kt) = s(1− α2)A2k
β2
t if kt > θ.
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For simplicity, we have assumed that if kt = θ, then technology 1 is chosen. Note

that T is a piecewise continuous mapping with one discontinuity. Figure 1 shows a

typical case where the r1-curve is downward-sloping, whereas the r2-curve is upward

sloping and, accordingly, T1 is chosen for kt ≤ θ and T2 for kt > θ.

INSERT Figure 1 around here.

3 Analysis of the model

In this section, we demonstrate that the model given by (6) can exhibit poverty

traps, middle-income traps, and perpetual growth paths. Moreover, we show that an

economy caught in a middle-income trap can exhibit chaotic fluctuations in the long

run.

To characterize the dynamics of the model given by (6), we consider the following

three generic cases:

Case 1 : 1 > β2 > β1,

Case 2 : β2 > β1 > 1,

Case 3 : β2 > 1 > β1.

In Case 1, the external effects in both technologies are mild. The dynamics in this

case have been extensively investigated, for example, by Ishida and Yokoo (2004),

Asano et al. (2012), and Umezuki and Yokoo (2019a). Generically, these models are

not capable of generating chaotic dynamics, in distinctive contrast to those in Cases

2 and 3. Case 2 is an extreme case where the externality is sufficiently strong for

both of the technologies. Note that the condition in this case implies that each Ti is

strictly convex. Consequently, we find that chaotic behavior is a ubiquitous feature

for this case. Case 3, which is considered the most important, is the intermediate case

where the external effect is weak or absent in one technology but strong in the other.

According to empirical studies on the degree of external effects in production, in some

industries the external effects in production are present and the degree of the effects

ranges widely, whereas in other industries the null hypothesis of no externalities
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cannot be rejected (see footnote 8). Thus, the situation of Case 3 is consistent with

empirical studies on the degree of external effects in production.

3.1 Case 1: Periodic fluctuations

As mentioned above, Case 1 reduces to the model studied by Umezuki and Yokoo

(2019a). Therefore, we do not repeat this in detail here. The assumption that

1 > β1 > β2 corresponds to the case where the external effects for both technologies

(i = 1, 2) are not strong and the marginal productivity of capital is decreasing. Thus,

the main results in Umezuki and Yokoo (2019a) apply to Case 1 of our model, and

are summarized in the following proposition:

Proposition 1. Suppose that 1 > β2 > β1 > 0. Then, the map (6) exhibits a periodic

attractor of an arbitrarily large period when other appropriate parameters are chosen.

Furthermore, aperiodic motions occur only for parameter values of measure zero.

Proof. See Umezuki and Yokoo (2019a).

This proposition indicates that whenever we observe long-run fluctuating behavior

in a computer simulation of Case 1, this is almost certainly a periodic cycle, including

an attracting steady state. It should be mentioned that Case 1 generates virtually

only periodic fluctuations and does not generate chaotic fluctuations. This is in stark

contrast to the other cases below that generate chaotic fluctuations.

3.2 Case 2: Chaotic middle-income trap coexisting with a
poverty trap and perpetual growth paths

In this case, because β2 > β1 > 1, each Ti (i = 1, 2) is strictly increasing and strictly

convex. Note that the mapping T given by (6) has a trivial steady state at the

origin, that is, T (0) = 0. For positive steady states other than the origin, T has two

candidates for positive ones:

Ti(k̄i) = k̄i, i = 1, 2.

Solving these equations yields:

k̄i = [s (1− αi)Ai]
1/(1−βi) , i = 1, 2.
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Note that each potential positive steady state is a repeller, whereas the origin is an

attractor. For later use, we restate this in the following lemma:

Lemma 1. If β2 > β1 > 1, then the origin of (6) is an attractor. Furthermore, any

positive steady state, if it exists, is a repeller.

Proof. The first statement holds by T ′(0) = T ′
1(0) = 0, and the second statement

holds by T ′
i (k̄i) = βi > 1.

By drawing the graph of T , one can recognize that unless:

lim
k→θ+

T2(k) ≡ T2(θ) < θ < T1(θ), (7)

the threshold has little effect on the dynamics of T . Therefore, we require (7) or,

equivalently:

s(1− α2)A2

(
α1A1

α2A2

) β2−1
β2−β1

< 1 < s(1− α1)A1

(
α1A1

α2A2

) β1−1
β2−β1

(8)

We first check that such a set of parameter values is not empty and see how to

find such parameters:

Claim 2. The set of parameter values that satisfy (8) is not empty.

Proof. See Appendix.

Further, we specify a closed trapping interval M ⊂ R+ such that T (M) ⊂ M and

0 /∈ M . By strict monotonicity of Ti, if T (M) ⊂ M , then θ ∈ M . Such an interval

M would be regarded as a middle-income trap. Thus, if:

k̄1 < T2(θ) and T1(θ) < k̄2, (9)

then M = [T2(θ), T1(θ)] is such a trapping interval, and so is M ′ = [k̄1, k̄2] with

M ⊂ M ′. We can show that such parametric restrictions are indeed possible:

Lemma 2. The set of parameter values that satisfy (9) is not empty. In fact, let

α1A1 = α2A2 with α2 ∈ (α1, 1) and, let β2 > β1 > 1 with 1/β1 + 1/β2 > 1. Then, the

inequalities (9) hold.
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Proof. See Appendix.

Lemma 2 states that the middle-income trap is more likely to occur when the

βs are large but not too large; that is, the external effect for each technology is

“moderately” large.

Note that (9) implies (8) by the convexity of Ti (i = 1, 2). By drawing the graph

of T , we can summarize our observations into the following proposition.

Proposition 2. Assume that β2 > β1 > 1 and β1 + β2 > β1β2. Then, the economy

represented by (6) simultaneously exhibits a poverty trap, a middle-income trap, and

perpetual growth paths for an open set of parameter values.

Proof. By Lemma 2, (6) has a middle-income trap for some specific parameter values.

The coexistence of the poverty trap and perpetual growth paths follows directly from

Lemma 1. Because any slight perturbations of all parameters preserve the inequalities

in (9), the assertion is proved.

This situation is depicted in Figure 2.

INSERT Figure 2 around here.

The above proposition is interesting from two perspectives. First, under some

economic environment, that is, for some set of parameter values, a poverty trap,

a middle-income trap, and perpetual growth paths emerge in the same economy.

Second, which of the three economic phenomena in Proposition 2 will actually occur

depends only on the initial condition, which is explained in more detail in Proposition

4.

Now, we focus on the dynamics on the trapping interval; that is, the middle-

income trap case in Proposition 2. First, suppose that all the conditions in Proposi-

tion 2 are satisfied. Second, we restrict mapping T to M . Note that mapping T can

be log-linearized as follows:

log kt+1 =

{
log s(1− α1)A1 + β1 log kt if log kt ≤ log θ,

log s(1− α2)A2 + β2 log kt if log θ < log kt.
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Next, we define a variable change such that:

xt = h(kt) =
log(kt/T2(θ))

log(T1(θ)/T2(θ))
. (10)

By (10), the restriction mapping T|M : M → M can be transformed into the

following topologically equivalent piecewise linear mapping from the unit interval

I = [0, 1] to itself:

τ : I → I, (11)

xt+1 = τ(xt) =

{
τ1(xt) = 1 + β1(xt − c) if 0 ≤ xt ≤ c,

τ2(xt) = β2(xt − c) if c < xt ≤ 1,

where c = h(θ) and, for any k ∈ M , it holds that h ◦ T|M (k) = τ ◦ h(k). Note that c

cannot take all the values between 0 and 1.

Claim 3. If β2 > β1 > 1 and 1/β1 +1/β2 > 1, then the threshold c in (11) is located

in the interval (1− 1/β2, 1/β1) ⊂ I.

Proof. From (9), we require that τ1(0) ∈ (0, 1) and τ2(1) ∈ (0, 1). From τ1(0) ∈ (0, 1),

it follows that 0 < 1 − cβ1 < 1, implying that c < 1/β1. From τ2(1) ∈ (0, 1),

0 < β2(1− c) < 1 implies that c > 1− 1/β2.

Figure 3 depicts the graph of τ corresponding to Figure 2.

INSERT Figure 3 around here.

Let I be a closed interval and f : I → I be a piecewise smooth mapping. If there

is an integer n ≥ 1 such that inf |dfn(x)/dx| > 1 whenever the derivative exists, then

f is said to be eventually expanding.

If the above assumption holds for n = 1, f is said to be just expanding. It is known

(for example, Lasota and Yorke, 1973) that an (eventually) expanding mapping on

the interval can have absolutely continuous invariant measures, implying that there

is observable chaos in the long run.

Proposition 3. Suppose that the parameters are as in Proposition 2. Let M be the

trapping interval for T and let T|M be the restriction of T to M . Then, T|M : M → M

is chaotic in the sense that it admits an absolutely continuous invariant measure.
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Proof. By conjugacy, it suffices to show that τ in (11) admits an absolutely continuous

invariant measure. As inf |τ ′(x)| = β1 > 1, that is, τ is expanding, the assertion

follows from Lasota and Yorke (1973).

Note that the chaotic behavior described in Proposition 3 is robust in the sense

that it persists for any perturbations of parameters, provided that they are as in

Proposition 2.

Let us summarize our findings for Case 2 in the following proposition:

Proposition 4. Suppose that the parameters for the model given by (6) are as in

Proposition 2. Then, three cases typically emerge depending on the initial condition:

(i) Poverty trap; for k0 < k̄1, the economy converges to 0.

(ii) Chaotic middle-income trap; for k0 ∈ (k̄1, k̄2), the economy becomes trapped in an

interval, where it keeps fluctuating in a chaotic manner.

(iii) Perpetual growth; for k0 > k̄2, the economy grows unboundedly.

Note that, in the case of the chaotic middle-income trap, periodic points exist in

the region. However, they are always unstable (i.e., repellers) and not observable.

The implication of Proposition 4 is as follows. In Case (i), if the economy starts

from a sufficiently small initial value of capital k0 with k0 < k̄1, then the economy be-

comes caught in a poverty trap, that is, kt is attracted to the origin. This is because

the low return from capital, due to the increasing marginal productivity of capital,

obstructs capital accumulation. In Case (iii), if the economy starts from a sufficiently

large initial value of capital k0 with k0 > k̄2, then the economy exhibits perpetual

growth. This is because the high marginal productivity of capital accelerates eco-

nomic growth by the reverse logic to that of Case (i). In Case (ii), if the initial value of

capital k0 lies in the middle range, then the economy is caught in the middle-income

trap. The intuition behind this can be explained as follows. If the economy starts

from a value that is greater than k̄1 but smaller than θ, then technology 1 is chosen,

and the marginal productivity of capital becomes large because of increasing marginal

productivity, which accelerates economic growth until the threshold is crossed and

the regime switches from technology 1 to technology 2. Then, the per capita capital

stock is not large enough for technology 2 to maintain the economy’s growth. Thus,
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it begins to shrink, which brings it back to a point near the initial value, and the

story repeats itself. Such a mechanism creates middle-income traps. Furthermore,

the expanding property of the underlying dynamic system causes chaotic motions.

This is an intriguing case because not only does the economy become trapped in a

middle-income trap, it also fluctuates chaotically in the trap. However, this cannot

occur when the external effects of both technologies are weak (see Proposition 1).

Figure 4 depicts a typical trajectory that is eventually caught and chaotically

fluctuates in a middle-income trap, as described in Proposition 4. Figure 5 plots four

trajectories in the time series described in Proposition 4. Trajectory A in Figure

5 corresponds to a perpetual growth path. Trajectories B and C illustrate trajec-

tories caught in a middle-income trap from above and below, respectively. Finally,

trajectory D is a typical path where an economy is caught in a poverty trap.

INSERT Figures 4 and 5 around here.

3.3 Another situation in Case 2: Breakdown of the middle-
income trap

When the trapping interval collapses as a result of some possible change in param-

eters, the economy is expected to escape the middle-income region in the long run

by either eventually becoming caught in the poverty trap or achieving a perpetual

growth path. Such cases occur, rather than (9), if:

T2(θ) < k̄1 and/or k̄2 < T1(θ).

In the rest of this subsection, we focus on the following case:

T2(θ) < k̄1 and k̄2 < T1(θ). (12)

See Figure 6 for this situation and Figure 7 for enlargement.

INSERT Figure 6 and Figure 7 around here.

Lemma 3. The set of parameter values that satisfy (12) is not empty.

Proof. See Appendix.
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Proposition 5. Let β2 > β1 > 1 and β1 + β2 < β1β2 be given. Then, for some open

set of parameter values, T : [k̄1, k̄2] → R+ is topologically chaotic in the sense that

there exists an invariant Cantor set Λ ⊂ [k̄1, k̄2] such that T|Λ : Λ → Λ is topologically

conjugate to the one-sided full shift on two symbols. Furthermore, for such Λ and

any k0 ∈ [k̄1, k̄2] \ Λ, either limn→∞ T n(k0) = 0 or limn→∞ T n(k0) = ∞ holds.

Proof. From Lemma 3, we can take a set of parameter values satisfying (12). Using

variable transformation:

xt = v(kt) =
log(kt/k̄1)

log(k̄2/k̄1)
, (13)

we obtain a piecewise linear mapping:

m : R → R,

xt+1 = m(xt) =

{
m1(xt) = β1xt if xt ≤ c,

m2(xt) = 1 + β2(xt − 1) if c < xt,

where v ◦ T (kt) = m ◦ v(kt) and c = v(θ) ∈ (0, 1), indicating that T is topologically

equivalent to m. Now, consider points in the unit interval I = [0, 1] that remain

under the iteration of m. Because 1/β1 +1/β2 < 1, there are two closed subintervals

I0 = [0, 1/β1] and I1 = [1 − β2, 1] such that I0 ∩ I1 = ϕ and I0 ∪ I1 ⊂ τ(Ii) (i =

0, 1) (horseshoe condition). Furthermore, it holds that τ ′(x) ≥ β1 > 1 for all x ∈
I0 ∪ I1 (hyperbolicity). See Figure 8. Thus, according to the standard argument of

elementary dynamical systems theory (see, for example, Guckenheimer and Holmes

1983), there exists a closed m-invariant subset Λ = ∩n≥0T
−n(I0 ∪ I1) = {x ∈ I0 ∪

I1 |T n(x) ∈ I0∪I1, n ≥ 0} ⊂ I0∪I1, as stated in the proposition. The trajectories that

go to positive infinity correspond to perpetual growth paths, whereas the trajectories

that go to negative infinity correspond to those caught in the poverty trap.

INSERT Figure 8 around here.

The invariant set Λ in Proposition 5 corresponds to the one-dimensional version

of Smale’s horseshoe. This suggests the possibility that the economy starting in the

middle range exhibits a transiently chaotic behavior before it either gets caught in

the poverty trap or achieves a perpetual growth path. The destination in which the
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economy ends up can be highly random because the chaotic invariant set scrambles

the nearby points. In their numerical study on endogenous business cycles, Asano et

al. (2022a) called this the “pinball effect” in the middle-income trap. Figure 9 shows

how two initial states that are different yet close to each other lead to different final

states with transiently chaotic fluctuations.

INSERT Figure 9 around here.

3.4 Case 3: The occurrence of chaotic behaviors in the middle-
income trap

Case 3, which is the intermediate case between Cases 1 and 2, is more important than

the previous cases because we want to consider the smallest unit of an economy with a

mix of technologies that have strong externalities and those that do not. Recall that in

the middle-income trap, Case 1 generates virtually only periodic fluctuations, whereas

Case 2 generates virtually only chaotic fluctuations. Thus, in Case 3, depending on

the parameters, such mixed dynamic patterns would be expected. To provide an

overview of this, let us consider the bifurcation diagram (Figure 10) corresponding

to Case 3.

INSERT Figure 10 around here.

Figure 10, a bifurcation diagram with respect to the saving rate s, suggests that for

smaller s, periodic fluctuations (including steady state dynamics) appear to occur,

and for larger s, chaotic behavior appears to occur. However, for much larger s,

divergence (perpetual growth) occurs and is not shown in the figure.

As in Case 2, the mapping given by (6) is valid for Case 3. The situation in

Case 3 differs from that in Case 2 in that branch T1 of map (6) becomes concave,

whereas T2 remains convex because β2 > 1 > β1 > 0. Consequently, several situations

occur depending on the configuration of potential steady states k̄i (i = 1, 2) and the

threshold θ.

Because we are interested in the occurrence of the middle-income trap, we focus

on the situations in which a trapping interval appears. By the concavity of T1 and
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the convexity of T2, we can observe that the following inequality suffices to ensure

the existence of such a trapping interval for Case 3:

θ < k̄1 and T1(θ) < k̄2 (14)

or equivalently: (
α1A1

α2A2

) 1
β2−β1

< (s(1− α1)A1)
1

1−β1 and (15)

s(1− α1)A1

(
α1A1

α2A2

) β1
β2−β1

< (s(1− α2)A2)
1

1−β2 . (16)

Lemma 4. Let β2 > 1 > β1 > 0 be fixed. Then, the set of parameters that satisfies

the inequalities given by (14) is not empty. Thus, there exists a trapping interval (or

middle-income trap) M = [T2(θ), T1(θ)] such that T (M) ⊂ M .

Proof. See Appendix.

As T (0) = T1(0) = 0 and limk→+0 T
′
1(k) = +∞, the origin is an unstable (i.e.,

repelling) steady state in Case 3. This implies that the poverty trap associated with

the origin does not exist in this case.

Lemma 5. For β2 > 1 > β1 > 0, the origin of T given by (6) is always a repelling

steady state.

Let us summarize what we have observed thus far. The following proposition

states that, under some economic environment, two growth patterns, a middle-income

trap and perpetual growth paths, arise, but a poverty trap does not occur.

Proposition 6. Assume that β2 > 1 > β1 > 0. Then, there exists some open set of

parameter values for which the economy represented by (6) simultaneously exhibits a

middle-income trap and perpetual growth paths but no poverty trap.

Proof. From Lemma 4, we can find parameters that satisfy the inequalities given by

(14), which implies the existence of a trapping interval (middle-income trap). As all

inequalities appearing in Lemma 4 are strict, any mapping T with slightly perturbed

parameters also exhibits a middle-income trap. The nonexistence of poverty traps
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follows from Lemma 5. For perpetual growth paths, consider that T ′(k̄2) = T ′
2(k̄2) > 1

because of the convexity of T2.

Figure 11 graphically represents the meaning of Proposition 6. The figure also

depicts how a trajectory with an initial value close to the origin falls into the middle-

income trap.

INSERT Figure 11 around here.

The relationship between the final states and initial conditions presented in Propo-

sition 6 can be roughly summarized by the following proposition:

Proposition 7. Assume that β2 > 1 > β1 > 0 and let the parameters satisfy (14).

Then, two cases typically occur depending on the initial condition:

(i) Persistent fluctuations in the middle-income trap; for k0 ∈ (0, k̄2), the economy

becomes trapped in an interval where it exhibits persistent fluctuations.

(ii) Perpetual growth; for k0 > k̄2, the economy diverges to infinity.

The following is the intuition behind Proposition 7. In this case, two threshold

values of k exist: the first one is θ, representing the switching point of technology,

and the second one is k̄2, denoting the unstable steady state under the technology

with increasing marginal productivity of capital. For k < θ, the economy’s behavior

is essentially the same as the standard Solow-type model. For k ∈ [θ, k̄2), because the

marginal productivity of capital is low, the economy shrinks. However, for k > k̄2,

the marginal productivity of capital is high enough to promote capital accumulation.

Further, the marginal productivity increases as capital accumulates, and therefore

the economy grows perpetually.

Next, we examine in detail what happens in the middle-income trap.

We show that chaotic dynamics in the middle-income trap are possible in Case

3. To verify this, the same variable transformation is conducted as that performed

for Case 2 to obtain the mapping τ : I → I, given by (11), with the only difference

being β1 ∈ (0, 1) rather than β1 > 1.
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Similar to Case 2, the range of threshold c for τ in Case 3 is limited to some

subinterval of I = [0, 1].

Lemma 6. Let β2 > 1 > β1 > 0 be fixed. Then, the threshold c = h(θ) of mapping

(11) is in ((β2 − 1)/β2, 1) ⊂ (0, 1).

Proof. Translating (14) through the conjugacy h implies that h(T1(θ)) = 1 < h(k̄i)

for i = 1, 2. As h(k̄1) = (1− cβ1)/(1− β1) and h(k̄2) = cβ2/(β2 − 1), rearranging the

inequalities above yields (β2 − 1)/β2 < c < 1.

Let us consider the mapping τ : I = [0, 1] → I given by (11). Let IL = [0, c] (left

interval) and IR = (c, 1] (right interval) with c ∈ (0, 1). We consider some simplest

possible patterns of trajectories generated by τ . Specifically, we find a trajectory

that visits the left interval successively only once and the right interval successively

at least n times.

Lemma 7. Any trajectory generated by τ stays successively at most once in the left

interval IL if c < 1/(1 + β1).

Proof. Requiring that τ1(0) = 1− cβ1 > c, we obtain the result.

Note that this condition implies that τ(IL) ⊂ IR, which assures that any trajectory

visits IR at least once immediately after it has visited IL. We can generalize the above

result slightly.

Lemma 8. Any trajectory generated by τ stays successively at least n times (n ≥ 1)

in the right interval IR after it has visited IL, if:

c <
(β2 − 1)βn−1

2

β1(β2 − 1)βn−1
2 + βn

2 − 1
. (17)

Proof. See Appendix.

For the first step, we identify the condition under which the chaotic behavior

occurs when the trajectory of τ successively visits IL at most once and IR at least

once.
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Proposition 8. Let β2 > 1 > β1 > 0 and 1 < β1β2 < 1 + β1. Then, τ given by (11)

is chaotic for any c = h(θ) ∈ ((β2 − 1)/β2, 1/(1 + β1)) ≡ J1 and so is T|M : M → M ,

where M is the middle-income trap.

Proof. See Appendix.

Let

Jn =

(
β2 − 1

β2

,
(β2 − 1)βn−1

2

β1(β2 − 1)βn−1
2 + βn

2 − 1

)
for n ≥ 1, (18)

whenever it is well-defined.

Let us generalize the above result.

Proposition 9. Let β2 > 1 > β1 > 0 and 1 < β1β
n
2 < 1 + β1β

n−1
2 for some n ≥ 1.

Then, τ given by (11) is chaotic for any c ∈ Jn given by (18) and so is T|M : M → M .

Proof. Similar to Proposition 8, we have (17) from Lemma 8 and (β2−1)/β2 < c < 1

from Lemma 6. For such a c to be taken, it must hold that:

β2 − 1

β2

<
(β2 − 1)βn−1

2

β1(β2 − 1)βn−1
2 + βn

2 − 1
,

which is equivalent to β1β
n
2 < 1 + β1β

n−1
2 . Furthermore, as any trajectory of τ

successively visits IL at most once and IR at least n times, it follows by assumption

for any initial condition x0 ∈ (0, 1) that:

(τn+1)′(x0) ≥ β1β
n
2 > 1.

Thus, τ is eventually expanding.

The following figures represent the above Propositions 8 and 9.

INSERT Figures 12 and 13 around here.

Proposition 7, along with Propositions 8 and 9, suggests that even when only one

of the two technologies exhibits moderately strong externalities, chaotic dynamics in

the middle-income trap can be observed for a large set of parameter values. This result

contrasts sharply with Proposition 1, where virtually no chaotic behavior occurs.

Finally, the following proposition is particularly important and readily derived by

the above proposition.
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Proposition 10. Let 2 > β2 > 1 > β1 > 0. Then there exists some integer n ≥ 1

such that Jn is well-defined and τ is chaotic for any c ∈ Jn. Correspondingly, T|M :

M → M is chaotic as well.

Proof. By assumption, there is some integer n ≥ 1 such that β1β
n−1
2 ≤ 1 and 1 <

β1β
n
2 . Thus we have β1β

n
2 −β1β

n−1
2 = β1β

n−1
2 (β2−1) < 1, which implies the conclusion

by Proposition 9.

The above proposition shows that if one technology exhibits increasing marginal

productivity, even to a small degree, there can be a middle-income trap in which the

economy behaves in a persistently chaotic manner, depending on other parameter

conditions, even if the other technology exhibits decreasing marginal productivity.

4 Concluding remarks

This paper introduced externalities in production into an OLG model with endoge-

nous technology choice. Then, we analyzed how these externalities affected macroeco-

nomic fluctuations. Specifically, we considered two types of production technologies

that allow for the existence of external effects of capital and specified them as the

Cobb–Douglas type. Umezuki and Yokoo (2019a) showed that, under the Cobb–

Douglas specification, technology choice can generate periodic fluctuations of any

lengths but never create chaotic fluctuations. By contrast, in the present model,

we showed that chaotic behavior can be observed in the middle-income trap if at

least one of the two technologies exhibits a moderate level of increasing marginal

productivity because of externalities. In particular, we find that when one technol-

ogy exhibits diminishing marginal productivity and the other, even slightly, exhibits

increasing marginal productivity, a chaotic middle-income trap can still occur, de-

pending on various other parameters. The last finding should be emphasized because

it is consistent with the empirical results on external effects in production.

The present analysis has some limitations. In analyzing technology choice, the two

production technologies are specified as being of the Cobb–Douglas type. However,

this assumption may be slightly restrictive, and it would be worthwhile adopting a
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broader class of production technology, for example, the constant elasticity of sub-

stitution (CES) type. Asano et al. (2022b) analyzed the dynamic implications of

technology choice under the setting of CES technologies. However, they did not con-

sider external effects in production. Thus, an analysis using CES technologies with

external effects will be our future task. Moreover, Umezuki and Yokoo (2019b) an-

alyzed the case of a continuum of Cobb–Douglas-type technologies and showed that

chaotic dynamics can appear for a wide set of parameters. An interesting extension

would be to incorporate a continuum of technologies with production externalities

into our model.
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Appendix

Appendix A: Microfoundation of technology choice behavior

Along a similar line to Mastuyama (2007) and Asano et al. (2022b), we briefly

explain a microfoundation for our technology choice behavior.

The goods and factor markets are competitive. This economy has J different types

of production technologies. By use of type i technology we can transform mi units

of the final goods into miRi units of capital and put the capital into the final goods

production. The production function of the final goods is Yit = Fi(kt, Kt, Lt). Kt and

Lt denote capital and labor at time t, respectively, and kt is the capital-labor ratio

capturing capital deepening externalities. The private marginal return of capital is

∂

∂Kt

Fi(kt, Kt, Lt) ≡ MPKi.

We assume that capital depreciates completely in one period.

In each period, a unit of a new generation is born and lives in two periods, the

young and old periods. Assuming that the utility function of each agent is of the

long-linear type, we have a constant saving rate. We denote the saving rate by

s. In managing their savings, young agents can choose to become a lender or to

become an entrepreneur. An agent who chooses to become a lender lends savings

when young and receives rt+1swt when old, where rt+1 stands for the real interest

rate. An agent becoming an entrepreneur picks one technology out of the J types of

technologies. Because entrepreneurs’ wealth is given by their savings, ifmi > swt, the

amount mi − swt must be borrowed. However, due to imperfections in the financial

markets, each entrepreneur can only pledge up to a certain proportion of its revenues

for repayment, i.e., λimiRi · MPKi, where 0 ≤ λi ≤ 1. Note that the value of λi

differs among the J types of projects. More concretely, the entrepreneur’s borrowing

constraint is given by:

λimiRi ·MPKi ≥ rt+1(mi − swt) for i = 1, ..., J. (19)

A smaller value of λi means a stricter credit constraint.
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It should be noted that earnings from investment should not be lower than those

from lending because an entrepreneur can always become a lender:

Ri ·MPKi ·mi − rt+1(mi − swt) ≥ rt+1swt, (20)

that is:

rt+1 ≤ Ri ·MPKi for i = 1, ..., J.

(19) can be rewritten as follows:

rt+1 ≤
Ri ·MPKi(
1− sw

mi

)
/λi

for i = 1, ..., J.

Let us define:

Φi ≡
Ri ·MPKi

max
{
1,
(
1− swt

mi

)
/λi

} .
Then, (19) and (20) can be summarized as follows:

rt+1 ≤ Φi for i = 1, ..., J.

Suppose that rt+1 < Φi. Then, everyone becomes an entrepreneur and employs type i

technology, and this economy has no lender. This situation cannot be an equilibrium,

and thus we have rt+1 ≥ Φi. Next, suppose that rt+1 > Φi for some i. Then, at least

one of (19) and (20) for i does not hold, and thus type i is not employed. Because,

there must be a positive investment in equilibrium, we have:

rt+1 = max {Φ1, ...,ΦJ} . (21)

This indicates that the technology exhibiting the highest value on the right-hand side

of (21) is employed.

In this study, we consider a special case of (21):

J = 2, R1 = R2 = 1, λ1 = λ2 = λ and d1 = d2 = d.

In this case, (21) reduces to:

rt+1 = max

{
R ·MPK1

max
{
1,
(
1− swt

m

)
/λ
} , R ·MPK2

max
{
1,
(
1− swt

m

)
/λ
}}
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=
R

max
{
1,
(
1− swt

m

)
/λ
}max {MPK1,MPK2} .

Thus, we can confirm that the technology with the higher marginal productivity of

capital is adopted (as we assume in our analysis). It should be noted that, although

the presence of credit constraint lowers the interest rate, it will not cause any sig-

nificant change of our results since in our model the saving rate is constant and

independent of the interest rate.

Appendix B: Proofs

Proof of Claim 2. Let α1A1/α2A2 = 1 and 1 > α2 > α1. Then, all we need to show

is that the following inequalities are possible:

s(1− α2)A2 < 1 < s(1− α1)α2A2/α1.

Rewriting the above expression as:

α1

α2(1− α1)
< sA2 <

1

1− α2

,

we notice that α2/α1(1 − α1) < 1/(1 − α2) always holds because α2 > α1. As sA2

can take any positive value, the claim is proven.

Proof of Lemma 2 . Let α1A1/α2A2 = 1 and 1 > α2 > α1. Then, the first inequality

in condition (9) can be rewritten as:(
1

1− α2

)β1−1
β1

(
α1

α2(1− α1)

) 1
β1

< sA2.

Similarly, the second inequality in condition (9) is expressed as

sA2 <

(
1

1− α2

) 1
β2

(
α1

α2(1− α1)

)β2−1
β2

.

Letting V = 1/(1 − α2) and W = α1/α2(1 − α1), we observe that V > W

because α2 > α1. Because sA2 can take any positive value, it suffices to show that

V 1−1/β1W 1/β1 < V β2W 1−1/β2 or V γ < W γ, where γ = 1− 1/β1− 1/β2. Thus, the last

inequality holds if γ < 0 or 1/β1 + 1/β2 > 1.
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Proof of Lemma 3. Using the same notations as in the proof of Claim 2, it suffices to

show that V 1−1/β1W (1/β1) > V β2W 1−1/β2 or (V/W )γ > 1, where γ = 1−1/β1−1/β2.

Because V/W > 1, the last inequality holds if we take β1 and β2 (β2 > β1 > 1) such

that γ > 0 or 1/β1 + 1/β2 < 1.

Proof of Lemma 4. Let s ∈ (0, 1) and α2 ∈ (0, 1) (hence, η2 = β2 − α2) be fixed. Let

ai (i = 1, 2) be any numbers such that 1 < a1 < a2. Let α1A1/α2A2 = 1. Then,

inequalities (15) and (16) can be reduced to:

1 < s(1− α1)α2A2/α1 < (s(1− α2)A2)
1

1−β2 .

Solving the following simultaneous equations for A2 and α1,

a1 = s(1− α1)α2A2/α1,

a2 = (s(1− α2)A2)
1

1−β2 ,

we obtain:

A2 =
1(

s(1− α2)a
β2−1
2

) > 0 and α1 =
1

1 +
(

1−α2

α2

)
a1a

β2−1
2

∈ (0, 1),

which verifies the assertion.

Proof of Lemma 8. Let us begin with τ1(0) = 1−cβ1 > c, which implies from Lemma

7 that any trajectory visits IR at least once immediately after visiting IL. To ensure

that the trajectory stays successively twice in IR, we require that:

τ2(τ1(0)) = β2(1− cβ1 − c) = β2 − cβ1β2 − cβ2 > c.

To ensure that the trajectory stays in IR successively at least three times, we have:

τ 22 (τ1(0)) = β2(β2 − cβ1β2 − cβ2 − c) = β2
2 − cβ1β

2
2 − cβ2

2 − cβ2 > c.

Repeating this up to n times, we obtain:

τn−1
2 (τ1(0)) = βn−1

2 − cβ1β
n−1
2 − cβn−1

2 − cβn−2
2 − · · · − cβ2

2 − cβ2

= βn−1
2 − cβ1β

n−1
2 − cβ2

(
n−2∑
j=0

βj
2

)
> c.

Solving the last inequality for c yields the result.
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Proof of Proposition 8. Note that for the value of the threshold c in the assumption

of the proposition to be taken, it must hold that:

β2 − 1

β2

<
1

1 + β1

.

This inequality is equivalent to β1β2 < 1 + β1, which is assured by assumption. Be-

cause Lemma 7 indicates that any trajectory (i.e., irrelevant to the initial conditions)

of τ visits IL successively at most once, it follows for any initial condition x0 ∈ (0, 1)

that:

(τ 2)′(x0) ≥ β1β2 > 1,

where the last inequality follows by assumption. Thus, τ is eventually expanding and

hence chaotic in the sense of Lasota and Yorke (1973). By conjugacy h, T is also

chaotic.
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Figure 1: Graphs of r1, r2, T1, and T2 with β2 > 1 > β1. The r2-curve is upward-
sloping due to externality.
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Figure 2: Coexistence of a poverty trap, middle-income trap, and perpetual growth
paths. β2 > β1 > 1 and β1 + β2 > β1β2. Parameters: A2 = 5, α1 = 0.55, α2 = 0.65,
η1 = 0.65, η2 = 0.7, s = 0.45, A1 = α2A2/α1 ≈ 5.91, β1 = α1 + η1 = 1.2, and
β2 = α2 + η2 = 1.35.
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Figure 3: Piecewise-linearization on the middle-income trap for β2 > β1 > 1 and
β1 + β2 > β1β2. The parameter values are the same as in Figure 2.
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Figure 4: A trajectory converging into the middle-income trap and eventually fluctu-
ating in that region in a chaotic manner. The parameters are the same as in Figure
2.
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Figure 5: Time series corresponding to Proposition 4. A: a perpetual growth path.
B and C: trajectories getting caught into the middle-income trap from above and
below, respectively. D: a trajectory to the poverty trap. The parameters are the
same as in Figure 2.
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Figure 6: Collapse of the middle-income trap in Case 2. β2 > β1 > 1 and β1 + β2 <
β1β2. In this case, a typical trajectory starting in [k̄1, k̄2] eventually gets caught in the
poverty trap or goes onto a perpetual growth path. Parameters: A2 = 5, α1 = 0.45,
α2 = 0.65, η1 = 0.1, η2 = 0.7, s = 0.45, A1 = α2A2/α1 ≈ 5.91, β1 = α1 + η1 = 2.05,
and β2 = α2 + η2 = 3.15
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Figure 7: Enlargement of Figure 6.
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Figure 8: Piecewise-linearization of Figure 6 on the collapsed middle-income trap.
The chaotic invariant set Λ is contained in I0 ∪ I1. The iteration of the mapping
brings any initial point that finally falls into the interval (1/β1, c) to the perpetual
growth path and any initial point that finally falls into (c, 1−β2) to the poverty trap.
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Figure 9: Two different but close to each other initial states near the chaotic in-
variant set Λ lead to different final states with transiently chaotic fluctuations. The
parameters are the same as in Figure 6.
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Figure 10: Bifurcation diagram with respect to s ∈ (0.2, 0.4) for Case 3: β2 >
1 > β1 > 0. Parameters: A2 = 5, α1 = 0.4, α2 = 0.6, η1 = 0.4, η2 = 0.7,
A1 = α2A2/α1 = 7.5, β1 = α1 + η1 = 0.8, and β2 = α2 + η2 = 1.3.
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Figure 11: Coexistence of a middle-income trap and perpetual growth paths. There
is no poverty trap associated with the origin, which is a repeller in Case 3: β2 > 1 >
β1 > 0. All the trajectories starting near the origin fall into the middle-income trap.
The parameters are the same as in Figure 10 except for s = 0.4.

43



Figure 12: Piecewise-linearization on the middle-income trap for β2 > 1 > β1 > 0.
After transients being omitted, only 15 iterations are displayed. The parameter values
are the same as in Figure 11.
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Figure 13: Bifurcation diagram of τ with respect to c ∈ J1 = ((β2−1)/β2, 1/(1+β1)).
For each c ∈ J1, chaotic behavior is observed in the middle-income trap, according
to Propositions 8 and 9.
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