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Abstract

Heterogeneously informed agents decide their optimal action timings while ob-

serving past activities over time. We construct such a dynamic global coordination

game to investigate the impact of learning and delay options on coordination be-

haviors and outcomes. A unique monotone equilibrium is characterized, which is

analytically convenient for all ranges of learning efficiencies, and we demonstrate

that learning improves coordination success, while the delay options alone have no

impact, relative to the one-shot game. Dynamics of agents’ behaviors and welfare

implications are then presented. In addition, we show that full learning about the

state achieves in the limit, and find the condition on which observing actions reveals

more accurate information about the state than directly observing it.
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1. Introduction

Coordination games of incomplete information like currency crises or investment crashes

impact the economy massively and draw much attention from economists. One promi-

nent approach to analyze such problems is the global games model pioneered by Carlsson

and Van Damme (1993) and Morris and Shin (1998). It introduces asymmetric informa-

tion into the traditional coordination game framework and remarkably obtains a unique

and analytically convenient equilibrium, shedding testable insights on policy guidance

and welfare implications. However, the existing studies are mostly in static contexts,

despite the economic activities are inherently dynamic. Budget-constrained agents delay

their investment decisions to learn from their predecessors’ behaviors, for example. That

said, learning and delaying behaviors of agents are prevalent in practice and worth ex-

ploring, but the static models cannot provide predictions or analysis for those dynamic

aspects.

Particularly in coordination games, learning and delay behaviors become more no-

table because agents face not only the payoff uncertainty about the economic funda-

mentals, but also the strategic uncertainty about their opponents’ (past, current, and

future) beliefs. Consequently, it is almost inevitable to extend the static models into

multi-periods and consider learning and delaying behaviors of agents, to capture their

intrinsic motivations to mitigate both sorts of uncertainties. And the investigation into

dynamic environments is not a simple extension of the static model because of the strate-

gic delay consideration of agents to try to select the optimal action timing. That is, delay

provides informational gains through agents’ observation of past activities, but is also

costly due to discounting and shrinking opportunities, so agents must constantly trade

off the benefit and the cost of delay to determine when to act, and this crucial trade-off

cannot be captured in static frameworks.

Therefore in this paper, we construct an N ∈ N period model in an investment

context to investigate the impact of learning and delay options on agents’ behaviors,

based on the static global game of Morris and Shin (2000). The prospect of an invest-

2



ment project, or the state, is deterministic but ex ante unknown, and a continuum of

heterogeneously informed agents can undertake a fixed-size investment once. They in-

dependently select the investment timing (if at all) out of N periods, while observing

a stream of noisy signals about past activities over time, which represents the learning

behavior and is the informational gain of delay. To capture the coordination motive and

the opportunity cost of delay, we let the payoff of the investment to an agent, paid at the

end of the game, be positively correlated with the aggregate investment, while negatively

with her investment timing, if ever invested. Hence agents with one-time investment op-

portunity need to trade off the informational gain of delay versus its opportunity cost

to decide their optimal investment timing.

After constructing the model, we solve for its equilibrium and demonstrate the exis-

tence and the uniqueness of a monotone equilibrium, in which agents take a symmetric

threshold strategy profile (i.e., an agent invests in one period if and only if her belief

about the state exceeds some threshold prescribed for that period.) This monotone form

of strategy is documented in almost all relevant literature and is as well intuitively ap-

pealing in this dynamic environment. To see it, agents select their investment timing by

trading off the informational gain of delay against its opportunity cost, so if an agent

believes the state is good enough in one period, she expects the investment is profitable

and consequently, the expected opportunity cost to her is huge while the informational

gain is little; thereby she invests immediately. Otherwise she delays to the next period,

in which she updates her information by observing what others have done, and then

make decisions by the same trade-off logic as before, and so on.

Noteworthy in equilibrium, the investment decisions of an agent only depend on her

beliefs about the state, even though the payoff involves her fellow agents’ behaviors.

This is so because (i) the payoff depends on the aggregate investment and (ii) the aggre-

gate investment is (shown to be) deterministic given the state. There two properties are

standard in global games literature and essentially stem from the Law of Large Numbers.

Recall that agents form a continuum, which allows us to characterize a one-to-one rela-

tion between the aggregate action and the state. Hence a belief about the state suffices to
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evaluate the corresponding aggregate investment. Also with this deterministic relation,

the information learned from past actions is shown to be summarized in a closed-form

statistic centered around the state, for all learning precision levels. This is one of the

novelty of this paper because the past literature in dynamic environments only allows

analysis in limit accurate learning situations (cf., Dasgupta (2007)). The comparison to

the existing literature will be elaborated in the literature review section soon.

Our following analysis is thus focused on this unique monotone equilibrium and ad-

dresses two questions. The first probes the dynamics of agents’ behaviors in equilibrium,

and the second investigates comparative statics, particularly the impact of learning and

delay options on coordination success and welfare.

First, we summarize agents’ equilibrium behaviors. In period 1, the optimistic agents

who observe favorable signals (that exceed the equilibrium threshold of period 1) invest

immediately, since they believe the investment’s prospect is already good and thus out-

weigh the opportunity cost of delay over its informational gain. In the subsequent in-

termediate periods, the remaining agents constantly revise their expectations about the

investment through cumulative learning, and depending on learning efficiency, a large or

small fraction of agents will switch into investing. Noteworthy, if the learning efficiency

is modest (i.e., the accuracy of endogenous signals is low), in every period will a few

agents newly invest, so the relatively inertia phenomenon documented in the literature

(Angeletos et al. (2007)) is expected. Also by implication, had no learning effect existed,

agents would only act in the first period and stay inactive till the last period. We indeed

verify this conjecture and show that the mere delay option without learning opportuni-

ties has no impact on the game, relative to the one-shot game. In the last period, there

is no stage to delay to, so another positive fraction of remaining agents will choose to

invest.

Next we discuss comparative statics. To begin with, we contrast agents’ behaviors

with that in the one-shot game. Results show that agents are less aggressive (i.e., less

likely to invest) in the intermediate periods than in the static game. Intuitively, agents

are tempted by the information learned from delaying and hence choose to wait. On the
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other hand, agents behave more aggressively in the last period of the dynamic game,

due to a higher expected total investment and the coordination motive.

We next investigate the values of learning opportunities and the consequent welfare

implications. It is demonstrated that learning opportunities increase agents’ expected

continuation payoffs and thus improve coordination success and social welfare. Intu-

itively, coordination fails because agents, facing the uncertainty about whether others

will cooperate, may choose not to invest, even if it is their collective interest to do so.

Learning alleviates this problem by reducing the strategic uncertainty among agents,

since it makes agents’ signals more accurate and thereby better aligned. Also we show

that agents more accurately infer the state in the presence of learning, indicating the

payoff uncertainty is also mitigated.

Note that agents learn the state through observing past activities, and we are inter-

ested in how efficient such a learning mechanism is, relative to learning from directly

observing the state. We find that as long as agents’ initial information is precise enough,

observing actions reveals more accurate information than directly observing the state.

Intuitively, learning efficiency of observing actions depends on (i) how accurately agents’

private information is about the state and (ii) how accurately endogenous signals reflect

their actions (and hence their private information). The two channels are shown to be

mutually reinforced and therefore, if one of them is accurate enough, it is possible that

indirect learning delivers more accurate information about the state than direct learning.

Lastly, we discuss the equilibrium selection in the dynamic model. One of the re-

markable results that static global game models provide is the uniqueness in equilibrium

when information among agents is sufficiently diffused (see Morris and Shin (2003)),

resolving the indeterminacy of equilibria problem in complete information coordination

games. And we indeed obtain a unique monotone equilibrium in this dynamic environ-

ment. However, other forms of strategies than a threshold strategy cannot be excluded

to constitute an equilibrium. This is because the dynamic environment provides other

dimensions for coordination and thus multiplicity. For instance, if all agents believe

their opponents will take some specific strategy form, so may they, and this mutual ef-
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fect in turn justifies the usage of that strategy form. Aside from this, as Angeletos and

Werning (2006) demonstrate, when learning is through public observation of actions,

multiple equilibria can arise even when agents are endowed with limit accurate private

information. The feature is also present in our model when we consider that learning is

through public observation of actions in Section 4.

Also in section 4, we extend the game to infinite periods and show that the properties

of theN -period game are still valid; furthermore, we find that agents completely learn the

true state in the limit, avoiding the usual information cascade when learning is through

observing past activities (Bikhchandani et al. (1992) and Banerjee (1992)). Indeed, in

our model, pooled information of agents reveals the true state, so it is at least plausible

for agents to fully learn the state. And the signal structures we consider are continuous

due to normal noise; as Lee (1993) demonstrate, this continuity prevents information

cascade, because any tiny variation in agents’ behaviors will be, at least noisily, reflected

by signals.

1.1 Related literature

This paper is most related to Angeletos et al. (2007) and Dasgupta (2007). Angeletos

et al. (2007) investigate a dynamic regime change game in which short-lived agents (in

the sense that agents are new and given a unit of perishable endowment every period)

repeatedly decide whether to attack a regime, while observing the outcomes of the past

attacks. By contrast, agents in our model are long-lived and have budget constraints in

the sense that they can only act at most once, and thus face an active timing problem.

Moreover, we consider that all past activities cumulatively affect the payoff of the in-

vestment, while they assume only the action of the present period affects agents’ payoffs.

In addition, a continuous payoff structure is assumed in our paper, as opposed to the

discrete payoff structures of the regime change game (which pays either a lump sum or

nothing, depending on whether the regime switches), so our result about the dynamics

of agents’ behaviors complements that of Angeletos et al. (2007): agents in our model

respond continuously to information variations, while their agents have complete inertia
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unless receiving a large change of information.

It is worth stressing that though payoffs are continuous in parameters in our model,

agents’ strategies are not because of the feature of the threshold strategy. That said,

agents’ actions can change discontinuously and dramatically with a small perturbation

of information (even given the state of the world); to see it, consider those with signals

around the threshold. Consequently, volatile non-fundamental variations of actions exist

in our model, which is one of the highlights of the global games approach to explain

sudden changes of behaviors in crises phenomena; see Morris and Shin (2003).

Dasgupta (2007) considers a regime change game in a two-period span, with agents

endowed with limit accurate private information as well as learning is of limit accurate, so

learning is almost immaterial there. Our analysis instead spans N , and further infinite,

periods and applies to all learning efficiencies. Furthermore, the almost fully informed

agents in Dasgupta’s work always benefit from the delay option, while we find that, when

agents are not fully informed, what helps improve coordination success is the learning

effects and that the delay option alone does not affect the outcomes, relative to the static

game.

Some works focus exclusively on learning effects, especially the effects of public sig-

nals on equilibrium selection in global games. The pioneers are Angeletos and Werning

(2006), who show the rise of multiple equilibria when learning is through public obser-

vation. Most distinctively, our paper differs from theirs because in that their game is

essentially static, in the sense that one group of agents act in the first period in the

financial market of Grossman and Stiglitz (1976), and then another group, observing

price or activity in the market, act in a static global game; the two groups share no

payoff transfers. Also connecting to the rational learning literature, our learning mech-

anism, particularly the Gaussian signal structure, has the similar updating rule as in

Vives (1993).

There are works on global coordination games that study different aspects than this

paper. For example, Hellwig et al. (2006) consider endogenous interest rates, Angeletos

et al. (2006) analyze the signaling effects, and Szkup and Trevino (2015) study costly

7



information acquisition. See also Morris and Shin (1998) for currency crises, Goldstein

and Pauzner (2005) for bank runs, and Edmond (2013) for sociopolitical revolutions.

In very different setups, the option value of delay has been examined by Chamley and

Gale (1994) in a noncooperation environment with perfect observation of past activities.

Gale (1995) studies strategic delay in a complete information coordination game.

The rest of the paper is structured as follows. Section 2 investigates the game com-

prising two periods and captures our core results. Section 3 considers multiple periods

and confirms the validity of the results in the two-period model. Section 4 discusses the

extension concerning infinite periods and public learning.

2. The Two-Period Model

In this section, we examine a two-period game with a linear payoff structure; it captures

our core results. The stage game is based on Morris and Shin (2000). The general model

that comprises N ∈ N periods and a general payoff will be explored in Section 3.

2.1 Setup

A measure-one continuum of agents, denoted i or j, independently decide whether to

invest in a risky project at time t = 1 or t = 2, if at all. An agent can invest at most

once irreversibly. Let ati ∈ {0, 1} denote agent i’s action at time t, where 1 (or 0) refers

to investing (or not investing); it is then required that a1i + a2i ∈ {0, 1}. Moreover,

let at =
∫
i atidi be the aggregate investment at time t, and ât =

∑t
1 ak the cumulative

investment till t. The return of the project is determined after all investment decisions

are completed, so payoffs are realized at the end of time 2. The payoff of an agent who

does not invest is normalized to 0, and that to investing is the sum of two factors. The

first is the total investment â2, and the second is the exogenous investment environment,

which is driven by other economic fundamentals. We summarize the second factor by a
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single parameter r ∈ R. In sum, the return to an agent who chooses ati ∈ {0, 1} equals

ati(r + â2). (2.1)

In each t = 1, 2, agent i chooses ati ∈ {0, 1} to maximize her aggregate expected payoff,

E[
∑2

t=1 δ
t−1ati(r + â2)], given her available information at that time, where δ ∈ (0, 1)

is the timing cost on investment. Note that δ acts similarly as a discount factor, but

since agents only receive payments at the end of the game, δ is interpreted as shrinking

opportunities.

The state parameter r is deterministic but ex ante unknown, and is uniformly dis-

tributed over the entire real line, so agents hold an improper prior about it: r ∼ Unif(R).

In period 1, agent i observes a private signal x1i about the realization of r:

x1i = r +
1

√
τ1
ε1i, (2.2)

and in period 2, agent i additionally receives x2i about the past activity a1:

x2i = Φ−1(a1) +
1

√
τ2
ε2i, (2.3)

where Φ is the CDF of the standard normal and τt > 0, t = 1, 2, measures the in-

formation quality, and εti is a standard normal variable, independent across time and

agents and of r (i.e., εti|r = εti ∼ N (0, 1), i.i.d. for any t and i). Here we follow the

literature (Dasgupta (2007) and Angeletos and Werning (2006)) to choose the analyti-

cally convenient information aggregation technology Φ−1, but as we will see soon, the

qualitative results of the paper are valid for other learning technologies. Furthermore,

we impose the Law of Large Numbers (LLN) convention through out the paper, namely,

the proportion of agents who receive signals higher than some real number is equal to

the probability of an individual agent receiving such signals. Consequently, no aggregate

uncertainty about r exists since the idiosyncratic noise cancels out:
∫
i ε1idi = 0.

In summary, the game proceeds as follows.
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0. Nature randomly draws r from R.

1. In period 1, agent i privately observes x1i about r and then makes an investment

decision. The total investment a1 is thus determined.

2. Subsequently in period 2, agent i privately observes x2i about a1 and then takes a

feasible action. The aggregate investment â2(= a1+a2) of the game is thus determined.

3. The payoffs to investment depending on r and â2 are realized at the end of period

2.

Recall that in period 2, the only feasible action to agents who have invested is action

0.

2.2 Threshold Strategies and Monotone Equilibria

In line with the literature, we consider that agents play a symmetric threshold strategy

in each period - an agent invests iff her expectation of r at that period exceeds some

threshold number. Specifically, a threshold strategy σ1 in period 1 for agent i who observes

x1i takes the form

σ1(x1i) =


1, if x1i > x1

0, otherwise,

for some x1 ∈ R (we differentiate signals and thresholds by subscript i). By construction,

the agent selects not investing at a tie when x1i = x1. The expression of a threshold

strategy in period 2 requires closer inspection because of endogenous learning. To see

it, note that a1(r) = P (x1i > x1 | r) = Φ(
√
τ1(r − x1)) for any realization of r, when

all agents follow a threshold strategy with threshold x1 in period 1. Hence endogenous

signal x2i becomes

x2i =
√
τ1(r − x1) +

1
√
τ2
ε2i,

rearranging which we obtain

x2i√
τ1

+ x1 = r +
1

√
τ2τ1

ε2i.
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Therefore, if we define

x′2i ≡
x2i√
τ1

+ x1,

then

x′2i = r +
1√
τ ′2
ε2i,

where τ ′2 ≡ τ1τ2. Note that x′2i is informationally equivalent to x2i with respect to r.

Therefore by Bayes’ rule, agent i’s updated belief about r in period 2 can be summarized

by a sufficient statistic x̂2i(x1i, x2i) with

x̂2i(x1i, x2i) = x̂2i(x1i, x
′
2i) =

τ1x1i + τ ′2x
′
2i

τ1 + τ ′2
= r +

1√
τ̂2
ε2i, (2.4)

where τ̂2 ≡ τ1 + τ ′2.
1 A threshold strategy σ2 in period 2 is defined by the rule

σ2(x1i, x2i) =


1− σ1(x1i), if x̂2i(x1i, x2i) > x2

0, otherwise,

for some x2 ∈ R, given agents follow σ1 in period 1. This completes the definition of a

threshold strategy profile in the dynamic game. 2 When no confusion might occur, we

write x̂2i ≡ x̂2i(x1i, x2i) and x̂1i ≡ x1i (and hence define τ̂1 = τ ′1 ≡ τ1), and denote a

threshold strategy profile by its thresholds, say, (x1, x2).

It should be noted that when all the agents follow (x1, x2), the size of investment at

at time t = 1, 2 is a deterministic function of r, such that

a1(r) =

∫
i
P (x̂1i > x1 | r)di = P (x̂1i > xt | r), a2(r) = P (x1i < x1, x̂2i > x2|r),

by LLN.3 That said, when all agents play a threshold strategy, the payoff to investment

1Recall ε1i and ε2i are both standard normals, and by abusing notation, we let ε2i in (2.4) denote a
normal noise in agent i’s belief towards r at t = 2.

2Note that σ2 is only well defined when agents take a threshold strategy in period 1; it suffices for
our purpose since we restrict to agents playing a threshold strategy profile.

3Note that a2(r) = P (x1i < x1, x̂2i > x2|r) = P (x̂2i > x2|r, x1i < x1)P (x1i < x1|r) = P (x̂2i >
x2|r)P (x1i < x1|r), since r suffices to estimate x̂2i by (2.4).
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depends on (r, â2(r)), so that the estimation about r suffices to evaluate decisions even

â2 enters the payoff function. In this paper, we consider symmetric perfect Bayesian

equilibria in which all agents follow a threshold strategy profile, and call such equilibria

monotone equilibria. In what follows, we refer to monotone equilibria as equilibria unless

otherwise stated.

It is worth stressing that the key in obtaining an analytical form of posterior belief

x̂2i(x1i, x2i) in period 2 is the transformation from x2i centered around Φ−1(a1) to x′2i

centered around r. The transformation is plausible because no aggregate uncertainty

exists in the model (
∫
i x1idi = r indicates pooling the continuum’s information reveals

r), so that when all agents follow a threshold strategy in period 1, the aggregate activity

a1 is deterministic given r, and thus the observation of a monotone function of it (i.e.,

Φ−1(a1)) leads to an estimation of r. This line of reasoning implies that the specific

aggregation rule Φ−1 of x2i is not qualitatively restrictive: any one-to-one aggregation

rule results in an estimation of r from observing a1; we choose Φ−1 to obtain the well-

behaved transformed signal.

Moreover, since the estimation of r is derived from x2i, the quality of the estimation

depends on how precise (i.e., τ2) x2i reflects a1 and how precise (i.e., τ1) a1 reflects r.

Indeed, the induced precision level τ ′2 = τ1τ2 of x′2i verifies this. It also highlights that

the endogenous information is generated by social learning, or from individuals’ private

information, so the more accurate information agents initially hold, the more accurate

information their actions convey. Noteworthy, the precision level τ ′2 is the same as that

of endogenous signals obtained from rational expectations equilibrium price (Grossman

and Stiglitz (1976)), underscoring that the specific learning rule Φ−1 provides results

consistent with the literature.

We close this section by characterizing agent i’s cross-period beliefs about one an-

other, and show that a higher expectation of r leads to a higher expectation of â2. The

results are useful in the equilibrium characterization later.

Lemma 1. When agents follow a threshold strategy profile (x1, x2), for time t ̸= k ∈
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{1, 2} and any signal realization x̂ki, x̂tj, we have, for i ̸= j,

x̂tj |x̂ki
∼ N

(
x̂ki,

τ̂k + τ̂t
τ̂kτ̂t

)
,

and for i = j

x̂2i|x1i ∼ N
(
x1i,

τ ′2
τ̂2τ1

)
. (2.5)

Moreover, E[â2|x̂ki] strictly increases in x̂ki.

Proof. For i ̸= j, since x̂ki(= r + εki/
√
τ̂k), we have

x̂tj = r +
1√
τ̂t
εtj = x̂ki −

1√
τ̂k

εki +
1√
τ̂t
εtj .

For i = j, since x′2i = x1i − ε1i/
√
τ1 + ε2i/

√
τ ′2, we have

x̂2i =
τ1x1i + τ ′2x

′
2i

τ1 + τ ′2
= x1i +

τ ′2
τ1 + τ ′2

(− 1
√
τ1
ε1i +

1√
τ ′2
ε2i),

so (2.5) holds.

For the second part, note that (E[a1|x̂ki])′ = (P (x1j > x1|x̂ki))′ > 0, and that

E[a2|x̂ki] = P (x1j < x1, x̂2j > x2|x̂ki) = (1− E[a1|x̂ki])P (x̂2j > x2|x̂ki), so

d

dx̂ki
E[â2|x̂ki] =

d

dx̂ki
E[(a1 + a2) | x̂ki]

= (E[a1 | x̂ki])′(1− P (x̂2j > x2|x̂ki)) + (1− E[a1 | x̂ki])(P (x̂2j > x2|x̂ki)︸ ︷︷ ︸
=Φ(

√
·(x̂ki−x2))

)′ > 0.

Q.E.D.

Note that, complying with our intuition, the point (iii) states that i makes more accu-

rate inferences about her own belief than about others’. In what follows, we abbreviate

E[at|x̂ki] and E[ât|x̂ki] to at(x̂ki) and ât(x̂ki), respectively.
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2.3 Equilibrium Characterization

2.3.1 The Static Game

We first consider when the game only consists of the first period, namely a static game, to

illustrate how to solve for the unique monotone equilibrium; it also serves as a benchmark

for later comparative statics analysis. Since the one-shot game is a standard static global

game, the equilibrium can be easily characterized as in the following proposition.

Proposition 1. In the static game with signal structure x1i = r + ε1i/
√
τ1 and pay-

off structure r + a1, there exists a unique equilibrium which is a monotone equilibrium

characterized by a threshold strategy x∗st with x∗st = −1/2.

A detailed proof can be found in Morris and Shin (2000), and here we sketch it.

Think of a marginal agent with signal x1i such that she is indifferent between investing

or not, namely, E[r+a1|x1i] = 0. It is straightforward to verify it has a unique solution,

x1i = −1/2, and we claim it is x∗st.
4 Indeed, following symmetric strategy−1/2 (investing

iff x1i > −1/2) is optimal, because E[r + a1|x1i] > 0 iff x1i > −1/2. The global

uniqueness is obtained by the standard iterated dominance argument so we omit its

proof.

Note that in verifying the threshold strategy x∗st constitutes an equilibrium, it suffices

to consider the marginal agent who is indifferent between the two actions. This is due

to payoff’s monotonicity in r and a1: a higher signal realization indicates higher r and

a1, resulting in higher expected payoffs from investing, so an agent with signals higher

than the cutoff signal expects the payoff to investing exceeds 0 and thus invests. Since

the monotonicity of the payoff holds in the dynamic game, one can expect that an

equilibrium shall be readily found by identifying such a marginal agent. However, her

role is more subtle there, since instead of balancing whether to invest or not, the agent

trades off between acting now versus delaying and acting optimally later. A careful

analysis is therefore required and conducted below.

4Formally, a1(x1i) = Φ(
√

τ1/2(x1i −x1)) given other agents follow some threshold strategy x1. Thus
the only symmetric solution to the equation is x1 = −1/2.
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2.3.2 The Two-Period Game

We now solve the two-period model. Let R1(x1i; (x1, x2)) denote the expected continu-

ation payoff for agent i who observes x1i and delays in period 1, given all other agents

follow some threshold strategy (x1, x2) in the game. To compute R1, agent i infers her

to be received signal x̂2i from x1i, since x̂2i determines whether she will invest later and

if so, her expected payoff. We claim

R1(x1i; (x1, x2)) = δE
[
E [r + â2|x̂2i > x2]

∣∣x1i]
= δ

∫ ∞

x2

E[r + â2 | x̂2i]f(x̂2i | x1i)dx̂2i,

where f(x̂2i|x1i) is the density of x̂2i given x1i and by (2.5) in Lemma 1, equals (P (· ⩽

x̂2i|x1i))′ = (Φ(
√

τ1τ̂2/τ ′2(x̂2i − x1i)))
′; also see Lemma 1 for the formula of E[â2|x̂2i]

given thresholds (x1, x2). Let R2(x̂2i; (x1, x2)) ≡ 0 for any x̂2i and (x1, x2), meaning the

continuation payoff at the last stage is 0.

To better understand the formula of R1, suppose the agent who observes x̂2i has

reached period 2; then given others follow (x1, x2) in the game, her expected payoff to

following x2, denoted R̃1(x̂2i; (x1, x2)), is

R̃1(x̂2i; (x1, x2)) =


E[r + â2 | x̂2i], if x̂2i > x2

0, otherwise.

In period 1, the agent forms an expectation of this value through her current signal x1i,

which is what she expects to obtain by delaying and thus is R1, so

R1(x1i; (x1, x2)) = δE[R̃1(x̂2i; (x1, x2)) | x1i] = δ

∫ ∞

x2

E[r + â2 | x̂2i]f(x̂2i | x1i)dx̂2i.

With this result, the following proposition establishes the existence and the uniqueness

of a monotone equilibrium.

Proposition 2. A unique monotone equilibrium characterized by a threshold strategy
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profile (x∗1, x
∗
2) exists in the two-period game, where x∗t uniquely solves

E[r + â2|x∗t ] = Rt(x
∗
t ; (x

∗
1, x

∗
2)), for t = 1, 2.

Proof. Let (x1, x2) denote an arbitrary threshold strategy. In period 2, given the others

follow (x1, x2) in the game, agent i with belief x̂2i expects her investment payoff to be

G2(x̂2i; (x1, x2)) ≡ E[r + â2 | x̂2i; (x1, x2)], (2.6)

where we write (x1, x2) to emphasize it is used to compute E[â2|x̂2i], which by Lemma 1

increases in x̂2i, so (2.6) increases in x̂2i. If a threshold strategy x′2 ∈ R is an equilibrium

strategy in period 2, agent i should invest (i.e., G2(x̂2i; (x1, x
′
2)) > 0) if x̂2i > x′2 and

should not if x̂2i < x′2; therefore by the continuity of (2.6) in x̂2i, i observing x̂2i = x′2

must be indifferent between investing or not, namely,

G2(x
′
2; (x1, x

′
2)) = 0. (2.7)

We show in Appendix that G2(x
′
2; (x1, x

′
2)) is continuous, strictly increasing in x′2 and

converges to −∞ (resp. ∞) as x′2 → −∞ (resp. ∞). Hence a unique solution, given any

x1, to (2.7) exists, and we call it x∗2(x1). Note that x∗2(x1) is the only candidate for an

equilibrium threshold in period 2, given x1. The increasing monotonicity of (2.6) thus

verifies x∗2(x1) constitutes an equilibrium in period 2, since G2(x̂2i; (x1, x
∗
2(x1))) > 0 if

x̂2i > x∗2(x1).

With the above result, we proceed to period 1. When all agents except i follow some

threshold strategy x1 in period 1 and all agents follow x∗2(x1) in period 2 (note that the

deviation of a measure-zero agent does not affect the optimal strategy in period 2), the

investment payoff of agent i with x1i equals

G1(x1i; (x1, x
∗
2(x1))) ≡ E[r + â2 | x1i; (x1, x∗2(x1))],
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which increases in x1i by Lemma 1. Let ∆(x1i; (x1, x
∗
2(x1))) denote the payoff difference

of agent i between investing and delaying in period 1, namely,

∆(x1i; (x1, x
∗
2(x1))) = G1(x1i; (x1, x

∗
2(x1)))−R1(x1i; (x1, x

∗
2(x1))).

A threshold strategy x′1 constitutes an equilibrium in period 1 only if agent i observing

x1i = x′1 is indifferent between investing and delaying, that is, the payoff difference is

zero:

∆(x′1; (x
′
1, x

∗
2(x

′
1))) = 0. (2.8)

Likewise, we show in Appendix that ∆(x′1; (x
′
1, x

∗
2(x

′
1))) is continuous, strictly increasing

in x′1 and converges to −∞ (resp. ∞) as x′1 converges to −∞ (resp. ∞), so that a

unique solution, denoted by x∗1, to (2.8) exists such that ∆(x∗1; (x
∗
1, x

∗
2(x

∗
1))) = 0. And

x∗1 is the only candidate for equilibrium threshold strategies in period 1. Indeed, it is

optimal because
∂

∂x1i
∆(x1i; (x

∗
1, x

∗
2(x

∗
1))) > 0, (2.9)

namely, investing in period 1 is optimal (∆(x1i; (x
∗
1, x

∗
2(x

∗
1))) > 0) if x1i > x∗1. And (2.9)

can be obtained by the same way in which we compute ∂∆(x′1; (x
′
1, x

∗
2(x

′
1)))/∂x

′
1 > 0 in

Appendix. Setting x∗2 = x∗2(x
∗
1), then (x∗1, x

∗
2) is the unique threshold equilibrium stated

in the proposition.

Q.E.D.

We have focused on symmetric strategies and this is without loss of generality, as

Remark 1 shows; the essence is that every agent is infinitesimally small and faces the

same decision problem.

Remark 1 (Exclusion of Asymmetric Strategies). There can only be symmetric threshold

strategies in equilibrium. Suppose by contradiction that the unit agents are divided into

groups and each group in equilibrium follow threshold (x∗11, x
∗
12, · · · , x∗1N ) respectively in

period 1 and (x∗21, x
∗
22, · · · , x∗2M ) respectively in period 2, where N,M ∈ N. Then in

period 2, an agent in group i ∈ {1, · · · ,M} who observes x∗2i must be indifferent between
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investing or not:

E[r + â2|x∗2i; (x∗11, · · · , x∗1N , x∗21, · · · , x∗2i, · · · , x∗2M )] = 0. (2.10)

Since agents are infinitesimally small, the value of â2 only depends on the thresholds of

the population and is invariant of individuals’ actions. Hence we have by (2.10) that x∗2i

equals the negative â2. Similarly for a group j ̸= i agent, she solves

E[r + â2|x∗2j ; (x∗11, · · · , x∗1N , x∗21, · · · , x∗2M )] = 0,

and thus x∗2j also equals the negative â2 and thus equals x∗2i. The similar argument

applies to period 1.

Remark 2 (Investment of Variable Size). If the action space is replaced by an inter-

val [0, 1] with
∑2

t=1 ati ∈ [0, 1], the monotone equilibrium stays unchanged. That said,

no agent will split their endowment even if they can. This is so because the monotone

equilibrium (x∗1, x
∗
2) holds due to {0, 1} ⊂ [0, 1], and its uniqueness gives the result. Intu-

itively, when agents expect positive returns and face delay costs, it is not wise for them to

keep endowment unused, whereas when they expect negative returns, being infinitesimal

means that investing has neither payoff nor information values.

The proposition establishes the uniqueness in a monotone equilibrium, consistent

with the static global games literature. Yet the general uniqueness, namely the exclusion

of other strategy forms, does not obtain. Even though taking a threshold strategy is

intuitively appealing because of payoff’s increasing monotonicity in the state. However,

due to coordination motives, if agents believe their opponents take some other specific

strategy, they may follow that form of the strategy. More technically speaking, when

iteratively eliminating strictly dominated strategies (which is the key to establish general

uniqueness; see Proposition 1), we will encounter an open interval of signal realizations

in which all strategy forms are plausible to constitute an equilibrium.

What is more severe here is that, with endogenous learning from past activity, since
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arbitrary strategy forms in period 1 need to be taken into account in solving for gen-

eral equilibria, agents face arbitrary information structures about r from observing a1,

thereby leaving the room for other forms of equilibria.

Remark 3 (Complementarities in Action Timings). In the model, agents contemplate

their own action timing but not those of others, because the payoff depends on the activ-

ities â2 throughout the game. If, instead, the payoff to investing at time t depends only

on the current investment size at, multiplicity also can occur. This is so because agents

now have coordination motives in action timing, and if an agent believes all others will

act in one particular period, so will her; see Dasgupta et al. (2012) for further discussion

on this line of reasoning.

2.4 Equilibrium Analysis

In this section, we contrast agents’ behaviors between the static and the dynamic games,

and investigate the values of learning and the delay option. The consequent welfare

implications are also discussed. All the conclusions apply to the general N-period model.

2.4.1 Changes in Behavior

The two-period game can be perceived as (i) adding a stage before the static game or

(ii) adding a stage afterwards. We first consider case (i) and compare agents’ behavior

in period 2 of the dynamic game to that in the static game. Results show that agents in

period 2 tend to invest more frequently than in the static game (x∗2 < x∗st). Intuitively,

in period 2, there is no delay option, which is the same as in the static game; meanwhile,

agents know if the game were static, the same fraction of agents would invest, and

adding an additional previous stage means weakly more agents invest. So the conclusion

follows by the strategic complementarity. For case (ii), agents in period 1 of the dynamic

game are tempted by the delay option and thus invest less frequently than in the static

game (i.e., x∗st < x∗1), reflecting the informational value from learning. The following

proposition establishes these results.
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Proposition 3. Comparing to in the static game, agents are more aggressive in period

2, and less in period 1: x∗2 < x∗st < x∗1.

Proof. Note that â2(x
∗
2) = a1(x

∗
2) + (1 − a1(x

∗
2))P (x̂2j > x∗2|x∗2) > 1/2 = a1(x

∗
st), so if

x∗2 ⩾ x∗st, then E[r + â2|x∗2] > E[r + a1|x∗st] = 0, contradicting the equilibrium condition

of period 2 in the dynamic game.

For the second half, note that if δ = 0, then R1(x1i; (x
∗
1, x

∗
2)) = 0 and a2(x1i) = 0

(recall that agents in period 2 being indifferent to invest or not choose action 0), for

any x1i. Hence x∗1 solves E[r + a1|x∗1] = 0 and thus equals x∗st. As δ increase, R1 also

increases, so x∗1 must increase to balance the equilibrium condition (2.8) of period 1.

Therefore x∗1 > x∗st.

Q.E.D.

Noteworthy, within the two-period game, agents behave more aggressively in period

2 than in period 1 since x∗2 < x∗1. Contrasting this phenomenon with case (i) earlier, in

which that agents in period 2 invest more frequently than in the static game (x∗2 < x∗st)

is due to coordination motives. Here for the dynamic game, coordination motives do

not play a role since agents enjoy the same payment â2 whichever period they invest.

Instead, here is because of the decreasing continuation payoff that changes from a strictly

positive value R1 to 0 at the last stage. Following this line of logic, we obtain the effect

of continuation payoffs on agents’ behavior: the lower continuation payoffs to delaying

to the next period, the more aggressively agents behave in the current period. Its proof

follows the proof of the second half in Proposition 3.

2.4.2 The Value of Information and Welfare Analysis

Note that in equilibrium,

δE[r + â2 | x1i] = R1(x1i) + δ

∫ x∗
2

−∞
E[r + â2 | x̂2i]f(x̂2i | x1i)dx̂2i︸ ︷︷ ︸

<0

< R1(x1i),
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where the negativity of the second term is by the definition of x∗2. The term δE[r +

â2 | x1i] is the expected payoff to delaying without learning (i.e., when agent i holds

a constant signal x1i), which is shown strictly lower than the continuation payoff with

learning existed; hence the value of information is positive. To see the intuition of why

learning improves agents’ expected payoffs, note that learning makes agents’ signals

better aligned, alleviating their strategic uncertainty and thereby making them better

coordinate. In addition, learning mitigates the payoff uncertainty, as is reflected in

τ̂2 > τ1, namely, agents better infer the state in the presence of learning.

We next compare the interim welfare of agents between the dynamic and the static

games, after agents’ signals are realized yet before the state is revealed. Results show

that agent i expects a higher payoff in the dynamic game when (i) she invests in the first

stage in the dynamic game (x1i > x∗1(> x∗st)), or (ii) she invests in period 2 (x1i ⩽ x∗1 and

x̂2i > x∗2) and her belief is driven upward after learning (x̂2i > x1i). The increased welfare

in case (i) originates from the higher expected total investment in the dynamic game,

and that in case (ii) is due to, by x̂2i > x1i, both higher state and higher investment

size.

Some computation gives the conclusion. For example, in period 1, the expected

payoff for agent i with x1i is 
x1i + a1(x1i), if x1i > x∗st

0, otherwise,

in the static game, and


x1i + a1(x1i) + a2(x1i), if x1i > x∗1

R1(x1i; (x
∗
1, x

∗
2)), if x1i < x∗1,

in the dynamic game. Therefore, i’s welfare increases if x1i > x∗1(> x∗st). Otherwise if

x1i < x∗1, the agent proceeds to period 2 and similar comparison can be made. Note that

there are inconclusive situations in which the direction of the welfare change depends
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on cost parameter δ versus information precision τ1 and τ2. For example, when i invests

in both games but learning drives her belief down (x∗2 < x̂2i < x∗st < x1i < x∗1), then

welfare comparison depends on x1i + a1(x1i) versus x̂2i + â2(x̂2i).

2.4.3 The Value of Delay

This subsection explores the option value of delay in isolation from the learning effects.

To this end, we consider the game in which agent i cannot observe x2i; one can think of

it as τ2 → 0, so that x2i is completely noisy and ignored.

Proposition 4. When x2i is not observable, the dynamic game is essentially static:

x∗2 ⩾ x∗1 = x∗st.

Proof. Suppose that agent i holds a constant belief x1i. Her expected payoff to investing

in period 2 is δE[r + â2 | x1i], so that if she will invest, she will only invest in period 1

due to δ < 1. That said, the agent in period 2 stays inactive for sure, so x∗2 can be any

number larger than x∗1. Since agents will not invest in period 2, the payoff to delaying

to period 2 is 0 and also â2 = a1, so x∗1 is such that E[r + a1|x∗1] = 0 and thus equals

x∗st. Q.E.D.

Intuitively, with no learning benefit but only cost from delaying, agents act (if at all)

as soon as possible, as is indicated by that the continuation payoff to delaying to period

2 is at most δE[r + â2 | x1i], a mere discounted current payoff. Consequently â2 = a1,

so that threshold x∗1 = x∗st and the strategic stage ends there.

2.5 Learning Efficiency

In this subsection, we pay attention to the learning mechanism in our paper, and contrast

it with learning through directly observing the state r. That is, instead of observing an

endogenous signal about past activity as in (2.3), if agent i is directly endowed with an

exogenous signal x2i such that

x2i = r +
1

√
τ2
ε2i, (2.11)
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will she infer the state r more accurately at t = 2? Surprisingly, the agent estimates

r more accurately when she learns though observing action, as long as her initially

information precision τ1 > 1. To see it, by Bayes’ rule, there exists a sufficient signal ˆ̂x2i

for agent i that summarizes her information about r contained in x1i and x2i, such that

ˆ̂x2i = r +
1√

τ1 + τ2
ε2i,

when learning is through directly observing r as in (2.11). Recall that the precision level

of agent i’s information by indirect learning is τ̂2 = τ1+ τ1τ2 at t = 2. Therefore, as long

as τ1 > 1, learning through observation of actions reveals more accurate information

about r.

Intuitively, learning efficiency of direct observation on r is fixed (=τ1 + τ2), while

its precision level depends on how accurate agents know about r (measured by τ1) and

how accurate the endogenous signal reflects their private information (measured by τ2),

when learning is through observing the past activity. The two channels are mutually

reinforced, as is reflected by that indirect learning precision in period 2 is τ ′2 = τ1τ2.

Therefore, indirect learning can be more accurate when one of the channels is accurate

enough, and we confirm the condition is τ1 > 1.

3. The N-Period Model

We now augment the game to N ∈ N periods and consider a general payoff structure. In

the game, the unit of agents decide the optimal timing of investment (if at all) between

t = 1, 2, · · · , N . The first two periods run identically as before, and notations ati, at, and

ât bear similar meanings. Agent i’s payoff in period t to action ati = 0 is 0, and her payoff

to ati = 1 is now summarized by an increasing and continuously differentiable function

U(r, âN ), namely, the return of investment increases in state r and aggregate investment

âN , indicating the coordination feature of the game. We assume that U(r, âN ) is concave

in each component and that limr→∞ U(r, âN ) = ∞ and limr→−∞ U(r, âN ) = −∞, for

any âN ∈ [0, 1]. By implication, when the state is extremely good (or bad), investing
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strictly dominates (or is strictly dominated) regardless of others’ actions.

We now describe the endogenous signals that agents receive in periods t = 3, · · · , N .

To maintain analyticity and similarity to Section 2, we let agent i observe, in t =

3, · · · , N ,

xti = Φ−1(āt−1) +
1√
τ t
εti, τt > 0, (3.1)

where āt−1 = (ât−1 − ât−2)/(1 − ât−2) is average action in t − 1 (note that ât−1 − ât−2

denotes the new investment at t− 1 and that 1− ât−2 the fraction of agents who reach

t − 1), and εti ∼ N (0, 1) is independent of all other variables. By LLN, the average

action equals the likelihood of investment for an individual agent; therefore, when agents

follow a threshold strategy profile denoted by (x1, x2, · · · , xN ) in period 1, 2, · · · , N ,

āt(r) = P (x̂ti > xt|r), where x̂ti is i’s expectation of r at time t. Note that the structure

is consistent with x2i defined in Section 2 since the average action ā1 = a1.

In each period t, agent i still chooses ati to maximize her conditional expected total

payoff E[
∑N

t=1 atiδ
t−1U(r, âN )|x1i, · · · , xti], where δ ∈ (0, 1).

3.1 Learning Under a Threshold Strategy

As in the two-period setup, for t = 3, · · · , N , xti can be transformed into an informa-

tionally equivalent (with respect to r) signal x′ti centered around r, when agents follow a

threshold strategy profile before time t. The definition of a threshold strategy profile is

similar to that in Section 2 and thus omitted. Agent i’s updated belief about r in period

t can be summarized by a unidimensional statistic x̂ti(x1i, x2i, · · · , xti) that is normally

distributed given r. We still let x̂1i = x′1i = x1i and τ̂1 = τ ′1 = τ1. It turns out that the

precisions of x′ti and x̂ti, denoted by τ ′t and τ̂t respectively, are such that τ ′t = τtτ̂t−1 and

τ̂t =
∑t

k=1 τ
′
k, for all t ⩾ 2. Lemma 2 summarizes the results.

Lemma 2. Suppose that agents follow a threshold strategy profile with respective thresh-

olds {x1, x2, · · · , xN}.

(i) Let x′ti ≡ xti/
√
τ̂t−1 + xt−1 for any i and t ⩾ 2; then x′ti is sufficient for xti with
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respect to r and

x′ti = r +
1√
τ ′t
εti.

(ii) x̂ti can be expressed by x̂ti(x
′
1i, · · · , x′ti) = (

∑t
k=1 τ

′
k)

−1(
∑t

k=1 τ
′
kx

′
ki) and particularly,

x̂ti = r +
1√
τ̂t
εti.

(iii) For any t, k ∈ {1, 2, · · · , N}, x̂tj is normally distributed given x̂ki (when i = j, let

t > k). And moreover, E[âN |x̂ki] increases in x̂ki.

Proof. The proofs are by indication on t. For (i), it holds at t = 2 by Section 2. Assume

inductively that it holds until t = N − 1. Then āN−1(r) = Φ(
√
τ̂N−1(r − xN−1)). So at

t = N ,

xNi =
√
τ̂N−1(r − xN−1) +

1
√
τN

εti.

Rearranging and comparing it with x′Ni and τ ′N give the conclusion. Then (ii) follows

by Bayes’ rule.

For (iii), when i ̸= j, the first part is similar to Lemma 1 (iii). When i = j and let

t > k, it follows

x̂ti|x̂ki
=

τ̂kx̂ki + τ ′k+1x
′
(k+1)i + · · · τ ′tx′ti

τ̂k + τ ′k+1 + · · · τ ′t
|x̂ki

,

and note that for n ∈ {k + 1, · · · , t}, x′ni|x̂ki
= r + εni/

√
τ ′n = x̂ki − εki/

√
τ̂k + εni/

√
τ ′n

is normally distributed given x̂ki.

The monotonicity of E[â2|x̂ki] holds by Lemma 1. Assume inductively that â′t−1(x̂ki) >

0 till t = N − 1. Then at t = N ,

d

dx̂ki
âN (x̂ki) =

d

dx̂ki
[âN−1 + (1− âN−1)āN ](x̂ki) = (1− āN )â′N−1 + (1− âN−1)ā

′
N > 0.

Q.E.D.

These results are extensions to those in Section 2 and follow the discussions there.
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3.2 Equilibrium Characterization

We still restrict to a monotone equilibrium and now solve for it. Provided that agents

follow a threshold strategy profile denoted (x1, x2, · · · , xN ), the expected continuation

payoff Rt(x̂ti; {xt}Nt=1) of agent i with x̂ti at time t is

Rt(x̂ti; {xt}Nt=1) = δ

∫ ∞

xt+1

E[U(r, âN ) | x̂(t+1)i]f(x̂(t+1)i | x̂ti)dx̂(t+1)i

+ δ

∫ xt+1

−∞
Rt+1(x̂(t+1)i; {xt}Nt=1)f(x̂(t+1)i | x̂ti)dx̂(t+1)i,

(3.2)

where f(x̂(t+1)i | x̂ti) is the conditional density of x̂(t+1)i on x̂ti, whose value can be

deduced by Lemma 2 (iii). Let RN (x̂Ni; {xt}Nt=1) ≡ 0 for any x̂Ni ∈ R. Note that we

have let Rt(·) represent the face value at time t, instead of being discounted to time 1.

The following proposition characterizes the unique monotone equilibrium.

Proposition 5. There exists a unique monotone equilibrium characterized by (x∗1, x
∗
2, · · · , x∗N )

in the N-period game, where x∗t is the unique solution to

E[U(r, âN )|x∗t ] = Rt(x
∗
t ; {x∗t }Nt=1), t = 1, 2, · · · , N. (3.3)

Similar to that in the two-period model, the proof starts from the last period N and

takes as given that all agents in all previous periods play some threshold strategy profile,

so as to characterize x∗N . Next proceeding the argument backward and in each period

1 ⩽ t ⩽ N−1, it is taken as given that agents play some threshold strategy profile before

t and act optimally after t, and sequentially obtains x∗N−1, x
∗
N−2, · · · , x∗1. Recall that in

checking that no agent wants to deviate at time t, the key is that x∗t+1, · · · , x∗N will not

be disturbed by an infinitesimally small agent’s deviation.

Proof. Fix an arbitrary threshold strategy profile (x1, x2, · · · , xN ) and an agent i. At

t = N , given that all agents expect i follow (x1, x2, · · · , xN ) in the game, the payoff of

agent i with belief x̂Ni to investing is

E[U(r, âN ) | x̂Ni; (x1, · · · , xN )], (3.4)
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which increases in x̂Ni. An threshold strategy x′N constitutes an equilibrium threshold

at t = N only if observing it makes agent i indifferent between investing or not, that is,

it is such that

E[U(r, âN ) | x′N ; (x1, · · · , xN−1, x
′
N )] = 0.

Similarly as in Proposition 2, the LHS is continuous, converges to infinity as x′N converges

to infinity, and strictly increases in x′N , so there exists a unique such x′N that solves the

above equation. And the increasing monotonicity of (3.4) verifies that the solution indeed

constitutes an equilibrium threshold at t = N . We denote it by x∗N (x1, x2, · · · , xN−1)

and shorthand it by x∗N .

Proceeding to t = N − 1, taken as given that all agents expect some agent i follow

(x1, x2, · · · , xN−1, x
∗
N ), the payoff of investing immediately to agent i with x̂(N−1)i is

E[U(r, âN ) | x̂(N−1)i; (x1, · · · , xN−1, x
∗
N )],

while delaying to the next period has an expectation value given by

RN−1(x̂(N−1)i; (x1, · · · , xN−1, x
∗
N )).

Let ∆N−1(x̂(N−1)i; (x1, · · · , xN−1, x
∗
N )) denote the payoff difference for i investing at

N − 1 or delaying, that is,

∆N−1(x̂(N−1)i; (x1, · · · , xN−1, xN∗)) ≡

E[U(r, âN ) | x̂(N−1)i; (x1, · · · , xN−1, x
∗
N )]−RN−1(x̂(N−1)i; (x1, · · · , xN−1, x

∗
N )).

An threshold strategy x′N−1 that constitutes an equilibrium threshold at t = N −1 must

be such that

∆N−1(x
′
N−1; (x1, · · · , xN−2, x

′
N−1, x

∗
N )) = 0. (3.5)

We demonstrate in Appendix the unique existence of such x′N−1 that solves (3.5), by

showing the LHS is strictly increasing in x′N−1 and converges to infinity as x′N−1 goes
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infinity. Also, we confirm that the solution indeed constitutes an equilibrium at t =

N − 1 by showing in Lemma 3 in Appendix that ∆N−1(x̂(N−1)i; (x1, · · · , xN−1, xN∗))

increases in x̂(N−1)i. Let the solution be denoted by x∗N−1(x1, x2, · · · , xN−2), or for

notational simplicity, by x∗N−1. By backward induction and similarly, we can characterize

x∗N−2, x
∗
N−3, · · · , x∗1. Q.E.D.

It is noteworthy that ∆t ̸= ∆k so that x∗t ̸= x∗k for t ̸= k ∈ {1, · · · , N}, indicating

agents respond to information changes continuously and that a positive fraction of them

move from not investing to investing every period. This observation is in contrast to the

dynamic regime change games (cf. Angeletos et al. (2007)) in whose model agents stay

inertia for a series of periods. The difference occurs because the payoff structure in this

paper is continuous in r and âN , while it is discrete in their regime change game.

However, if learning precisions {τt}t⩾2 are moderate (so x̂ti ≈ x̂(t+1)i) and the delay-

ing cost is not too severe (e.g., δ → 1 so Rt ≈ Rt+1), the number of new active agents

between periods should be small, since the differences between the continuations payoffs

evaluated at t and t+1 are small. So x∗t and x∗t+1 are near. In this situation, agents’ be-

haviors experience relative inertia in intermediate periods (also documented in Angeletos

et al. (2007)), and the dynamics of the game are now such that an active first stage fol-

lowed by a relative tranquil phase, till the last stage at which less optimistic agents also

invest, because the continuation value of delay in the last period drops discontinuously

to 0 from some positive number RN−1.

3.3 Equilibrium Analysis

In this section, we confirm our two-period results. The positive information value is easy

to obtain, since

δE[U(r, âN ) | x̂ti] = δ

∫ ∞

x∗
t+1

E[U(r, âN ) | x̂(t+1)i)]f(x̂(t+1)i | x̂ti)dx̂(t+1)i

+ δ

∫ x∗
t+1

−∞
E[U(r, âN ) | x̂(t+1)i)]︸ ︷︷ ︸

<Rt+1(x̂(t+1)i)

f(x̂(t+1)i | x̂ti)dx̂(t+1)i < Rt(x̂ti),
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by the definition of Rt(x̂ti). Perceiving the first term δE[U(r, âN ) | x̂ti] as the expected

payoff at time t + 1 in the absence of learning, the strict inequality then shows the

information is of positive value. Next, we verify (i) comparing to in the static game,

agents are more aggressive in the last stage (x∗N < x∗st) and less (x∗st < xt) in earlier

periods t < N , and (ii) the mere delay option has zero impact. The proofs are relegated

to Appendix.

Proposition 6. (i) x∗N < x∗st < x∗t , for t = 1, 2, · · · , N − 1.

(ii) When learning does not exist such that xti for any t ⩾ 2 is unobservable, the game

is essentially static: x∗1 = x∗st and agents stay inactive after period 1.

4. Discussions

4.1 Learning Efficiency

We now investigate the learning efficiency of observing actions, by comparing it with

learning through directly observing the state r. That is, if the signal structures of xti,

for t = 2, 3, · · · , N , are such that

xti = r +
1

√
τt
εti, (4.1)

will it improve the accuracy with which agents infer the state r, relative to the signal

structures (3.1) in the paper?

Proposition 7. If the initial information is precise τ1 > 1, observing the actions as in

(3.1) reveals more accurate information about the state r than directly observing r as in

(4.1), for all periods t ⩾ 2.

Recall that the information precision through observing actions is τ̂t =
∑

τ ′k. Let
ˆ̂τt

denote the precision level of learning through observing r. We conclude by comparing

them.

Proof. In period t ⩾ 2, when agents directly observe r as in (4.1), there exists a sufficient
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statistic, denoted ˆ̂xti, of x1i, x2i, · · · , xti with respect to r; by Bayes’ rule,

ˆ̂xti = r + εti/

√
ˆ̂τt, with ˆ̂τt = τ1 + τ2 + · · ·+ τN .

Therefore, τ̂t > ˆ̂τt for all t ⩾ 2, whenever τ1 > 1. Q.E.D.

4.2 Infinite Periods

Now we augment the game into infinite periods by setting N → ∞, and demonstrate that

the equilibrium properties are similar as when N is finite. Also, we find that agents fully

learn the true state in the limit. Defined analogously, a threshold strategy is denoted

by {xt}∞t=1 and continuation payoffs by {Rt}∞t=1. We restrict to that agents follow a

symmetric threshold strategy {xt}∞t=1 in the game, so we obtain the similar transformed

endogenous signals x′ti and cumulative signals x̂ti as in Section 3, since the learning

processes only depend on that agents play a threshold strategy.

The equilibrium concept we consider now is, however, an ε-symmetric monotone

equilibrium which consists of a symmetric threshold strategy, such that no agent can

expect to gain more than ε > 0 by deviating from the strategy, given others also follow

it. This enables us to implement the previous backward induction argument in charac-

terizing the equilibrium. In detail, for any ε > 0, due to δ ∈ (0, 1), there exists N∗
ε ∈ N

such that

Rt(x̂ti; {xt}t) < ε,

for every t ⩾ N∗
ε , signal x̂ti, and threshold strategy {xt}. Henceforth fix a random ε > 0

and consequently an N∗
ε . We claim there exists an ε-monotone equilibrium with an

identical equilibrium threshold after period N∗
ε . In what follows, we assume that agents

follow some identical threshold after N∗
ε to solve for an equilibrium, and then verify it is

indeed optimal for agents to follow such a constant threshold strategy after period N∗
ε .

For any t ⩾ N∗
ε , a threshold strategy x∗N∗

ε
constitutes an equilibrium strategy in
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period t only if it solves

E[U(r, â∞) | x∗N∗
ε
; (x1, · · · , x∗N∗

ε
, x∗N∗

ε
, · · · )] = 0,

where â∞ =
∑∞

t at ∈ (0, 1). Such x∗N∗
ε
exists; to see its monotonicity, as x∗N∗

ε
increases,

the state r increases and the expected fractions of investors in periods other than t

increase while the expected fraction of investors in period t remains constant (which

is 1/2). To check x∗N∗
ε
indeed is an ε-equilibrium strategy in period t, note that when

observing a signal higher than x∗N∗
ε
, deviating from investing (which gives a positive

payoff) to delaying (which gives Rt < ε) increases the expected payoff by at most ε;

when observing a signal lower than x∗N∗
ε
, deviating from not investing to investing clearly

lowers the expected payoff. Since t is arbitrary as long as larger than N∗
ε , we have shown

that for periods t = N∗
ε , N

∗
ε +1, · · · , it is optimal for agents to follow a constant threshold

strategy x∗N∗
ε
. Next, proceed to period N∗

ε −1 and take as given that all agents in periods

t ⩾ N∗
ε follow x∗N∗

ε
; the argument goes exactly the same as in Proposition 5, so we obtain

its unique equilibrium threshold x∗N∗
ε−1, and proceeding backward to obtain x∗N∗

ε−2,x
∗
N∗

ε−3

till x∗1.

Noteworthy, agents fully learn the actual state in the limit, because their information

precision
∑∞

t=1 τt → ∞. Such a property holds even when the equilibrium thresholds

are now constant after some certain periods. To see the reason, recall that equilibrium

thresholds start to be constantly x∗N∗
ε
from period N∗

ε ; then at t = N∗
ε , a positive fraction

of agents will move to invest because x∗N∗
ε−1 ̸= x∗N∗

ε
. This movement changes the total

investment size in period N∗
ε (from that in N∗

ε − 1) and thereby makes agents in period

t = N∗
ε + 1 learn new information and consequently, a further fraction of agents will

move to invest in period N∗
ε + 1, and so on. Essentially, the fully learning of the state

stems from that (i) there is no public learning and hence no crowding out effect as in

the herding literature, and (ii) pooling everyone’s information reveals the true state. Of

course, that observational precisions τt being exogenously given and bounded away from

zero is also a reason.
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4.3 Proper Priors and Public Learning

The analysis till now is conducted with agents holding an improper prior, and we claim

it is almost without loss of generality. Now we mention how to extend the model to a

proper prior game. Let agents hold a common prior as follows:

r ∼ N (α, 1/β),

where α ∈ R and β > 0. Still restrict to agents taking a threshold strategy profile;

agent i’s belief about r at each stage is summarized by a unidimensional statistic x̂ti,

by the same Gaussian updating process as in Section 3.1. Consequently, the equilibrium

characterization is analogous, so is the analysis part when there exists a unique monotone

equilibrium.

Moreover, consider the case where learning is from public observation of actions, so

the signal structure of period t ∈ {2, 3, · · · , N} becomes

xti = Φ−1(āt−1) +
1

√
τt
εt,

where εt ∼ N (0, 1) represents the market-wise noise, independent of all other variables.

Let x1i still be private.

We now elaborate on the potential arise of multiple equilibria in the presence of pub-

lic learning. To this end, it suffices to consider period 2 and show there exist multiple

optimal strategies. Results from Section 2 state that the informativeness of the public

signal about r (assuming an improper prior) is τ ′2 = τ1τ2, which converges to infinity as

τ1 → ∞. Therefore, the ratio of the precision of the public information to the square root

of that of private information, namely τ ′2/
√
τ1, diverges to ∞ as τ1 → ∞. Hence with

public learning, multiplicity in monotone equilibria arises even if private information is

infinitely diffused; see Morris and Shin (2004) and Angeletos and Werning (2006) for

proofs on why the ratio determines multiplicity. Noteworthy, the proof shows that there

are multiple optimal symmetric threshold strategies, to say nothing of optimal strategies
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in other forms. Intuitively, it is known that complete information coordination games

admit multiple equilibria; when the ratio is large, indicating public information domi-

nates private information, global games exhibit similarity to the complete information

environment and thus have multiple equilibria. Note that adding a common prior only

increases the ratio and thereby only contributes to the rise of multiplicity.

How about the learning property in the limit when learning is public? We have shown

that full learning of the true state obtains in the limit with only private observation,

and attributed it to the absence of the crowding-out effect from the public information.

However, even with public learning as in this subsection, full learning is plausible when

agents interact long enough, as long as they play a threshold strategy. To see it, the

learning mechanism stays the same as Section 3.1 when agents follow a threshold strategy,

so the information precision about the state is always increasing and due to observational

precisions τt are exogenous, agents in the limit learn the true state. This result crucially

depends on the continuous signal structures in this paper, which, shown generally by

Lee (1993), avoids the information cascade.

5. Conclusions

This paper constructs a dynamic coordination game with learning and delay oppor-

tunities factored in. It tractably analyzes agents’ optimal action timings, which are

determined though constantly trading off the information gain of delay against its op-

portunity costs. A unique monotone equilibrium is characterized and in it, learning is

shown to improve agents’ expected payoff, while the mere delay option impose no im-

pact on agents’ behaviors, relative to the one-shot game. Additionally, the dynamics of

agents’ behaviors are characterized and depending on the learning efficiency, the tranquil

intermediate periods documented in the literate obtain. Conditions of welfare enhance-

ment, and the contrast to learning by directly observing the state, are also given. The

analysis applies for all ranges of learning efficiencies, generalizing the existing studies

that usually focus on the limit accurate signals. We illustrate the paper in an invest-

33



ment context; the applicability to other coordination scenarios including currency crises

or bank runs is straightforward.

6. Appendix

Computations in Proposition 2 The monotonicity of G2(x
′
2; (x1, x

′
2)) in x′2 follows

from that, given x1,

∂

∂x′2
G2(x

′
2; (x1, x

′
2)) =

∂

∂x′2
{E[r|x′2] + P (x1j > x1|x′2) + (1− P (x1j > x1|x′2))P (x̂2j > x′2|x′2)︸ ︷︷ ︸

=1/2

}

=
∂

∂x′2

{
x′2 +

1

2
Φ(

√
·(x′2 − x1)) +

1

2

}
> 0.

For the boundary value of G2(x
′
2; (x1, x

′
2)), since E[r|x̂2i] = x̂2i and â2 ∈ [0, 1], when

x′2 → ∞,

G2(x
′
2; (x1, x

′
2)) = E[r + â2 | x′2; (x1, x′2)] → ∞.

Now we prove the monotonicity of ∆(x′1; (x
′
1, x

∗
2(x

′
1))) in x′1. Note that

∂

∂x′1
G1(x

′
1; (x

′
1, x

∗
2(x

′
1))) =

∂

∂x′1

E[r | x′1] + P (x1j > x′1|x′1)︸ ︷︷ ︸
=1/2

+(1− P (x1j > x′1|x′1))P (x̂2j > x∗2(x
′
1)|x′1)


=

∂

∂x′1

{
x′1 +

1

2
+

1

2
Φ(

√
·(x′1 − x∗2(x

′
1)))

}
> 0,

since dx∗2(x
′
1)/dx

′
1 ∈ [0, 1] by taking the total derivative of (2.7) with respect to x′1. Also,

∂

∂x′1
R1(x

′
1; (x

′
1, x

∗
2(x

′
1))) =δ

d

dx′1

∫ ∞

−∞
E[r + â2 | x̂2i]f(x̂2i | x′1)1x̂2i>x∗

2(x
′
1)
dx̂2i

⩽δ
d

dx′1

∫ ∞

−∞
E[r + â2 | x̂2i]︸ ︷︷ ︸
=E[r+â2|x̂2i,x′

1]

f(x̂2i | x′1)dx̂2i

=δ
d

dx′1
E[r + â2 | x′1],

(6.1)

where the first equation follows from R′
1s definition with 1 being the indicator function,
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the inequality is due to 1 ∈ [0, 1]. Therefore,

∂

∂x′1
∆(x′1; (x

′
1, x

∗
2(x

′
1))) ⩾ (1− δ)

∂

∂x′1
G1(x

′
1; (x

′
1, x

∗
2(x

′
1))) > 0.

Next for the boundary value, since R1 ⩾ 0, we have ∆(x′1; (x
′
1, x

∗
2(x

′
1))) → −∞ as

x′1 → −∞. On the other hand, as x′1 → ∞, it is similar as in (6.1)) to obtain

R1(x
′
1; (x

′
1, x

∗
2(x

′
1))) ⩽ δE[r + â2 | x′1; (x′1;x∗2(x′1))], so we also have

∆(x′1; (x
′
1, x

∗
2(x

′
1))) ⩾ (1− δ)E[r + â2 | x′1; (x′1;x∗2(x′1))] → ∞.

Existence of a Unique Solution to (3.5) For a pedagogical purpose, we verify the

general case by showing

∆t(x
′
t; (x1, · · · , x′t, x∗t+1, · · · , x∗N )) ≡

E[U(r, âN ) | x′t; (x1, · · · , x′t, · · · , x∗N )]−Rt(x
′
t; (x1, · · · , x′t, · · · , x∗N )) = 0

admits a unique solution x′t. First recall by Lemma 2 we have E[U(r, âN )|x̂ti] strictly

increasing in x̂ti, given any threshold strategy profile the population plays. Hence in

checking the monotonicity of E[U(r, âN )|x′t; (x1, · · · , x′t, · · · , x∗N )] in x′t, if we can show

that the investment at time t will not decrease, then by the result of Lemma 2, the

aggregate investment increases in x′t. Indeed, at time t, the fraction of agents who

invest (in the eyes of the agent observing x′t) equals P (x̂tj > x′t|x′t) = 1/2, namely, it is

invariant. So we have E[U(r, âN ) | x′t] is strictly increasing in x′t. Next we show that

∂Rt(x
′
t)/∂x

′
t < δE[U(r, âN )|x′t] by backward induction.

For t = N−1, it is the same as in the two-period model to obtain that ∂RN−1(x
′
N−1)/∂x

′
N−1 <

δE[r+ âN−1|x′N−1]. Assume backward inductively that ∂Rk(x
′
k)/∂x

′
k < δE[U(r, âN )|x′k]

for all k = N − 2, N − 3, · · · , t+ 1, so at time t,

∂

∂x′t

∫ x∗
t+1

−∞
Rt+1(x̂(t+1)i;x1, · · · , x′t, x∗t+1, · · · , x∗N )f(x̂(t+1)i | x′t)dx̂(t+1)i

⩽δ
∂

∂x′t

∫ x∗
t+1

−∞
E[r + ât | x̂(t+1)i]f(x̂(t+1)i | x′t)dx̂(t+1)i,
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by noting that x∗t+1 increases in x′t due to strategic complementarity (a higher signal

to an individual does not affect x∗t+1, but a higher threshold means fewer agents invest,

which causes agents less willing to invest and thus x∗t+1 decreases). Therefore,

∂

∂x′1
Rt(x

′
t;x1, · · · , x′t, x∗t+1, · · · , x∗N ) ⩽δ

d

dx′t

∫ ∞

x∗
t+1

E[r + ât | x̂(t+1)i]f(x̂(t+1)i | x′t)dx̂(t+1)i

+δ
∂

∂x′t

∫ x∗
t+1

−∞
E[r + ât | x̂(t+1)i]f(x̂(t+1)i | x′t)dx̂(t+1)i

=δ
∂

∂x′t

∫ ∞

−∞
E[r + ât | x̂(t+1)i]f(x̂(t+1)i | x′t)dx̂(t+1)i

=δ
∂

∂x′t
E[r + ât | x′t].

Hence we conclude that

∂

∂x′t
∆t(x

′
t; (x1, · · · , x′t, x∗t+1, · · · , x∗N )) ⩾ (1− δ)

∂

∂x′t
E[U(r, âN )|x′t] > 0.

Computation in Proposition 5 The following lemma establishes the monotonicity of

∆t(x̂ti; (x1, · · · , xN )) in agent i’s current belief x̂ti, given any (x1, · · · , xN ) and t.

Lemma 3. Let (x1, x2, · · · , xN ) be an arbitrary threshold strategy profile. The expected

continuation payoff Rt(x̂ti;x1, x2, · · · , xN ) for agent i with x̂ti at time t satisfies

d

dx̂ti
Rt(x̂ti;x1, x2, · · · , xN ) < δt

d

dx̂ti
E[U(r, âN ) | x̂ti],

for t = 1, 2, · · · , N − 1 and any x̂ti.

Proof. Note that agents can at most invest once, so it suffices to show that the derivative

of each integrand in Rt(x̂ti; {xt}t) satisfies the property stated in the Lemma. For
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example for its first term concerning t+ 1,

d

dx̂ti
δt+1

∫ ∞

−∞
E[U(r, âN ) | x̂(t+1)i]f(x̂(t+1)i | x̂ti)1x̂(t+1)i⩾xt+1dx̂(t+1)i

⩽
d

dx̂ti
δt+1

∫ ∞

−∞
E[U(r, âN ) | x̂(t+1)i]f(x̂(t+1)i | x̂ti)dx̂(t+1)i

=
d

dx̂ti
δt+1E[U(r, âN ) | x̂ti].

Therefore, R′
t(x̂ti;x1, · · · , xN ) ⩽ max{δt+1(E[U(r, âN ) | x̂ti])′, · · · , δN (E[U(r, âN ) | x̂ti])′} <

δt(E[U(r, âN ) | x̂ti])′. Q.E.D.

Proof of Proposition 6 For (i), recall

E[U(r, âN )|x∗N ] = 0,

E[U(r, a1)|x∗st] = 0.

Since âN (x∗N ) > a1(x
∗
N ) and U(x, âN ) increase in both elements, by contradiction it can

be proved that x∗N < x∗st and âN (x̂∗N ) > a1(x
∗
st). The second half is as in the two-period

game. That is, if δ = 0, then Rt = 0 and thus x∗t = x∗st for all t = 1, 2, · · · , N . Since

Rt increases in δ, when δ > 0, we must have x∗t also increase to satisfy the equilibrium

condition of period t.

For (ii), it suffices to confirm that Rt(x
∗
t ; {x∗t }t) = 0 at every t = 1, 2, · · · , N when

learning lacks. Fix an arbitrary t and x1i. Recall that

Rt(x1i; {x∗t }t) = δ

∫ ∞

x∗
t+1

E[U(r, âN ) | x̂(t+1)i]f(x̂(t+1)i | x1i)dx̂(t+1)i

+ δ2
∫ ∞

x∗
t+2

∫ x∗
t+1

−∞
E[U(r, âN ) | x̂(t+2)i]f(x̂(t+2)i, x̂(t+1)i | x1i)dx̂(t+1)idx̂(t+2)i

+ · · ·

+ δN−t

∫ ∞

x∗
N

∫ x∗
N−1

−∞
· · ·

∫ x∗
t+1

−∞
E[U(r, âN ) | x̂Ni]f(x̂Ni, · · · , x̂(t+1)i | x1i)dx̂(t+1)i · · · dx̂Ni.

Since agent i holds constant belief x1i, each integrant is mutually exclusive; therefore,

37



only one integrant remains, so

Rt(x1i; {x∗t }t) = δkE[U(r, âN ) | x1i],

for some k ∈ {1, 2, · · · , N − t}. To pin down x∗t , it is required that

E[U(r, âN )|x∗t ] = Rt(x
∗
t ; {x∗t }t) = δkE[U(r, âN ) | x∗t ].

If E[U(r, âN )|x∗t ] ̸= 0, the two sides can never be equal, so E[U(r, âN )|x∗t ] = 0.
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