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Abstract

This paper examines the effect of initial values and small-sample properties in sequential unit
root tests of the first-order autoregressive (AR(1)) process with a coefficient expressed by a local
parameter. Adopting a stopping rule based on observed Fisher information defined by Lai and
Siegmund (1983), we use the sequential least squares estimator (LSE) of the local parameter
as the test statistic. The sequential LSE is represented as a time-changed Brownian motion
with drift. The stopping time is written as the integral of the reciprocal of twice of a Bessel
process with drift generated by the time-changed Brownian motion. The time change is applied
to the joint density and joint Laplace transform derived from the Bessel bridge of the squared
Bessel process by Pitman and Yor (1982), by which we derive the limiting joint density and
joint Laplace transform for the sequential LSE and stopping time. The joint Laplace transform
is needed to calculate joint moments because the joint density oscillates wildly as the value of
the stopping time approaches zero. Moreover, this paper also earns the exact distribution of
stopping time by Imhof’s formula for both normally distributed and fixed initial values. When
the autoregressive coefficient is less than 1, the question arises as to whether the local-to-unity or
the strong stationary model should be used. We make the decision by comparing joint moments
for respective models with those calculated from the exact distribution or simulations.
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1 Introduction
The unit root test is a basic problem in economics, and a quicker test procedure will save the
cost of doing the test. Anscombe (1953) first proposed the concept of sequential analysis. This
is an approach in which statistical inferences are made while data are acquired sequentially, and
significant decisions are made when sufficient information has been collected. After his study, some
researchers considered the sequential estimation of autoregressive time series. Lai and Siegmund
(1983) introduced a stopping rule based on the observed Fisher information, and they also showed
the limiting approximation of the stopping time. Nagai, Nishiyama, and Hitomi (2018) considered
a unit root test against a local-to-unity hypothesis. Using a 3/2 dimensional Bessel process, they
obtained the joint approximation of the sequential autoregressive coefficient estimator and stopping
time. For stationary AR(1) processes, Hitomi et al. (2021) demonstrated the asymptotic joint
normality of the stopping time and autoregressive coefficient estimator.

We consider the sequential unit root test for AR(1) process with an initial value x0 and error
terms εn;

xn = βxn−1 + εn (n = 1, 2, ...)

In the large sample theory developed in this paper, ε1, ε2, · · · are assumed to be strict stationary and
ergodic martingale differences with variance σ2 <∞. On the other hand, in the small-sample strict
distribution theory, we make a stronger assumption that the error terms consist of independent nor-
mal random variables. For both theories, the influence of initial values is investigated. The limiting
approximation and exact distribution of stopping time are compared by numerical computation.

2 Asymptotic Property of Test Statistic and Stopping Time

Based on the observed Fisher information IN =
∑N
n=1 x

2
n−1/σ

2, Lai and Siegmund(1983) defined
a stopping time by τc = inf {N : IN ≥ c}. They also proved τc/

√
c converges in distribution to U1

under β = 1;

τc/
√
c⇒ U1 ≡ inf

{
t ≥ 0 :

∫ t

0

W 2ds = 1

}
.

where ⇒ stands for weak convergence and W is a Brownian motion.
While β is close to 1, one can localize the regression coefficient with a local parameter δ and a

localizing number c;

β = 1 +
δ√
c
.

We consider a unit root test with respect to the null and alternative hypotheses;

H0 : δ = 0 vs H1 : δ < 0.

We make the following asymptotic assumption to investigate the effect of the initial value x0 in the
AR(1) process (1). Letting X0 be an L2 random variable, we assume that as c→∞,

x0/c
1/4 p→ X0

where p→ represents convergence in probability. Of course, when considering small-sample theory
and simulations, we set X0 = x0/c

1/4 since c is fixed at a constant value.
Following the argument of Nagai, Nishiyama, and Hitomi (2018) with this assumption, xb√ctc/c1/4

converges in distribution to an Ornstein-Uhlenbeck process Xt with coefficient δ (OU(δ)) and initial
value X0; as c→∞,

xb
√
ctc/c

1/4 ⇒ Xt = X0 + δ

∫ t

0

Xsds+ σWt (1)

where bac represents the integer part of real and W is a Brownian motion. In most cases, including
this one, weak convergences will be carried out on D[0,∞), the space of right continuous functions
with left limits (càdlàg).
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Nagai, Nishiyama, and Hitomi (2018) proved

τc/
√
c⇒ U1 ≡ inf

{
t ≥ 0 :

∫ t

0

X2
s/σ

2ds = 1

}
.

They also gave the limiting approximation of the sequential LSE for the local parameter

δ̂τc =
√
c
(
β̂τc − 1

)
=

1√
c

∑τc
n=1 xn−1∆xn

1
c

∑τc
n=1 x

2
n−1

⇒
∫ U1

0
XsdXs∫ U1

0
X2
sds

= δ +

∫ U1

0

Xs/σdWs ≡ δ̂U1

Let Mt ≡
∫ t

0
Xs/σdWs, then its quadratic variation is 〈M〉t =

∫ t
0
X2
s/σ

2ds. Extend the random
variable U1 into a stochastic process Uv by defining

Uv ≡ inf {t ≥ 0 : 〈M〉t = v} .

Since 〈M〉t is a continuous increasing process, the definition of Uv implies v =
∫ Uv

0
X2
s/σ

2ds. By

the inverse function theorem, dUvdv = 1
X2
Uv

. Denote ρv ≡
X2
Uv

2σ2 , then Uv =
∫ v

0
1

2ρs
ds. According to the

Dambis-Dubins-Schwarz (DDS) theorem, Bv = MUv is called a time-changed Brownian motion or
DDS Brownian motion. See Revuz and Yor (1999) for time change. By applying the Ito’s lemma to
the OU process, we have

X2
t = X2

0 + 2σ

∫ t

0

XsdWs + 2δ

∫ t

0

X2
sds+ σ2t. (2)

Then, we can see that ρv = X2
Uv
/2σ2 is a 3/2-dimensional Bessel process with drift δ. In general,

a k-dimensional Bessel process with constant drift for k ≥ 0 is defined as a process ρv satisfying the
following stochastic integral equation (see Linetsky (2004)).

ρv = ρ0 +Bv + δv +
k − 1

2

∫ v

0

1

ρs
ds (3)

where Bv is a Brownian motion. Dividing (2) by 2σ2 and substituting t with Uv yields

ρv =
X2
Uv

2σ2
=
X2

0

2σ2
+

∫ Uv

0

Xs

σ
dWs +

∫ Uv

0

X2
s

σ2
ds+

Uv
2
.

= ρ0 +Bv + δv +
1

4

∫ v

0

1

ρs
ds (4)

In conclusion,
(
δ̂τc ,

τc√
c

)
⇒ (δ +B1, U1). The joint probability density function (PDF) of B1

and U1 can be computed through Bessel process in the following subsections. Then the marginal
distribution of U1 can also be derived.

2.1 Joint Density of Bessel Process and Stopping Time with zero initial
value under H0

Let P 0 and E0 be the probability and the expectation under H0, and qt be a k-dimensional (k > 0)
squared Bessel process under P 0 defined as the following stochastic equation with initial value x.

qt = x+ 2

∫ t

0

√
qsdWs + kt (5)
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where W is a Brownian motion. The transition density of qt is

fq (x, y|t) =
1

2t

(y
x

)ν/2
exp

(
−x+ y

2t

)
Iν

(√
xy

t

)
(6)

where ν = k/2− 1 is the index of qt and Iν is the modified Bessel function for ν ≥ −1 and z > 0

Iν(z) =

∞∑
k=0

(z/2)2k

k!Γ (ν + k + 1)
.

See Revuz and Yor (1999) for details on squared Bessel processes.
For a k-dimensional squared Bessel process qt with initial value x, Pitman and Yor (1982) derived

a conditional Laplace transform of
∫ t

0
qsds given qt in the following form, named Bessel bridge.

E0

[
exp

(
−γ
∫ t

0

qsds

)
|qt = y

]

=
t
√

2γ

sinh(t
√

2γ)
exp

{
x+ y

2t
(1− t

√
2γ coth(t

√
2γ))

} Iν

( √
xy
√

2γ

sinh(t
√

2γ)

)
Iν

(√
xy

t

) . (7)

We obtain the joint PDF of qt and
∫ t

0
qsds from the above Bessel bridge. See Borodin & Selminen

(2002) for functions isv,esv, sv and Dµ (x).

Lemma 1. Let fqt,
∫ t
0
qsds

(y, v) be the joint PDF of qt and
∫ t

0
qsds for a k-dimensional squared Bessel

process with initial value x defined in (5). Then,

fqt,
∫ t
0
qsds

(y, v) = isv

(
ν, t, 0,

x+ y

2
,

√
xy

2

)
1

2

(y
x

) ν
2

(8)

where ν = k/2− 1 is the index of qt ,and for ν ≥ −1, t+ νt+ r + z > 0, t > 0

isv(ν, t, r, z, w) : = L−1
γ

( √
2γ

sinh(t
√

2γ)
exp

(
−r
√

2γ − z
√

2γ coth(t
√

2γ)
)
Iν

(
2w
√

2γ

sinh(t
√

2γ)

))
=

∞∑
l=0

wν+2l

Γ(ν + l + 1)l!
esv(1 + ν + 2l, 1 + ν + 2l, t, r, z)

esv (µ, ν, t, r, z) : = L−1
γ

(
(2γ)

µ
2

sinhν(t
√

2γ)
exp

(
−r
√

2γ − z
√

2γ coth(t
√

2γ)
))

=

∞∑
k=0

(−z)k

k!
sv (µ+ k, ν + k, t, r + z + kt)

sv (µ, ν, t, z) : = L−1
γ

(
(2γ)µ/2

sinhν(t
√

2γ)
e−z
√

2γ

)
= 2ν

∞∑
k=0

Γ (ν + k)e−(νt+z+2kt)2/4y

√
2πv1+µ/2Γ (ν)k!

Dµ+1

(
νt+ z + 2kt√

v

)
, ν ≥ 0, νt+ z > 0.

Dµ (x) is the Parabolic cylinder function.
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Proof. Multiplying the Bessel bridge in (7) by the right-side of (6), one obtains∫ ∞
0

exp (−γv) fqt,
∫ t
0
qsds

(y, v) dv

=

√
2γ

sinh(t
√

2γ)
exp

{
−x+ y

2

√
2γ coth(t

√
2γ))

}
Iν

( √
xy
√

2γ

sinh(t
√

2γ)

)
1

2

(y
x

) ν
2

.

An inverse Laplace transform yields the expression of fqt,
∫ t
0
qsds

(y, v) as in (8).

The OU process Xt under H0 : δ = 0 can be expressed as Xt = X0 + σWt, and it is well-known
that qt = X2

t /σ
2 can be identified with one-dimensional squared Bessel process (see Revuz and

Yor (1999)). In this case, as shown in (4), ρv = X2
Uv
/2σ2 is a 3/2-dimensional Bessel process and

Uv =
∫ v

0
1

2ρs
ds.

Theorem 2. The joint densities of (2ρv, Uv) and
(
qt,
∫ t

0
qsds

)
have the following relationship.

f2ρv,Uv (y, t) = fqt,
∫ t
0
qsds

(y, v) · y (9)

Proof. Let u = Uv then v =
∫ u

0
qsds and dv = qudu. In the Laplace transform of the joint CDF for

2ρv and Uv, we change the integral variable from v to u.

∫ ∞
0

e−γvP 0 (2ρv 5 y, Uv 5 t) dv = E0

[∫ ∞
0

e−γv1{2ρv5y,Uv5t}dv
]

= E0

[∫ ∞
0

e−γ
∫ u
0
qsds1{qs5y,u5t}qudu

]
=

∫ t

0

E0
[
e−γ

∫ u
0
qsds1{qu5y}qu

]
du

Taking the derivative with respect to t, and expressing the expectation in the integral form,

∫ ∞
0

e−γv
∂

∂t
P 0 (2ρv 5 y, Uv 5 t) dv = E0

[
e−γ

∫ t
0
qsds1{qt5y}qt

]
=

∫ y

0

∫ ∞
0

e−γvfqt,
∫ t
0
qsds

(z, v) zdvdz

Next, taking the derivative with respect to y ,∫ ∞
0

e−γv
∂2

∂t∂y
P 0 (2ρv 5 y, Uv 5 t) dv =

∫ ∞
0

e−γvfqt,
∫ t
0
qsds

(y, v) ydv

The uniqueness of the inverse Laplace transform gives (9)

Combining Lemma 1 and Theorem 2 together, the joint PDF of 2ρv and Uv under H0 : δ = 0
can be written as

f2ρv,Uv (y, t) = fqt,
∫ t
0
qsds

(y, v) y

= isv

(
−1

2
, t, 0,

x+ y

2
,

√
xy

2

)
1

2

(y
x

)−1/4

y

where x is the initial value of qt = X2
t /σ

2.
Since 2ρv = X2

0/σ
2 + 2Bv + Uv, we can obtain the joint PDF fBv,Uv (z, t) of Bv and Uv by

variable transformation. For (z, t) ∈ R× [0,∞) satisfying z ≥ −t/2−X2
0/2σ

2,

fBv,Uv (z, t) = 2f2ρv,Uv

(
X2

0/σ
2 + 2z + t, t

)
·
(
X2

0/σ
2 + 2z + t

)
.
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2.2 Joint Density under Alternative via Girsanov Transformation
The joint PDF of Bv and Uv under the alternative hypothesis can be obtained by a Girsanov
transformation. Denoting the probability measure of the null hypothesis as P and that of the
alternative hypothesis as P δ, the Bessel process ρv differs in drift for these two measures.

P δ : ρ1 = ρ0 +B1 + δ +
1

4

∫ 1

0

1

ρs
ds = ρ0 + δ̂U1 + U1/2

Under the Girsanov’s transformation, the Radon–Nikodym derivative is

dP δ

dP 0
|G1=FU1

= exp

(∫ 1

0

δdBs −
1

2

∫ 1

0

δ2ds

)
= exp

(
δδ̂U1

− δ2

2

)
Therefore, under the alternative hypothesis, i.e. δ 6= 0, the joint PDF of Bv and Uv is

fδ
δ̂U1

,U1
(z, t) = eδz−

δ2

2 fB1,U1
(z, t)

2.3 Joint Density with Zero Initial Value under H0

Since the OU process Xt with X0 = 0 under H0 can be written simply as Xt = σW , letting
Mt ≡

∫ t
0
WsdWs, its quadratic variation is 〈M〉t =

∫ t
0
W 2
s ds. Define Uv ≡ inf {t ≥ 0 : 〈M〉t = v},

then τc/
√
c converges in distribution to U1. Since 〈M〉t is a continuous increasing process, the

definition of Uv implies v =
∫ Uv

0
W 2
s ds. By the inverse function theorem, dUvdv = 1

2ρv
where ρv ≡

W 2
Uv

2 ,
then Uv =

∫ v
0

1
2ρs

ds. According to the Dambis-Dubins-Schwarz theorem, Bv = MUv is a time-
changed Brownian motion, which makes ρv to be a 3/2-dimensional Bessel process.

The distribution of W 2
t and

∫ t
0
W 2
s ds is

fW 2
t ,

∫ t
0
W 2
s ds

(y, v) =
y−

1
2

√
2π

esv

(
1

2
,

1

2
, t, 0,

y

2

)
By the theorem 2, we get

f2ρv,Uv (y, t) = y × fW 2
t ,

∫ t
0
W 2
s ds

(y, v)

=
y

1
2

√
2π

esv

(
1

2
,

1

2
, t, 0,

y

2

)
Since ρv = Bv + Uv

2 while ρ0 = 0, the joint PDF of (Bv, Uv) is

fBv,Uv (z, t) = 2f2ρv,Uv (2z + t, t)

= 2

√
2z + t

2π
esv

(
1

2
,

1

2
, t, 0,

2z + t

2

)
Let v = 1, then by a Girsanov transformation, under the alternative hypothesis, i.e. δ 6= 0,

fδ
δ̂U1

,U1
(z, t) = eδz−

δ2

2 fB1,U1
(z, t)

Hence, the distribution of U δ1 is its marginal distribution, which can be computed by integrating
fδ
δ̂U1

,U1
with respect to z.

fUδ1 (z, t) =

∫ ∞
−∞

fBδ1 ,Uδ1 (z, t) dz

6



3 Exact Distribution of Stopping Time

3.1 Normally Distributed Initial Value
For a stationary AR(1) process, i.e. β < 1, we assume ε1, ε2, · · · are normal random variables
with mean 0 and variance σ2, and x0 ∼ N

(
0, σ2/

(
1− β2

))
. Put x = (x0, x1, · · · , xN )

′ and ε =

(ε0, ε1, · · · , εN )
′ with ε0 =

√
1− β2x0. Using the recursion formula, we have the relation x = Aε

where

A =



1√
1−β2

β√
1−β2

1 O

β2√
1−β2

β 1

...
...

...
. . .

βN√
1−β2

βN−1 βN−2 · · · 1


Substituting N with b

√
ctc − 1, we express the distribution of τc/

√
c in a matrix form.

P

(
τc√
c
≤ t
)

= P

 1

σ2

b
√
ctc∑

n=1

x2
n−1 ≥ c


= P

(
x′x

σ2
≥ c
)

= P

(
ε′A′Aε

σ2
≥ c
)

Following Imhof (1961), we can compute the exact distribution of stopping time, which is

P

(
τc√
c
≤ t
)

=
1

2
+

1

π

∫ ∞
0

sin

{
1
2

b
√
ctc∑

r=1
[arctan (λru)]− 1

2cu

}

u
b
√
ctc∏

r=1
(1 + λ2

ru
2)

1
4

du

where λr are the eigenvalues of A′A.

3.2 Constant Initial Value
Put x = (x1, · · · , xN−1)

′ , µ =
(
βx0, β

2x0, · · · , βN−1x0

)′and ε = (ε1, · · · , εN−1)
′. Using the recur-

sion formula, we have the relation x = Aε+ µ where

A =


1
β 1 O
β2 β 1
...

...
...

. . .
βN−2 βN−3 βN−4 · · · 1


The real symmetric matrixA′A can be decomposed intoA′A = P ′ΛP , where Λ = diag (λ1, λ2, · · · , λN−1)

is composed by the eigenvalues of A′A and P is composed of their respective orthogonal eigenvectors,
then we have
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N−1∑
n=1

x2
n

σ2
=
x′x

σ2

=
(Aε+ µ)

′
(Aε+ µ)

σ2

=

(
ε+A−1µ

)′
A′A

(
ε+A−1µ

)
σ2

=

(
Pε

σ
+
PA−1µ

σ

)′
Λ

(
Pε

σ
+
PA−1µ

σ

)
Substituting N with b

√
ctc, we can express the exact distribution of τc/

√
c through matrices and

then apply Imhof’s formula.

P

(
τc√
c
≤ t
)

= P


b
√
ctc∑

n=1
x2
n−1

σ2
≥ c


= P

(
x′x

σ2
≥ c− x2

0

σ2

)
=

1

2
+

1

π

∫ ∞
0

sin {θ (u)}
uρ (u)

du

where

θ (u) =
1

2

b
√
ctc−1∑
r=1

[
arctan (λru) +

δ2
rλru

1 + λ2
ru

2

]
− 1

2

(
c− x2

0

σ2

)
u

ρ (u) =

b
√
ctc−1∏
r=1

(
1 + λ2

ru
2
) 1

4 exp

b√ctc−1∑
r=1

(δrλru)
2

2 (1 + λ2
ru

2)


and δr is the rht element of P

′A−1µ
σ .

4 Comparison of Local and Stationary Parameter in Sequen-
tial Analysis

This part compares the local and stationary parameters for the AR(1) process in sequential analysis.
For the autoregressive coefficient β, the local and stationary estimators are both normally distributed.
Thus, our primary targets are joint moments of the stopping time and autoregressive coefficient.

4.1 Asymptotic Property of Stationary Parameter and Stopping Time
Hitomi, et al.(2021) proved the asymptotic joint property of the sequential estimator and the stopping
time for AR(1) process. Their main conclusions are

√
c

(
β̂τ1c − β

τ1c
c −

(
1− β2

) )⇒ N

((
0
0

)
,

(
1 −2β
−2β 4β2 +

(
1− β2

)
ω2

))
√
c

(
β̂τ2c − β

τ2c
c −

(
1− β2

) )⇒ N

((
0
0

)
,

(
1 −2β
−2β 4β2

))
Here τ1c stands for the case that the variance of error term σ2 is known, and τ2c stands for the

case of unknown σ2, which is also estimated sequentially.
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4.2 Joint Moments of Local Parameter δ and Stopping Time

The local parameter δ̂τc =
√
c
(
β̂τc − 1

)
is used for the sequential analysis. Nagai et al.(2018) showed(

δ̂τc ,
τc√
c

)
⇒ (δ +B1, U1)

Although the joint PDF of B1 and U1 has already been obtained, it is highly oscillatory in
the neighborhood of t = 0. Thus the joint moments can not be computed through the joint PDF
directly. Therefore, this section computes the modified joint moment generating function of 2ρv and
Uv, which is derived through the Bessel bridge and Taylor expansion.

While qt ∼ BESQdx, section 2.1 has shown that the multiplication of Bessel bridge and the PDF
of qt is a Laplace transform of fqt,

∫ t
0
qsds

(y, v) w.r.t v. Recall that its explicit expression is

Lγ
{
fqt,

∫ t
0
qsds

(y, v)
}

=

√
2γ

2 sinh(
√

2γt)
exp

(
−x+ y

2

√
2γ coth(t

√
2γ)

)
Iν

( √
xy
√

2γ

sinh(t
√

2γ)

)(y
x

) ν
2

(10)

By taking the Laplace transform of 10 w.r.t y, we can compute the joint moment generating
function of qt and

∫ t
0
qsds.

E0
x

[
e−αqt−γ

∫ t
0
qsds

]
=

∫ ∞
0

∫ ∞
0

e−αy−γvfqt,
∫ t
0
qsds

(y, v) dvdy

=

∫ ∞
0

e−αyLγ
{
fqt,

∫ t
0
qsds

(y, v)
}
dy

=2
ν+1
2 γ

ν+1
2 exp

(
−
√

2γαx coth
(√

2γt
)

+ γx

2α+
√

2γ coth
(√

2γt
) )×

(
2α sinh

(√
2γt
)

+
√

2γ cosh
(√

2γt
))−ν−1

Set u (v) = Uv =
∫ v

0
1

2ρs
ds, then du

dv = 1
2ρv

. Since ρv = qu/2 and u (0) = 0, by the inverse function
theorem we have v =

∫ u
0
qsds. In the Laplace transform of the modified joint moment generating

function of 2ρv and Uv, changing the integral variable from v to u via the relation du = 1/ (2ρv) dv,
then substituting 2ρv and v with qu and

∫ u
0
qsds respectively, we have

∫ ∞
0

e−γvE0
x

[
e−2αρv−βUv

2ρv

]
dv = E0

x

[∫ ∞
0

e−βUve−2αρv−γv 1

2ρv
dv

]
= E0

x

[∫ ∞
0

e−βue−αqu−γ
∫ u
0
qsdsdu

]
=

∫ ∞
0

e−βuE0
x

[
e−αqu−γ

∫ u
0
qsds

]
du (11)

Changing the integral variable from u to s by the relation s = exp
(
−2
√

2γu
)
and taking its

Taylor series expansion w.r.t. x at 0, we have

∫ ∞
0

e−γvE0
x

[
e−2αρv−βUv

2ρv

]
dv

=

∞∑
n=0

xn

n!

∫ 1

0

2
3ν
2 (−1)nγν/2s

β

2
√

2
√
γ

+ ν−1
2
(
γ +
√

2γα(s+ 1)− sγ
)n(√

2γ(s+ 1)− 2α(s− 1)
)ν+n+1 ds (12)

9



The last equation converts the trigonometric functions to complex exponential functions in the
Taylor series. Applying the Taylor’s theorem for the multivariate function1, the equation (12) can
be written as

∫ ∞
0

e−γvE0
x

[
e−2αρv−βUv

2ρv

]
dv =

∞∑
n=0

∞∑
m=0

m∑
j=0

xnαjβm−j

n!m!

(
m
j

)∫ 1

0

K(γ, s, ν, n, j,m− j)ds

where2,3

K(γ, s, ν, n, j, l) =(−1)n (1 + s)
−1−j−ν−n

(1− s)j+ns
ν−1
2 logl(s)(−n− ν − 1)(j)×

2
1
2 (j−3l−n−1)+ν

2F1

(
−j,−n;−j − n− ν;

(s+ 1)2

(s− 1)2

)
γ

1
2 (−l−1−j+n)

Finally, by inverting this Laplace transform w.r.t. γ, we obtain the explicit expression of the
modified moment generating function, which is

E0
x

[
e−2αρv−βUv

2ρv

]
=

∞∑
n=0

∞∑
m=0

m∑
j=0

xnαjβm−j

n!m!

(
m
j

)∫ 1

0

J(v, s, ν, n, j,m− j)ds

where

J(v, s, ν, n, j, l) =(−1)n (1 + s)
−1−j−ν−n

(1− s)j+ns
ν−1
2 logl(s)(−n− ν − 1)(j)×

2
1
2 (j−3l−n−1)+ν

2F1

(
−j,−n;−j − n− ν;

(s+ 1)2

(s− 1)2

)
v

1
2 (j+l−n−1)

Γ
(

1
2 (j + l − n+ 1)

)
For the alternative hypothesis, the joint modified Laplace transform of (2ρv, Uv) can be computed

by a Girsanov transformation. Denote P to be the probability measure of the null hypothesis and
P δ to be the probability measure under the alternative hypothesis. Under measures P and P δ, the
Bessel processes ρv are different in the drift δ.

P : ρv = ρ0 +Bv +
1

4

∫ v

0

1

ρs
ds

P δ : ρv = ρ0 +Bv + δv +
1

4

∫ v

0

1

ρs
ds (13)

In the Girsanov’s transformation, the Radon–Nikodym derivative is

dP δ

dP
|Gv=FUv = exp

(∫ v

0

δdBs −
1

2

∫ v

0

δ2ds

)
= exp

(
δ

(
ρv − ρ0 −

1

2
Uv

)
− δ2

2
v

)
1Taylor expansion for function of two variables: f (α, β) =

∞∑
m=0

m∑
j=0

(
m
j

)
αjβm−j

m!
∂m

∂αp∂βp
f (0, 0)

2Hypergeometric function: 2F1 (a, b, c, z) =
∞∑
k=0

a(k)b(k)

c(k)
zk

k!

3Factorial power: a(k) = a (a− 1) · · · (a− (k − 1))
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Thus, the modified joint moment generating function of (2ρv, Uv) under the alternative hypothesis
is

Eδ
[
e(−2αρv−βUv)

2ρv

]
=

∫
Ω

e−2αρv−βUv 1

2ρv

dP δ

dP 0
dP 0

= e−δρ0−
δ2

2 v

∫
Ω

e−(2α−δ)ρv−(β+ δ
2 )Uv 1

2ρv
dP 0

= e−δρ0−
δ2

2 vE0
x

[
e−(2α−δ)ρv−(β+ δ

2 )Uv

2ρv

]

= e−δρ0−
δ2

2 v
∞∑
n=0

∞∑
m=0

m∑
j=0

xn
(
α− δ

2

)j (
β + δ

2

)m−j
n!j! (m− j)!

∫ 1

0

J(v, s, ν, n, j,m− j)ds

This gives the joint moment of ρv and Uv, which is computed by

Eδ
[
(2ρv)

p−1
Uqv

]
= (−1)

p+q ∂p+q

∂αp∂βq
Eδ
[
e(−2αρv−βUv)

2ρv

]
|α=β=0

= e−δρ0−
δ2

2 v
∞∑
n=0

∞∑
m=0

m∑
j=0

xn (δ/2)
m

(−1)
p+q+j

n!j! (m− j)!

∫ 1

0

J(v, s, ν, n, j + p,m− j + q)ds

Further, the covariance of local parameter and stopping time has following asymptotic limit.

Cov
(
β̂τc , τc

)
= Cov

(√
c
(
β̂τc − 1

)
,
τc√
c

)
= Cov

(
δ̂τc ,

τc√
c

)
→ Cov (B1, U1)

= E (B1U1)

In order to compute this covariance, multiplying (13) by U1 and taking the expect value on both
sides, we have

E (ρ1U1) = (ρ0 + δ)E (U1) + E (B1U1) +
1

2
E
(
U2

1

)
. (14)

This equation enables us to compute E (B1U1) through joint moments of ρv and Uv.

5 Simulation and Numerical Computation

5.1 Limiting and Exact Distribution of Stopping time
Simulations are conducted to examine the limiting and exact distribution of stopping time. We use
Mathematica for all the computation reports. First, both distributions perform well if the initial
value is normally distributed. Then, for the constant initial value, even thorough c is small, the
limiting distribution is close to the simulation and exact distribution. Further, as c grows, the
fitting degree of limiting distribution becomes even better.

11



Fig 3: β = 0.95, x0 ∼ N
(
0, σ2/

(
1− β2

))
, c = 400

Fig 4: β = 0.95, X0 = 1, c = 400

Fig 5: β = 0.98, X0 = 1, c = 6400

12



Fig 6: β = 0.98, X0 = 1, c = 10000

5.2 Use the result in section 8.2, we can compute Eδ [(2Bv)
p U q

v ] with dif-
ferent δ.

For local parameter:

1. δ =
√
c (β − 1),

(
δ̂τc ,

τc√
c

)
⇒ (δ +B1, U1)

2. ρv =
X2
Uv

2 starts at ρ0 =
x2
0

2
√
cσ2 . qt = X2

t starts at x =
x2
0√
cσ2 .

3. Cov
(
β̂τc , τc

)
→ E (ρ1U1)− (ρ0 + δ)E (U1)− 1

2E
(
U2

1

)
4. E (τc)→

√
cE (U1), SE (τc)→

√
cV ar (U1) =

√
c
[
E (U2

1 )− [E (U1)]
2
]

Recall that for stationary parameter:

1.
√
c

(
β̂τ1c − β

τ1c
c −

(
1− β2

) )⇒ N

((
0
0

)
,

(
1 −2β
−2β 4β2 +

(
1− β2

)
ω2

))
2.
√
c

(
β̂τ2c − β

τ2c
c −

(
1− β2

) )⇒ N

((
0
0

)
,

(
1 −2β
−2β 4β2

))
3. Cov

(
β̂τic , τic

)
= −2β, E [τic] =

(
1− β2

)
c for i = 1, 2

4. SE (τ1c) =
√
c (4β2 + (1− β2)ω2), SE (τ2c) = 2β

√
c

As β decreases from 0.99 to 0.8, comparison of local and stationary parameter for different c is
conducted.

While the σ2 is known. The comparison is shown in Figure 7-9. It is not surprising that the
stationary parameter separates from the simulation or exact distribution while the initial value grows
because the stationary theory assumes the affection of the initial value vanishes as c tends to ∞.

β
Cov

(
β̂τc , τc

)
E (τc) SE (τc)

Station Local Simu Station Local Simu Station Local Simu
0.99 -1.98 -1.15 -1.07 49.75 129.75 129.94 99.50 64.47 64.11
0.95 -1.90 -1.83 -1.65 243.75 279.85 273.70 97.53 91.05 88.66
0.90 -1.80 -2.04 -1.75 475.00 515.00 490.03 95.13 97.72 93.27
0.85 -1.70 -1.73 -1.67 693.75 755.36 703.77 92.80 106.45 91.71
0.80 -1.60 10.95 -1.58 900.00 436.07 907.92 90.55 435.40 90.00
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Tab 9: c = 2500, σ2 = 1, x0 = 0

β
Cov

(
β̂τc , τc

)
E (τc) SE (τc)

Station Local Simu Station Local Simu Station Local Simu
0.99 -1.98 -1.12 -1.07 49.75 128.76 129.08 99.50 64.47 64.20
0.95 -1.90 -1.77 -1.67 243.75 278.85 272.91 97.53 91.05 89.07
0.90 -1.80 -1.94 -1.73 475.00 514.00 489.19 95.13 97.72 92.97
0.85 -1.70 -1.58 -1.67 693.75 754.44 703.26 92.80 106.31 91.92
0.80 -1.60 10.11 -1.58 900.00 434.54 906.70 90.55 439.01 90.14

Tab 10: c = 2500, σ2 = 1, x0 = 1

Fig 7: c = 2500, x0 = 0

Fig 8: c = 2500, x0 = 10

While σ2 is unknown, the initial value of the Bessel process is unknown either. So only the zero
initial value is compared in this case. We take 100000 times iterations in this simulation, using its
estimator s2 = 1

N−1

∑N
n=1 (xn − xn−1)

2. The result shows that the local parameter is closer to the
simulation result when β is greater than around 0.93.

β
Cov

(
β̂τc , τc

)
E (τc) SE (τc)

Station Local Simu Station Local Simu Station Local Simu
0.99 -1.98 -1.15 -1.08 49.75 129.75 128.64 99 64.47 62.81
0.95 -1.90 -1.83 -1.67 243.75 279.85 271.16 95 91.05 86.34
0.9 -1.80 -2.04 -1.75 475.00 515.00 488.17 90 97.72 88.22
0.85 -1.70 -1.73 -1.69 693.75 755.36 702.75 85 106.45 84.49
0.8 -1.60 10.95 -1.60 900.00 436.07 906.34 80 435.40 79.81

Tab 11: c = 2500, unknown σ2, x0 = 0
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Fig 9: c = 2500, x0 = 0

6 Conclusion
For an AR(1) process with a root near unity, we consider the effect of initial values in sequential unit
root tests using stopping times based on the observed Fisher information. We use a time-change
method deducing DDS Brownian motion, and we derive the theoretical joint density of the stopping
time and sequential test statistic from the representation via the 3/2-dimensional Bessel process.
Numerical studies show that the joint density performs well compared to simulation results, even
when the level of observed Fisher information is small. Three types of marginal distributions of
the stopping time are proposed: a limiting distribution calculated from the joint density above, an
exact distribution derived from Imhof’s method, and a cumulative relative frequency distribution
computed from simulations. They agree well even when the expected sample size is small. Since
we can not compute the joint moment directly due to the oscillatory property of the joint density,
the joint Laplace transform is obtained. There is a question as to whether the local-to-unity or the
strong stationary model should be used. We make the decision by comparing the joint moments for
respective models with those calculated from the exact distribution or simulations. Of course, model
selection for inference depends on the level of the observed Fisher information. For level c = 2500,
we conclude as follows. When the autoregressive coefficient is greater than about 0.93, the joint
moments obtained from the local-to-unity model give a better approximation. In contrast, when it
is less than 0.93, those obtained from the stationary theory by Hitomi et al.(2021) provide a better
approximation.
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