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Abstract

The Dickey-Fuller (DF) unit root tests are widely used in empirical studies on economics.
In the local-to-unity asymptotic theory, the effects of initial values vanish as the sample size
grows. However, for a small sample size, the initial value will affect the distribution of the
test statistics. When ignoring the effect of the initial value, the left-sided unit root test sets
the critical value smaller than it should be. Therefore, the size and power of the test become
smaller. This paper investigates the effect of the initial value for the DF test (including the t
test). Limiting approximations of the DF test statistics are the ratios of two integrals which
are represented via a one-dimensional squared Bessel process. We derive the joint density of
the squared Bessel process and its integral, enabling us to compute this ratio’s distribution. For
independent normal errors, the exact distribution of the Dickey-Fuller coefficient test statistic
is obtained using the Imhof (1961) method for non-central chi-squared distribution. Numerical
results show that when the sample size is small, the limiting distributions of the DF test statistics
with initial values fit well with the exact or simulated distributions. We transform the DF test
with respect to a local parameter into the test for a shift in the location parameter of normal
distributions. As a result, a concise method for computing the powers of DF tests is derived.

Keywords: Dickey-Fuller tests, Squared Bessel process, joint density, powers approximated by
normal distribution, exact distribution

JEL Classification: C12, C22, C46

∗Acknowledgments: This research was supported by the 2018 Kyoto University Institute of Economic Research Joint
Usage and Research Center Project "Asymptotic Theory of Sequential Tests and Estimation of Unit Root Processes"
and JSPS KAKENHI Grants Numbers JP19H01473, JP20K01589, JP21K01422, JP22K20133. The authors sincerely
appreciate these supports.

†Kyoto Institute of Technology. E-mail address: hitomi@kit.ac.jp
‡Yokohama National University. E-mail address: jin-jianwei-cd@ynu.jp
§Yokohama National University. E-mail address: nagai-keiji-hs@ynu.ac.jp
¶Institute of Economic Research, Kyoto University. E-mail address: nishiyama@kier.kyoto-u.ac.jp
‖Institute of Economic Research, Kyoto University. E-mail address: tao.junfan.7j@kyoto-u.ac.jp

1



1 Introduction
Autoregressive processes are basic models in time series analysis. From a practical point of view,
the problem of a unit root in a time series is critical in statistical inference. Many procedures for
unit root tests have been proposed since the mid-1970s. The most widely used unit root tests are
the Dickey-Fuller tests (Dickey and Fuller (1979)). For some essential contributions related to unit
root tests, see White (1958), Bobkoski (1983), Cavanagh (1985), Chan (1988), Chan and Wei (1987),
Phillips (1987a,b) and Abadir (1995a,b).

In the DF test, the null hypothesis is that the autoregressive process has a unit root, while
the alternative hypothesis is that the process is stationary. The limiting distribution of the DF
test statistic under the null hypothesis is a non-standard distribution. Researchers have considered
the asymptotic properties of the DF test. As the sample size increases, the influence of the initial
value decreases, and a state closer to the limit is achieved. However, the effect of the initial value
should be addressed for a small sample size. Intuitively, under a fixed sample size, the larger the
initial value, the larger the observed Fisher information, which should yield a better estimator of
the autoregressive coefficient.

To the best of our knowledge, the primary literature does not consider the effect of initial values
in small samples. This study establishes methods for calculating the size and power of the DF test
with initial values. We also propose a concise method for calculating power. We derive the limiting
joint density of the numerator and denominator in the DF coefficient (or t) statistic and compute
the cumulative distribution function (CDF) of the test statistic. We also derive an exact distribution
of the DF coefficient test statistic. In the asymptotic theory, the error terms are strict stationary
and ergodic martingale differences with mean 0 and finite variance σ2. On the other hand, the
error terms are more strongly assumed to be independent normal random variables in the exact
distribution. The exact distribution of the Dickey-Fuller coefficient test statistic is obtained using
the Imhof (1961) method for non-central chi-squared distribution by eliminating the linear term
containing an initial value from the quadratic polynomial.

We discover a concise method for calculating the power of the DF unit root test. Some simulations
revealed that at a significance level of 5%, the power of the DF coefficient test for local parameter θ
is almost the same as the power of the test of null hypothesis N(0, 1) against alternative hypothesis
N(δ, 1) by setting δ = 0.23θ;

Ψθ(Ψ
−1
0 (α)) ≈ Φ(Φ−1(α)− δ).

where Ψθ is the CDF of the DF coefficient test statistic for local parameter θ and Φ is the CDF
of N(0, 1). By equating the above approximation and defining an implicit function δ = δ(θ), the
problem of the unit root test could be transformed into the problem of testing the shift δ in the
location parameter from N(0, 1). Finding the third-order Taylor approximation to the function δ(θ)
and substituting it into the right-hand in the above equation shows that the approximation is perfect.

2 Limiting Approximation of Dickey-Fuller Test Statistic
For the AR(1) process:

xn = βxn−1 + εn (n = 1, 2, ..., N) ,

one can localize the regression coefficient by β = 1 + θ/N . We consider a unit root test with respect
to the null and alternative hypotheses;

H0 : θ = 0 vs H1 : θ < 0.

The estimators of β, σ2, θ and the standard error of β̂N (s.e.
(
β̂N

)
) are

β̂N =

N∑
n=1

xnxn−1

N∑
n=1

x2n−1

, σ̂2
N =

1

N

N∑
n=1

(
xn − β̂Nxn−1

)2
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θ̂N = N(β̂N − 1), s.e.
(
β̂N

)
=

σ̂N√
N∑
n=1

x2n−1

.

The Dickey–Fuller test employs θ̂N as the coefficient test statistic or (β̂N − 1)/s.e.
(
β̂N

)
as t

test statistic . We obtain their limiting approximations and an exact distribution of the coefficient
test statistic θ. In the asymptotic theory, ε1, ε2, · · · are strict stationary and ergodic martingale
differences with mean 0 and finite variance σ2. On the other hand, ε1, ε2, · · · , εN is a sequence of
independent normal random variables with mean 0 and variance σ2 in the exact distribution theory.

We make the following asymptotic assumption to investigate the effect of the initial value x0 in
the AR(1) process (1). Letting X0 be an L2 random variable, we assume that as Nc→∞,

x0/
√
N

p→ X0

where p→ represents convergence in probability. Of course, when considering small-sample theory
and simulations, we simply set X0 = x0/

√
N , since c is fixed at a constant value.

As N tends to ∞, xbNtc/
√
N converges in distribution to an Ornstein–Uhlenbeck process Xt;

xbNtc/
√
N ⇒ Xt = X0 + θ

∫ t

0

Xsds+ σWt (1)

where Ws is a standard Brownian motion and x0/
√
N converges in probability to X0.

The stochastic process satisfying the following stochastic integral is called a δ-dimensional squared
Bessel process with drift 2θ started at x, denoted by qt ∼ BESQδ

x,2θ.

qt = x+ 2

∫ t

0

√
qsdWs + 2θ

∫ t

0

qsds+ δt (2)

By Ito’s lemma, we get

X2
t = X2

0 + 2σ

∫ t

0

XsdWs + 2θ

∫ t

0

X2
sds+ σ2t.

From Levy’s theorem, Wt ≡
∫ t
0
I {Xs 6= 0}Xs/ |Xs| dWs is a Brownian motion due to 〈W〉t = t.

Hence, qt = X2
t /σ

2 becomes BESQ1
x,2θ with x = X2

0/σ
2. .

According to Tanaka (1996), asN tends to∞, Dickey-Fuller’s coefficient test statisticN
(
β̂N − 1

)
has the following nonstandard approximation.

N
(
β̂N − 1

)
⇒
∫ 1

0
XsdXs∫ 1

0
X2
sds

Further, Dickey-Fuller’s t test statistic has the following nonstandard limit.

tN =
β̂N − 1

σ̂/

√
N∑
n=1

x2n−1

⇒
∫ 1

0
XsdXs

σ
√∫ 1

0
X2
sds

Using Ito’s lemma again, the numerator of this ratio is
∫ 1

0
XsdXs =

(
X2

1 −X2
0 − σ2

)
/2. Thus,

the limiting CDFs of the two test statistics can be computed through the joint probability density
function (PDF) fq1,

∫ 1
0
qsds

(y, v) of q1 and
∫ 1

0
qsds as follows. The limiting CDF of Dickey-Fuller’s
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coefficient test statistic is

Ψθ (z) = P

(∫ 1

0
XsdXs∫ 1

0
X2
sds

≤ z

)
= P

 1
2

(
X2

1

σ2 − X2
0

σ2 − 1
)

∫ 1

0
X2
s

σ2 ds
≤ z


= P

(
q1 − x− 1 ≤ 2z

∫ 1

0

qsds

)

=


∫ x+1

0

∫ y−x−1
2z

0
fq1,

∫ 1
0
qsds

(y, v) dvdy z < 0∫∞
0

∫ 2zv+x+1

0
fq1,

∫ 1
0
qsds

(y, v) dydv z ≥ 0

The limiting CDF of Dickey-Fuller’s t test statistic is

Ψt
θ (z) = P

 ∫ 1

0
XsdXs

σ
√∫ 1

0
X2
sds
≤ z

 = P

 1
2

(
X2

1

σ2 − X2
0

σ2 − 1
)

√∫ 1

0
X2
s

σ2 ds
≤ z


= P

q1 − x− 1 ≤ 2z

√∫ 1

0

qsds


=


∫ x+1

0

∫ ( y−x−1
2z )

2

0 fq1,
∫ 1
0
qsds

(y, v) dvdy z < 0∫∞
0

∫ 2z
√
v+x+1

0
fq1,

∫ 1
0
qsds

(y, v) dydv z ≥ 0

Abadir (1995a,b) considered the same expression with an initial value of 0 for the null hypothesis
H0 : θ = 0. However, here we also adopt the above expressions with a nonzero initial value for
alternative hypothesis H1 : θ < 0. The joint PDF fq1,

∫ 1
0
qsds

(y, v) is computed in the following
subsections in several cases. In the following subsections, under each of the null and alternative
hypotheses, the joint PDFs are derived for each case where the initial value is zero and nonzero.

2.1 Joint Density With Nonzero Initial Value Under H0

As the first step in obtaining the joint density of qt and
∫ t
0
qsds, we investigate the null hypothesis,

i.e. θ = 0. See Borodin & Selminen (2002) for functions isv,esv, sv and Dµ (x). Let P 0
x and E0

x be
the probability and the expectation with q0 = x under H0.

Lemma 1. For a δ-dimensional squared Bessel process qt with initial value x 6= 0, the joint PDF of
qt and its integral

∫ t
0
qsds is

fqt,
∫ t
0
qsds

(y, v) = isv

(
ν, t, 0,

x+ y

2
,

√
xy

2

)
1

2

(y
x

) ν
2

(3)

where ν = δ/2− 1 is the index of qt, and for ν ≥ −1, t+ νt+ r + z > 0, t > 0

isv(ν, t, r, z, w) : = L−1γ
( √

2γ

sinh(t
√

2γ)
exp

(
−r
√

2γ − z
√

2γ coth(t
√

2γ)
)
Iν

(
2w
√

2γ

sinh(t
√

2γ)

))
=

∞∑
l=0

wν+2l

Γ(ν + l + 1)l!
esv(1 + ν + 2l, 1 + ν + 2l, t, r, z)

esv (µ, ν, t, r, z) : = L−1γ

(
(2γ)

µ
2

sinhν(t
√

2γ)
exp

(
−r
√

2γ − z
√

2γ coth(t
√

2γ)
))

=

∞∑
k=0

(−z)k

k!
sv (µ+ k, ν + k, t, r + z + kt)
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sv (µ, ν, t, z) : = L−1γ
(

(2γ)µ/2

sinhν(t
√

2γ)
e−z
√
2γ

)
= 2ν

∞∑
k=0

Γ (ν + k)e−(νt+z+2kt)2/4y

√
2πv1+µ/2Γ (ν)k!

Dµ+1

(
νt+ z + 2kt√

v

)
, ν ≥ 0, νt+ z > 0.

Dµ (x) is the Parabolic cylinder function (See Borodin & Selminen(2002)).

Proof. According to Revuz and Yor (2013, p441), for qt ∼ BESQδ
x,0 with no drift, the density of qt

is
fqt(y) = qδt (x, y) =

1

2t

(y
x

) ν
2

exp

(
−x+ y

2t

)
Iν

(√
xy

t

)
(4)

where ν = δ/2− 1 is its index and Iν is the modified Bessel function defined by

Iν (x) =

∞∑
k=0

(x/2)
2k+ν

k!Γ (ν + k + 1)
ν ≥ −1, x > 0.

Pitman and Yor (1982) gave the expression of a Laplace transform for the conditional PDF of
∫ t
0
qsds,

called Bessel bridge, which is

E0
x

[
exp

(
−γ
∫ t

0

qsds

)
|qt = y

]

=

√
2γt

sinh(
√

2γt)
exp

{
x+ y

2t

(
1−

√
2γt coth

√
2γt
)} Iν

( √
xy
√
2γ

sinh
√
2γt

)
Iν

(√
xy

t

) (5)

Multiplying (4) by (5), one sees that

E0
x

[
exp

(
−γ
∫ t

0

qsds

)
|qt = y

]
· fqt(y)

=

√
2γ

sinh(t
√

2γ)
exp

(
−x+ y

2

√
2γ coth(t

√
2γ)

)
Iν

( √
xy
√

2γ

sinh(t
√

2γ)

)
1

2

(y
x

) ν
2

(6)

On the other hand, this is also a Laplace transform of fqt,
∫ t
0
qsds

(y, v) with respect to v, because

E0
x

[
exp

(
−γ
∫ t

0

qsds

)
|qt = y

]
· fqt(y) =

∫ ∞
0

e−γvf∫ t
0
qsds|qt (v|y) dv · fqt(y)

=

∫ ∞
0

e−γvfqt,
∫ t
0
qsds

(y, v) dv

= Lγ
{
fqt,

∫ t
0
qsds

(y, v)
}

By taking the inverse Laplace transform of equation (6), fqt,
∫ t
0
qsds

(y, v) is therefore derived.

2.2 Joint Density with Zero Initial Value under H0

Lemma 2. For a δ-dimensional squared Bessel process qt with initial value x 6= 0, the joint PDF of
qt and its integral

∫ t
0
qsds is

fqt,
∫ t
0
qsds

(y, v) =
yν2−(ν+1)

Γ(ν + 1)
esv

(
ν + 1, ν + 1, t, 0,

y

2

)
where ν = δ/2− 1 is the index of qt, and esv (µ, ν, t, x, z) is defined in Lemma 1.
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Proof. If the initial value x0 is 0, then the squared Bessel process qt also starts at 0. Revus and Yor
(2013, p441) gave the PDF of qt, by substituting δ/2 with ν + 1 then we have

fqt(y) = qδt (0, y) = (2t)−
δ
2 Γ(

δ

2
)−1y

δ
2−1 exp

(
− y

2t

)
=

(2t)−(ν+1)

Γ(ν + 1)
yν exp

(
− y

2t

)
(7)

Let x tend to 0 in the Bessel bridge (5), we get

E0
0

[
exp

(
−γ
∫ t

0

qsds

)
|qt = y

]
= lim
x→0

E0
x

[
exp

(
−γ
∫ t

0

qsds

)
|qt = y

]
=

(
t
√

2γ

sinh(t
√

2γ)

)ν+1

exp
{ y

2t

[
1− t

√
2γ coth

(
t
√

2γ
)]}

(8)

By multiplying (7) and (8), we obtain

E0
0

[
exp

(
−γ
∫ t

0

qsds

)
|qt = y

]
· fqt(y) =

yν2−(ν+1)

Γ(ν + 1)

( √
2γ

sinh(t
√

2γ)

)ν+1

exp
{
−y

2

√
2γ coth

(
t
√

2γ
)}

This is also a Laplace transform of fqt,
∫ t
0
qsds

(y, w) since

E0
0

[
exp

(
−γ
∫ t

0

qsds

)
|qt = y

]
· fqt(y) =

∫ ∞
0

e−γwf∫ t
0
qsds|qt (v|y) dv · fqt(y)

=

∫ ∞
0

e−γwfqt,
∫ t
0
qsds

(y, v) dv

= Lγ
{
fqt,

∫ t
0
qsds

(y, v)
}

Thus, the joint density can be derived by taking a inverse Laplace transform.

fqt,
∫ t
0
qsds

(y, v) = L−1γ

{
yν2−(ν+1)

Γ(ν + 1)

( √
2γ

sinh(t
√

2γ

)ν+1

exp
{
−y

2

√
2γ coth

(
t
√

2γ
)}}

=
yν2−(ν+1)

Γ(ν + 1)
esv

(
ν + 1, ν + 1, t, 0,

y

2

)

For the AR(1) process, qt ≡W 2
t has dimension δ = 1 and index ν = −1/2. Since Γ (ν + 1) =

√
π,

we have

fW 2
t ,
∫ t
0
W 2
s ds

(y, v) =
y−

1
2

√
2π

esv

(
1

2
,

1

2
, t, 0,

y

2

)

2.3 Joint Density under Alternative via Girsanov Transformation
In the null and alternative hypotheses, the squared Bessel processes are different in a drift θ.

P 0 : qt = x+ 2

∫ t

0

√
qsdWs + t

P θ : qt = x+ 2

∫ t

0

√
qsdWs + 2θ

∫ t

0

qsds+ t

6



The Girsanov transformation can be applied to remove the drift. The Radon–Nikodym derivative
of P θ with respect to P 0 is

dP θ

dP 0
= exp

(∫ t

0

θ
√
qsdWs −

1

2

∫ t

0

θ2qsds

)
= exp

(
θ

2
(qt − x− t)−

θ2

2

∫ t

0

qsds

)
Therefore, the joint PDF of

(
qt,
∫ t
0
qsds

)
with x 6= 0 under P δx is

fqt,
∫ t
0
qsds

(y, v) = exp

{
θ

2
(y − x− t)− θ2

2
v

}
is−1/2

(
ν, t, 0,

x+ y

2
,

√
xy

2

)
1

2

(y
x

)−1/4
.

The joint PDF of
(
qt,
∫ t
0
qsds

)
with under P δ0 is

fqt,
∫ t
0
qsds

(y, v) = exp

{
θ

2
(y − t)− θ2

2
v

}
y−

1
2

√
2π

esv

(
1

2
,

1

2
, t, 0,

y

2

)
.

3 Concise Computation of Powers
The power of the hypothesis test is the probability of rejecting the null hypothesis when the alter-
native hypothesis is true. So we can compute the power by the CDF of the test statistic. However,
the computation of the integral takes a great time and is often not provided by a free software
environment. So we propose a concise way to compute the power of the Dickey-Fuller test.

Let Ψθ (z) to be the CDF of DF’s coefficient test statistic with respect to the local parameter θ
satisfying β = 1+θ/N . Denote wα = Ψ−10 (α), then Ψ0 (wα) = α. In left tailed test with significance
level of α, its critical value is wα and its power is Ψθ (wα). Let Φ (z) and ϕ(z) to be the CDF and
PDF of the standard normal distribution and denote zα = Φ−1 (α). As explained in the abstract,
we want to obtain the power of the DF test from the power of the test the null hypothesis of N(0, 1)
against the alternative N(δ, 1) via a deformation of δ through the relation Ψθ (wα) = Φ (zα − δ). So,
define an implicit function δα (θ) (= zα − δ) satisfying

Ψθ (wα) = Φ (δα (θ)) . (9)

The Radon–Nikodym derivative of P θ with respect to P0 is

dP θ

dP0
|F1

= exp

(
θ

2
(q1 − x− 1)− θ2

2

∫ 1

0

qsds

)
Let G (θ, y, v) = exp

{
θ
2 (y − x− 1)− θ2

2 v
}
, then we can express Ψθ (wα) as

Ψθ (wα) =

∫
(q1−x−1)/2∫ 1

0 qsds
≤wα

exp

(
θ

2
(q1 − x− 1)− θ2

2

∫ 1

0

qsds

)
dP0

= E0

[
1{

(q1−x−1)/2∫ 1
0 qsds

≤wα
}G

(
θ, q1,

∫ 1

0

qsds

)]
(10)

Taking nth order derivative of (10) and tending θ to 0, we have

∂n

∂θn
Ψθ (wα) |θ=0 = E0

[
1{

(q1−x−1)/2∫ 1
0 qsds

≤wα
} ∂n

∂θn
G

(
0, q1,

∫ 1

0

qsds

)]
.
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For simplicity, denote Tn = ∂n

∂θnΨθ (wα) |θ=0.
Differentiating the right-side in the equation (9) w.r.t θ, we have

∂
∂θΨθ (wα) = ϕ (δα (θ)) δ′α (θ)
∂2

∂θ2 Ψθ (wα) = ϕ (δα (θ)) δ′′α (θ)− ϕ (δα (θ)) δα (θ) [δ′α (θ)]
2

∂3

∂θ3 Ψθ (wα) = ϕ (δα (θ)) δ
(3)
α (θ)− 3ϕ (δα (θ)) δα (θ) δ′α (θ) δ′′α (θ)

+ϕ (δα (θ)) δ2α (θ) [δ′α (θ)]
3 − ϕ (δα (θ)) [δ′α (θ)]

3

...

Since Ψ0 (wα) = α = Φ (δα (0)), δα (0) = zα. Let θ tend to 0, we have


T1 = ϕ (zα) δ′α (0)

T2 = ϕ (zα) δ′′α (0)− ϕ (zα) zα [δ′α (0)]
2

T3 = ϕ (zα) δ
(3)
α (0)− 3ϕ (zα) zαδ

′
α (0) δ′′α (0) + ϕ (zα) z2α [δ′α (0)]

3 − ϕ (zα) [δ′α (0)]
3

...

Solve the system of equations, we can obtain the derivatives of δ (θ) at 0 for each order.

δ′α (0) = T1

ϕ(zα)

δ′′α (0) = T2

ϕ(zα)
+ zα

T 2
1

[ϕ(zα)]
2

δ
(3)
α (0) = T3

ϕ(zα)
+ 3zα

T1T2

[ϕ(zα)]
2 + 2z2α

T 3
1

[ϕ(zα)]
3 +

T 3
1

[ϕ(zα)]
3

...

Therefore, a Taylor expansion of δα (θ) is obtained. Once the values of Tn for each critical value wα
are precomputed from the null distribution, the power for different θ can be calculated quickly. In
fact, we will see that third-order Taylor expansions are sufficient for accurate calculations.

δα (θ) = zα+

∞∑
n=1

θn

n!

∂n

∂θn
δα (0)

The same method can be used to approximate the power of the DF t-test statistic. The difference
is that we should substitute Ψθ (wα) with the CDF of t test statistic Ψt

θ (wα) above.

4 Exact Distribution of Dickey-Fuller’s Coefficient Test Statis-
tic

According to Imhof(1961), the quadratic form of normal variables has an explicit expression. We
apply its more straightforward expression for computing the exact distribution of Dickey-Fuller’s
coefficient test statistic.

Lemma 3. Let x = (x1, · · · , xn)′ be a column random vector which follows a multidimensional
normal law with mean vector O and covariance matrix In, µ = (µ1, · · · , µn)

′ be a constant vector.
The quadratic form Q = (x+ µ)

′
A (x+ µ) follows

P (Q > x) =
1

2
+

1

π

∫ ∞
0

sin {θ (u)}
uρ (u)

du

where

θ (u) =
1

2

n∑
r=1

[
arctan (λru) +

µ2
rλru

1 + λ2ru
2

]
− 1

2
xu

8



ρ (u) =

n∏
r=1

(
1 + λ2ru

2
) 1

4 exp

(
N∑
r=1

(µrλru)
2

2 (1 + λ2ru
2)

)
and λr are eigenvalues of A.

4.1 Constant Initial Value
If the initial value is a fixed value, define the N -dimensional vectors,

x = (x1, · · · , xN )
′

µ =
(
βx0, β

2x0, · · · , βNx0
)′

ε = (ε1, · · · , εN )
′
.

Using a recursion formula for AR(1) process, we have the relation x = Aε+ µ where

A =


1
β 1 O
β2 β 1
...

...
...

. . .
βN−1 βN−2 βN−3 · · · 1


Let ζ = − (z/N + 1)

−1
/2, then for z ≥ −N , N

(
β̂N − 1

)
≤ z is equivalent to

N∑
t=1

x2t−1 + 2ζ

N∑
t=1

xtxt−1 ≥ 0 (11)

Imhof (1961) provides a formula for computing the quadratic form of normally distributed vari-
ables. However, it is not possible to use this formula directly since the polynomial in (11) is in-
homogeneous because of the linear term x0x1. However, if we adopt a linear transformation, then
the effect of this linear term can be removed. Using a similar approach to the Lagrange method to
complete the square, one can express the polynomial in (6) into a canonical form.

N∑
t=1

x2t−1 + 2ζ

N∑
t=1

xtxt−1 =

N−1∑
n=1

[
cn (xn + bnxn+1 + γn)

2
+ dn

]
+ cN (xN + γN )

2

where cn, dn, bn and γn are derived by the following recurrence relations.

c1 = 1, γ1 = ζx0

b1 = ζ, d1 = x20
dn = −cn−1γ2n−1 n = 2, · · · , N − 1

cn = 1− cn−1b2n−1 n = 2, · · · , N − 1

γn = − bn−1γn−1cn−1

cn
n = 2, · · · , N − 1

bn = ζ
cn

n = 2, · · · , N − 1

cN = −cN−1b2N−1
γN = γN−1

bN−1

9



By making yn = xn + bnxn+1 + γn, y = (y1, · · · , yN )
′ and γ = (γ1, · · · , γN )

′, we get the desired
linear transformation y = Bx+ γ where

B =



1 b1
1 b2 O

1
. . .
. . . bN−2

O 1 bN−1
1


After this linear transformation, a quadratic form of normally distributed variables is extracted

from (6), which enables us to compute the exact distribution of Dickey-Fuller’s test statistic through
Imhof’s formula. In the CDF of test statistic, writing the inequality in a matrix form, we have

P
(
N
(
β̂ − 1

)
≤ z
)

= P

(
N∑
n=1

cny
2
n+

N−1∑
n=1

dn ≥ 0

)

= P

(
y′Cy ≥ −

N∑
n=1

dn

)

= P

(
(BAε+Bµ+ γ)

′
C (BAε+Bµ+ γ) ≥ −

N−1∑
n=1

dn

)

= P

((
ε

σ
+

(BA)
−1

(Bµ+ γ)

σ

)′
(BA)

′
CBA

(
ε

σ
+

(BA)
−1

(Bµ+ γ)

σ

)
≥ −

N−1∑
n=1

dn
σ2

)

where C = diag (c1, c2, · · · , cN ).
Eigendecompose the symmetric matrix (BA)

′
CBA into Q′ΛQ, where Λ = diag (λ1, λ2, · · · , λN )

is a diagonal matrix composed of eigenvalues of (BA)
′
CBA, and Q is composed of their respective

orthogonal eigenvectors. Then we can turn the quadratic form of normally distributed variables into
a standard form.

P
(
N
(
β̂ − 1

)
≤ z
)

= P

((
Qε

σ
+
Q (BA)

−1
(Bµ+ γ)

σ

)′
Λ

(
Qε

σ
+
Q (BA)

−1
(Bµ+ γ)

σ

)
≥ −

N−1∑
n=1

dn
σ2

)

Following Imhof (1961), the exact distribution of Dickey-Fuller’s test statistic has a explicit
expression.

P
(
N
(
β̂N − 1

)
≤ z
)

=
1

2
+

1

π

∫ ∞
0

sin {θ (u)}
uρ (u)

du

where

θ (u) =
1

2

N∑
r=1

[
arctan (λru) +

δ2rλru

1 + λ2ru
2

]
+

N−1∑
n=1

dnu

2σ2

ρ (u) =

N∏
r=1

(
1 + λ2ru

2
) 1

4 exp

(
N∑
r=1

(δrλru)
2

2 (1 + λ2ru
2)

)
and δr is the rth element of Q (BA)

−1
(Bµ+ γ) /σ.
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4.2 Normally Distributed Initial Value
In order to avoid the computation of extracting the quadratic form, one can treat the fixed ini-
tial value x0 to be a normally distributed variable x0 + ηε0, where η is a very small value and
ε0 ∼ N

(
0, σ2

)
is independent to ε1, · · · , εN . This treatment loses little precision in numerical

computation.
Put x = (x0, x1, · · · , xN )

′, µ =
(
x0, βx0, β

2x0, · · · , βNx0
)′, and ε = (ε0, ε1, · · · , εN )

′. Using the
recursion formula for the AR(1) process, we have the relation x = Aε+ µ where

A =



η
ηβ 1 O
ηβ2 β 1
ηβ3 β2 β 1
...

...
...

...
. . .

ηβN βN−1 βN−2 βN−3 · · · 1


.

We can express the least squares estimator of the regression coefficient in a matrix form1.

β̂N =

N∑
t=1

xtxt−1

N∑
t=1

x2t−1

=

x′
[
1
2

(
0 IN
0 0′

)
+ 1

2

(
0′ 0
IN 0

)]
x

x′
(
IN 0
0′ 0

)
x

Therefore, the CDF of Dickey-Fuller’s test statistic can be written through a quadratic form of
normally distributed variables, enabling us to compute its exact distribution by applying Imhof’s
formula directly.

P
(
N
(
β̂ − 1

)
≤ y
)

= P
(
β̂ ≤ y

N
+ 1
)

= P

(
1

2
x′
[(

0 IN
0 0′

)
+

(
0′ 0
IN 0

)]
x ≤

( y
N

+ 1
)
x′
(
IN 0
0′ 0

)
x

)
= P

(
x′
{( y

N
+ 1
)( IN 0

0′ 0

)
−
[

1

2

(
0 IN
0 0′

)
+

1

2

(
0′ 0
IN 0

)]}
x ≥ 0

)
= P

((
ε

σ
+
A−1µ

σ

)′
A′BA

(
ε

σ
+
A−1µ

σ

)
≥ 0

)

where
B =

( y
N

+ 1
)(

IN 0
0′ 0

)
−
[

1

2

(
0 IN
0 0′

)
+

1

2

(
0′ 0
IN 0

)]
Eigendecompose the symmetric matrix A′BA into P ′ΛP , where Λ = diag (λ1, λ2, · · · , λN+1) is

composed of the eigenvalues of A′BA and P is composed of their respective orthogonal eigenvectors.
Then we have

P
(
N
(
β̂ − 1

)
≤ y
)

= P

((
Pε

σ
+
PA−1µ

σ

)′
Λ

(
Pε

σ
+
PA−1µ

σ

)
≥ 0

)
Following Imhof (1961), the exact distribution of Dickey-Fuller’s test statistic is

P
(
N
(
β̂ − 1

)
≤ y
)

=
1

2
+

1

π

∫ ∞
0

sin {θ (u)}
uρ (u)

du

1IN is a identity matrix of size N
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where

θ (u) =
1

2

N+1∑
r=1

[
arctan (λru) +

δ2rλru

1 + λ2ru
2

]

ρ (u) =

N+1∏
r=1

(
1 + λ2ru

2
) 1

4 exp

(
N+1∑
r=1

(δrλru)
2

2 (1 + λ2ru
2)

)
and δr is the rth element of P

′A−1µ
σ .

5 Simulation and Numerical Computation

5.1 Density of Dickey-Fuller’s Coefficient Test Statistic
We conduct numerical computations for limiting approximation and exact distributions of Dickey-
Fuller’s coefficient test statistic and for stationary and explosive alternative hypotheses. We apply
a small sample size of N = 25. For the exact distribution, there is little difference between the fixed
initial value and the normally distributed initial value if η is small enough. We treat the initial value
as a fixed value in the numerical computation and compute the PDF of Dickey-Fuller’s test statistic
by numerical differentiation. We also implement simulations for verification. As shown in figures
1 and 2, the limiting and exact densities are almost the same for both stationary and explosive
alternative hypotheses.

Fig 1: β = 0.98, X0 = 1, N = 25

Fig 2: β = 1.02, X0 = 1, N = 25
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5.2 Power of Dickey-Fuller’s Coefficient Test
In the case of a stationary alternative hypothesis β < 0, the Dickey-Fuller test is a left-tailed test.
The critical region is R1 =

{
N
(
β̂N − 1

)
< wα

}
at a significance level of α, where wα is computed

via the CDF of Dickey-Fuller’s test statistic under the null hypothesis and it satisfies

P0

{
N
(
β̂N − 1

)
< wα

}
= α

The power of a hypothesis test is the probability of rejecting the null hypothesis when the
alternative hypothesis is true. So we can compute the statistical powers with different regression
coefficients β, which is P θ

{
N
(
β̂N − 1

)
< wα

}
. For significance levels of 5% and a sample size of 25,

the powers are shown in the following tables with different initial values and regression coefficients.
The critical values and powers in table 1 is computed through the limiting distribution, and table
2 uses the exact distribution. We can see that the power increases significantly as the initial value
grows, especially for a smaller β.

x0 0 1 2 3 4 5 6 7 8 9 10
w0.05 -8.039 -7.730 -6.930 -5.911 -4.902 -4.020 -3.295 -2.716 -2.258 -1.896 -1.609

β = 0.99 5.6% 5.6% 5.7% 5.9% 6.0% 6.3% 6.6% 7.0% 7.5% 8.1% 8.7%
β = 0.98 6.3% 6.4% 6.5% 6.8% 7.3% 7.9% 8.6% 9.6% 10.9% 12.4% 14.2%
β = 0.97 7.0% 7.1% 7.4% 7.9% 8.7% 9.7% 11.1% 12.9% 15.2% 18.1% 21.7%
β = 0.96 7.9% 8.0% 8.4% 9.2% 10.3% 11.8% 14.0% 16.8% 20.6% 25.4% 31.2%
β = 0.95 8.7% 8.9% 9.5% 10.5% 12.1% 14.3% 17.4% 21.5% 27.0% 33.9% 42.1%
β = 0.94 9.7% 9.9% 10.7% 12.0% 14.1% 17.1% 21.3% 26.9% 34.3% 43.4% 53.7%
β = 0.93 10.7% 11.0% 12.0% 13.7% 16.3% 20.2% 25.6% 32.9% 42.2% 53.2% 65.0%
β = 0.92 11.8% 12.2% 13.4% 15.5% 18.8% 23.6% 30.4% 39.4% 50.5% 63.0% 75.2%
β = 0.91 13.0% 13.5% 14.9% 17.4% 21.5% 27.4% 35.6% 46.2% 58.8% 71.9% 83.5%
β = 0.90 14.3% 14.8% 16.5% 19.5% 24.4% 31.4% 41.1% 53.2% 66.7% 79.7% 89.7%

Tab 1: (Lim)Stationary alternative: Power of DF Test at significance level of 5%, N = 25

x0 0 1 2 3 4 5 6 7 8 9 10
w0.05 -7.371 -7.085 -6.357 -5.443 -4.544 -3.757 -3.106 -2.581 -2.160 -1.824 -1.555

β = 0.99 5.6% 5.6% 5.7% 5.9% 6.1% 6.4% 6.7% 7.1% 7.6% 8.2% 8.9%
β = 0.98 6.3% 6.4% 6.6% 6.9% 7.4% 8.0% 8.8% 9.9% 11.1% 12.7% 14.6%
β = 0.97 7.0% 7.2% 7.5% 8.1% 8.9% 10.0% 11.4% 13.3% 15.7% 18.8% 22.5%
β = 0.96 7.9% 8.0% 8.5% 9.4% 10.6% 12.3% 14.6% 17.6% 21.5% 26.4% 32.4%
β = 0.95 8.8% 9.0% 9.7% 10.8% 12.5% 14.9% 18.2% 22.6% 28.3% 35.4% 43.8%
β = 0.94 9.7% 10.0% 10.9% 12.4% 14.7% 18.0% 22.4% 28.4% 36.0% 45.3% 55.8%
β = 0.93 10.8% 11.2% 12.3% 14.2% 17.2% 21.4% 27.2% 34.8% 44.4% 55.6% 67.3%
β = 0.92 12.0% 12.4% 13.8% 16.2% 19.9% 25.2% 32.4% 41.7% 53.1% 65.5% 77.3%
β = 0.91 13.2% 13.7% 15.4% 18.3% 22.8% 29.3% 38.0% 48.9% 61.6% 74.4% 85.3%
β = 0.90 14.5% 15.2% 17.2% 20.7% 26.0% 33.7% 43.8% 56.2% 69.6% 82.0% 91.2%

Tab 2: (Exact)Stationary alternative: Power of DF Test at significance level of 5%, N = 25

The power of DF’s classical test can be approximated by the CDF of normal distribution. Table
3 gives the Taylor coefficient of δα (θ) up to 5th order for α = 0.05 and different initial values.

δα (0) δ′α (0) δ′′α (0) δ
(3)
α (0) δ

(4)
α (0) δ

(5)
α (0)

x0 = 0 -1.645 -0.229552 0.001297 0.000171 0.000017 0.000001
x0 = 5 -1.645 -0.459086 0.005200 0.001383 0.000286 0.000059
x0 = 10 -1.645 -1.14227 0.031158 0.020773 0.009873 0.004891

13



Tab 3: Taylor coefficient for δα (θ)

In figures 3-4, we compared the powers from the limiting distribution and the approximation
through normal distribution. We see that it is good enough to use 3rd order Taylor expansion of
δα (θ) for different initial values.

Fig 3: DF coefficient test: Approximation by normal distribution (α = 0.05, x0 = 0, N = 25)

Fig 4: DF coefficient test: Approximation by normal distribution (α = 0.05, x0 = 5, N = 25)
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Fig 5: DF coefficient test: Approximation by normal distribution (α = 0.05, x0 = 10, N = 25)

We apply the critical value of limiting distribution in the computation of power. The number
of iteration times is 100000 in the simulation. Figures 6-8 show that the powers computed from
simulation and exact distribution coincide for any cases.

Fig 6: DF coefficient test: Simulation and Exact power (α = 0.05, x0 = 0)

Fig 7: DF coefficient test: Simulation and Exact power (α = 0.05, x0 = 5)

Fig 8: DF coefficient test: Simulation and Exact power (α = 0.05, x0 = 10)
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In figures 9-11, we see that the powers of the DF test get closer to the powers computed from
limiting distribution as the sample size grows. It implies the consistency of limiting distribution
holds.

Fig 9: DF coefficient test: Exact and Limiting power(α = 0.05, x0 = 0)

Fig 10: DF coefficient test: Exact and Limiting power(α = 0.05, x0 = 5)

Fig 11: DF coefficient test: Exact and Limiting power(α = 0.05, x0 = 10)
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5.3 Power of Dickey-Fuller’s T Test
In the simulation and numerical computation, we take the variance of the error terms σ2 = 1, but
we use its estimator s2 for the t statistic in the simulation. The power of the DF t test can also be
approximated by the CDF of normal distribution. Table 3 gives the Taylor coefficient of δα (θ) up
to the fifth order for a significance level α = 0.05. Since the coefficients depend on the initial value
of the squared Bessel process, they are the same for {x0 = 5, N = 25} and {x0 = 10, N = 100}.

δα (0) δ′α (0) δ′′α (0) δ
(3)
α (0) δ

(4)
α (0) δ

(5)
α (0)

x0 = 0 -1.645 -0.232544 0.001133 0.000244 0.000014 0.000003
x0 = 5, N = 25 -1.645 -0.465088 0.004532 0.001954 0.000228 0.000106
x0 = 5, N = 100 -1.645 -0.29068 0.001770 0.000477 0.000035 0.000010
x0 = 10, N = 25 -1.645 -1.15804 0.026764 0.030745 0.007743 0.008912
x0 = 10, N = 100 -1.645 -0.465088 0.004532 0.001954 0.000228 0.000106

Tab 4: Taylor coefficient for δα (θ)

Figure 12-14 shows that1st order Taylor expansion for δα (θ) has good approximation to the
power computed by the limiting distribution for different initial value,

Fig 12: DF’s t test: Approximation by normal distribution (α = 0.05, x0 = 0, N = 25)

Fig 13: DF’s t test: Approximation by normal distribution (α = 0.05, x0 = 5, N = 25)
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Fig 14: DF’s t test: Approximation by normal distribution (α = 0.05, x0 = 10, N = 25)

As the sample size grows, the simulation results get closer to the limiting distribution. Figures
15-17 show the consistency of the limiting distribution for different initial value. In the simulation
works, we take 100000 times iterations, and we use the estimated variance s2 for the t statistic.

Fig 15: DF’s t test: Simulation and Limiting power(α = 0.05, x0 = 0)

Fig 16: DF’s t test: Simulation and Limiting power(α = 0.05, x0 = 5)
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Fig 17: DF’s t test: Simulation and Limiting power(α = 0.05, x0 = 10)

6 Conclusion
The joint density of the squared Bessel process and its integral provides a new way to compute
the limiting distribution of Dickey Fuller’s test statistics for the AR(1) model with an initial value.
Further, for independent normal errors with mean 0 and variance σ2, Imhof’s formula allows us to
compute the exact distribution of Dickey Fuller’s coefficient test statistic, and the computation is
quick as long as the sample size is small. In comparing these two approaches, the limiting distribution
from the first approach fits well with the exact distribution from the second approach even for a
small sample. The larger the sample size, the higher the goodness of fit. The first approach needs the
time-consuming computation of double integrals of triple sums of the functions including parabolic
cylinder functions. We propose a concise method for computing powers using the CDF of the normal
distribution. The problem of the unit root test is transformed into the problem of testing for a shift
in the location parameter of the normal distribution. It is always good enough to compute the first
order Taylor expansion of the shift for stationary alternative hypotheses.
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