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1 Introduction

The importance of the distinction between risk and uncertainty or ambiguity has

been recognized in the literature since Ellsberg (1961). Ellsberg (1961) experi-

mentally presents evidence that decision-makers (DMs) are likely to dislike situa-

tions where they cannot assign a unique probability measure, which implies that

the existing framework of expected utility theory cannot explain these behaviors.

To overcome these shortcomings of expected utility theory, various representations

have been duly proposed. As seminal work, Gilboa and Schmeidler (1989) propose

maxmin expected utility theory (MEU), while Schmeidler (1989) proposes Choquet

expected utility theory (CEU).1

Since MEU by Gilboa and Schmeidler (1989) and CEU by Schmeidler (1989),

DMs’ preferences under uncertainty or ambiguity have been axiomatized from vari-

ous viewpoints. Neo-additive CEU by Chateauneuf et al. (2007) as a specific form

of CEU, α-maxmin expected utility by Ghirardato et al. (2004) as a generalization

of MEU, and smooth ambiguity models by Klibanoff et al. (2005) have been widely

applied in economics and finance. For a survey of the decision-theoretic literature,

see for example, Gilboa and Marinacci (2016). The purpose of this paper is to shed

some light on neo-additive CEU by Chateauneuf et al. (2007) from the viewpoint of

Möbius inversions and belief functions. Our axiomatization in this regard enables

us to deepen our understanding of DMs’ behavior based on neo-additive CEU.

For a state space Ω with a generic element ω, an act f , a utility function u, and

a probability measure P , neo-additive CEU is represented as

V (f) = (1− δ)

∫
u(f(ω))dP (ω) + δαmax

ω∈Ω
u(f(ω)) + δ(1− α)min

ω∈Ω
u(f(ω)),

where α, δ ∈ [0, 1]. This representation is tractable compared with the standard

CEU by Schmeidler (1989) and allows a distinction between ambiguity itself and the

ambiguity attitudes of DMs. Furthermore, neo-additive CEU can capture the op-

timistic and pessimistic attitudes of DMs in a unified way. Therefore, neo-additive

CEU has been widely analyzed in the literature. For example, Eichberger et al.

1For further details, including the role of risk and ambiguity, see Gilboa (2009) or Wakker
(2010). Note that throughout this paper, we refer to ambiguity and uncertainty interchangeably.
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(2009) analyze Bertrand and Cournot competition models by considering optimism

and pessimism under neo-additive CEU. Eichberger and Kelsey (2011) experimen-

tally show that many of the inconsistencies pointed out by Goeree and Halt (2001)

can be explained by strategic ambiguity under neo-additive CEU.2 Diamantaras and

Gilles (2011) apply neo-additive CEU to a model of the tragedy of the commons.

Based on Jaffray and Philippe (1997), in which DMs’ beliefs are captured by a more

general capacity than that in Chateauneuf et al. (2007), Eichberger and Kelsey

(2014) analyze the effects of ambiguity and ambiguity attitudes (ambiguity averse

and ambiguity loving agents) in games with strategic complements. In recent work,

Kishishita and Sato (2021) analyze the effect of the monopolist’s optimism on the

level of preventive effort.

In the fields of economics and statistics, the notion of belief functions has been

widely investigated. In statistics, Dempster (1967) and Shafer (1976) propose a

belief function to model uncertain situations. A belief function is a function that

assigns any event to a lower bound of the likelihood that cannot be necessarily

evaluated by probability measures. The reason for this is that DMs do not have

sufficient information about the likelihood of any event. Shafer (1976) shows that a

set function is considered to be a belief function if and only if its Möbius inversion

is nonnegative. Furthermore, Chateauneuf and Jaffray (1989) investigate the rela-

tionship between the inclusion–exclusion formula for a capacity v and its Möbius

inversion. Chateauneuf and Jaffray’s (1989) analysis paves the way for the appli-

cation of belief functions to economics. In one example, Rigotti et al. (2011) shed

light on the occupational choices of individuals and firm formation, while Rigotti et

al. (2011) analyze individuals’ choices of occupation and technology.3

Our contribution of this paper is threefold. Under the assumption that a state

space is finite, by proposing Properties 1 and 2 in Section 4, we provide an easy-

to-understand derivation of neo-additive CEU by Chateauneuf et al. (2007) based

on Möbius inversions. Properties 1 and 2 are the applications of Asano and Kojima

2Goeree and Halt (2001, pp.1401–1402) experimentally demonstrate that “for each of these
games, however, we show that a change in the payoff structure can produce a large inconsistency
between theoretical prediction(s) and human behavior.”

3See the axiomatizations of belief functions from the decision-theoretic viewpoint, for example,
Jaffray and Wakker (1994), Mukerji (1997), Ghirardato (2001), and Asano and Kojima (2022).
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(2022) that provide a characterization of a class of belief functions. The reason that

we can derive neo-additive CEU in a relatively easy way is that we make the most

of the properties of Möbius inversions. As shown by Shapley (1953), each game is

uniquely represented with a basis of unanimity games (see Lemma 1), and similarly,

uniquely represented with that of the conjugate of the unanimity games, defined as

one minus the value of the unanimity game for complements. Moreover, as shown by

Gilboa and Schmeidler (1994), Choquet integrals with respect to an unanimity game

and its conjugate coincide with the minimum and maximum operators, respectively.

Properties 1 and 2 make it possible to express capacity in the representation as the

sum of unanimity games and its conjugate using Chateaunueuf and Jaffray (1998).

The second contribution of this paper is to axiomatize neo-additive CEU by

imposing uncertainty aversion and uncertainty lovingness on comaximum functions

(acts) and cominimum functions (acts), respectively, where these functions are de-

fined by Kajii et al. (2007). Because the former comaximum uncertainty aversion

and the latter cominimum uncertainty lovingness axioms correspond to the pes-

simistic and optimistic behaviors of DMs, respectively, they capture certain proper-

ties of neo-additive CEU. The third contribution is to axiomatize neo-additive CEU

by proposing a two-states partial certainty equivalent, which is an extended notion

of the certainty equivalent in CEU. This axiomatization indicates that neo-additive

CEU can be axiomatized from the viewpoint of certainty equivalent.

Our axiomatization based on Möbius inversions thus sheds new light on the

usefulness of Möbius inversions for understanding DMs’ behaviors. Moreover, our

approach based on the properties of Möbius inversions enables us to understand the

relationship between Chateauneuf et al. (2007), Kajii et al. (2009), and Asano and

Kojima (2022) in a clearer and more unified way.

The organization of this paper is as follows. Section 2 provides the preliminaries,

Section 3 explains neo-additive CEU, and Section 4 details an alternative axiomati-

zation of neo-additive CEU. Section 5 presents an example that explains the essence

of our axiomatization, while Section 6 discusses the relationship between this paper

and the related literature, particularly, Chateauneuf et al. (2007) and Kajii et al.

(2009).
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2 Preliminaries

In this section, we provide the definitions and well-known results concerning the

modularity of a game and its Möbius inversion. Let Ω be a nonempty state space.

This set may be finite or infinite. A generic element ω ∈ Ω denotes a state of the

world, and a generic element E ∈ 2Ω denotes an event. Let F be the collection of all

nonempty subsets of Ω. Let RΩ = {x|x : Ω → R} denote the set of all real-valued

functions on Ω.

A set function v : 2Ω → R with v(∅) = 0 is called a game or a non-additive

signed measure, monotone if E ⊆ F implies v(E) ≤ v(F ) for all E, F ∈ 2Ω, finitely

additive if v(E ∪ F ) = v(E) + v(F ) for all E, F ∈ 2Ω with E ∩ F = ∅, convex
if v(E ∪ F ) + v(E ∩ F ) ≥ v(E) + v(F ) for all E, F ∈ 2Ω, concave if v(E ∪ F ) +

v(E ∩ F ) ≤ v(E) + v(F ) for all E, F ∈ 2Ω, normalized if v(Ω) = 1, and a non-

additive measure if it is monotone. A monotone and normalized game v is called

a capacity. For a capacity v, the conjugate of v, denoted v′, is defined by v′(E) =

1 − v(Ec) for all E ∈ 2Ω. Furthermore, a game v is k-monotone for k ≥ 2 if

v
(
∪k

i=1Ai

)
≥
∑

∅̸=L⊂{1,...,k}(−1)|L|+1v (∩i∈LAi) for all A1, . . . , Ak ∈ 2Ω, a game v is

totally monotone if it is monotone and k-monotone for all k ≥ 2, and a game v

is a belief function if it is totally monotone and v(Ω) = 1, where |L| denotes the

cardinality of L.

For x ∈ RΩ and a capacity v, the Choquet integral of x is defined as
∫
Ω
xdv =∫∞

0
v(x ≥ α)dα +

∫ 0

−∞(v(x ≥ α)− 1)dα, where v(x ≥ α) = v({ω ∈ Ω |x(ω) ≥ α}).
To provide an alternative axiomatization of Chateauneuf et al. (2007), in the

following analyses, we assume that a state space Ω is finite. To provide the notions

of the unanimity game and the well-known results in the following, we follow the

expositions in Kajii et al. (2009). For T ∈ F , let a game µT be the unanimity game

on T defined by the following rule: µT (S) = 1 if T ⊆ S and µT (S) = 0 otherwise.

Let wT be the conjugate of µT . Then, it can be easily shown that wT (E) = 1 if

T ∩ E ̸= ∅ and wT (E) = 0 otherwise. When T = {ω}, i.e., T is a singleton set,

uT = wT and they are additive (see Kajii et al. (2009)). When T is not a singleton

set, they are not necessarily additive.

Lemma 1 (Shapley (1953)). Each game v is uniquely represented as a linear com-
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bination of unanimity games and its Möbius inversion: v =
∑

T∈F βTµT , or equiva-

lently, v(E) =
∑

T⊆E βT for all E ∈ F , where βT =
∑

E⊆T (−1)|T |−|E|v(E).

By convention, we omit the empty set in the summation indexed by subsets of

Ω. The set of coefficients {βT}T∈F is referred to as the Möbius inversion. Shafer

(1976) shows that for any game v, v =
∑

T∈F βTµT is totally monotone if and only

if βT is non-negative for all T ∈ F . It holds that if v =
∑

T∈F βTµT , the conjugate

v′ is given by v′ =
∑

T∈F βTwT .

Lemma 2 (Kajii et al. (2009)). For each E ∈ F , it holds that wE =
∑

T⊆E(−1)|T |−1µT .

Gilboa and Schmeidler (1994) clarify the relationship between Choquet integrals

and Möbius inversions in a finite state space. Gilboa and Schmeidler (1994) show

that the Choquet integral of x with respect to v can be represented by a weighted

sum of all minima of x with respect to the Möbius inversions {βT}T∈F .

Proposition 1 (Gilboa and Schmeidler (1994)). For all x ∈ RΩ and a capacity

v =
∑

T∈F βTµT , ∫
Ω

xdv =
∑
T∈F

βT

∫
Ω

xdµT =
∑
T∈F

βT min
ω∈T

x(ω),∫
Ω

xdv′ =
∑
T∈F

βT

∫
Ω

xdwT =
∑
T∈F

βT max
ω∈T

x(ω).

Chateauneuf and Jaffray (1989) analyze the relationship between the inclusion–

exclusion formula for a game v and its Möbius inversion.

Lemma 3 (Chateauneuf and Jaffray (1989)). Let v =
∑

T∈F βTuT be a game, and

let k be an integer satisfying k ≥ 2. Then,

v(
∪

1≤i≤k Ti)−
∑

∅≠L⊆{1,2,...,k}(−1)|L|+1v(
∩

j∈L Tj) =
∑

T⊆
∪

Ti,T ̸⊆Ti(1≤i≤k) βT .

3 Neo-additive CEU

In this section, we explain the notion of a neo-additive capacity and its properties.

Chateauneuf et al. (2007) propose a neo-additive capacity. A neo-additive capacity

is defined by

v(A) =


1 for A = Ω,

αδ + (1− δ)π(A) for ∅ ⊊ A ⊊ Ω
0 for A = ∅,
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where α, δ ∈ [0, 1], and π is a finitely additive probability.4 Note that a neo-additive

capacity is a special case of capacities introduced by Jaffray and Philippe (1997); we

call this JP-capacities, as in Eichberger and Kelsey (2014, pp.456–487). A capacity

v on Ω is a JP-capacity if there exist a convex capacity v1 and α ∈ [0, 1] such that

v = αv′1 + (1 − α)v1, where v′1 denotes the conjugate of v1. By assuming a finite

or infinite state space in a Savage’s (1954) framework, Chateauneuf et al. (2007)

axiomatize neo-additive CEU as follows:5

V (f) = (1− δ)

∫
u(f(ω))dP (ω) + δαmax

ω∈Ω
u(f(ω)) + δ(1− α)min

ω∈Ω
u(f(ω)),(1)

where α, δ ∈ [0, 1]. As pointed out in Chateauneuf et al. (2007, pp.541–542), V (f)

is reduced to expected utility for δ = 0, to pure pessimism for δ = 1 and α = 0,

to pure optimism for δ = 1 and α = 1, and to the Hurwicz criterion for δ = 1

and α ∈ (0, 1). Ambiguity about the true probability measure is reflected by the

parameter δ. The highest level of ambiguity is captured by δ = 1, and the lowest

(no ambiguity) by δ = 0. Conversely, the ambiguity attitude of DMs for optimism

and pessimism are reflected by the parameter α. By letting γ = 1 − δ and β = δα

in Equation (1), it follows that

V (f) = γ

∫
u(f(ω))dP (ω) + βmax

ω∈Ω
u(f(ω)) + (1− γ − β)min

ω∈Ω
u(f(ω)).

These values α and β capture the degrees of optimism and pessimism, respectively,

for example, see Gilboa and Marinacci (2016). See also Eichberger and Kelsey (2011,

pp.316–317) for the interpretation of these parameters.6

4Chateauneuf et al. (2007) refer to this capacity as a neo-additive capacity because it is additive
on non-extreme outcomes.

5Strictly speaking, the representation (1) differs from that obtained by Chateauneuf et al.
(2007). Because we consider the neo-additive CEU within the framework of Anscombe and Au-
mann (1963), we slightly modify the representation in a Savage’s (1954) framework as derived by
Chateauneuf et al. (2007).

6Jaffray and Philippe (1997) show that the CEU with respect to a JP-capacity v = αv′1+(1−α)v1
is represented as follows:∫

u(f(ω))dv(ω)

= α

∫
u(f(ω))dv′1(ω) + (1− α)

∫
u(f(ω))dv1(ω)

= α max
P∈core(v1)

∫
u(f(ω))dP (ω) + (1− α) min

P∈core(v1)

∫
u(f(ω))dP (ω),
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4 Axiomatization for Neo-additive CEU

This section provides an alternative axiomatization for neo-additive CEU proposed

by Chateauneuf et al. (2007). Whereas Chateauneuf et al. (2007) assumes a finite

or infinite state space within the framework of Savage (1954), we assume a finite

state space. By taking advantage of the properties of Möbius inversions, we provide

an easy-to-understand axiomatization of neo-additive CEU in a finite state space.

Let X be the nonempty finite set of all deterministic outcomes, and let Y be

the set of all distributions over X with finite supports, that is, Y = {y : X →
[0, 1] | y(x) ̸= 0 for finitely many x ∈ X and

∑
x∈X y(x) = 1}. We call an element of

Y a lottery. For notational simplicity, we identify x ∈ X with the Dirac measure

δx ∈ Y : δx is the probability measure that assigns probability one to {x}. The set

of all Σ-measurable finite step functions from Ω to Y is denoted by L0, and elements

of L0 are called simple lottery acts or acts. The set of all constant functions in L0

is denoted by Lc, and elements of Lc are called constant acts. For all f, g ∈ L0 and

λ ∈ [0, 1], the compound lottery is defined by (λf+(1−λ)g)(ω) ≡ λf(ω)+(1−λ)g(ω)

for all ω ∈ Ω. We assume that DMs’ preferences are captured by a binary relation

⪰ on L0. The asymmetric (≻) and symmetric (∼) parts of ⪰ are defined as usual.

A binary relation ⪰ on Y is defined by restricting ⪰ on Lc and denoted by the same

symbol ⪰. That is, for all y, z ∈ Y , y ⪰ z if and only if yΩ ⪰ zΩ, where yΩ and

zΩ denote constant functions on Ω. The notation (f, A; g, Ac) denotes the act that

equals to act f on event A and act g on event Ac, respectively.

We provide the following two properties for capacity v that play significant roles

in our axiomatization.

Property 1. For any T with 3 ≤ |T | ≤ n− 1 and any ωi, ωj ∈ T ,

(P1) v(T ) + v(T\{ωi, ωj}) = v(T\{ωi}) + v(T\{ωj}).

Property 2. There exists a two-point set T 0 = {ω∗, ω∗∗} such that

(P2-a) v(T 0) ≤ v(T 0\{ω∗}) + v(T 0\{ω∗∗})
where core(v1) is the set of probability measures dominating the capacity v1. DMs’ preferences
correspond to the cases in which they are optimistic and pessimistic for α ∈ (0, 1), purely optimistic
for α = 1, and purely pessimistic for α = 0. This representation also enables us to separate
ambiguity from ambiguity attitude.
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(P2-b) v(Ω) + v(Ω\T 0) ≥ v(Ω\{ω∗}) + v(Ω\{ω∗∗}).

Theorem 1. Let |Ω| ≥ 4. Suppose that a binary relation ⪰ defined on L0 is rep-

resented by CEU with a utility function u and a capacity v, that is, Schmeidler’s

(1989) five axioms7 are satisfied. If this capacity v satisfies Properties 1 and 2, then

there exist a unique set of nonnegative coefficients {η0{ωi}}ωi∈Ω, and a unique non-

negative coefficients η̃ and η̄ with
∑

ωi∈Ω η0{ωi} + η̃ + η̄ = 1 such that for all f and g

in L0,

f ⪰ g ⇔ I(f) ≥ I(g),

where

I(f) =
n∑

i=1

η0{ωi}u(f(ωi)) + η̃min
ωi∈Ω

u(f(ωi)) + η̄max
ωi∈Ω

u(f(ωi)). (2)

The converse also holds.

To prove Theorem 1, we provide the following three lemmas. Lemmas 4, 5

and 6 are shown by Chateauneuf and Jaffray (1989). In the following analyses, let

v =
∑

T βTµT .

Lemma 4 (Comodularity). Let T ∈ 2Ω with |T | ≥ 2 and let ωi, ωj ∈ T with ωi ̸= ωj.

Then, the following are equivalent:

(i) v(T ) + v(T\{ωi, ωj}) = v(T\{ωi}) + v(T\{ωj}).
(ii)

∑
{ωi,ωj}⊆S⊆T βS = 0.

Lemma 5 (Coconvexity). Let T ∈ 2Ω with |T | ≥ 2 and let ωi, ωj ∈ T with ωi ̸= ωj.

Then, the following are equivalent.

(i) v(T ) + v(T\{ωi, ωj}) ≥ v(T\{ωi}) + v(T\{ωj}).
(ii)

∑
{ωi,ωj}⊆S⊆T βS ≥ 0.

Lemma 6 (Coconcavity). Let T ∈ 2Ω with |T | ≥ 2 and let ωi, ωj ∈ T with ωi ̸= ωj.

Then, the following are equivalent.

(i) v(T ) + v(T\{ωi, ωj}) ≤ v(T\{ωi}) + v(T\{ωj}).
(ii)

∑
{ωi,ωj}⊆S⊆T βS ≤ 0.

7Schmeidler (1989) axiomatizes CEU by Weak Order, Comonotonic Independence, Continuity,
Monotonicity, and Nondegeneracy.



9

5 Proof of Theorem 1 for |Ω| = 4

In this section, we provide a proof of Theorem 1 for |Ω| = 4. In the general case,

see Appendix. Let Ω = {ω1, ω2, ω3, ω4}, and let ω∗ = ω1 and ω∗∗ = ω2. Let

v =
∑

1≤k≤4

η{ωk}µ{ωk} +
∑
|T |≥2

ηTµT .

It follows from (P2-a) in Property 2 and Lemma 6 that∑
{ω1,ω2}⊆S⊆{ω1,ω2}

ηS = η{ω1,ω2} ≤ 0.

In the following, let η{ω1,ω2} = −η̄ (η̄ ≥ 0). By using Property 1 and Lemma 4 for

T = {ω1, ω2, ω3}, it holds that∑
{ω1,ω2}⊆S⊆{ω1,ω2,ω3}

ηS = η{ω1,ω2} + η{ω1,ω2,ω3} = 0,

which implies that η{ω1,ω2,ω3} = −η{ω1,ω2} = η̄. Similarly, by using Property 1 and

Lemma 4 for T = {ω1, ω2, ω4}, it holds that η{ω1,ω2} + η{ω1,ω2,ω4} = 0, which implies

that

η{ω1,ω2,ω4} = −η{ω1,ω2} = η̄. (3)

Moreover, by using Property 1 and Lemma 4 for T = {ω1, ω2, ω4}, it holds that

η{ω1,ω4} + η{ω1,ω2,ω4} = 0. Thus, by (3), it holds that η{ω1,ω4} = −η{ω1,ω2,ω4} = −η̄.

Then, it follows from successive calculations that

η{ω1,ω2} = η{ω1,ω3} = η{ω1,ω4} = η{ω2,ω3} = η{ω2,ω4} = η{ω3,ω4} = −η̄ and

η{ω1,ω2,ω3} = η{ω1,ω2,ω4} = η{ω1,ω3,ω4} = η{ω2,ω3,ω4} = η̄.

Finally, by using (P2-b) in Property 1 and Lemma 5 for T = {ω1, ω2, ω3, ω4}, it
holds that ∑

{ω1,ω2}⊆S⊆{ω1,ω2,ω3,ω4}

ηS ≥ 0,

which implies that

0 ≤ η{ω1,ω2} + η{ω1,ω2,ω3} + η{ω1,ω2,ω4} + ηΩ
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= −η̄ + η̄ + η̄ + ηΩ = η̄ + ηΩ

By letting η̃ = η̄ + ηΩ, it holds that η̃ ≥ 0. Because v is a capacity, it holds that

0 ≤ v({ωi, ωk})− v({ωi})

= η{ωi} + η{ωk} + η{ωi,ωk} − η{ωi} = η{ωi} + η{ωk} − η̄ − η{ωi} = η{ωk} − η̄.

Thus, by letting η0{ωk} = η{ωk} − η̄ for k = 1, 2, 3, 4, it holds that η0{ωk} ≥ 0. The

above argument shows that

v =
∑

1≤k≤4

η{ωk}µ{ωk} +
∑
|T |≥2

ηTµT

=
∑

1≤k≤4

η0{ωk}µ{ωk} + η̄

∑
|T |=1

µT +
∑
|T |=2

(−µT ) +
∑
|T |=3

µT + (−µΩ)

+ η̃µΩ,

which implies that

v =
∑

1≤k≤4

η0{ωk}µ{ωk} + η̃µΩ + η̄wΩ

where η0{ωk} ≥ 0, η̃ ≥ 0, and η̄ ≥ 0. By using Proposition 1, the rest of this proof is

completed.

6 Discussion and Related Literature

In this section, we discuss the relationship between our paper and the related litera-

ture. In Section 4, we proposed Properties 1 and 2 to axiomatize neo-additive CEU

in a finite state space. We particularly discuss how Properties 1 and 2 play a role

in deriving representations of neo-additive CEU.

6.1 The Linkage between Chateauneuf et al. (2007) and
This Paper

Chateauneuf et al. (2007) provide an axiomatization of neo-additive CEU. To this

purpose, Chateauneuf et al. (2007) prove the following proposition, which plays a

crucial part in deriving a neo-additive CEU.
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Proposition 2 (Chateauneuf et al. (2007), Proposition 3.1). Let Ω be a finite state

space.8 Let v be a capacity on (Ω, 2Ω). Then, the following statements are equivalent:

(i) v is a neo-additive capacity.

(ii) the capacity v satisfies the following properties:

(a) for any non-empty events E,F,G with E ̸= Ω, F ̸= Ω and G ̸= Ω such that

E ∩ F = ∅ = E ∩G, E ∪ F ̸= Ω ̸= E ∪G, v(E ∪ F )− v(F ) = v(E ∪G)− v(G),

(b) for some E,F such that E ∩ F = ∅, v(E ∪ F ) ≤ v(E) + v(F ),

(c) for some E,F such that E ∩ F = ∅, v′(E ∪ F ) ≤ v′(E) + v′(F ),

(d) for any E, v(E ∪ ∅) = v(E),

where v′ denotes the conjugate of v.

First, Chateauneuf et al. (2007) derive biseparable preferences by Ghirardato

and Marinacci (2001) based on four axioms (Ordering, Continuity, Eventwise Mono-

tonicity, and Binary Comonotonic Act Independence).9 On top of that, Chateauneuf

et al. (2007) derive Condition (ii) in Proposition 2. The key in axiomatizing neo-

additive CEU is to derive Condition (ii) in Proposition 2. The relationship between

Chateauneuf et al. (2007) and this paper is as follows. In our approach, by Proper-

ties 1 and 2, we derive the following:

ηS = (−1)|S|−1η̄ for all S with 2 ≤ |S| ≤ n− 1

(−1)n−2η̄ + ηΩ ≥ 0,

which can derive (a), (b), and (c) in Condition (ii) of Proposition 2. Because we

consider a finite state space, (d) in Condition (ii) of Proposition 2 holds. Therefore,

Properties 1 and 2 can derive neo-additive CEU by way of Proposition 2. This

paper provides an easy-to-understand axiomatization of neo-additive CEU by way

of Möbius inversions under the assumption that a state space is finite.

Proof. See Appendix.

8To analyze an infinite state space, more conditions are required for collections of events. See
Chateauneuf et al. (2007) in detail.

9For the definition of biseparable preferences, see Appendix.
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6.2 The Linkage between Kajii et al. (2007) and This Paper

In this subsection, we lead to neo-additive CEU by proposing uncertainty lovingness

axiom and uncertainty averse axiom based on Chateauneuf et al. (2007). First, we

discuss the relationship between Kajii et al. (2007) and this paper. Kajii et al.

(2007) proposed the notions of E-cominimum and E-comaximum functions.10

Definition 1. Two functions x, y ∈ RΩ are cominimum if argminω∈Ω x∩argminω∈Ω y ̸=
∅. Two functions x, y ∈ RΩ are comaximum if argmaxω∈Ω x ∩ argmaxω∈Ω y ̸= ∅.

Based on this definition, Asano and Kojima (2015) provide the following defini-

tion.

Definition 2. Two acts f, g ∈ L0 are said to be cominimum if {ω ∈ Ω | f(ω′) ⪰
f(ω) for all ω′ ∈ Ω} ∩ {ω ∈ Ω | g(ω′) ⪰ g(ω) for all ω′ ∈ Ω} ̸= ∅. Two acts f, g ∈ L0

are said to be comaximum if {ω ∈ Ω | f(ω) ⪰ f(ω′) for all ω′ ∈ Ω}∩{ω ∈ Ω | g(ω) ⪰
g(ω′) for all ω′ ∈ Ω} ̸= ∅.

In other words, two acts f and g are cominimum if the set of states of act f with

worst outcomes and that of g have a common element. Similarly, two acts f and g

are comaximum if the set of states of act f with best outcomes and that of g have a

common element. Under the assumption that a state space Ω is finite, if we adopt

the notions of cominimum and comaximum acts, then we can rewrite the Extreme

Events Sensitivity Axiom (see Axiom 7 in Appendix) as follows.

Axiom 1. For any f, g, h ∈ L0 such that f ∼ g and g and h are cominimum and

comaximum,

1. if f and h are cominimum, then (1/2)g ⊕ (1/2)h ⪰ (1/2)f ⊕ (1/2)h,

2. if f and h are comaximum, then (1/2)f ⊕ (1/2)h ⪰ (1/2)g ⊕ (1/2)h.

Note that (1/2)f⊕ (1/2)g denotes a preference average (or a subjective mixture)

of acts f and g (see Definition 6 in Appendix).

The following axiom captures the uncertainty loving behaviors of DMs that are

reflected in neo-additive CEU as optimistic attitudes. Axiom 2 corresponds to Con-

dition 1 in Extreme Sensitivity Axiom by Chateauneuf et al. (2007) (see Appendix).
10The notions of cominimum and comaximum functions depend on a collection E of Ω. However,

we do not mention a collection E because we consider only E = {Ω}.



13

Axiom 2 (Cominimum Uncertainty Lovingness). For all cominimum acts f, g, if

f ∼ g, then (1/2)f + (1/2)g ⪯ f .

Alternatively, the following axiom captures the uncertainty averse behaviors of

DMs that are reflected in neo-additive CEU as pessimistic attitudes. Axiom 3

corresponds to Condition 2 in the Extreme Sensitivity Axiom by Chateauneuf et al.

(2007) (see Appendix).

Axiom 3 (Comaximum Uncertainty Aversion). For all comaximum acts f, g, if

f ∼ g, then (1/2)f + (1/2)g ⪰ f .

To avoid confusion, some caveats are worth mentioning. Axiom 2 capturing the

optimistic attitudes of DMs leads to the nonnegative coefficient η̄ of the maximum

part in Representation (2), while Axiom 3 capturing the pessimistic attitudes of

DMs leads to the nonnegative coefficient η̃ of the minimum part in Representation

(2) (see the proof of Theorem 1 in detail). Therefore, Axioms 2 and 3 are natural

behavioral axioms to impose.

Under the assumptions that a state space is finite and the preferences of DMs are

represented by CEU, Properties 1 and 2 follow from Axioms 2 and 3, which means

that these preferences are represented by the neo-additive CEU from Theorem 1.

Note that we need to assume that DMs’ preferences are represented by CEU.

Theorem 2. If a binary relation ⪰ defined on L0 is represented by CEU and it

satisfies Axioms 2 and 3, then Properties 1 and 2 are satisfied. That is, DM’s

preferences are represented by neo-additive CEU. Conversely, if a binary relation ⪰
on L0 is represented by neo-additive CEU, then it satisfies Axioms 2 and 3.

Proof. See Appendix.

6.3 Two-States Partial Certainty Equivalents

In this subsection, we derive Properties 1 and 2 by proposing a new notion, two-

states partial certainty equivalents, which is like the certainty equivalent.

Definition 3. Let an act f ∈ L0 and an ordered pair of two states (ωi, ωj) be fixed.

A lottery c ∈ Y is called a two-states partial certainty equivalent of f with respect

to ωi and ωj (simply TPCE) if c ∈ Y satisfies (c, {ωi, ωj}; f,Ω\{ωi, ωj}) ∼ f .
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We call such an act c TPCE because it is defined as a constant outcome (constant

act) on ωi and ωj that makes the act (c, {ωi, ωj}; f,Ω\{ωi, ωj}) indifferent to a fixed

act f . Note that (ωi, ωj) ̸= (ωj, ωi) because these are ordered pairs. Under the

assumption that a binary relation ⪰ on L0 satisfies Schmeidler’s (1989) axioms, it

satisfies the Monotonicity and Continuity axioms. Therefore, there exists c ∈ Y

with (c, {ωi, ωj}; f,Ω\{ωi, ωj}) ∼ f such that f(ωi) ⪰ c ⪰ f(ωj) or f(ωj) ⪰ c ⪰
f(ωi). If there is a TPCE, then there also exists a number α ∈ [0, 1] such that

c ∼ αf(ωi) + (1 − α)f(ωj). We call this α two-states partial certainty equivalent

weight of f with respect to ωi and ωj (simply TPCE weight). Note that TPCE

weight α denotes the coefficient of the first component ωi because (ωi, ωj) is an

ordered pair. Also note that TPCE weight α ∈ [0, 1] is uniquely determined or

equal to the interval itself [0, 1].

Lemma 7. Suppose that a binary relation ⪰ on L0 is represented by the expected

utility with an affine utility function u and a probability p. Then, there exists a

common TPCE weight α ∈ [0, 1] for all f .

Proof. See Appendix.

This lemma states that whether a common TPCE weight (that is, α) for all

f ∈ F exists depends on the additivity of operator I. When operator I is the

Choquet integrals, we impose the existence of a common weight for small classes of

acts on our analyses.

Let y1 and y0 acts such that u(y1) = 1 and u(y0) = 0 (see the proof of Theorem

2 in Appendix or Schmeidler (1989)). For any T with |T | ≥ 2 and any ordered pair

(ωi, ωj) with ωi, ωj ∈ T , we define the following act fT,ωi
:

fT,ωi
(ω) =

{
y1 if ω ∈ T\{ωi}
y0 if ω ∈ T c ∪ {ωi}

This act assigns a good outcome y1 if state ω occurs in T\{ωi}, and a bad

outcome y0 if state ω occurs in T c ∪ {ωi}. We define this act fT,ωi
because we

investigate certainty equivalents of fT,ωi
.

Lemma 8. Let T with |T | ≥ 2 and ordered pair (ωi, ωj) with ωi, ωj ∈ T be fixed.

Then, the following are equivalent:
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(1) The number αωi
is the TPCE weight for act fT,ωi

with ordered pair (ωi, ωj).

(2) For capacity v,

αωi
v(T\{ωi, ωj}) + (1− αωi

)v(T ) = v(T\{ωi}). (4)

Proof. See Appendix.

Lemma 9 states that the modularity of v (that is, (5)) restricted to some sets

holds if there exists a common TPCE for fT,ωi
and fT,ωj

.11

Lemma 9. Let T with |T | ≥ 2 and ordered pair (ωi, ωj) with ωi, ωj ∈ T be fixed.

Then, if there exists a common number for the TPCE weight for act fT,ωi
with

ordered pair (ωi, ωj) and the TPCE weight for act fT,ωj
with ordered pair (ωi, ωj),

then it holds that

v(T\{ωi, ωj}) + v(T ) = v(T\{ωj}) + v(T\{ωi}). (5)

Proof. See Appendix.

The modularity of v restricted to some sets represents the additivity of Choquet

integrals. Therefore, by assuming the following axiom together with CEU, Property

1 can be obtained.

Axiom 4. For any T with 3 ≤ |T | ≤ n − 1 and any ωi, ωj ∈ T , there exists a

common TPCE weight for fT,ωi
and fT,ωj

with ordered pair (ωi, ωj).

In contrast to Lemma 9, the difference in TPCE leads to the convexity of v on

some sets.

Lemma 10. Let T with |T | ≥ 2 and ordered pair (ωi, ωj) ∈ T be fixed. Let αωi
be a

TPCE weight for fT,ωi
with ordered pair (ωi, ωj) and αωj

be a TPCE weight for fT,ωj

with ordered pair (ωi, ωj). Then, if there exist αωi
and αωj

such that αωi
≥ αωj

, then

it holds that

v(T\{ωi, ωj}) + v(T ) ≥ v(T\{ωj}) + v(T\{ωi}). (6)

11We can impose the existence of a common TPCE wight for larger classes of acts than those
analyzed in this paper. See Asano and Kojima (2022) in detail.
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Proof. See Appendix.

By Lemma 10, the following axiom together with CEU show (P2-b) in Property

2.

Axiom 5. There exists a two-point set T 0 = {ω∗, ω∗∗} satisfying the following:

there exist αω∗ and αω∗∗ such that αω∗ ≥ αω∗∗ , where αω∗ is a TPCE weight for

fΩ,ω∗ with ordered pair (ω∗, ω∗∗) and αω∗∗ is a TPCE weight for fΩ,ω∗∗ with ordered

pair (ω∗, ω∗∗).

Lemma 11. Under Axiom 5, (P2-b) in Property 2 holds.

Proof. See Appendix.

Together, the following axiom and CEU show (P2-a) in Property 2.

Axiom 6. For T 0 = {ω∗, ω∗∗} in Axiom 5, it holds that αω∗∗ ≥ αω∗ , where αω∗ is a

TPCE weight for fT 0,ω∗ with ordered pair (ω∗, ω∗∗) and αω∗∗ is a TPCE weight for

fT 0,ω∗∗ with ordered pair (ω∗, ω∗∗).

Lemma 12. Under Axiom 6, (P2-a) in Property 2 holds.

Proof. See Appendix.

In summary, we obtain the following theorem.

Theorem 3. If a binary relation ⪰ defined on L0 is represented by CEU and satisfies

Axioms 4–6, then Properties 1 and 2 are satisfied. That is, DM’s preferences are

represented by neo-additive CEU. Conversely, if a binary relation ⪰ defined on L0

is represented by neo-additive CEU, then it satisfies Axioms 4–6.

Proof. See Appendix.

7 Conclusion

In this paper, by assuming that a state space is finite and Properties 1 and 2 hold,

we provided an easy-to-understand derivation of neo-additive CEU by Chateauneuf

et al. (2007) based on Möbius inversions. Properties 1 and 2 are the applications of
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Asano and Kojima (2022) that provide a characterization of a class of belief func-

tions. Our axiomatization based on Möbius inversions then shed new light on their

usefulness for our understanding of the behaviors of decision makers. Furthermore,

our approach based on the properties of Möbius inversions enabled us to understand

the relationship between Chateauneuf et al. (2007), Kajii et al. (2009), and Asano

and Kojima (2022) in a clearer and more unified way.

The key point of our methodology is to form the conjugate of unanimity games

using the equality that the sum of a class of Möbius inversions is zero, which is

mentioned in the proof of Theorem 1 in Section 5. We provided the axiomatization

of JP-capacity for v1 = µΩ. As future research, an axiomatization of JP-capacity

for a general v1 from a behavioral viewpoint would be worth investigating.
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Appendix

Appendix A

Appendix A presents the definitions and the results provided by Ghirardato and

Marinacci (2001), Ghirardato et al. (2003), and Chateauneuf et al. (2007).

Definition 4. Let Ω be a state space, and let M be a σ-algebra of subsets of Ω.

The collection of null events, N , satisfies (i) ∅ ∈ N , (ii) if A ∈ N , then B ∈ N for

all B ⊂ A, and (iii) if A,B ∈ N , then A∪B ∈ N . The collection of universal events

is defined by U = {E ∈ M|Ω\E ∈ N}. The collection of essential sets is defined by

M∗ = M\(N ∪ U).

Ghirardato and Marinacci (2001) propose the notion of biseparable preferences.

A functional form J : L0 → R such that J(f) ≥ J(g) if and only if f ⪰ g is a

representation of ⪰. J is monotonic if J(f) ≥ J(g) whenever f(ω) ⪰ g(ω) for all

ω ∈ Ω, and J is nontrivial if J(f) ̸= J(g) for some f, g ∈ L0. Given a binary relation,

a functional J : L0 → R is a canonical representation of ⪰ if it is a nontrivial and

monotonic representation of ⪰ and letting u(x) := J(x) for all x ∈ X, there exists

a function ρ : F → [0, 1] such that

J(xEy) = u(x)ρ(E) + u(y)(1− ρ(E))

for all outcomes x ⪰ y and all E ∈ F , where xEy denotes an act that equals x if

ω ∈ E and equals y if ω /∈ Ω.

Definition 5 (Ghirardato and Marinacci (2001)). A binary relation ⪰ on L0 is a

biseparable preference if (1) it has a canonical representation, (2) in the case that ⪰
has at least one essential event, then such representation is unique up to a positive

affine transformation.

For any act f ∈ L0, the certainty equivalent of f , denoted by cf , is the set of

outcomes indifferent to f , {x ∈ X : x ∼ f}.

Definition 6 (Ghirardato et al. (2003)). Given x, y ∈ X such that x ⪰ y, an

outcome z ∈ X is a preference average of x and y (given E) if x ⪰ z ⪰ y and

xEy ⪰ cxEzEczEy.
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Proposition 3 (Ghirardato et al. (2003, Proposition 1)). Let ⪰ be a biseparable

preference. For each x, y ∈ X and each essential event E ∈ M, a outcome z ∈ X

is a preference average of x and y given E if and only if

u(z) =
1

2
u(x) +

1

2
u(y).

Hence, preference averages of x and y given E exist for every essential event E ∈ M,

they do not depend on either on the choice of E or on the normalization of u, and

they form an indifference class.

Based on this proposition, we can denote a preference average of x and y by

(1/2)x⊕ (1/2)y.

Definition 7 (Ghirardato et al. (2003)). Given f, g ∈ L0 and α ∈ [0, 1], a subjective

mixture of f and g with weight α is any act h ∈ L0 such that h(ω) ∼ αf(ω)⊕ (1−
α)g(ω) for every ω ∈ Ω.

Definition 8 (Chateauneuf et al. (2007)). Fix f ∈ L0. An outcome z ∈ X is in the

indifference set of the infimum of f , denoted by z ∈ inf⪰(f), if for A := f−1(x : z ≻
x), zAf ∼ f and if for every y ≻ z and B := f−1(x : y ⪰ x), yBf ≻ f . Similarly,

an outcome z ∈ X is in the indifference set of the supremum of f , denoted by

z ∈ sup⪰(f), if for A := f−1(x : x ≻ z), zAf ∼ f and if for every y such that z ≻ y

and B := f−1(x : x ⪰ y), f ≻ yBf .

Axiom 7 (Extreme Events Sensitivity (Chateauneuf et al. (2007))). For any

f, g, h ∈ L0 such that f ∼ g and h ∈ L0(g) ∩ L0(g),

1. if h ∈ L0(f), then (1/2)g ⊕ (1/2)h ⪰ (1/2)f ⊕ (1/2)h,

2. if h ∈ L0(f), then (1/2)f ⊕ (1/2)h ⪰ (1/2)g ⊕ (1/2)h, where L0(f) and L0(f)

are defined as follows:

L0(f) :=

{
h ∈ L0

∣∣∣∣ {ω ∈ Ω : f(ω) ≻ inf
⪰
(f)

}
∪
{
ω ∈ Ω : h(ω) ≻ inf

⪰
(h)

}
/∈ U
}
,

L0(f) :=

{
h ∈ L0

∣∣∣∣ {ω ∈ Ω : f(ω) ⪰ sup
⪰

(f)

}
∩
{
ω ∈ Ω : h(ω) ⪰ sup

⪰
(h)

}
/∈ N

}
.

Appendix B: Proofs
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Proof of Theorem 1. (Step 1) Because we assume that Schmeidler’s (1989) five

axioms are satisfied, there exist a unique capacity v and a unique affine function u

such that

f ⪰ g ⇔ I(f) ≥ I(g),

where I(f) =
∫
Ω
u(f)dv.

(Step 2) It follows from Lemma 1 that

v =
∑

1≤k≤n

η{ωk}µ{ωk} +
∑
|T |≥2

ηTµT .

(Step 3) By (P2-a) in Property 2 and Lemma 6, it holds that

v(T 0) + v(T 0\{ωi, ωj}) ≤ v(T 0\{ωi}) + v(T 0\{ωj})

⇔
∑

{ωi,ωj}⊆T⊆T 0

ηT ≤ 0

⇔ ηT 0 ≤ 0.

Here, let ηT 0 = −η̄.

(Step 4) It follows from Property 1 and Lemma 4 that for any T = {ωi, ωj, ωk},

v(T ) + v(T\{ωi, ωj}) = v(T\{ωi}) + v(T\{ωj})

⇔
∑

{ωi,ωj}⊆T⊆{ωi,ωj ,ωk}

ηT = 0

⇔ η{ωi,ωj} + η{ωi,ωj ,ωk} = 0.

Because ωi, ωj, and ωk are arbitrarily chosen, it holds that

η{ωi,ωj} = η{ωj ,ωk} = η{ωi,ωk} = −η{ωi,ωj ,ωk}.

(Step 5) First, we show the following lemma.

Lemma 13. For any S with 2 ≤ |S| ≤ n− 1, ηS = (−1)|S|−1η̄.

Proof. We show this lemma by induction.

(i) The case of |S| = 2 holds by Step 4.

(ii) We assume that the statement holds for |S| = m with 2 ≤ m < n− 2. Consider
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a set S with |S| = m+1, and pick ωi, ωj ∈ S arbitrarily. By Property 1 and Lemma

4, it holds that ∑
{ωi,ωj}⊆T⊆S

ηT = 0.

Now, it follows from the binomial theorem that∑
{ωi,ωj}⊆T⊆S

ηT

= η̄

(
(−1) +

(
m− 1

1

)
(−1)2 +

(
m− 1

2

)
(−1)3 + · · ·+

(
m− 1
m− 2

)
(−1)m−1

)
+ ηS.

Here,

(−1) +

(
m− 1

1

)
(−1)2 +

(
m− 1

2

)
(−1)3 + · · ·+

(
m− 1
m− 2

)
(−1)m−1

= (−1)
(
(1 + (−1))m−1 − (−1)m−1

)
= (−1)m−1.

Therefore, by (−1)m−1η̄ + ηS = 0, it holds that ηS = (−1)mη̄, which proves this

lemma.

(Step 6) By (P2-b) in Property 2 (b) and Lemma 5, it holds that for T 0 =

{ωi, ωj}, ∑
{ωi,ωj}⊆T⊆Ω

ηT ≥ 0.

Now, it follows from the binomial theorem that∑
{ωi,ωj}⊆T⊆Ω

ηT

= η̄

(
(−1) +

(
n− 2
1

)
(−1)2 +

(
n− 2
2

)
(−1)3 + · · ·+

(
n− 2
n− 3

)
(−1)n−2

)
η̄ + ηΩ

= (−1)
(
(1 + (−1))n−2 − (−1)n−2

)
η̄ + ηΩ = (−1)n−2η̄ + ηΩ.

Thus, (−1)n−2η̄ + ηΩ ≥ 0.

(Step 7) By Lemma 13 in Step 5, it holds that

v =
∑

1≤i≤n

η{ωi}µ{ωi} +
∑

2≤|S|<n

(−1)|S|−1η̄µS + ηΩµΩ,
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which turns out to be the following:

v =
∑

1≤i≤n

(η{ωi} − η̄)µ{ωi} + η̄
∑
S

(−1)|S|−1µS + ((−1)n−2η̄ + ηΩ)µΩ. (7)

Here, let η̃ = (−1)n−2η̄+ ηΩ. Then, η̃ ≥ 0 by Step 6. Equation (7) can be rewritten

as follows:

v =
∑

1≤i≤n

(η{ωi} − η̄)µ{ωi} + η̄
∑
S

(−1)|S|−1µS + η̃µΩ.

Because
∑

S(−1)|S|−1µS = wΩ by Lemma 13, it holds that

v =
∑

1≤i≤n

(η{ωi} − η̄)µ{ωi} + η̃µΩ + η̄wΩ.

By letting η0{ωi} = η{ωi} − η̄, it follows that

v =
∑

1≤i≤n

η0{ωi}µ{ωi} + η̃µΩ + η̄wΩ.

Because v is a capacity, it holds for all i, k that

0 ≤ v({ωi, ωk})− v({ωi})

= η{ωi} + η{ωk} + η{ωi,ωk} − η{ωi}

= η{ωk} − η̄ = η0{ωk}.

Thus, it holds that

I(f) =

∫
Ω

u(f)dv =
n∑

i=1

η0{ωi}u(f(ωi)) + η̃min
ωi∈Ω

u(f(ωi)) + η̄max
ωi∈Ω

u(f(ωi)).

Next, we show the converse. Define a capacity by v =
∑n

i=1 η
0
{ωi}µ{ωi} + η̃µΩ +

η̄wΩ. Then, it follows from Proposition 1 that
∫
Ω
u(f)dv = I(f), which shows that

Schmeidler’s (1989) five axioms are satisfied.

Let T ∈ F be any event with 3 ≤ |T | ≤ n− 1, and let ωi, ωj ∈ T be any distinct

points. Then, it holds that

v(T ) + v(T\{ωi, ωj})− v(T\{ωi})− v(T\{ωj})

=
∑

1≤k≤n

η0{ωk} + η̄ +
∑

1≤k≤n, k ̸=i, k ̸=j

η0{ωk} + η̄ −

( ∑
1≤k≤n, k ̸=i

η0{ωk} + η̄ +
∑

1≤k≤n, k ̸=j

η0{ωk} + η̄

)
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= 0,

which shows that Property 1 holds.

Let ωi, ωj ∈ T be any distinct points, and let T 0 = {ωi, ωj}. Then, it holds that

v(T 0) + v(T 0\{ωi, ωj})− v(T 0\{ωi})− v(T 0\{ωj})

= (η0{ωi} + η0{ωj} + η̄) + 0− (η0{ωj} + η̄)− (η0{ωi} + η̄) = −η̄ ≤ 0,

which shows that (P2-a) in Property 2 holds. Furthermore, it also holds that

v(Ω) + v(Ω\{ωi, ωj})− v(Ω\{ωi})− v(Ω\{ωj})

=
∑

1≤k≤n

η0{ωk} + η̃ + η̄

+
∑

1≤k≤n, k ̸=i, k ̸=j

η0{ωk} + η̄ −

( ∑
1≤k≤n, k ̸=i

η0{ωk} + η̄ +
∑

1≤k≤n, k ̸=j

η0{ωk} + η̄

)
= η̃ ≥ 0,

which shows that (P2-b) in Property 2 holds.

Proof of Proposition 2. First, we show (a) in Condition (ii) of Proposition 2. Fix

a set E be fixed. It suffices to show that v(E ∪ F ) − v(F ) = constant for any F

with E ∩ F = ∅ and E ∪ F ̸= Ω. Note that v(E ∪ F ) − v(F ) − v(E) is equal to

the summation of ηT over T with T ⊆ E ∪ F , E ∩ T ̸= ∅ ̸= F ∩ T . Let E be the

collection of such T . Then, it follows from Lemma 3 that

v(E ∪ F )− v(F )− v(E) =
∑
T∈E

ηT .

Because ηS = (−1)|S|−1η̄ for all S with 2 ≤ |S| ≤ n− 1, it holds that

v(E ∪ F )− v(F )− v(E) = η̄
∑
T∈E

(−1)|T |−1. (8)

Because E ∩ F = ∅, T ⊆ E ∪ F , and E ∩ F ̸= ∅ ̸= F ∩ T , any T ∈ E is equal

to E ′ ∪ F ′, where ∅ ̸= E ′ ⊆ E and ∅ ̸= F ′ ⊆ F . Letting |E ′| = x and |F ′| = y,

|T | = x + y holds, which implies that (−1)|T |−1 = (−1)(−1)x(−1)y. Thus, it holds

that ∑
T∈E

(−1)|T |−1 = (−1)
∑

1≤x≤|E|, 1≤y≤|F |

(
|E|
x

)(
|F |
y

)
(−1)x+y
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= (−1)

 ∑
1≤x≤|E|

(
|E|
x

)
(−1)x

 ∑
1≤y≤|F |

(
|F |
y

)
(−1)y


= (−1)

(
(1− 1)|E| − 1

) (
(1− 1)|F | − 1

)
= −1. (9)

Because (8) and (9) imply that v(E ∪ F ) − v(F ) − v(E) = −η̄, we show that

v(E ∪ F )− v(F ) = constant.

Next, we show (b) and (c) in Condition (ii) of Proposition 2. By setting E = {ω∗}
and F = {ω∗∗}, it holds that

v(E ∪ F ) ≤ v(E) + v(F ) ⇔ v({ω∗, ω∗∗}) ≤ v({ω∗}) + v({ω∗∗}),

which is the same as (P2-a) in Property 2. It also holds that

v′(E ∪ F ) ≤ v′(E) + v′(F ) ⇔ v′({ω∗, ω∗∗}) ≤ v′({ω∗}) + v′({ω∗∗})

⇔ 1− v(Ω\{ω∗, ω∗∗}) ≤ 1− v(Ω\{ω∗}) + 1− v(Ω\{ω∗∗})

⇔ v(Ω\{ω∗}) + v(Ω\{ω∗∗}) ≤ v(Ω) + v(Ω\{ω∗, ω∗∗}),

which is the same as (P2-b) in Property 2.

Proof of Theorem 2

To prove Theorem 2, we first show the following lemma.

Lemma 14. Suppose that a binary relation ⪰ defined on L0 is represented by CEU

and it satisfies Axioms 2 and 3. Let a : Ω → R be a function such that a(ω) =

u(f(ω)) for an act f ∈ L0, and define an operator J(a) by J(a) =
∫
Ω
u(f)dv. Then,

(1) if a and b are cominimum, then J(a + b) ≤ J(a) + J(b), and (2) if a and b are

comaximum, then J(a+ b) ≥ J(a) + J(b).

Proof of Lemma 14. We prove this lemma based on Gilboa and Schmeidler (1989,

Lemma 3.3). Let f, g be any pair of cominimum acts. Let p = u(f) and q = u(g).

Then, p and q are cominimum functions. First, if J(p) = J(q), then f ∼ g, and by

Axiom 2, (1/2)f + (1/2)g ⪯ f for any cominimum acts f, g. Therefore, it follows

that

J

(
u

(
1

2
f +

1

2
g

))
≤ J(p) =

1

2
J(p) +

1

2
J(q).
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By affinity of u,

J

(
u

(
1

2
f +

1

2
g

))
= J

(
1

2
u(f) +

1

2
u(g)

)
= J

(
1

2
p+

1

2
q

)
.

By these two formulas, it holds that J(p+ q) ≤ J(p) + J(q).

Next, assume J(p) > J(q). Let γ = J(p) − J(q). Set q′ = q + γ1Ω, where 1Ω

denotes the indication function. Note that p and q′ are also cominimum functions.

Furthermore, it holds that J(q′) = J(q+ γ1Ω) = J(q) + γ = J(p), where the second

equality holds by the property of Choquet integrals. Similar to the above argument,

it holds that J((1/2)p + (1/2)q′) ≤ (1/2)J(p) + (1/2)J(q′). The left-hand side of

the inequality is equal to J((1/2)p + (1/2)q) + (1/2)γ, and the right-hand side is

equal to (1/2)J(p) + (1/2)J(q) + (1/2)γ, which means that J((1/2)p + (1/2)q) ≤
(1/2)J(p) + (1/2)J(q). Thus, the first half of the claim is shown. The second half

of the claim can be similarly shown.

Proof of Theorem 2. First, we suppose that a binary relation ⪰ on L0 is represented

by CEU and it satisfies Axioms 2 and 3. Note that by Schmeidler (1989), there

exist acts y1 and y0 such that u(y1) = 1 and u(y0) = 0. For these acts y1 and

y0, let y′ = (1/2)y1 + (1/2)y0. Then, u(y′) = 1/2. For any ω∗, ω∗∗, take two

functions a = (1/2)1{ω∗} and b = (1/2)1{ω∗∗}. Indeed, two functions a and b are well-

defined because for f = (y′, {ω∗}; y0, {Ω\{ω∗}}) and g = (y′, {ω∗∗}; y0, {Ω\{ω∗∗}}),
a = u(f) and b = u(g). Because a = (1/2)1{ω∗} and b = (1/2)1{ω∗∗} are cominimum,

it holds for J(a) defined in Lemma 14 that

J

(
1

2
1{ω∗} +

1

2
1{ω∗∗}

)
≤ J

(
1

2
1{ω∗}

)
+ J

(
1

2
1{ω∗∗}

)
.

The left-hand side of the inequality is equal to (1/2)v({ω∗, ω∗∗}), and the right-hand

side is equal to (1/2)v({ω∗}) + (1/2)v({ω∗∗}), which means that (P2-a) in Property

2 holds.

Similar to the above argument, we can set a = (1/2)1{Ω\{ω∗}} and b = (1/2)1{Ω\{ω∗∗}}.

Because a and b are comaximum, it holds by Lemma 14 that

J

(
1

2
1{Ω\{ω∗}} +

1

2
1{Ω\{ω∗∗}}

)
≥ J

(
1

2
1{Ω\{ω∗}}

)
+ J

(
1

2
1{Ω\{ω∗∗}}

)
.
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The left-hand side of the inequality is equal to (1/2)v(Ω) + (1/2)v(Ω\{ω∗, ω∗∗}),
and the right-hand side is equal to (1/2)v(Ω\{ω∗})+(1/2)v(Ω\{ω∗∗}), which means

that (P2-b) in Property 2 holds.

Finally, we show Property 1. Take any T with 3 ≤ |T | ≤ n−1 and any ωi, ωj ∈ T .

Similarly, we can set a = (1/2)1{T\{ωi}} and b = (1/2)1{T\{ωj}}. Because a and b are

cominimum and comaximum, it holds by Lemma 14 that

J

(
1

2
1{T\{ω∗}} +

1

2
1{T\{ω∗∗}}

)
= J

(
1

2
1{T\{ω∗}}

)
+ J

(
1

2
1{T\{ω∗∗}}

)
.

The left-hand side of the inequality is equal to (1/2)v(T )+(1/2)v(T\{ω∗, ω∗∗}), and
the right-hand side is equal to (1/2)v(T\{ω∗})+(1/2)v(T\{ω∗∗}), which means that

Property 1 holds.

Now, we show the converse of Theorem 2. Suppose DMs’ preferences are repre-

sented by (2). If f ∼ g, then I(f) = I(g). If f and g are cominimum, then it holds

that

min
ωi∈Ω

{
1

2
u(f(ωi)) +

1

2
u(f(ωj))

}
=

1

2
min
ωi∈Ω

u(f(ωi)) +
1

2
min
ωi∈Ω

u(f(ωi)).

Furthermore, for any acts (functions) f, g, it holds that

max
ωi∈Ω

{
1

2
u(f(ωi)) +

1

2
u(f(ωj))

}
≤ 1

2
max
ωi∈Ω

u(f(ωi)) +
1

2
max
ωi∈Ω

u(f(ωi)).

Therefore, keeping in mind that the first term in (2) is additive, it follows that

I

(
1

2
f +

1

2
g

)
≤ 1

2
I(f) +

1

2
I(g) = I(f),

which means that (1/2)f + (1/2)g ⪯ f . Thus, Axiom 2 holds. A similar argument

shows that Axiom 3 holds, which completes the proof of Theorem 2.

Proof of Lemma 7. Because v is a probability (that is, additive), it holds that

(c, {ωi, ωj}; f,Ω\{ωi, ωj}) ∼ f

⇔ u(c)(v({ωi}) + v({ωj})) = u(f(ωi))v({ωi}) + u(f(ωj))v({ωj}).

If v({ωi})+v({ωj}) = 0, then the equality holds for any c. If v({ωi})+v({ωj}) ̸= 0,

then by letting α = v({ωi})/(v({ωi}) + v({ωj})), the affinity of u shows that c ∼
αf(ωi) + (1− α)f(ωj) for all f .
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Proof of Lemma 8. Let u(y1) = 1, u(y0) = 0, and let I be a Choquet integral. Then,

it holds that

αωi
∈ [0, 1] is the TPCE weight for act fT,ωi

with ordered pair (ωi, ωj)

⇔ (αωi
y0 + (1− αωi

)y1, {ωi, ωj}; y1, T\{ωi, ωj}; y0, T c) ∼ fT,ωi

⇔ αωi
v(T\{ωi, ωj}) + (1− αωi

)v(T ) = v(T\{ωi}).

Proof of Lemma 9. Let αωi
be a common TPCE weight. Because (ωi, ωj) is an

ordered pair, it holds that

αωj
∈ [0, 1] is the TPCE weight for act fT,ωj

with ordered pair (ωi, ωj)

⇔ (αωj
y1 + (1− αωj

)y0, {ωi, ωj}; y1, T\{ωi, ωj}; y0, T c) ∼ fT,ωj

⇔ (1− αωj
)v(T\{ωi, ωj}) + αωj

v(T ) = v(T\{ωj}). (10)

When αωi
= αωj

, adding both sides of (4) and (10) shows the claim.

Proof of Lemma 10. By Lemma 8, it holds that

αωi
∈ [0, 1] is the TPCE weight for act fT,ωi

with ordered pair (ωi, ωj)

⇔ αωi
v(T\{ωi, ωj}) + (1− αωi

)v(T ) = v(T\{ωi}). (11)

On the other hand, it holds that

αωj
∈ [0, 1] is the TPCE weight for act fT,ωj

with ordered pair (ωi, ωj)

⇔ (αωj
y1 + (1− αωj

)y0, {ωi, ωj}; y1, T\{ωi, ωj}; y0, T c) ∼ fT,ωj
.

If αωi
≥ αωj

, then the monotonicity of a binary relation ⪰ shows that

(αωi
y1 + (1− αωi

)y0, {ωi, ωj}; y1, T\{ωi, ωj}; y0, T c) ⪰ fT,ωj
.

Similar to the argument in the proof of Lemma 9, it holds that

(1− αωi
)v(T\{ωi, ωj}) + αωi

v(T ) ≥ v(T\{ωj}). (12)

Adding both sides of (11) and (12) shows (6) .
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Proof of Lemma 11. Letting T = Ω, ωi = ω∗, and ωj = ω∗∗ in Lemma 10 proves

this lemma.

Proof of Lemma 12. Note that Axioms 5 and 6 are the axioms for converse prefer-

ence relations because (ω∗, ω∗∗) is an ordered pair. Thus,

αω∗ ∈ [0, 1] is the TPCE weight for act fT 0,ω∗ with ordered pair (ω∗, ω∗∗)

⇔ (αω∗y0 + (1− αω∗)y1, {ω∗, ω∗∗}; y0,Ω\{ω∗, ω∗∗}) ∼ fT 0,ω∗ .

αω∗∗ ≥ αω∗ and the monotonicity of a binary relation ⪰ show that

(αω∗∗y0 + (1− αω∗∗)y1, {ω∗, ω∗∗}; y0,Ω\{ω∗, ω∗∗}) ⪯ fT 0,ω∗ .

An argument similar to Lemma 10 shows the claim.

Proof of the Converse of Theorem 3. Let I(f) be the neo-additive CEU represented

by (2). Note that v(T ) = I(1T ).

First, we show that Axiom 4 holds. Let T be an event with 3 ≤ |T | ≤ n − 1,

and let S(T ) =
∑

ω∈Ω η0{ω}. Note that it holds that min{1T} = min{1T\{ωi}} =

min{1T\{ωj}} = min{1T\{ωi,ωj}} = 0 because 3 ≤ |T | ≤ n− 1. Then, it holds that

(4) ⇔ αωi
(S(T )− η0{ωi} − η0{ωj} + η̄) + (1− αωi

)(S(T ) + η̄) = S(T )− η0{ωi} + η̄

⇔ αωi
(η0{ωi} + η0{ωj}) = η0{ωi}, and

(10) ⇔ (1− αωj
)(S(T )− η0{ωi} − η0{ωj} + η̄) + αωj

(S(T ) + η̄) = S(T )− η0{ωj} + η̄

⇔ αωj
(η0{ωi} + η0{ωj}) = η0{ωi}.

Thus, there exist αωi
and αωj

such that αωi
= αωj

, and Axiom 4 holds.

Next, we show that Axiom 5 holds. Let ω∗, ω∗∗ be any states. Let T = Ω, ωi =

ω∗, and ωj = ω∗∗. Note that min{1T\{ωi}} = min{1T\{ωj}} = min{1T\{ωi,ωj}} = 0.

Then, it holds that

(4) ⇔ αωi
(S(T )− η0{ωi} − η0{ωj} + η̄) + (1− αωi

)(S(T ) + η̃ + η̄) = S(T )− η0{ωi} + η̄

⇔ αωi
(η0{ωi} + η0{ωj}) = η0{ωi} + (1− αωi

)η̃, and

(10) ⇔ (1− αωj
)(S(T )− η0{ωi} − η0{ωj} + η̄) + αωj

(S(T ) + η̃ + η̄) = S(T )− η0{ωj} + η̄

⇔ αωj
(η0{ωi} + η0{ωj}) = η0{ωi} − αωj

η̃,
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which implies that αωi
(η0{ωi} + η0{ωj}) ≥ αωj

(η0{ωi} + η0{ωj}). Thus, there exist αωi
and

αωj
such that αωi

≥ αωj
, and Axiom 5 holds.

Finally, we show that Axiom 6 holds. Let T = T 0 = {ω∗, ω∗∗}, ωi = ω∗, and

ωj = ω∗∗. Then, it holds that

(4) ⇔ (1− αωi
)(η0{ωi} + η0{ωj} + η̄) = η0{ωj} + η̄

⇔ αωi
(η0{ωi} + η0{ωj}) = η0{ωi} − αωi

η̄, and

(10) ⇔ αωj
(η0{ωi} + η0{ωj} + η̄) = η0{ωi} + η̄

⇔ αωj
(η0{ωi} + η0{ωj}) = η0{ωi} + (1− αωj

)η̄,

which implies that αωj
(η0{ωi} + η0{ωj}) ≥ αωi

(η0{ωi} + η0{ωj}). Thus, there exist αωi
and

αωj
such that αωj

≥ αωi
, and Axiom 6 holds.
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