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Abstract

This paper experimentally studies comparative properties of risk aversion

and ambiguity aversion in the way that the role of heterogeneity is allowed for.

We examine correlation between the degrees of risk aversion and the degree

of ambiguity aversion, how the latter changes across geometric properties of

objective sets of possible probability distributions and how ambiguous infor-

mation is generated.
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1 Introduction

Significance of ambiguity and ambiguity aversion as compared to risk and risk aver-

sion has been well-documented, after Ellsberg [14], in both theoretical1 and empiri-

cal/experimental literature.2

The current paper aims at getting a better empirical account of heterogeneity in

the degrees of risk aversion and ambiguity aversion, while majority of the existing

studies are concerned with model selection questions. We investigate comparative

properties of risk and ambiguity aversion across subjects, and comparative proper-

ties of ambiguity aversion across information sources, which differ in the ranges of

objectively possible probability distributions and in how ambiguous information is

generated.

For this purpose, we present ambiguous information as objective but impre-

cise probabilistic information, following Hayashi and Wada [21], Cohen, Tallon and

Vergnaud [9]. Such information is given in the form of a set, called a probability

possibiity set, such that the decision maker knows only that the true probability

distribution lies it it but does not know anything about which one in it is true or

which one in it is more likely to be true.

We measure probability equivalent of a bet under ambiguity as well as its cer-

tainty equivalent. When we restrict attention to choice between binary bets, one is

ambiguous and the other is with known probability, and vary the value of known

probability of winning in the latter, the probability equivalent of a bet under ambi-

guity is the value at which the subject is indifferent between the two bets.

We vary probability possibility sets and measure how the distribution of degrees

1See Schmeidler [27], Gilboa and Schmeidler [20], Epstein [16], Ghirardato and Marinacci [19],

Ghirardato, Maccheroni and Marinacci [18] among many.
2Earlier contributions to the experimental literature are Becker and Brownson [3], Slovic and

Tversky [28], Yates and Zukowski [29], Einhorn and Hogarth [13], Fox and Tversky [15], Chow and

Sarin [8], Halevy [22], Ahn, Choi, Gale and Kariv [1], Bossaerts, Ghirardato, Guarnaschelli and

Zame [5].
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of ambiguity aversion respond to such variation. In particular we are interested

in whether and how the degrees of ambiguity aversion are sensitive to geometric

properties of probability possibility sets.

We vary how we generate ambiguous information as well. One of the key issues in

lab experiment on choice under ambiguity is how we generate objectively ambiguous

information so that there is no room for manipulation and speculation. A traditional

way of presenting an Ellsberg urn/box is simply telling nothing about the proportion

of colors in it, but this is problematic when we carry out a real choice experiment,

since we have to determine the actual proportion of colors in the end: this has to lead

the subjects to speculate about manipulation by the experimenter, as pointed out by

Hayashi and Wada [21], Hey and Pace [23], Dominiak and Duersch [12], Oechssler

and Roomets [25].

We run the experiments in two ways. One is the traditional method in which we

simply tell nothing. The other follows Hayashi and Wada [21], where we generate

ambiguous information in the way that there is no room for manipulation by the ex-

perimenter and nevertheless the problem does not reduce to calculating a probability

distribution over probability distributions.

The paper proceeds as follows. In Section 2 we extend the definition of compar-

ative risk aversion and ambiguity aversion, since the existing theoretical definition

allows us to compare degrees of ambiguity aversion only between subjects with iden-

tical risk preferences. In Section 3 we explain our experimental method. We present

the experimental results in Section 4, and Section 5 concludes.
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2 Comparative risk and ambiguity aversion: the-

ory

2.1 Definitions of comparative risk and ambiguity aversion

Let X be the set of pure outcomes and ∆(X) be the set of (simple) lotteries over X.

Let Ω be the set of states of the world, which is assumed to be finite for simplicity.

Let H be the set of lottery acts, which are mappings from Ω into ∆(X). Note that

the set of lotteries ∆(X) is regarded as a subset ofH consisting of constant mappings.

Let ≿1 and ≿2 denote two generic preference relations over H. When restricted to

∆(X) they are understood as risk preferences.

We follow the definition of comparative risk aversion according to Arrow [2] and

Pratt [26] .

Definition 1 ≿1 is more risk-averse than ≿2 if it holds

l ≿1 δ(x) =⇒ l ≿2 δ(x)

and

l ≻1 δ(x) =⇒ l ≻2 δ(x)

for all x ∈ X and l ∈ ∆(X), where δ(x) denote the lottery degenerated at x.

Note that this definition implies the two preferences coincide over deterministic out-

comes, although it is not restrictive when the outcome space is one-dimensional.

For the degree of ambiguity aversion, here is the existing definition due to Ghi-

rardato and Marinacci [19].

Definition 2 ≿1 is more ambiguity-averse than ≿2 if it holds

h ≿1 l =⇒ h ≿2 l

and

h ≻1 l =⇒ h ≻2 l
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for all l ∈ ∆(X) and h ∈ H.

Note again that this definition implies the two preferences coincide over lotteries.

It is a restrictive condition, as one can compare ambiguity attitudes only between

preferences with the identical risk attiude.

Thus we also consider a weaker definition of comparative ambiguity aversion as

below (see Dimmock, Kouwenberg, Wakker [10], Wang [30]). Let (x;E, y;Ec) denote

a bet in which x is given if event E occurs and y is given otherwise. Let (x;λ, y; 1−λ)

denote a lottery which yields x with probability λ and y with probability 1− λ.

Definition 3 ≿1 is weakly more ambiguity averse than ≿2 if it holds

(x;E, y;Ec) ≿1 (x;λ, y; 1− λ) =⇒ (x;E, y;Ec) ≿2 (x;λ, y; 1− λ)

and

(x;E, y;Ec) ≻1 (x;λ, y; 1− λ) =⇒ (x;E, y;Ec) ≻2 (x;λ, y; 1− λ)

for all x, y ∈ X and λ ∈ (0, 1) and E ⊂ Ω.

Also, one can consider a richer domain of choice which consist of pairs of “informa-

tion” and act, where “information” takes the form of a set of probability distributions

over states such that the decision maker knows the true distribution lies in it but

does not know which one in it is true or which one in it is more likely to be true. We

call such set a probability possibility set. Let P be the set of probability possibility

sets, which are compact and convex subsets of ∆(Ω).

Then one can consider preference over P × H, where (P, f) ≿ (Q, g) says the

decision maker weakly prefers taking bet f under P over taking bet g under Q. In

experiment, such P and Q are provided by the experimenter as the Ellsberg boxes.

This allows us to make a distiction between the set of objecively possible probability

distributions and the subjective set of priors as in Gilboa and Schmeidler [20].

In such an environment, ambiguity aversion is revealed as an attitude to avoid

betting under imprecise information. The following definition is due to Gajdos,

Hayashi, Tallon and Vergnaud [17].
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Definition 4 On the domain of pairs of probability possibility sets and acts, ≿1 is

more imprecision-averse than ≿2 if it holds

(P, (x;E, y;Ec)) ≿1 ({p}, (x;E, y;Ec)) =⇒ (P, (x;E, y;Ec)) ≿2 ({p}, (x;E, y;Ec))

and

(P, (x;E, y;Ec)) ≻1 ({p}, (x;E, y;Ec)) =⇒ (P, (x;E, y;Ec)) ≻2 ({p}, (x;E, y;Ec))

for all x, y ∈ X, E ⊂ Ω and p ∈ ∆(X) and P ∈ P .

2.2 Models

While our measurement methods are model-free, introducing models helps us to get

a better understanding of the measurement observations.

The most prominent model of risk preference is expected utility theory preference,

which allows representation in the form

U(l) = El[u(x)]

for l ∈ ∆(X), where u : X → R is called von-Neumann/Morgenstern (vNM) index

and El denotes expectation with regard to l.

The following proposition is standard.

Proposition 1 Let u1 and u2 be vNM indices that form expected utility represen-

tations of ≿1 and ≿2, respectively. Then, ≿1 is more risk-averse than ≿2 if and only

if there is a monotone and concave transformation ϕ such that u1 = ϕ ◦ u2.

The most prominent model of ambiguity averse preferences is maxmin expected

utility preference due to Gilboa and Schmeidler [20], which is represented in the form

U(h) = min
p∈P

Ep[u ◦ h]

for h ∈ H, where P ⊂ ∆(Ω) is the subjective set of beliefs and Ep denotes expectation

with regard ot each possible p ∈ P , and u◦h : Ω → R is a composite mapping which

maps each ω ∈ Ω into Eh(ω)[u(x)].

One can show the follwing propsition from the standard uniqueness argument.
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Proposition 2 Let (u1, P1) and (u2, P2) be pairs of vNM indices and sets of priors

that form maxmin expected utility representations of ≿1 and ≿2, respectively. Then,

≿1 is more mbiguity-averse than ≿2 if and only if u1 and u2 are cardinally equivalent

and P1 ⊃ P2.

Also, one can show

Proposition 3 Let (u1, P1) and (u2, P2) be pairs of vNM indices and sets of priors

that form maxmin expected utility representations of ≿1 and ≿2, respectively. Then,

≿1 is weakly more ambiguity-averse than ≿2 if and only if u1 and u2 are ordinally

equivalent and minp∈P1 p(E) ≤ minp∈P2 p(E).

Note that when |Ω| = 2 the above two propositions are identical.

One may consider a more flexible class, so-called α-maxmin preference which is

represented in the form

U(h) = (1− α)min
p∈P

Ep[u ◦ h] + αmax
p∈P

Ep[u ◦ h]

As pointed out Ghirardato, Maccheroni and Marinacci [18], however, α-maxmin

preference lacks of uniqueness of representation, in the sense that one preference can

be represented by two (α, P ) and (β,Q) where α and β are different and β and Q

are different. Thus the two definition of comparative ambiguity aversion does not

have an implication to parametric comparison in this class.

Such lack of uniqueness motivates us to consider a richer domain in which prob-

ability possibiity sets are treated as objects. One such model is a natural extension

of the α-model, which has the form

U(P, h) = (1− α)min
p∈P

Ep[u ◦ h] + αmax
p∈P

Ep[u ◦ h]

Note that when α = 0 the decision maker is completely pessimistic in the sense tha

she takes the worst-case from the entire probability possibility set, and when α = 1

she is completely optimistic in the analougous way.

Thw following observation is immediate.
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Proposition 4 Let (u1, α1) and (u2, α2) be pairs which form α-maximin represen-

tations of ≿1 and ≿2 respectively. Then ≿1 is more imprecision averse than ≿2 if

and only if u1 and u2 are ordinally equilavent and α1 ≤ α2.

One important property of the α-maximin model is insensitive to geometric proper-

ties of probability possibility sets, as only the best case and the worst case should

matter.

Another prominent model is called the contraction model, in which the decision

maker forms her subjective set of beliefs by shrinking the given probability possibility

set toward its “center” at certain degree (Gajdos, Hayashi, Tallon and Vergnaud [17]).

Denote the “center”3 of set P by s(P ), then the preference is represented in the form

U(P, h) = (1− ε)Es(P )[u ◦ h] + εmin
p∈P

Ep[u ◦ h] = min
p∈(1−ε){s(P )}+εP

Ep[u ◦ h]

Note that when ε = 0 the decision maker shrinks the given probability possibility

set into a single point s(P ), and when ε = 1 she does not shrink the set at all and

takes the worse case in the entire probability possibility set.

It is now intuitive to observe the following.

Proposition 5 Let (u1, ε1) and (u2, ε2) be pairs which form contraction representa-

tions of ≿1 and ≿2 respectively. Then ≿1 is more imprecision averse than ≿2 if and

only if u1 and u2 are ordinally equilavent and ε1 ≤ ε2.

3 Experimental design

3.1 Risky/unambiguous box

For the measurement of probability-equivalent, we introduce a risky/unambiguous

box, which we call Box A throughout. There are two colors, Red and Blue. Let

3Gajdos, Hayashi, Tallon and Vergnaud [17] characterize the “center” as Steiner point, which

is the weighted average of vertices in which the weight on each vertex is proportional to its outer

angle. In the current setting it suffices to know that the Steiner point of a probability simplex is

the point of uniform distribution.
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(pR, pB) denote a generic probability distribution over two colors. In particular, Box

H refers to the case that (pR, pB) = (0.5, 0.5), which will be used in the measurement

of certainty equivalent.

3.2 Ambiguous boxes

We consider two ambiguous boxes, Box B and Box C, which consist of either two

colors (Red and Blue) or three colors (Red, Blue and Yellow). Let (pR, pB) denote

a generic probability distribution over two colors, and (pR, pB, pY ) denote a generic

probability distribution over three colors. Then the three boxes are formalized as

follows. Then the two probability-possibility sets are given by

B = {(pR, pB) : pR, pB ≥ 0, pR + pB = 1}

C = {(pR, pB, pY ) : pR, pB, pY ≥ 0, pR + pB + pY = 1}

3.3 How do we generate a “real” Ellsberg box?

In most Ellsberg experiments the subjects are simply told nothing about the propor-

tion of colors in the ambiguous boxes. This creates a room for manipulation, because

in real-choice experiments the experimenter has to create a “real” Ellsberg box, that

is, has to determine the proportion of colors in the end. If it is simply arbitrarily

chosen by the experimenter, it leaves the subjects a room for supeculation, such as

“because the experimenter seems simple-minded he/she would choose it symmet-

rically” or “because the experimenter would like to minimize the reward payment

he/she would minimize the number of balls for the prize,” etc, as pointed out by

Hayashi and Wada [21], Hey and Pace [23], Dominiak and Duersch [12], Oechssler

and Roomets [25]. Moreover, if we simply randomize the proportion according to

some transparent distribution, such as uniform distribution, it is no longer a setting

of ambiguity but a setting of two-stage risk.

To deal with this issue, we generate Ellsbergs boxes in two ways and compare.

One is done by following the approach by Hayashi and Wada [21]. They provided
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a lab-experiment method to create Ellsberg boxes which is sufficiently complicated

so that it is virtually impossible for any subject to calculate the final probability

distribution and yet is simple so that there is no room for manipulation by the

experimenter. We follow the same procedure here.

For each probability possibility set, we play a “snake and ladder” game, which is

sufficiently complicated so that calculating final probability distribution about which

point in the set will realize is virtually impossible to calculate but is simple enough

so that everybody can understand the rule. We call this the DICE treatment. In the

DICE treatment, Box B and C are generated through the procedures as illustrated

in Appendix.

The other is to follow the traditional method taken in almost all of the Ellsberg

experiments, where we simply tell nothing about the proportion of colors or about

how it is being chosen. Thus we call it the TN (Telling Nothing) experiment.

3.4 Probability equivalent vs. certainty equivalent

For each of Box H, B, C and D, we measure certainty equivalent of a bet on Red in

which one receives 2000 JPY/Point if Red is drawn and nothing otherwise, using the

multiple price list (MPL) method.

For each of Box B, C and D, we measure probability equivalent of a bet on Red in

the ambiguous box in an analogous way: Bring box A containing Red or Blue balls,

in which the proportion of Red is known but variable. Start with the proportion of

Red being zero and gradually raise it. Let the subject choose between the box with

known proportion of Red and the given ambiguous box, where the subject wins 2000

JPY/Point if Red is drawn from the chosen box. Find the value of the proportion

of Red such that the subject is indifferent between beting on Red in the box with

known probabilities and betting on Red in the box with unknown probabilities. The

instruction are summarized in the appendix.

Let pB denote the probability equivalent of a bet on Red in Box B and pC denote

10



Table 1: Experiments conducted
Date University numbers(female) Treatment

2016/10/17 Keio 58(7) DICE

2017/10/2 Keio 61(7) DICE

2018/5/28 Keio 23(3) TN

2018/7/18,7/19 Keiai 43(0) TN

2019/7/23,25,30,31 Keiai 36 (5) TN

2020/1/6 Tohoku Gakuin 59 (15) TN

sum 278(37) DICE(119)TN(159)

the probability equivalent of a bet on Red in Box C. Then, the α-maxmin model

predicts

pB = pC = α,

meaning that ambiguity attitude is insensitive to geometric properties of probability

possibility sets. On the other hand, the contraction model predicts

pB =
1− ε

2
, pC =

1− ε

3
,

implying

pC =
2

3
pB,

meaning that ambiguity attitude is sensitive to geometric properties of probability

possibility sets in a proportional way.

3.5 Conduct of the experiment

The experiments were conducted at Keio University, Keiai University and Tohoku

Gakuin University, in which all the subjects were students (see Table 1). Each subject

was paid 2000 JPY if he or she won in the problem that was randomly chosen from

all the problems. The participation reward was 1000 JPY.
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4 Results

4.1 Comparative risk/ambiguity aversion across subjects

Certainty equivalent in Box H and probability equivalent in Box B are plotted in

Figure 1-3, for each of the DICE treatment group, TN treatment group and the group

of all subjects. Also, the statistical analysis is summarized in Table 1. They show

that correlation between risk aversion and ambiguity aversion is significant overall

but the degree of risk aversion explains little about the degree of ambiguity aversion.

Note that the correlation is weak in the DICE treatment.

Certainty equivalent in Box H and probability equivalent in Box C are plotted

in Figure 4-6, for each of the DICE treatment group, TN treatment group and the

group of all subjects. Again there is almost no correlation in each case. The statistical

analysis is summarized in Table 2. Again, they show that correlation between risk

aversion and ambiguity aversion is significant overall but the degree of risk aversion

explains little about the degree of ambiguity aversion. Note that the correlation is

weak in the DICE treatment.

This result contrasts to Cohen, Tallon and Vergnaud [9], who observe no correla-

tion between risk aversion and ambiguity aversion, although it is partially consistent

in the sense that the degree of risk aversion explains little of the degree of ambiguity

aversion. It is also consistent with the result by Lauriola and Levin [24], Butler, Guiso

Jappelli [6], which report positive correlation between risk aversion and ambiguity

aversion in different settings.

4.2 Comparative ambiguity aversion across probability pos-

sibility sets

Probability equivalent in B and probability equivalent in C are plotted in Figure 7-9,

for each of the DICE treatment group, TN treatment group and the group of all

subjects. There is a correlation, where it is strong in the TN treatment but weak in
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Figure 1: Certainty Equivalent in Risky Box and Probability Equivalent in 2-color

Ambiguous Box:DICE Treatment
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Figure 2: Certainty Equivalent in Risky Box and Probability Equivalent in 2-color

Ambiguous Box:TN Treatment
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Figure 3: Certainty Equivalent in Risky Box and Probability Equivalent in 2-color

Ambiguous Box:All Treatments
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Figure 4: Certainty Equivalent in Risky Box and Probability Equivalent in 3-color

Ambiguous Box:DICE Treatment
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Figure 5: Certainty Equivalent in Risky Box and Probability Equivalent in 3-color

Ambiguous Box:TN Treatment
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Figure 6: Certainty Equivalent in Risky Box and Probability Equivalent in 3-color

Ambiguous Box:All Treatments
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Table 2: Change in ambiguity aversion between 2-color and 3-color
ALL DICE TN

mean of Ambigous Box(R,B) 0.4013 0.4387 0.3834

mean of Ambigous Box(R,B,G) 0.2978 0.2907 0.3012

H0 : Box(R,B,G) = Box(R,B) t = 11.822** t = 11.47** t = 7.6055**

paired t.test p=2.2e-16 p =1.307e-15 p = 1.212e-11

H0 : Box(R,B,G) =
2

3
Box(B,G) t = 3.8295** t = 0.83564 t = 4.1818**

p = 0.0001852 p = 0.4073 p = 5.973e-05

**level of significance for 99% confidence interval

the DICE treatment.

Recall that the two must be distributed on the 45-degree line under the α-maxmin

model in which the degree of ambiguity aversion is insensitive to geometric properties

of probability possibility sets, while the ε-contraction model predicts that the slope

is 2/3 and the intercept is 0. When we take it as a ground assumption that the

slope is 0, the test statistics show that the actual distribution is violating both in

the TN treatment but it is significantly violating only the α-maxmin model in the

DICE treatment (see Table 2).

4.3 Comparative ambiguity aversion across information gen-

erating processes

Lastly we compare between the observed distributions of degree of ambiguity aversion

between the DICE treatment and the TN treatment. Table 3 show that mean of

probability equivalent is significantly higher in the DICE treatment than in the TN

expetiment in Box B with two colars. We observe the same pattern in Box D with

three colors but this difference is not significant. We cannot reject the null hypothesis

that variance of probability equivalent in the DICE treatment is the same as that in

the TN treatment, in each of Box B and Box C.

This is consistent with the result by Oechssler and Roomets [25] that less ambigu-
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Figure 7: Probability Equivalent in 2-color Ambiguous Box and Probability Equiv-

alent in 3-color Ambiguous Box:DICE Treatment
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Figure 8: Probability Equivalent in 2-color Ambiguous Box and Probability Equiv-

alent in 3-color Ambiguous Box:TN Treatment
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Figure 9: Probability Equivalent in 2-color Ambiguous Box and Probability Equiv-

alent in 3-color Ambiguous Box:All Treatment
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Table 3: Change in ambiguity aversion between DICE and TN
Wilcoxon Rank Sum Test Box(R=B) Box(R,B) Box(R,B,G)

mean of ¯BoxDice 842.5 0.4387 0.2907

mean of ¯BoxTN 885.3 0.3834 0.3012

W W = 3009 W= 3315 W= 2501.5

p-value p =0.2805 p = 0.02672 p = 0.3863

H0: ¯BoxDice = ¯BoxTN not rejected rejected not rejected

ity aversion is observed when the information-generating process is made mechanical.

Also, as we see in Figure 1-3 and 4-6, correlation between risk aversion and am-

biguity aversion is weaker in the DICE treatment and stronger in the TN treatment.

This suggests that there are different kinds of “ambiguity” aversion for different ways

of generating “ambiguous” information.

5 Conclusion

We have experimentally investigated comparative and distributional properties of

risk aversion and ambiguity aversion, in which ambiguous information is presented as

sets of objective but imprecise probabilistic information and the degree of ambiguity

aversion is measured though observing the probability equivalent of a bet.

We observed (i) correlation between risk aversion and ambiguity aversion is sig-

nificant but the degree of risk aversion explains little of ambiguity aversion, and also

the significance of correlation differs across the ways how we generate ambiguous

information; (ii) the degrees of ambiguity aversion are mostly significantly correlated

across probability possibility sets, and they are sensitive to geometric properties of

probability possibility sets; (iii) the degree of ambiguity aversion is reduced when

ambiguous information is generated in a non-manipulable way.
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Appendix: How to generate imprecise information in the dice experiment. 

• How to Make an Imprecise Box B (R+B=180): 

• Step 1: The experimenter rolls a six-sided die and a 20-sided die, and the sum 

of the numbers of each die is “c.” 

• Step 2: If c is odd, the experimenter rolls an additional die with 12 faces, and 

adds the number to c; we call this d. If c is even, c = d. 

• Step 3: The experimenter rolls a 10-face die. The number of the die “e” is 

multiplied by “d,” and we obtain f. 

• If f = e×f＞180, we extract 180 from f, and if f≦180, the experimenter 

applies the number f. 

• Step 4: The experimenter rolls a six-face die again, and if an even face 

appears, f becomes the number of red balls. If an odd face appears, f becomes 

the number of blue balls. 

• How to Make Box C (R+B+Y=180) 

• Step 1: The experimenter provides a triangle, as in Fig.2. One point “X(x,y,z)” 

on the triangle is selected to determine the distribution of balls between red, 

blue, and green. The experimenter rolls two 10-sided dice simultaneously, and 

obtains a sum of numbers of faces “a.” From the top point A(180,0,0) of the 

triangle in Fig. _, “x” moves “10a” toward the top point B(0,180,0), and therefore, 

reaches point (180－10a, 10a, 0). 

• Step 2: The experimenter rolls a 10-sided dice again, and obtains a sum of 

numbers of faces “b.” If a+b <35, the experimenter rolls a 10-sided dice, and 

obtains a face “c.” If a+b=36, the experimenter does not roll a dice; c=0. The 

point x moves from a point (180－10a, 10a, 0) toward the inside of the triangles 

as much as the “10b+c.” 

• If a = 18, x is tentatively at B(0,180,0), and goes back as much as 

10b toward the top point A(180, 0,0). 

• If a+b≦18, x stops at (180-10a-(10b+c), 10a, (10b+c)). 

• If b＞18 and a+b≦36, after reaching the bottom of the triangle, x 

turns up parallel to the right-hand side, and stops at X(10a +(10 b+c) − 

180, 180 –(10 b+c), 180 −10 a). 

• Step 3: The experimenter rolls a six-sided die, and decides which number 

corresponds to the three colors between red, blue, and yellow. 

• If a face is 1 → X(x,y,z) = (red, blue, yellow)  2→ X(x,y,z) = (red, 

yellow,blue) 3→ X(x,y,z) = (blue, red, yellow) 4→ X(x,y,z) = (blue, 

yellow, red)    5→ X(x,y,z) = (yellow, red, blue) 6→ X(x,y,z) = (yellow, 

blue, red) 



 

Fig. 2. Two examples of Box C;  

The left triangle shows the case with a =14, b=3, therefore, (5,140,35) and  

in the step 3, the face of die in the step3 =4, X(5.140.35)=(blue,yellow, red)  

The right triangle shows the case with a=14,b=9, therefore,(52,88,40) and  

in the step 3, the face of die in the step3=2, X(52,88,40)=(red,yellow, blue)     
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