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1. Introduction

It is difficult to foresee what will happen in the future. This is important because

this unpredictability or uncertainty affects individuals’ decision-making in the real

world. For example, in stock markets, uncertainty about firms’ returns in the future

affects investors’ portfolio choices. Similarly, it is possible that even a sophisticated

individual (or agent) cannot identify all relevant contingencies affecting outcomes

in the future. Such an agent knows that he or she has only limited knowledge

about detailed contingencies and this unawareness affects his or her decision-making.

Therefore, uncertainty and unforeseen contingencies (or unawareness) should be

taken into consideration. How should we analyze individuals who face uncertainty

and unforeseen contingencies?

To consider decision-making under uncertainty and unforeseen contingencies, the

notion of belief functions has been investigated in the literature. In the fields of

economics and statistics, the beliefs of a decision-maker (DM) are usually captured

by a probability measure when the DM faces “uncertain situations.” However,

researchers in these fields have expressed doubts about the validity of capturing

a DM’s beliefs in this manner.1 In statistics, Dempster (1967) and Shafer (1976)

proposed a belief function to model uncertain situations. First, we explain the

definition of belief functions proposed by Shafer (1976). Let Ω be a finite set and

let 2Ω be the set of all subsets of Ω. Shafer (1976) defined the function Bel : 2Ω →
[0, 1] as follows: (B1) Bel(∅) = 0, (B2) Bel(Ω) = 1, and (B3) for every positive

integer n and every collection A1, A2, . . . An of subsets of Ω, Bel(A1 ∪ · · · ∪ An) ≥∑n
i=1 Bel(Ai) −

∑n
i<j Bel(Ai ∩ Aj) + − · · · + (−1)n+1Bel(A1 ∩ · · · ∩ An), where ∅

denotes the empty set.2 For example, if Ω = {ω1, ω2}, then, from (B3), it holds

that 1 = Bel(Ω) ≥ Bel({ω1}) + Bel({ω2}). Keeping this example in mind, consider

a situation in which we decide whether a vase is a genuine product of the Ming

dynasty or counterfeit (Shafer (1976, Example 1.1)). Let ω1 denote the possibility

that the vase is genuine, and let ω2 denote the possibility that it is counterfeit. Let

Bel({ω1}) and Bel({ω2}) denote the degrees of belief that the vase is genuine and

counterfeit, respectively. For belief functions, because 1 > Bel({ω1}) + Bel({ω2})
1For example, see Gilboa (2009) and Wakker (2010) for textbook presentations of risk and

uncertainty in economics and see Yager and Liu (2008) in statistics. See also Grabisch (2016).
2Equivalently, Condition (B3) can be written as follows: for every positive integer n and every

collection A1, A2, . . . An of subsets of Ω, Bel(A1∪· · ·∪An) ≥
∑

S⊂{1,··· ,n},S ̸=∅(−1)|S|+1Bel(∩i∈SAi),

where |E| denotes the cardinality of a set E.
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can hold, it is possible that Bel({ω1}) = 0.2 and Bel({ω2}) = 0.2. Therefore, belief

functions describe situations in which the DM does not have enough information

about the likelihood of events.

To express the measure of the belief that is committed to each event A, Shafer

(1976) proposed a basic probability assignment. A function β : 2Ω → [0, 1] is a basic

probability assignment if (1) β(∅) = 0 and (2)
∑

A⊆Ω β(A) = 1. This value β(A)

measures the belief that the DM commits to A and just only to A, not the total belief

that is assigned to A including the subsets of A. To calculate the total belief assigned

to A in relation to the belief functions, Shafer (1976) defined the belief function

Bel(A) as equal to the summation of basic probability assignments over all proper

subsets B of A, that is, Bel(A) =
∑

B⊆A β(B).3 Shafer (1976) showed that β(S) =∑
E⊆S(−1)|S|−|E|Bel(E) based on Bel(A) =

∑
B⊆A β(B). This function β is called

the Möbius inversion in mathematics. In addition, Shafer (1976) demonstrated

that β(S) ≥ 0 by Condition (B3). Thus, belief functions can be defined by the non-

negativity of Möbius inversions. In the literature on decision theory, to analyze DM’s

behaviors under uncertainty, researchers have adopted the notion of capacities v on Ω

such that (1) v(∅) = 0, (2) v(Ω) = 1, and (3) v(A) ≤ v(B) for A ⊆ B. Because belief

functions satisfy the conditions of capacities, our results in this paper can be applied

to decision theory. In the following analyses, we simply denote
∑

E⊆S(−1)|S|−|E|v(E)

by βS.

Dempster (1967) considered a correspondence Γ from Ω to 2X , where Ω is a state

space and X is a set of outcomes. Because of imprecise or incomplete informa-

tion, the outcome Γ(ω) is assumed to be multivalued, not single-valued. Although

a probability is defined on Ω, it is not defined on X. Then, to approximate a prob-

ability on X, Dempster (1967) introduced upper and lower probabilities based on

the correspondence Γ, and defined a belief function based on lower probabilities.4 In

economics, particularly in decision theory, axiomatizations of belief functions based

3In the example of the Ming dynasty vase, let β({ω1}) = β({ω2}) = 0.2. Then, β({ω1, ω2}) =
0.6, Bel({ω1}) = Bel({ω2}) = 0.2, and Bel({ω1, ω2}) = β({ω1}) + β({ω2}) + β({ω1, ω2}) = 1.
This value β({ω1, ω2}) captures the degree of “ignorance.” Suppose that the DM has little to
no knowledge of ancient chinaware. Then, he or she has no reason to decide whether the vase
is genuine or counterfeit. Therefore, it is natural to assume that β({ω1}) = β({ω2}) = 0, and
β({ω1, ω2}) = 1, which corresponds to the case of “total ignorance.” Conversely, if the DM is an
expert in ancient chinaware, the basic probability assignments are β({ω1}) = β({ω2}) = 0.5, and
β({ω1, ω2}) = 0, which corresponds to a case of “no ignorance.” For example, see Grabisch (2016,
pp.382–383).

4Dempster (1967) also defined a plausibility function based on upper probabilities.
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on a correspondence on a probability space have been investigated extensively (for

example, see Jaffray and Wakker (1994), Mukerji (1997), Wakker (2000), and Ghi-

rardato (2001)). However, to the best of our knowledge, there are few studies that

have axiomatized or characterized belief functions from the perspective of Shafer

(1967). One exception is the study by Asano and Kojima (2015). Within the frame-

work of Schmeidler (1989), Asano and Kojima (2015) axiomatized a class of belief

functions based on the cominimum additivity of Choquet integrals proposed by Kajii

et al. (2007).

Our paper also characterizes belief functions from the perspective of Shafer (1976),

but our study differs from Asano and Kojima (2015) in a number of ways. First,

whereas Asano and Kojima (2015) adopted the properties of cominimum additivity

of Choquet integrals, we use the notion of a two-point condition (TPC). Second,

Asano and Kojima (2015) assumed that the collection on which Möbius inversions

are positive is given, and derived belief functions. Conversely, from operator I, we

directly derive the collection on which Möbius inversions are positive, and the be-

lief functions. Third, we show that the collection coincides with the collection of

all simple-complete collections. Fourth, whereas Asano and Kojima (2015) derived

βT = 0 and βT ≥ 0 based on the two axioms (the Cominimum Independence Axiom

and the Uncertainty Aversion Axiom), in this paper, we derive βT = 0 and βT ≥ 0

only based on TPC with respect to invariant weights.

To characterize the Choquet integral with respect to belief functions, we propose

I-comodularity and I-coconvexity for an operator I. The notions of I-comodularity

and I-coconvexity depend on the notion of invariant weights. For a real-valued

function f on a state space Ω, consider the function fα
ωi,ωj

for any α ∈ [0, 1].5

For a Choquet integral I, an invariant weight is a value α that makes I(fα
ωi,ωj

)

equal to I(f). The notions of I-comodularity and I-coconvexity can be obtained

by invariant weights for a class of functions. The notion of I-comodularity plays a

part in clarifying the relationship between v’s modularity and the Möbius inversions.

The notion of I-coconvexity clarifies the relationship between v’s convexity and the

Möbius inversions.

Next, we discuss a collection of events E that plays a central role in what follows.

5Let Ω = {ω1, . . . , ωn}, and let f be a real-valued function on Ω. For two distinct points
ωi, ωj ∈ Ω and any α ∈ [0, 1], the function fα

ωi,ωj
is defined by fα

ωi,ωj
:= αf(ωi) + (1 − α)f(ωj) if

ω ∈ {ωi, ωj}, and f(ω) otherwise.
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This collection of events determines whether Möbius inversions are strictly positive

or zero. Kajii et al. (2007) proposed the concept of an E-cominimum additive

operator (see Section 4 for details), which is stronger than the comonotonic additive

operator of Schmeidler (1986) but weaker than an additive operator. In Kajii et

al. (2007) and Asano and Kojima (2015), two problems remain to be solved. First,

the structure of E is given. Second, the signs of the Möbius inversions are not

determined. It is plausible that a collection E is derived and that the signs of

the Möbius inversions are determined. The reason is that this collection E plays a

crucial part in determining whether the Möbius inversions are strictly positive or

zero. Furthermore, the DM’s lack of information is captured by strictly positive

Möbius inversions of a belief function.

The remainder of the paper is organized as follows. Section 2 provides math-

ematical results. Section 3 provides definitions for invariant weight, and for I-

comodularity and I-coconvexity, and characterizes these two notions. Section 4

discusses the relationship between the previous literature and this paper. Section 5

concludes the paper. Proofs are relegated to Appendix.

2. Preliminaries

This section provides the mathematical preliminaries that play significant roles

in this paper.

Let Ω = {ω1, . . . , ωn} be a nonempty finite state space. A generic element ω ∈ Ω

denotes a state of the world and a generic element E ∈ 2Ω denotes an event. Let F
be the collection of all nonempty subsets of Ω. Let Fk be the collection of subsets

with k elements. For example, F1 denotes the set of all singleton subsets of Ω, that

is, F1 = {{ω} |ω ∈ Ω}. Let RΩ = {x|x : Ω → R} denote the set of all real-valued

functions on Ω. Let 1A ∈ RΩ be the indicator function of an event A ∈ 2Ω.

A set function v : 2Ω → R with v(∅) = 0 is called a game. A set function

v : 2Ω → R with v(∅) = 0 is called a capacity if (i) 0 ≤ v(A) ≤ 1 for all A ∈ 2Ω,

and (ii) (monotonicity) E ⊆ F implies that v(E) ≤ v(F ) for all E, F ∈ 2Ω. A

capacity v is convex if v(E ∪F )+ v(E ∩F ) ≥ v(E)+ v(F ) for any E,F ∈ 2Ω. A set

function v : 2Ω → R with v(∅) = 0 is called a finitely additive measure or probability

measure if v(E) + v(F ) = v(E ∪ F ) for any E,F ∈ 2Ω with E ∩ F = ∅. Note

that throughout this paper, we refer to a finitely additive measure and a probability

measure interchangeably.
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Let v be a given capacity. Then, we define βS for each S by

βS =
∑
E⊆S

(−1)|S|−|E|v(E),

where
∑

E⊆A denotes the summation with respect to all subsets E of A. The set

of coefficients {βS}S∈F is referred to as the Möbius inversion. This is because it

holds that for any event A, v(A) =
∑

S⊆A βS. Note that by convention, we omit the

empty set in the summation indexed by subsets of Ω. For S ∈ F , let a capacity uS

be the unanimity game on S defined by the following rule: uS(A) = 1 if S ⊆ A and

uS(A) = 0 otherwise. The following result states that any capacity v can be uniquely

represented by a linear combination of unanimity games and Möbius inversions.

Lemma 1 (Shapley (1953)). Each game v is uniquely represented as a linear com-

bination of unanimity games and its Möbius inversion: v =
∑

T∈F βTuT .

Definition 1 (Shafer (1976)). A capacity v : 2Ω → [0, 1] is a belief function if its

Möbius inversions βS for all S are nonnegative.

Schmeidler (1986) investigated the properties of Choquet integrals and showed

the following representation theorem that plays important roles in decision theory.

For x ∈ RΩ and a capacity v, the Choquet integral of x is defined as
∫
Ω
xdv =∫∞

0
v(x ≥ α)dα +

∫ 0

−∞(v(x ≥ α) − 1)dα, where v(x ≥ α) = v({ω ∈ Ω |x(ω) ≥ α}).
Let ⟨Ei⟩ni=1 be a partition of Ω and let f =

∑n
i=1 xi1Ei

with x1 ≥ x2 ≥ · · · ≥ xn be

a step function, where 1E denotes the indicator function of an event E ∈ 2Ω. Then,

the Choquet integral can be written as follows:
∫
Ω
fdv =

∑n
j=1(xj−xj+1)v(∪j

i=1Ei),

where xn+1 := 0. Two functions x, y ∈ RΩ are comonotonic if (x(ω)−x(ω′))(y(ω)−
y(ω′)) ≥ 0 for all ω, ω′ ∈ Ω. An operator I : RΩ → R is comonotonic additive if

I(x+ y) = I(x)+ I(y) for any comonotonic functions x, y ∈ RΩ, and I is monotonic

if I(x) ≥ I(y) for any x, y ∈ RΩ with x ≥ y. Schmeidler (1986) showed that

for an operator I : RΩ → R with I(1Ω) = 1, I satisfies comonotonic additivity

and monotonicity if and only if I can be represented by the Choquet integral with

respect to the capacity v defined by v(E) = I(1E) for any E ∈ 2Ω.

Gilboa and Schmeidler (1994) clarified the relationship between Choquet integrals

and Möbius inversions. The following proposition states that the Choquet integral

of x with respect to v can be represented by a weighted sum of all minima of x with

respect to the Möbius inversions {βT}T∈F .
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Proposition 1 (Gilboa and Schmeidler (1994)). For all x ∈ RΩ and a capacity

v =
∑

T∈F βTuT : ∫
Ω

xdv =
∑
T∈F

βT

∫
Ω

xduT =
∑
T∈F

βT min
ω∈T

x(ω).

From the uniqueness of the Möbius inversions, we can show that a capacity v is

additive if and only if its Möbius inversions βT = 0 for all |T | ≥ 2. Thus, βT ̸= 0 for

|T | ≥ 2 captures some kind of deviation from additivity.

3. Characterizations of I-Comodularity and I-Coconvexity

In this section, we provide characterizations for Choquet integrals with respect

to belief functions. Therefore, in the following analyses, suppose that an operator

I : RΩ → R is a Choquet integral. First, we provide the following definition.

Definition 2. For f ∈ RΩ, two distinct points ωi, ωj ∈ Ω, and any α ∈ [0, 1], we

define the following function fα
ωi,ωj

:

fα
ωi,ωj

:=

{
αf(ωi) + (1− α)f(ωj) if ω ∈ {ωi, ωj}

f(ω) otherwise.

The function fα
ωi,ωj

means that the values for ωi, f(ωi), and for ωj, f(ωj), are

replaced with the weighted average, αf(ωi) + (1− α)f(ωj) for any α ∈ [0, 1].

If f(ωi) ≥ f(ωj), then it holds by the monotonicity of I that I(f 1
ωi,ωj

) ≥ I(f 0
ωi,ωj

).

Moreover, the continuity of I with respect to α yields the following lemma (see

Lemma 6 in Appendix).

Lemma 2. Let I : RΩ → R be a Choquet integral. Then, for f ∈ RΩ, there exists

an α ∈ [0, 1] such that:

I(fα
ωi,ωj

) = I(f). (1)

Proof. See Appendix.

Remark 1. The number α satisfying (1) is not necessarily uniquely determined.

For example, if f(ωi) = f(ωj), then fα
ωi,ωj

= f for all α ∈ [0, 1], which implies that

any α ∈ [0, 1] satisfies (1).
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Remark 2. Let Ep(f) denote the expectation of f with respect to a probability

measure p. If the operator I(f) is equal to Ep(f) with p(ωi)+ p(ωj) ̸= 0, then there

exists a unique α ∈ [0, 1] in (1) that is determined only by p, and does not depend

on f .

Proof. See Appendix.

Now that the existence of α satisfying (1) has been shown, we provide the fol-

lowing definition.

Definition 3. For f ∈ RΩ, and two distinct points ωi, ωj ∈ Ω, the value α ∈ [0, 1]

satisfying (1) is called the invariant weight with respect to ωi and ωj, and the set of

those α is denoted by {αωi,ωj

f }.

Remark 3. The invariant weight α
ωi,ωj

f depends on the order of ωi and ωj. Precisely,

α ∈ {αωj ,ωi

f } implies 1− α ∈ {αωi,ωj

f }.

Note that from Remark 2, there is a unique element in {αωi,ωj

f } for all f if I is

an expectation. In the case that I is a Choquet integral, the existence of such an α

is not necessarily guaranteed. By assuming that there exists a common element in

{αωi,ωj

f } for restricted classes of functions, we can characterize the Choquet integrals

with respect to belief functions. For that purpose, we define a class of functions as

follows.

Definition 4. Let T ∈ 2Ω with |T | ≥ 2, and {ωi, ωj} ⊆ T . The set of functions

f ∈ RΩ with the following property is denoted by BT
ωi,ωj

: for all ω′ ∈ T\{ωi, ωj} and

all ω′′ ∈ T c:

f(ω′) ≥ f(ωi) ≥ f(ω′′), and

f(ω′) ≥ f(ωj) ≥ f(ω′′).

This definition is closely related to the definition proposed by Sarin and Wakker

(1998). Sarin and Wakker (1998, pp.233–234) stated that event D is a dominating

event for event A if the states in D are rank-ordered higher than those of A, and the

remaining states are rank-ordered lower than A. In other words, given a function

f ∈ RΩ, event D is dominating for event A if A ∩ D = ∅ and f(t) ≥ f(s) ≥ f(t′)

for all t ∈ D, s ∈ A, and t′ ∈ (A ∪ D)c. Based on Sarin and Wakker’s (1998)
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notion, Definition 4 is rewritten as follows: Event T\{ωi, ωj} is dominating for

event {ωi, ωj}.
Next, we provide a technical lemma that plays an important role in proving

Propositions 2 and 3.

Lemma 3. Let I be a Choquet integral. Let f ∈ BT
ωi,ωj

. If f(ωi) ≥ f(ωj), then

I(fα
ωi,ωj

)− I(f)

= (f(ωi)− f(ωj)) {(1− α)v(T\{ωi, ωj}) + αv(T )− v(T\{ωj})} .

If f(ωj) ≥ f(ωi), then

I(fα
ωi,ωj

)− I(f)

= (f(ωj)− f(ωi)) {αv(T\{ωi, ωj}) + (1− α)v(T )− v(T\{ωi})} .

Proof. See Appendix.

Next, we provide the following definition if there exists a common element in

{αωi,ωj

f } for all f ∈ BT
ωi,ωj

.

Definition 5. Fix an event T ∈ 2Ω with |T | ≥ 2, and fix two distinct points

ωi, ωj ∈ T . If ∩f∈BT
ωi,ωj

{αωi,ωj

f } ̸= ∅, then we say that ωi and ωj are I-comodular on

T .

Note that “co” in “comodularity” in Definition 5 and “coconvexity” in Definition

6 below is an analogy to “co” in the definition of “codimension” in linear algebra.

Chateauneuf and Jaffray (1989) analyzed the relationship between the inclusion–

exclusion formula for a game v and its Möbius inversion.

Lemma 4 (Chateauneuf and Jaffray (1989)). Let v =
∑

T∈F βTuT be a game, and

let k be an integer satisfying k ≥ 2. Then,

v(
∪

1≤i≤k Ti)−
∑

∅≠S⊆{1,2,...,k}(−1)|S|+1v(
∩

j∈S Tj) =
∑

T⊆
∪

Ti,T ̸⊆Ti(1≤i≤k) βT .

To characterize the Choquet integral with respect to belief functions, we provide

the following proposition. This proposition clarifies the relationship between I-

comodularity, v’s modularity, and the Möbius inversions.

Proposition 2. Let T ∈ 2Ω with |T | ≥ 2 and let ωi, ωj ∈ T with ωi ̸= ωj. Then,

the following are equivalent:
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(i) ωi and ωj are I-comodular on T .

(ii) v(T ) + v(T\{ωi, ωj}) = v(T\{ωi}) + v(T\{ωj}).

(iii)
∑

{ωi,ωj}⊆S⊆T βS = 0.

Note that v is modular if v(E ∪ F ) = v(E) + v(F )− v(E ∩ F ) for all E,F ∈ 2Ω.

Thus, Condition (ii) indicates modularity for two sets excluding the one-point set

from T , that is, T\{ωi} and T\{ωj}.

Proof. To show the equivalence of (ii) and (iii), we use Lemma 4. See Appendix.

Conditions (ii) and (iii) in Proposition 2 hold by equality. We define one more

property for {αωi,ωj

f }.

Definition 6. Fix an event T ∈ 2Ω with |T | ≥ 2, and fix two distinct points

ωi, ωj ∈ T . When, for any f, g ∈ BT
ωi,ωj

, there exists a real number ᾱ ∈ {αωi,ωj

f }
such that I(gᾱωi,ωj

) ≥ I(g), then we say that the two distinct points ωi and ωj are

I-coconvex on T .

Similar to Proposition 2, the following proposition clarifies the relationship be-

tween I-coconvexity, v’s convexity, and the Möbius inversions.

Proposition 3. Let T ∈ 2Ω with |T | ≥ 2 and let ωi, ωj ∈ T with ωi ̸= ωj. Then,

the following are equivalent.

(i) ωi and ωj are I-coconvex on T .

(ii) v(T ) + v(T\{ωi, ωj}) ≥ v(T\{ωi}) + v(T\{ωj}).

(iii)
∑

{ωi,ωj}⊆S⊆T βS ≥ 0.

Proof. To show the equivalence of (ii) and (iii), we use Lemma 4. See Appendix.

Condition (ii) indicates some kind of convexity for two sets, excluding the one-

point set from T , that is, T\{ωi} and T\{ωj}.
Now, for an operator I : RΩ → R and fixed two points ωi, ωj, we consider the

following condition.

Two-Point Condition (TPC): For any T ∈ 2Ω with |T | ≥ 2, there exist two

distinct points such that:

(a) ωi and ωj are I-coconvex on T , and

(b) for all S with {ωi, ωj} ⊆ S ⊊ T , ωi and ωj are I-comodular on S.
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The following two propositions (Propositions 4 and 5) provide characterizations

of the Choquet integral I with respect to the belief function v =
∑

T∈F βTuT ,

where βT ≥ 0 for all T ∈ F . Recall that uE denotes the unanimity game on E.

Furthermore, Proposition 4 pins down the collection E where the Möbius inversion

{βE}E∈E is positive, and Proposition 5 shows that the collection of events derived

by operator I on which the signs of Möbius inversions are strictly positive is simple-

complete (see Definition 8).

Proposition 4. Let I be a Choquet integral satisfying TPC. Then, there exist a

unique collection E ⊆ 2Ω\F1, a unique set of positive coefficients {βE}E∈E , and a

unique set of nonnegative coefficients {β{ω}}ω∈Ω such that

I(f) =
n∑

i=1

β{ωi}f(ωi) +
∑
E∈E

βE min
ω∈E

f(ω).

Proof. See Appendix.

Note that this derived collection E must have some property, not all subcollections

of 2Ω. Therefore, we investigate the properties of a collection that can be a candidate

for E . We first present the definition of completeness proposed by Kajii et al. (2007).

Definition 7 (Kajii et al. (2007)). Let a collection of events T with |T | ≥ 2, E ,
be fixed. An event T ∈ F is E-complete if, for any two distinct points ω1 and ω2

in T , there exists a set E ∈ E such that {ω1, ω2} ⊆ E ⊆ T . The collection of

all E-complete events is called the E-complete collection and is denoted by Υ(E).
Moreover, E is said to be complete if all E-complete subsets belong to E , that is,

E = Υ(E). In general, because it holds that E ⊆ Υ(E), E ’s completeness is equivalent

to Υ(E) ⊆ E .

Event T ’s E-completeness means that any two points ωi, ωj in T are covered by

some set E ∈ E with E ⊆ T . Suppose that each ωi is a vertex (or a node) and

each E is an edge (or a line). Then, E-completeness means that any two vertices are

connected by some edge. Because this interpretation corresponds to the notion of

complete graph in graph theory, the term “complete” is adopted. If all E-complete

sets belong to E , then the collection E is called complete. If E is complete, then

there are two cases: (i) the property of completeness does not hold if some set E ∈ E
is deleted from E and (ii) the property of completeness still holds even if any set
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E ∈ E is deleted from E . The latter case implies that the degree of intersections

over sets in E is not complicated, which is called simple-complete. The notion of

simple completeness was first proposed by Asano and Kojima (2015). Formally, the

notion of simple completeness can be defined as follows.

Definition 8. Let E be a collection of events T with |T | ≥ 2. A collection E is said

to be simple-complete if

(i) E is complete, and

(ii) for all E ∈ E , E\{E} is complete.

In the following, let C be the set of all simple complete collections E with E ⊆
2Ω\F1, that is, C = {E|E is simple-complete}.

Example 1. (1) Let Ω = {1, 2, 3, 4} and let E = {{1, 2}, {2, 3}, {1, 3}}. Then,

because Υ(E) = {{1, 2}, {2, 3}, {1, 3}, {1, 2, 3}}, E is not complete. Let

E ′ = {{1, 2}, {2, 3}, {1, 3}, {1, 2, 3}}. Then, E ′ is complete but not simple-complete

because E ′\{1, 2, 3} is not complete. Conversely, E ′′ = {{1, 2}, {2, 3}} is complete

and simple-complete.

(2) Let |Ω| ≥ 3 and let E = {T | |T | ≥ 2, T ⊆ Ω}. Then, E is complete. However, E
is not simple-complete because E\{Ω} is not complete.

(3) Let E1, E2, . . . , Em be a partition of Ω. Then, E = {E1, E2, . . . , Em} is complete

and simple-complete.

(4) Let Ω = {1, 2, . . . , n}, and let E = {{1, 2}, {2, 3}, . . . , {n − 1, n}}. Then, E is

complete and simple-complete.

The following lemma plays an important role in applying the notion of simple-

completeness to the analyses of Choquet integrals.

Lemma 5. The following conditions are equivalent:

(i) E is simple-complete.

(ii) E is complete and E /∈ Υ(E\E) for all E ∈ E .
(iii) for any T ⊆ Ω with |T | ≥ 2, there exists a two-point set {ω1, ω2} ⊆ T such that

for all S with {ω1, ω2} ⊆ S ⊊ T , it holds that S /∈ E .

Proof. See Appendix.

The following proposition states that the collection of events derived by operator

I on which the signs of Möbius inversions are strictly positive is equal to the col-

lection of all simple-complete collections. Because our model does not generate all
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subcollections of 2Ω\F1, this might be a limitation of our model. However, as we

see in Example 1, the collection of all simple-complete collections E is rich enough

to analyze meaningful collections. Moreover, because our model generates all collec-

tions in C, a collection of events satisfying simple-completeness plays essential roles

in our model.

Proposition 5. Let I be the set of all Choquet integrals I satisfying TPC, and let

C = {E|E is simple-complete}. Define the mapping Ξ : I → C by Ξ(I) = {T |βT >

0} ∈ C, where βT is obtained in Proposition 4. Then, the mapping Ξ is well defined

and an onto mapping.

Proof. See Appendix.

In summary, the following theorem holds.

Theorem 1. Let an operator I : RΩ → R be a Choquet integral. Then, the following

are equivalent.

(i) Operator I : RΩ → R satisfies TPC.

(ii) There exist a unique simple-complete collection E ∈ C, a unique set of positive

coefficients {βE}E∈E , and a unique set of nonnegative coefficients {β{ω}}ω∈Ω such

that

I(f) =
n∑

i=1

β{ωi}f(ωi) +
∑
E∈E

βE min
ω∈E

f(ω).

In particular, because I(f) =
∫
Ω
fdv with v =

∑n
i=1 β{ωi}u{ωi} +

∑
E∈E βEuE, v is a

belief function.

4. Discussion

It is worthwhile comparing our results with those of the existing literature (Kajii

et al. (2007) and Asano and Kojima (2015)).6 First, whereas Asano and Kojima

(2015) assumed the convexity of capacity v, we assume the I-coconvexity, which

is weaker than v’s convexity. Second, Kajii et al. (2007) and Asano and Kojima

(2015) did not pin down an event T such that the Möbius inversion βT is not

6Kajii et al. (2007) proposed the notions of E-cominimum functions and E-cominimum ad-
ditivity. Let E ⊆ F be a collection of events. Two functions x, y ∈ RΩ are E-cominimum if
argminE x ∩ argminE y ̸= ∅ for all E ∈ E . An operator I : RΩ → R is E-cominimum additive if
I(x+ y) = I(x) + I(y) for any E-cominimum functions x, y ∈ RΩ.
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equal to zero. In other words, they stated that only T with T ∈ E could satisfy

βT ̸= 0. Our results provide a clear distinction between βT > 0 and βT = 0.

Third, whereas Asano and Kojima (2015) obtained βT = 0 and βT ≥ 0 by the

Cominimum Independence Axiom (I’s cominimum additivity) and the Uncertainty

Aversion Axiom (v’s convexity), respectively, in this paper, we obtain βT = 0 and

βT ≥ 0 by TPC with respect to invariant weights. Fourth, we derive the mapping

Ξ on the set of all operators satisfying TPC and show that its codomain is exactly

equal to the set of all simple-complete collections, which is proposed in Asano and

Kojima (2015). Finally, we show that Choquet integrals satisfying TPC derive a

class of belief functions.

The importance of mapping Ξ should be mentioned. This has been pointed out

in the literature. For instance, Zhang (1999) noted that the DM’s beliefs should be

defined not based on an algebra or a σ-algebra, but on a λ-system, and defined this

collection as a set of unambiguous events.7 Zhang (2002) proposed a new axiomati-

zation of the Choquet Expected Utility in which the DM’s beliefs are captured by

an inner measure and his or her preferences are represented by the Choquet integral

with respect to the inner measure. While Zhang (1999) and Zhang (2002) assumed

that a collection of events that is a λ-system is given, Epstein and Zhang (2001)

derived the domain on which the DM’s beliefs are defined, and showed that the set

of unambiguous events is a λ-system. In another related work, by a binary rela-

tion ⪰, Nehring (1999) characterized the collection of unambiguous events that is a

λ-system. In addition, Nehring (1999) characterized the collection of unambiguous

events by restricted additivity of Choquet integrals. In contrast to the abovemen-

tioned papers, in this paper, the codomain (or range) of Ξ does not coincide with

2F . However, as discussed above, the derivation of a collection of events E is impor-

tant because this collection E plays a crucial role in determining whether Möbius

inversions are strictly positive or zero.

Finally, Chateauneuf and Rébillé (2004) provided a characterization related to

this paper. Let Ω = {1, 2, . . . , n} and let E = {{1, 2}, {2, 3}, . . . , {n− 1, n}}. Then,
E is complete and simple-complete by Example 1 (4). Keeping this in mind, the

following representation derived by Chateauneuf and Rébillé (2004, Theorem 1) can

7A collection A is a λ-system if (1) ∅ ∈ A, (2) for any A,B ∈ A with A ∩ B = ∅, A ∪ B ∈ A,
and (3) for any A ∈ A, Ac ∈ A.
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be obtained by this paper:

I(f) =
n∑

i=1

βif(i) +
n−1∑
i=1

βi,i+1min{f(i), f(i+ 1)},

where βi ≥ 0 for i = 1, . . . , n and βi,i+1 ≥ 0 for i = 1, . . . , n− 1.

5. Conclusion

The main contributions of this paper are threefold. First, using the notion of

invariant weights, we characterized the Choquet integral with respect to belief func-

tions along the lines of Schmeidler (1986). Second, we directly derived a class of

Shafer-type belief functions on a state space and a collection of events that deter-

mines whether Möbius inversions are strictly positive or zero. It is plausible for us

to derive collections where the signs of Möbius inversions are strictly positive. The

strict positivity of the Möbius inversions implies that the capacity v determined by

the Möbius inversions is a belief function. Third, we showed that the codomain of

the mapping Ξ is simple-complete collections.

Some works remain to be solved. We provided a characterization of a class of

belief functions, but we did not provide characterizations of DM’s preferences under

uncertainty. Our characterization theorem can be applied to a Leontief preference,

a multiperiod decision model in Gilboa (1989), and an inequality aversion model in

Rohde (2010), which would be intriguing applications of our analysis to economic

issues in future.
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Appendix

Lemma 6. Let Ω be a finite set, and let h(ω, α) : Ω × [0, 1] → R be a continuous

function with respect to α. Then, the Choquet integral with respect to a capacity v

on Ω defined by

I(α) =

∫
Ω

h(ω, α)dv

is continuous with respect to α.

Proof. Let h(ω1, α) > h(ω2, α) > . . . > h(ωk, α), and let ⟨Ωi⟩ki=1 be a partition of Ω

such that Ωi = {ω ∈ Ω|h(ωi, α) = h(ω, α)}. Note that h(ω, α) is a constant function

on each Ωi. Then,

I(α) =
k∑

j=1

(h(ωj, α)− h(ωj+1, α))v(Ω1 ∪ . . . ∪ Ωj),

where h(ωk+1, α) := 0. Let d = min1≤j≤k−1 (h(ωj, α)− h(ωj+1, α)). Because h(ω, α)

is continuous with respect to α, there exists sufficiently small δ > 0 such that

|h(ωj, α
′)−h(ωj, α)| < d/2 for all α′ with |α′−α| < δ and for all j. By this inequality,

it holds that h(ωj, α
′) > h(ωj, α) − d/2 and h(ωj+1, α) + d/2 > h(ωj+1, α

′), which

implies that

h(ωj, α
′)− h(ωj+1, α

′) > h(ωj, α)− h(ωj+1, α)− d ≥ 0.

Therefore, for α′, h(ω1, α
′) > h(ω2, α

′) > . . . > h(ωk, α
′). With this in mind, it holds

that

I(α′) =
k∑

j=1

(h(ωj, α
′)− h(ωj+1, α

′))v(Ω1 ∪ . . . ∪ Ωj),

where h(ωk+1, α
′) := 0. Then, because h(ωj, α) is continuous with respect to α

for each ωj, it can be shown that for all ε > 0, there exists a δ > 0 such that

|α′ − α| < δ ⇒ |I(α′)− I(α)| < ε.

Proof of Lemma 2

Proof. Without loss of generality, let f(ωi) ≥ f(ωj). By the definition of fα
ωi,ωj

and

the monotonicity of Choquet integrals, I(f 1
ωi,ωj

) ≥ I(f) ≥ I(f 0
ωi,ωj

). By Lemma 6, it

follows that I(fα
ωi,ωj

) is continuous with respect to α. Thus, there exists an α ∈ [0, 1]

such that I(fα
ωi,ωj

) = I(f).
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Proof of Remark 2

Proof. It follows from Lemma 2 that there exists α ∈ [0, 1] such that I(fα
ωi,ωj

) = I(f).

Because we assume that the operator I(f) is equal to Ep(f), it follows that

Ep(fα
ωi,ωj

) = Ep(f)

⇔ (αf(ωi) + (1− α)f(ωj))(p({ωi}) + p({ωj})) = f(ωi)p(ωi) + f(ωj)p(ωj)

⇔ αf(ωi) + (1− α)f(ωj)

=
p({ωi})

p({ωi}) + p({ωj})
f(ωi) +

p({ωj})
p({ωi}) + p({ωj})

f(ωj). (2)

Thus, we can take a common α = p(ωi)/(p({ωi}) + p({ωj})) without depending on

f , and this α is the only value common to all f .

Proof of Lemma 3

Proof. Let {s1, s2, . . . , sk} = T\{ωi, ωj} and {sk+1, . . . , sn−2} = T c such that f(s1) ≥
f(s2) ≥ · · · ≥ f(ωi) ≥ f(ωj) ≥ f(sk+1) ≥ · · · ≥ f(sn−2). Then, it follows that

I(fα
ωi,ωj

)

= (f(s1)− f(s2))v({s1}) + (f(s2)− f(s3))v({s1, s2)}) + · · ·

+ (f(sk−1)− f(sk))v({s1, . . . , sk−1}) + (f(sk)− αf(ωi)− (1− α)f(ωj))v(T\{ωi, ωj})

+ 0× v(T\{ωj}) + (αf(ωi) + (1− α)f(ωj)− f(sk+1))v(T )

+ (f(sk+1)− f(sk+2))v(T ∪ {sk+1}) + · · ·+ f(sn−2),

and

I(f)

= (f(s1)− f(s2))v({s1}) + (f(s2)− f(s3))v({s1, s2)}) + · · ·

+ (f(sk−1)− f(sk))v({s1, . . . , sk−1}) + (f(sk)− f(ωi))v(T\{ωi, ωj})

+ (f(ωi)− f(ωj))v(T\{ωj}) + (f(ωj)− f(sk+1))v(T )

+ (f(sk+1)− f(sk+2))v(T ∪ {sk+1}) + · · ·+ f(sn−2).

Therefore, it follows that

I(fα
ωi,ωj

)− I(f)

= ((1− α)f(ωi)− (1− α)f(ωj))v(T\{ωi, ωj})− (f(ωi)− f(ωj))v(T\{ωj})
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+ (αf(ωi)− αf(ωj))v(T )

= (f(ωi)− f(ωj)) {(1− α)v(T\{ωi, ωj}) + αv(T )− v(T\{ωj})} .

Similar to the case where f(ωi) ≥ f(ωj), for f(ωj) ≥ f(ωi), it follows that

I(fα
ωi,ωj

)− I(f)

= (f(ωj)− f(ωi)) {αv(T\{ωi, ωj}) + (1− α)v(T )− v(T\{ωi})} ,

which proves Lemma 3.

Proof of Proposition 2

Proof. (i) ⇒ (ii). Let ωi and ωj be I-comodular on T . Take f ∈ BT
ωi,ωj

with f(ωi) >

f(ωj). By Definition 5, we can take ᾱ ∈ ∩f∈BT
ωi,ωj

{αωi,ωj

f }. Because I(fα
ωi,ωj

)−I(f) =

0, it follows from Lemma 3 that

(1− ᾱ)v(T\{ωi, ωj}) + ᾱv(T ) = v(T\{ωj}). (3)

Next, take g ∈ BT
ωi,ωj

with g(ωj) > g(ωi). Then, the number ᾱ mentioned above is

also an element of {αωi,ωj
g }. Therefore, I(gαωi,ωj

) − I(g) = 0 and Lemma 3 implies

that

ᾱv(T\{ωi, ωj}) + (1− ᾱ)v(T ) = v(T\{ωi}). (4)

By adding (3) and (4), it holds that

v(T ) + v(T\{ωi, ωj}) = v(T\{ωi}) + v(T\{ωj}).

(ii) ⇒ (i). Suppose that

v(T ) + v(T\{ωi, ωj}) = v(T\{ωi}) + v(T\{ωj}). (5)

Case 1: v(T ) ̸= v(T\{ωi, ωj}).
Let us consider ᾱ ∈ [0, 1] satisfying (3). Because we assume v(T ) ̸= v(T\{ωi, ωj}),

such ᾱ can be uniquely taken. Then, for f ∈ BT
ωi,ωj

with f(ωi) ≥ f(ωj), it follows

from Lemma 3 and (3) that I(f ᾱ
ωi,ωj

) = I(f). On the other hand, by subtracting

(3) from (5), (4) holds. Thus, for g ∈ BT
ωi,ωj

with g(ωj) ≥ g(ωi), it follows from

Lemma 3 and (4) that I(gᾱωi,ωj
) = I(g). Therefore, for all f ∈ BT

ωi,ωj
, it holds that
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ᾱ ∈ {αωi,ωj

f }, which implies that ωi and ωj are I-comodular on T .

Case 2: v(T ) = v(T\{ωi, ωj}).
Because v is a capacity, it holds that v(T ) = v(T\{ωi, ωj}) = v(T\{ωi}) =

v(T\{ωj}). Then, (3) and (4) hold for any ᾱ ∈ [0, 1]. Therefore, by Lemma 3,

it holds that {αωi,ωj

f } = [0, 1] for all f ∈ BT
ωi,ωj

, which implies that ωi and ωj are

I-comodular on T .

(ii) ⇔ (iii). Let T1 = T\{ωi} and T2 = T\{ωj}. Then, T1 ∪ T2 = T and T1 ∩ T2 =

T\{ωi, ωj}. Then, it follows that

v(T ) + v(T\{ωi, ωj})− v(T\{ωi})− v(T\{ωj})

= v(T1 ∪ T2) + v(T1 ∩ T2)− v(T1)− v(T2)

= v(∪1≤i≤2Ti)−
∑

∅≠S⊆{1,2}

(−1)|S|+1v(∩j∈STj)

=
∑

{ωi,ωj}⊆S⊆T

βS,

where the last equality holds by Lemma 4. Thus, the proof is completed.

Proof of Proposition 3

Proof. (i) ⇒ (ii).

Case 1: v(T ) = v(T\{ωi, ωj}).
Because v is a capacity, it holds that v(T ) = v(T\{ωi, ωj}) = v(T\{ωi}) =

v(T\{ωj}). Then, v(T ) + v(T\{ωi, ωj}) = v(T\{ωi}) + v(T\{ωj}) regardless of

Condition (i).

Case 2: v(T ) ̸= v(T\{ωi, ωj}).
Take f, g ∈ BT

ωi,ωj
with f(ωi) > f(ωj) and g(ωj) > g(ωi). Because we assume

Condition (i), there exists ᾱ ∈ {αωi,ωj

f } such that I(gᾱωi,ωj
) ≥ I(g). Because ᾱ ∈

{αωi,ωj

f } implies I(f ᾱ
ωi,ωj

) = I(f) and we assume f(ωi) > f(ωj), it follows from

Lemma 3 that

(1− ᾱ)v(T\{ωi, ωj}) + ᾱv(T ) = v(T\{ωj}). (6)

Because v(T ) ̸= v(T\{ωi, ωj}), such ᾱ is unique. Therefore, by assumption, this

ᾱ must satisfy I(gᾱωi,ωj
) ≥ I(g). Because we assume g(ωj) > g(ωi), it follows from

Lemma 3 that

ᾱv(T\{ωi, ωj}) + (1− ᾱ)v(T ) ≥ v(T\{ωi}). (7)
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By adding (6) and (7), it holds that v(T )+v(T\{ωi, ωj}) ≥ v(T\{ωi})+v(T\{ωj}).
(ii) ⇒ (i). Fix f, g ∈ BT

ωi,ωj
arbitrarily.

Case 1: f(ωi) = f(ωj) or v(T ) = v(T\{ωi, ωj}).
By Lemma 3, it holds that {αωi,ωj

f } = [0, 1]. Therefore, {αωi,ωj
g } ⊆ {αωi,ωj

f }, which
implies that an element ᾱ ∈ {αωi,ωj

g } is also in {αωi,ωj

f } and I(gᾱωi,ωj
) = I(g) for such

ᾱ. Thus, Condition (i) holds.

Case 2: f(ωi) ̸= f(ωj) and v(T ) ̸= v(T\{ωi, ωj}).
It follows from Lemma 3 that

ᾱ ∈ {αωi,ωj

f } ⇔ (1− ᾱ)v(T\{ωi, ωj}) + ᾱv(T ) = v(T\{ωj}), (8)

and that such ᾱ is uniquely determined. If g(ωi) ≥ g(ωj), then I(gᾱωi,ωj
) = I(g) by

(8) and Lemma 3. Suppose that g(ωj) > g(ωi). Then, by Condition (ii), it holds

that

v(T ) + v(T\{ωi, ωj}) ≥ v(T\{ωi}) + v(T\{ωj}). (9)

By subtracting (9) from (8), it holds that

ᾱv(T\{ωi, ωj}) + (1− ᾱ)v(T ) ≥ v(T\{ωi}). (10)

It follows from (10) and Lemma 3 that

I(gᾱωi,ωj
)− I(g) ≥ 0.

(ii) ⇔ (iii). Similar to the proof of Proposition 2, it follows from Lemma 4 that

v(T ) + v(T\{ωi, ωj})− v(T\{ωi})− v(T\{ωj})

=
∑

{ωi,ωj}⊆S⊆T

βS,

which implies that v(T )+v(T\{ωi, ωj}) ≥ v(T\{ωi})+v(T\{ωj})⇔
∑

{ωi,ωj}⊆S⊆T βS ≥
0. Thus, the proof is completed.

Proof of Proposition 4

Proof. Step 1: We show that β{ωi} ≥ 0 for all i = 1, . . . , n. Because v is a capacity,

β{ωi} = v({ωi}) ≥ 0 for all i = 1, . . . , n.

Step 2: We construct the collection E . Suppose that TPC holds. Then, for any
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T ∈ 2Ω with |T | ≥ 2, there exist ωi, ωj ∈ T satisfying TPC. We fix any pair ωi, ωj

for T . Our argument does not depend on how we choose the pair. By TPC, ωi and

ωj are I-coconvex on T . By Proposition 3, v(T ) + v(T\{ωi, ωj}) ≥ v(T\{ωi}) +
v(T\{ωj}). Here, if v(T ) + v(T\{ωi, ωj}) = v(T\{ωi}) + v(T\{ωj}) for all T , then
set E = {∅}. Otherwise, define the collection E = {E1, . . . , Em} of T such that

v(T ) + v(T\{ωi, ωj}) > v(T\{ωi}) + v(T\{ωj}). It follows from Proposition 3 and

the definition of E that for each E ∈ E ,∑
{ωi,ωj}⊆S⊆E

βS > 0, (11)

where ωi and ωj are some pair satisfying TPC for E. On the other hand, for

T /∈ {E1, . . . , Em}, it follows from Proposition 2 and the definition of E that∑
{ωi,ωj}⊆S⊆T

βS = 0. (12)

Step 3: We show that for any S with {ωi, ωj} ⊆ S ⊊ T , βS = 0, where T ∈ 2Ω with

|T | ≥ 2 and ωi, ωj ∈ T are any pair satisfying TPC. If |T | = 2, then such S does not

exist. So, we assume that |T | ≥ 3. We show this claim by induction. Let |S| = 2,

that is, S = {ωi, ωj}. It follows from Proposition 2 and TPC that

0 =
∑

{ωi,ωj}⊆S′⊆S

βS′ = βS.

Suppose that the claim holds for 2 ≤ |S| ≤ k. Let |S| = k+1. Then, it also follows

from Proposition 2 and TPC that

0 =
∑

{ωi,ωj}⊆S′⊆S

βS′ =
∑

{ωi,ωj}⊆S′⊊S

βS′ + βS = βS,

where
∑

{ωi,ωj}⊆S′⊊S βS′ = 0 by the assumption of induction.

Step 4: We show that βEj
> 0 for j = 1, . . . ,m and βT = 0 for T /∈ {E1, . . . , Em}

with |T | ≥ 2. By the definition of Ej at Step 2, it holds that
∑

{ωi,ωj}⊆S⊆E βS > 0.

From Step 3, it follows that βS = 0 for {ωi, ωj} ⊆ S ⊊ E. Thus, βEj
> 0. Next,

let T /∈ {E1, . . . , Em} and |T | ≥ 2. By the definition of E at Step 2, it holds that∑
{ωi,ωj}⊆S⊆T βS = 0. From Step 3, it follows that βS = 0 for {ωi, ωj} ⊆ S ⊊ T .

Thus, βT = 0.
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Proof of Lemma 5. (i) ⇔ (ii)

First, suppose (i). By assumption, E is complete, and for any Ej ∈ E , E\{Ej} is

also complete, the latter of which implies Υ(E\{Ej}) = E\{Ej}. Thus, it holds that
Ej /∈ Υ(E\{Ej}) for all Ej ∈ E , which shows that (ii) holds.

Next, suppose (ii). We show that for all Ej ∈ E , E\{Ej} is complete. Let T

be an E\{Ej}-complete set. Because Ej /∈ Υ(E\{Ej}), it holds that T ̸= Ej. On

the other hand, because E\{Ej} ⊆ E , T is also E-complete. Because E is complete,

T ∈ E . Therefore, T ∈ E\{Ej}, and it holds that Υ(E\{Ej}) ⊆ E\{Ej}. Thus,

Υ(E\{Ej}) = E\{Ej}.
(ii) ⇔ (iii)

Suppose (ii). When T /∈ Υ(E) (that is, T is not E-complete), by E ’s completeness and

definition, there exists a two-point set {ω1, ω2} ⊆ T such that {ω1, ω2} ⊆ Ej ⊆ T

does not hold for any Ej ∈ E . Thefore, (iii) holds for such T . When T ∈ Υ(E)
(that is, T is E-complete), T ∈ E by E ’s completeness. Therefore, this set T is

equal to some set Ej ∈ E . By (ii), Ej /∈ Υ(E\{Ej}), that is, Ej is not E\{Ej}-
complete. Therefore, there exists a two-point set {ωi, ωj} ⊆ T such that for all S

with {ωi, ωj} ⊆ S ⊆ T , S /∈ E\{Ej}. Thus, for such T , (iii) holds because any S

with {ωi, ωj} ⊆ S ⊊ Ej(= T ) does not belong to E .
Next, suppose (iii). When T ∈ Υ(E) (that is, T is E-complete), for any two-point

set {ωp, ωq} ⊆ T , there exists a set Ej ∈ E such that {ωp, ωq} ⊆ Ej ⊆ T . By (iii),

there exists a two-point set {ω1, ω2} ⊆ T such that for all S with {ω1, ω2} ⊆ S ⊊ T ,

it holds that S /∈ E . Therefore, for some Ej, it holds that T = Ej, which means

Υ(E) ⊆ E . Thus, E is complete. Next, let T be any set Ej ∈ E . By (iii), there exists

a two-point set {ω1, ω2} ⊆ T such that for all S with {ω1, ω2} ⊆ S ⊊ T , it holds that

S /∈ E . Therefore, Ej is not E\{Ej}-complete, which implies that Ej /∈ Υ(E\{Ej})
for all Ej ∈ E . Thus, (ii) is proved.

Proof of Proposition 5. Well-definedness: We show that the collection Ξ(I) =

{T |βT > 0} derived in Proposition 4 is simple-complete, where I(f) =
∑n

i=1 βωi
f(ωi)+∑

E∈E βE minω∈E f(ω). Take any T with |T | ≥ 2, and let ωi, ωj ∈ T satisfy TPC.

From Step 3 in the proof of Proposition 4, it holds that βS = 0 for any S with

{ωi, ωj} ⊆ S ⊊ T . By the definition of Ξ(I), it holds that S /∈ Ξ(I). Thus, by (iii)

in Lemma 5, the collection Ξ(I) is simple-complete.

Onto Mapping: For E = ∅, let I be an expectation (that is, the usual ex-
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pectation with respect to probability). Then, Ξ(I) = ∅. Therefore, let E =

{E1, . . . , Em} be any simple-complete collection, and let I(f) =
∑n

i=1 β{ωi}f(ωi) +∑m
j=1 βEj

minω∈Ej
f(ω), where β{ωi} ≥ 0 for i = 1, . . . , n and βEj

> 0 for j =

1, . . . ,m. For v =
∑n

i=1 β{ωi}u{ωi} +
∑m

j=1 βEj
uEj

, I(f) is equal to the Choquet

integral of f with respect to v, that is, I(f) =
∫
Ω
f(ω)dv.

Next, we show that I satisfies TPC. Let T ∈ 2Ω with |T | ≥ 2 be fixed. Because

E is simple-complete, there exist two distinct points ωi, ωj ∈ T such that for all S

with {ωi, ωj} ⊆ S ⊊ T , it holds that S /∈ E . Therefore, βS = 0 and βT ≥ 0. For

these ωi, ωj, it holds that
∑

{ωi,ωj}⊆S⊆T βS ≥ 0. Thus, Proposition 3 implies that ωi

and ωj are I-coconvex on T . Moreover, for S with {ωi, ωj} ⊆ S ⊊ T , any S ′ with

{ωi, ωj} ⊆ S ′ ⊆ S implies S ′ /∈ E because E is simple-complete. For these ωi and

ωj, it holds that
∑

{ωi,ωj}⊆S′⊆S βS′ = 0. Thus, Proposition 2 implies that ωi and ωj

are I-comodular on T . Therefore, TPC holds. Hence, there exists I ∈ I such that

Ξ(I) = E .
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