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Abstract
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systems theory, we show that in an extreme case in which one technology is
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1 Introduction

As summarized by Zucman (2019), income and wealth inequality in the United States

have worsened significantly since the 1980s, and at the global level, the wealth hold-

ings of the middle class have been squeezed, implying a polarization of the wealth

distribution. These facts show that current economies are well represented by our

model, in which we specify two types of agents: one that holds most of the wealth

of the economy (the capitalist class) and another that has much a smaller share of

the wealth (the working class). This global trend is widely recognized by researchers,

including Moll (2014) and Mattauch et al. (2018), who also construct two-class dy-

namic models. In this paper, we construct a two-class overlapping generations (OLG)

model with two possible technologies and show that an endogenous technology switch

can generate perpetual fluctuations.

The endogenous occurrence of business cycles has attracted attention from many

researchers. A typical factor that causes endogenous fluctuations is the existence

of financial market imperfections. Examples of relevant studies in this literature

include Woodford (1986), Azariadis and Smith (1989), Matsuyama (2007), Kunieda

and Shibata (2014, 2017), and Vachadze (2020). One of the most recent studies on

an open economy with a collateral constraint (that is, with limited external debts) is

by Schumit-Grohé and Uribe (2021). They show that the mere presence of financial

frictions can generate cyclical fluctuations of any periodicity and chaotic behavior.

In contrast to these studies, the existence of credit market imperfections does not

play any important role in this paper.

Another stream in the literature emphasizes the role of public debt issuance. For

example, Farmer (1986) derives a necessary condition for a two-dimensional OLG

model with public debt to generate persistent cycles around the golden rule steady

state due to the Neimark–Sacker bifurcation. Proposition 2 in the paper indicates

that such persistent cycles emerge only if the net worth of the government is pos-

itive (that is, only if the private sector is a net debtor) in the golden rule steady

state. Introducing production externalities and public debt into the standard OLG

model, Azariadis and Reichlin (1996) show by local bifurcation analysis that observ-
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able endogenous cycles can exist, and that the existence of public debt may cause

an economy—which could have grown unboundedly under no public debt—to stag-

nate. Compared with the studies by these authors, who analyze local bifurcations

and persistent cycles, Yokoo (2000), based on Farmer (1986), investigates the com-

plicated global dynamics of a two-dimensional OLG model arising from homoclinic

bifurcations. Moreover, Menuet et al. (2017) construct a continuous-time endoge-

nous growth model with public debt and derive a two-dimensional dynamic system.

They show that the model can have two balanced growth paths (high and low) and

produce limit cycles along with local and global bifurcations.

Because public debt is a stock variable, its introduction into a model adds an

extra dimension to the model. In a discrete-time formulation, a change from a one-

dimensional to a two-dimensional model can generate richer patterns of economic

dynamics, whereas in a continuous-time formulation, a change from a two-dimensional

model to a three-dimensional one creates possibilities of complex dynamics in the

economy.

In our model, because of the presence of two types of assets, and hence two

asset accumulation equations, the dimension of the dynamics becomes higher. We

face a discrete-time, two-dimensional OLG model. The theory of higher-dimensional

nonlinear dynamical systems has been developed in mathematics (for textbook pre-

sentations, see, for example, Guckenheimer and Holmes (1983) and Palis and Takens

(1993)). Its application to economics has been recognized as useful, especially in

analyzing the global dynamics of nonlinear economic models. In higher-dimensional

dynamic economic models, it is often the case that the dynamic process is ultimately

attributed to the dynamics of a circle map. A typical example in economics occurs

when the trajectories of a discrete-time dynamic model are attracted to a closed in-

variant curve that appears after the Neimark–Sacker bifurcation. However, it is rare

that the explicit forms of the maps of such invariant curves can be obtained; therefore,

in most cases, the nature of the circle dynamics cannot be rigorously characterized,

and numerical investigation is required. Hommes’ (1991, 1993, 1995) pioneering

works are exceptions. Assuming the Hicksian nonlinearity, he succeeds in presenting

a tractable model, giving a clue to analytical investigation of the circle dynamics.
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Recent important extensions of this line of research are collected in Puu and Sushko

(2006).

In fact, circle dynamics is more important than it may seem at first glance; a

map with a certain type of discontinuity on an interval can be viewed as a map on a

circle by identifying the endpoints of the interval. We will exploit the theory of the

circle map to investigate our two-dimensional OLG model. In this paper, we slightly

modify a standard textbook OLG model to obtain endogenously a kind of Hicksian

nonlinearity, and present a simple model in which we can rigorously characterize the

nature of the circle dynamics.1 More concretely, by focusing on an extreme case, we

first reduce the model to the dynamics on the interval. Then, the existence of a

discontinuity caused by technology switching allows us to identify the interval as a

circle, which is the key to our analysis. Thus, we use the theory of the circle map to

investigate our two-dimensional economic model.

The basic structure of our model follows Diamond (1965). However, there are

two significant modifications. In our model, two classes exist, which we refer to as

the working and capitalist classes, and there are two types of production technologies

from which to choose.2 The agent belonging to the working class behaves like the

agent in the standard settings of the Diamond (1965) type OLG model, whereas the

agent belonging to the capitalist class, without supplying labor, bequeaths his/her as-

sets to the next generation. We consider two state variables: capitalists’ and worker’s

assets. Based on the theory of higher-dimensional nonlinear dynamical systems (in

particular, a two-dimensional nonlinear dynamical system), we show that in an ex-

treme case in which one technology is linear and the other technology is of the Leontief

type, the dynamics of the capital supplied by the capitalist class is characterized by a

rigid rotation on the circle, giving rise to quasi-periodic motions for typical parameter

values.

In this paper, the assumption of a sustainability condition plays an important role.

From the viewpoint of realism, we ignore the case in which the capitalists’ wealth

1Although Pintus et al. (2000) analyze the circle dynamics using a standard infinite horizon
agent model, their analyses depend on numerical simulations.

2Woodford (1986) and Pintus et al. (2000) also assume that the economy consists of two classes:
workers and capitalists.
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becomes negative. In addition, because our focus is not on the case of perpetual

growth, we restrict our analysis to the case in which capital and output remain finite.

We call the condition that guarantees this situation the sustainability condition.

Finally, we briefly explain differences between Yokoo’s (2000) and our results.

Yokoo’s paper (2000) is the most closely related to ours in the sense that both in-

vestigate the global dynamics of two-dimensional OLG models with public “debt”.

However, there are significant differences. In Yokoo (2000), there is only one type of

technology, and it is assumed to be of the constant elasticity of substitution (CES)

type, for which the elasticity of substitution is small (i.e., close to the Leontief type)

but finite. Under this setting, Yokoo (2000) shows that when the propensity to save

is sufficiently low and the elasticity of the marginal production function is high, the

model can generate chaotic dynamics due to the existence of a transverse homoclinic

point. In contrast, our model incorporates two technologies, and the endogenous

change of the technology choice can create quasi-periodic fluctuations even under

production technologies that are as simple as possible analytically, e.g., linear and

Leontief technologies. Furthermore, unlike Yokoo (2000), our model does not re-

quire that the workers’ propensity to save be sufficiently small for such a permanent

fluctuation pattern to occur.

2 Settings of the model

We examine an OLG model where there are two classes and a choice between two

production technologies. Time is discrete and runs from 0 to infinity. Populations

are constant over time. Only one good is produced. For the technology choice, we

follow the formulation of Umezuki and Yokoo (2019) and Asano et al. (2020), among

others.3 Umezuki and Yokoo (2019) study the case of two Cobb–Douglas technologies,

whereas Asano et al. (2020) deal with the case of two CES technologies. For an

illustrative argument, we mainly focus here on an extreme case where there are only

3See also Aghion et al. (1999), Iwaisako (2002), and Matsuyama (2007) for graphical analyses of
endogenous business cycle models due to endogenous technology choice, and Kunieda and Shibata
(2003), Asano et al. (2012), Matsuyama et al. (2018), Asano and Yokoo (2019), and Umezuki and
Yokoo (2019) for more rigorous mathematical analyses.
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two technologies: one is of the Leontief type and the other is linear among the CES

technology class.

Unlike Umezuki and Yokoo (2019) and Asano et al. (2020), we consider an agent

group that solely aims at asset formation, leaving the assets to the next generation as

bequests. We call this agent group the capitalist class. We assume that the capitalist

class does not supply labor but invests capital in the industry to maximize returns.

We refer to the conventional agents, who supply labor to the market, as the working

class. Thus, our model involves two classes: the working and capitalist classes. We

assume that the population of the capitalist class relative to the working class is

l > 0. If we consider the situation where a few people own most of the wealth, then l

should be small, say, l ∈ (0, 1), but we do not impose such a restriction for generality.

2.1 Optimizing behavior of the agents

We consider a representative competitive firm. The production functions in the

intensive form, fi, are of the CES type of constant returns to scale. As usual, the

firm’s behavior is characterized by the first order conditions:

rt = f ′
i(kt), wt = fi(kt)− ktf

′
i(kt) ≡ wi(kt), i ∈ M = {1, 2, . . . , N},

where k denotes capital per worker and M is the set of technologies. To be more

specific, the functional forms are given by

fi(k) = Aik [αi + (1− αi)k
ρi ]−1/ρi ,

f ′
i(k) = αiAi [αi + (1− αi)k

ρi ]−(1+ρi)/ρi ,

wi(k) = Aik
[
[αi + (1− αi)k

ρi ]−1/ρi − αi [αi + (1− αi)k
ρi ]−(1+ρi)/ρi

]
,

where αi ∈ (0, 1) and Ai > 0 are constants. Note that if ρi = −1, then fi becomes

the linear production function, whereas if ρi → +∞, then fi tends to the Leontief

function. Furthermore, if ρi → 0, then fi approaches the Cobb–Douglas function.

We next consider the saving behavior of the working class. The representative

agent of the working class is assumed to live for two periods, supplying one unit of

labor inelastically only when he/she is young. This agent, born at time t, maximizes
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his/her Cobb–Douglas utility as follows:

max
cwt ,dt+1,st

(1− s) log cwt + s log dt+1, s ∈ [0, 1]

s.t. st + cwt = wt, dt+1 = (1 + rt+1 − δ)st.

Here, cwt denotes the consumption of the working class when young, dt+1 denotes

consumption when old, st denotes saving in the form of capital, wt denotes the real

wage rate, rt+1 is the real rate of return on capital, δ is the depreciation rate of

capital, and the subscript t denotes time. Utility maximization yields the agent’s

optimal saving:

st = swt.

Because the old workers are capital owners and dt+1 is an increasing function of rt+1,

we assume that they choose the technology giving the higher rt+1. A microfoundation

of this behavior is given in Appendix A.

The agent belonging to the capitalist class is assumed to live for two periods

but consumes only when young. When old, he/she manages savings and leaves the

amount of savings, with interest added, to his/her child; that is, the agent born at

t obtains utility from his/her temporary consumption cct (noting that cct denotes the

consumption of the capitalist class when young) and the bequest with interest added

for his/her offspring. His/her utility maximization problem with Cobb–Douglas util-

ity could be formulated as follows:

max
cct ,mt+1

(1− σ) log cct + σ log (1 + rt+1 − δ)mt+1, σ ∈ [0, 1]

s.t. cct +mt+1 = (1 + rt − δ)mt,

which leads to the optimal bequest represented by

mt+1 = σ (1 + rt − δ)mt.

In the old period, the capitalist chooses the technology that yields the higher return

to maximize the bequest. Because rt+1 = f ′
i(kt+1), an old capitalist’s problem is given

by

max
i∈M

f ′
i(kt+1),
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which shows that capitalists’ technology choice behavior is the same as that of the

working class. Because the depreciation rate affects neither the workers’ saving be-

havior nor the capitalists’ technology choice, in the following analysis we set δ = 1;

that is, capital depreciates completely once used.

2.2 A general model

Taking the optimization results in the previous subsection into account, we can rep-

resent the model that we utilize in what follows in a slightly general form:

kt+1 = swγ(kt) + xt+1, (1)

xt+1 = σf ′
γ(kt)xt, (2)

γ = argmax
i∈M

f ′
i(kt). (3)

Here, we have introduced a variable change: mt = xt/l. Note that if the agent of the

working class is extremely impatient; that is, if s = 0, then the economy is perfectly

polarized in the sense that the entire capital stock in the economy is solely owned by

the capitalist class.

2.3 Extreme functional forms

For illustrative purposes, we consider the extreme case where there are only two

production technologies, one of which is of the Leontief type (technology 1) and the

other is linear (technology 2). The intensive form production functions (and their

derivatives) and the real wage functions are represented as follows:

f(k) =


A[αk + (1− α)] if ρ = −1 (linear)

Ak if k < 1, ρ = ∞, (Leontief)

A if k ≥ 1, ρ = ∞, (Leontief)

f ′(k) =


αA if ρ = −1 (linear)

A if k < 1, ρ = ∞, (Leontief)

0 if k ≥ 1, ρ = ∞, (Leontief)

w(k) = f(k)− kf ′(k) =


(1− α)A if ρ = −1 (linear)

0 if k < 1, ρ = ∞, (Leontief)

A if k ≥ 1, ρ = ∞. (Leontief)
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Note that the subscripts (1 for Leontief and 2 for linear) are omitted above. Of course,

when k = 1, the derivative of f1 does not exist. In such cases, we replace f ′
1(1) by

the right derivative of f1 for simplicity. To avoid the situation where technology 1 is

never chosen, we assume that for kt < 1,

f ′
1(kt) = A1 > f ′

2(kt) = α2A2. (4)

Then, technology choice is represented by

γ =

{
1 (Leontief), if k < 1,

2 (linear), if k ≥ 1.

2.4 The Leontief–linear model

When the two technologies are of the Leontief and linear types under the condition

(4), the dynamics of the economy given by (1)–(3) is represented by the following

simultaneous difference equations with given initial conditions k0 > 0 and x0 > 0:

If kt < 1, then

{
kt+1 = σA1xt,

xt+1 = σA1xt.
(5)

If kt ≥ 1, then

{
kt+1 = s(1− α2)A2 + σα2A2xt,

xt+1 = σα2A2xt.
(6)

For simplicity of presentation, we introduce some new parameters as follows:

a = σA1 ≥ 0, b = σα2A2 ≥ 0 (the equalities hold only if σ = 0).

c = s(1− α2)A2 ≥ 0 (the equality holds only if s = 0).

Note that c represents the amount of capital stock that the working class contributes

to the economy.

Let us denote that R+ = {x ∈ R |x ≥ 0}. Let Xt = (kt, xt) ∈ R2
+. Then, Eqs.

(5)–(6) simplify to a map from R2
+ into itself, as follows:

F : R2
+ → R2

+, (7)

where

Xt+1 =

(
kt+1

xt+1

)
= F (Xt) =

{
FL(Xt) if kt < 1,

FR(Xt) if kt ≥ 1

8



with

FL(Xt) =

(
0 a
0 a

)
Xt =

(
axt

axt

)
, (8)

FR(Xt) =

(
0 b
0 b

)
Xt +

(
c
0

)
=

(
bxt + c
bxt

)
. (9)

It is important to notice that each Jacobian matrix of Fj (j = L,R) is not of full

rank. Thus, the dynamic behavior of the model will seem more “one-dimensional”

even though the model itself is formally two-dimensional.

3 Analysis of the Leontief–linear model

3.1 Sustainability

Notice that the parameters a, b, and c in (8)-(9) can take any nonnegative values by

choosing αi, Ai, s, and σ appropriately. In what follows, we conduct the analysis

under the following parametric restrictions:

a > 1 > b > 0. (10)

Some comments are in order. As noted earlier, in the Introduction, from the

viewpoint of realism it is appropriate to ignore the case in which the capitalists’ wealth

becomes negative. In addition, because our focus is not on the case of perpetual

growth, we restrict our analysis to the case in which capital and output remain finite.

Indeed, under (10), the economy neither explodes to infinity nor vanishes into nothing.

Condition (10) guarantees that the capitalists’ assets will not explode to infinity and

that the economy-wide capital stock never vanishes. Therefore, this condition could

be called the sustainability condition. Let us summarize this fact in the following

proposition:

Proposition 1. Let the initial conditions k0 > 0 and x0 > 0 be given. If the sus-

tainability condition given by (10) holds, then one of the following two cases occurs

depending on the value of c, that is:

(i) if c ∈ [0, 1), then xt enters the interval [(1 − c)b, a] in some finite iterates and

never leaves it.

(ii) if c ≥ 1, then xt converges to zero, while kt converges to c, as t goes to infinity.
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Proof. See the Appendix.

Case (ii) is rather dull because the capitalist class vanishes in the end and the

economy settles down to a steady state where the entire capital stock is owned by

the working class. In what follows, we will focus on case (i).

3.2 Some preliminaries

Before proceeding to the detailed analysis of the model, we briefly review some math-

ematical notions used. For more detail, see Guckenheimer and Holmes (1983). Let

us consider the unit circle denoted by S1. There are three ways of defining the cir-

cle: {(x, y) ∈ R2 |x2 + y2 = 1} (the Euclidean circle), {z ∈ C | z = e2πiθ, θ ∈ R}
(the complex circle), and R/Z (the real numbers modulo the integers).4 For our pur-

pose, it is most convenient to define that S1 = R/Z, which can be thought of as

the interval [0, 1) with the endpoints connected. The circle map that we examine

in this paper is restricted to a homeomorphism (one-to-one, onto, continuous, and

with a continuous inverse) of the circle. Instead of the notion of order on the real

line, we need the notion of orientation for S1. Let a, b ∈ S1; then, (a, b) means the

interval wrapping forward from a to b. Let f : S1 → S1 be a homeomorphism. We

say that f is orientation-preserving if for any a, b ∈ S1 and every point c ∈ (a, b),

f(c) ∈ (f(a), f(b)) holds. This corresponds to the situation where f is increas-

ing on R. The simplest orientation-preserving circle homeomorphism is the rotation

Rα : S1 → S1 given by

Rα(x) = x+ α,

where α ∈ R is a fixed number. It is known that if α is rational, then every point in

S1 is periodic. To be more specific, if α = p/q is an irreducible fraction with p, q ∈ Z,
then for every x ∈ S1,

Rq
p/q(x) = x+ p mod 1 = x.

On the other hand, if α is irrational, it is known that the orbit of any point is dense

in S1. Equivalently, for any x, y ∈ S1 and any neighborhood of y, N(y) ⊂ S1, there

4For this argument, see, for example, Turer (2019).
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is an integer n such that Rn
α(x) ∈ N(y). Compared with the rational case, we will

call this irrational case of the dynamics quasi-periodic.5

Next, we define the projection π : R → S1 = R/Z by π(x) = x mod 1. In the rest

of this subsection, let f : S1 → S1 be an orientation-preserving homeomorphism. We

say that the map F : R → R is a lift of f : S1 → S1 if π ◦ F = f ◦ π. For a given f ,

there are infinitely many lifts, any two of which differ only by an integer. Note that

f is orientation-preserving if and only if F is orientation-preserving (i.e., increasing).

The most important notion of the circle homeomorphism is the rotation number.

The rotation number of f , ρ(f), is well defined by

ρ(f) =

(
lim
n→∞

F n(x)

n

)
mod 1, (11)

where x is any point in S1 and F is any lift of f .

There is an equivalent but more practical definition of the rotation number. To

see this, pick a point x ∈ S1 and partition S1 into two “arcs”: I0 = [x, f(x)) and

I1 = [f(x), x). For any point y ∈ S1, we define the rotation number as follows:

ρ(f) = lim
n→∞

1

n

(
cardinality{f i(y) | 0 ≤ i < n and f i(y) ∈ I0}

)
.

It is known that ρ(f) exists and is independent of y (see Guckenheimer and Holmes

(1983, Proposition 6.2.1)). It is also known that ρ(f) is rational if and only if f has

a periodic orbit (see Guckenheimer and Holmes (1983, Proposition 6.2.4)). For the

rotation above, it is known that ρ(Rα) = α (see Guckenheimer and Holmes (1983, p.

297)). Intuitively, the rotation number is the asymptotic proportion of the points on

the trajectory that visit I0.

Let X and Y be topological spaces. Let f : X → X and g : Y → Y be two maps.

We say that f and g are topologically conjugate if there exists a homeomorphism

φ : X → Y such that for all x ∈ X, φ◦f(x) = g ◦φ(x). Topological conjugacy means

that g inherits many properties of f . For instance, if f has a dense orbit, so does g.

It is also known that the rotation number is a topological invariant; that is, if f and

g are topologically conjugate, then ρ(f) = ρ(g).

5In the literature, it is also called almost periodic.
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Let I = [0, 1] and let B be the Borel σ-algebra of [0, 1]. Given a measurable

function τ : I → I, a measure µ is said to be τ -invariant if µ(τ−1(E)) = µ(E)

for all measurable sets E ∈ B. We say that a measure µ is absolutely continuous

with respect to a measure ν if ν(E) = 0 implies that µ(E) = 0. The existence

of an absolutely continuous invariant measure plays an important role in economics

because it ensures the observability of recurrent but not periodic fluctuations in the

long run and describes the asymptotic distribution of economic states over the course

of a business cycle. A measurable function τ : I → I is ergodic with the τ -invariant

measure µ if for any E ∈ B with τ−1(E) = E, µ(E) = 0 or µ(I\E) = 0. This implies

that a set E with τ−1(E) = E is a zero-measure set or is of full measure; that is, the

measure can no longer be decomposed.

3.3 Periodic and quasi-periodic motions

We investigate the typical dynamics of the system described by (7)-(9). We begin

with a simpler case where c = 0 or s = 0. In other words, this case corresponds

to a situation where the working class agents are extremely impatient, so that they

consume their entire income when they are young and, as a result, capital is entirely

owned by the capitalist class. In this case, for t ≥ 1, kt = xt holds. Furthermore, the

two-dimensional system (7)-(9) reduces to a (one-dimensional) piecewise linear map

of the interval:

Ta,b : Ia,b → Ia,b, Ia,b = [b, a],

xt+1 = Ta,b(xt) =

{
axt, if xt < 1,

bxt, if xt ≥ 1.
(12)

It is crucial to recognize that this type of map of the interval can be regarded as

a piecewise linear homeomorphism (i.e., a homeomorphism with piecewise constant

derivatives) of the circle. As a circle map, our model given by (12) is continuous

because Ta,b(b) = Ta,b(a) = ab, irrespective of the choice of a and b. It is important

to notice that the threshold x = 1 in (12) is not a discontinuity6 for a circle map.

6Several economic models in which the dynamics can be characterized by a piecewise continuous
map with a discontinuity of the interval can be identified with some circle maps, but they are not
necessarily continuous as circle maps. For instance, every economic model developed in Ishida and
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Proposition 2. The map Ta,b given by (12) is identified with an orientation-preserving

piecewise-linear homeomorphism of the circle.

Proof. It suffices to identify the endpoints of the interval [b, a] and to see that Ta,b(b) =

Ta,b(a) = ab, irrespective of the choice of a and b.

To understand this situation, see Figure 1 for a circle map of R/Z given by (12)

and Figure 2 for its lifts on R, where the map is modified so as to be defined on [0, 1]

using the trivial linear conjugacy: ϕ(x) = (x− b)/(a− b).

[insert Figures 1 and 2 around here]

Fortunately, the dynamics of a class of piecewise linear circle homeomorphisms

has been well studied in the mathematics literature (although not necessarily the

economics literature). Among others, Coelho et al. (1995) and de Faria and Tresser

(2014) deal with some classes of piecewise linear circle homeomorphisms including

Ta,b in (12) as a special case with a different parametrization. For a more general

class of piecewise linear maps of the circle, see Liousse (2004).

Based on the results of the abovementioned authors, it can readily be understood

that the map Ta,b in (12) exhibits a unique absolutely continuous invariant measure

(and thus ergodic behavior) on the interval Ia,b as long as its rotation number is

irrational. Moreover, the formulas for the rotation number and the invariant measure

can be computed explicitly:

Proposition 3. (Abundance of quasi-periodic motions for c = 0) Let the sustainable

condition (10) be satisfied and let c = 0. Then, the map Ta,b : Ia,b → Ia,b given by

(12) is topologically conjugate to the rotation Rα : S1 → S1 with the rotation number:

α =
log a

log a− log b
= loga/b a. (13)

When α is rational, every point in Ia,b is a periodic point of some period q > 1. More-

over, when α is irrational, Ta,b is uniquely ergodic, having an absolutely continuous

Yokoo (2004), Asano et al.(2012), and Umezuki and Yokoo (2019) could be treated as a circle map.
However, in contrast to ours, all these models have a discontinuity as a circle map. For its dynamic
consequences, see Keener (1980).
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invariant probability measure µ given by

dµ(x) =
dx

x log(a/b)
. (14)

Proof. See the Appendix.

Now, we want to see what happens if c ̸= 0. We will show that if c is not very

large and ab is not very small, then there is no qualitative difference in the behavior

of the capital stock provided by the capitalist class when c = 0 or c ̸= 0. To this end,

for c ∈ [0, 1), let Ia,b,c be a closed interval defined by

Ia,b,c = [(1− c)b, (1− c)a].

Furthermore, we define the map τa,b,c : Ia,b,c → Ia,b,c to be:

xt+1 = τa,b,c(xt) =

{
axt if xt < 1− c,

bxt if xt ≥ 1− c.
(15)

Proposition 4. (Abundance of quasi-periodic motions for c ≥ 0) Let the sustainable

condition (10) be satisfied. Furthermore, assume that ab > 1 and let c be such that:

0 ≤ c < θ, where θ =
ab− 1

ab
. (16)

Then, for any initial condition (k0, x0) ∈ R2
+, there exists some integer t0 = t0(k0, x0) ≥

0 such that for any t ≥ t0, the sequence of the capitalists’ assets {xt} generated by

(7) coincides with a trajectory of the map τa,b,c : Ia,b,c → Ia,b,c given by (15), which is

topologically conjugate to the rotation, with the rotation number given by (13).

Hence, when α is rational, every trajectory of {xt} is eventually periodic7 with

some period q, irrespective of initial condition (k0, x0). Furthermore, when α is irra-

tional, τa,b,c has an absolutely continuous invariant probability measure on Ia,b,c, given

by (14), and therefore every trajectory of {xt} is eventually quasi-periodic and dense

in Ia,b,c.

Proof. See the Appendix.

7The definition of eventual periodicity in Deng et al. (2021) is different from ours. In Deng et al.
(2021), the term eventual periodicity is used interchangeably with the global stability of a periodic
orbit.
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Remark 1. The above proposition implies that if the set of parameter values (a, b, c)

is randomly chosen by nature so that they satisfy the conditions in Proposition 4,

then quasi-periodic motions are observed with probability 1 because the graph of the

function of α given by (13) is strictly monotonic with respect to a and b. See the

next section for more detail.

Remark 2. If c violates the restriction given by (16), the capitalists’ assets xt may

exceed the upper bound of Ia,b,c = [(1 − c)b, (1 − c)a], although they will remain

within the interval [(1− c)b, a]. See Proposition 1. The dynamics of this case may be

intriguing, but more complex; thus, we will leave it to future research. See Figure 3,

which shows a bifurcation diagram with respect to c, where one can observe that the

capitalists’ assets xt exhibit a quasi-periodic cycle on Ia,b,c = [(1−c)b, (1−c)a] for each

c ∈ [0, θ). When c reaches θ, a kind of bifurcation occurs and, for c ∈ (θ, 1), xt spreads

over [(1−c)b, a], giving rise to complicated limit sets comprised of disconnected bands.

Remark 3. Under our parametric restrictions above, one cannot observe chaotic be-

haviors even when the economy exhibits bounded, nonperiodic fluctuations for almost

all cases. In fact, the Lyapunov exponent, which measures the sensitive dependence

on initial conditions; that is, the most essential feature of chaotic dynamics, will point

to zero as we point out in the Appendix.

The proposition above says that if the working class does not save much (that is,

c is not very large), then the capitalists’ assets will neither explode to infinity nor

vanish, but will keep fluctuating within some range in a nonperiodic but almost peri-

odic manner, irrespective of initial conditions. We will examine the quasi-periodicity

in subsection 3.4 in detail with some parametric examples.

[insert Figure 3 around here]

3.4 Some parametric examples

For an exposition, we provide some examples for (7) with the parameters set as in

Proposition 4. Let ab = 2 be fixed. Let a, b, and c satisfy the conditions given in

Proposition 4. As ρ(Ta,2/a) = ρ(τa,2/a,c), we write these rotation numbers as ρ(a) as
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long as c is appropriately adjusted. For instance, if a = 4 and b = 2/a = 1/2, then

the rotation number ρ(4) = α must satisfy:

aαb1−α = 4α(1/2)1−α = 1.

Solving this for α, we obtain ρ(4) = α = 1/3. This means that for, say, τa,b,c in (15),

any trajectory exhibits a period-three cycle, visiting the interval [(1− c)b, 1− c] once

and the interval (1 − c, (1 − c)a] twice over one cycle. Similarly, ρ(8) = 2/5, which

indicates the occurrence of a period-five cycle. Note that for a ∈ [4, 8] and ab = 2, it

suffices to assume that 0 ≤ c < 1/2 for condition (16) is satisfied. See Figures 4 and

5 for a period-three cycle and a period-five cycle, respectively.

[insert Figures 4 and 5 around here]

Now, for two rational numbers p/q and p′/q′, where 0 < p/q < p′/q′ < 1 and

gcd(p, q) = gcd(p′, q′) = 1,8 we define a new rational number p′′/q′′ in such a way

that:
p′′

q′′
=

p

q
⊕ p′

q′
=

p+ p′

q + q′
.

Then, p/q < p′′/q′′ < p′/q′. By creating a new rational number for two given neigh-

boring rational numbers, we obtain the following sequence starting with {ρ(4), ρ(8)}:

F1 =

{
1

3
,
2

5

}
,

F2 =

{
1

3
,
3

8
,
2

5

}
,

F3 =

{
1

3
,
4

11
,
3

8
,
5

13
,
2

5

}
,

F4 =

{
1

3
,
5

14
,
4

11
,
7

19
,
3

8
,
8

21
,
5

13
,
7

18
,
2

5

}
,

F5 =

{
1

3
,
6

17
,
5

14
,
9

25
,
4

11
,
11

30
,
7

19
,
10

27
,
3

8
,
11

29
,
8

21
,
13

34
,
5

13
,
14

31
,
7

18
,
9

23
,
2

5

}
,

...

This is reminiscent of the Farey sequence (Hardy et al. (2008) provide more detail

on this). Taking account of the continuity of ρ(a) with respect to a when τa,2/a,c is
8Note that gcd(p, q) denotes the greatest common divisor of p and q.
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continuous with respect to a (see Guckenheimer and Holmes (1983)), we can find

periodic cycles in the order of, say, F4, as we continuously increase the parameter

value of a from 4 to 8:

3 → 14 → 11 → 19 → 8 → 21 → 13 → 18 → 5, (17)

where each number corresponds to the period of the cycle. Furthermore, by repeating

the same argument, we can find a periodic cycle of an arbitrarily large period between,

say, period-three and period-14 cycles in (17).

As the rotation number, which is a topological invariant, is given by (13), we can

calculate the value of a for which the rotation number of τa,2/a,c is, say, 3/8 in F2. In

fact, solving:
3

8
=

log a

log a− log(2/a)

yields a = 4
√
2. See Figure 6. For the corresponding period-eight cycle, see Figure

7.

[insert Figures 6 and 7 around here]

However, for the set of parameter values in Proposition 4, it is very rare to observe

such periodic motions. As the rotation number ρ(a) is in fact a smooth, strictly

increasing function of a, as shown in Fig.6, the Lebesgue measure of the set of a for

which ρ(a) is rational is zero. For the set of parameter values in Proposition 4, it is

most likely that we will observe quasi-periodic motions, instead to which irrational

rotation numbers correspond. See Figures 8, 9, and 10 for quasi-periodic behaviors.

[insert Figures 8, 9, and 10 around here]

Contrary to the periodic case, the trajectory runs densely in the interval [(1 −
c)b, (1 − c)a] when the rotation number is irrational. Nonetheless, it is important

to recognize that any irrational rotation number can arbitrarily be approximated by

rational numbers because of their density in the interval [0, 1]. In other words, even

when some quasi-periodic cycle occurs, it can be approximated by some periodic

cycle. That may be more apparent in a time series. Compare Figure 11 with Figure

17



12. In this case, the quasi-periodic trajectory in Figure 12 may be viewed as a period-

eight cycle with some “delay”.

[insert Figures 11 and 12 around here]

Finally, we have seen that Proposition 4 suggests that the fluctuation of the

capitalists’ assets in the long run follows a certain distribution, irrelevant of initial

conditions. The numerical simulations below demonstrate that the larger the number

of iterations of our model is, the more accurately the histograms actually approximate

the theoretic density curve given by (14) on Ia,b,c. See Figures 13 through 16.

[insert Figures 13, 14, 15, and 16 around here]

Interestingly, the lower levels of capitalist’ assets occur more often than the higher

counterparts do.

4 Discussion and concluding remarks

This paper examined an overlapping generations model in which there exist two

classes: the working class and the capitalist class, and a choice between two types

of production technologies. The behavior of the working class is the same as that in

the standard Diamond (1965) type OLG model, whereas the capitalist class, without

supplying labor, bequeaths its assets to the next generation. We showed that in an

extreme case in which one technology is linear and the other technology is of the

Leontief type, the dynamics of capital supplied by the capitalist class is characterized

by a rigid rotation on the circle, giving rise to quasi-periodic motions for a very large

set of parameter values.

We may regard capitalists’ asset holdings as public debt outstanding. In this

interpretation, our results suggest that even if the government manages to constrain

the amount of public debt within a sustainable range, the dynamics of public debt

can be fairly complex (non-periodic but non-chaotic) in return.

Our results, particularly the quasi-periodicity of the capitalists’ assets, heavily
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rely on the assumption that both of the technologies available are extreme ones

among CES technologies. However, examining the extreme cases has a great advan-

tage in that it allows us to analytically investigate the global dynamic properties in

detail without relying on numerical methods. Conducting the same analysis for the

non-extreme cases would be much harder, if not impossible. Of course, the more

general, less extreme, cases are certain to generate much more complex patterns of

dynamics. In fact, we have observed by computer simulations that our model with

nonextreme CES technologies can easily exhibit richer dynamic patterns including

chaotic behaviors. We believe that our analysis here will be helpful in understanding

these dynamic phenomena.
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Appendices

Appendix A: A microfoundation of workers’ technology choice behavior

This appendix provides a microfoundation for technology choice behavior in our

model.

Our basic setup follows Matsuyama (2007). There are N types of production

technologies in this economy. A type i technology converts ei units of the final goods

into eiRi units of capital and the final good is produced by Yit = Fi(Kt, Lt), where

Kt and Lt are capital and labor at time t, respectively. The final good production

functions in per worker terms are

y
it = fi(kt), i = 1, ..., N

where yt = Yt/Lt and kt = Kt/Lt and fi(kt) = Fi(kt, 1).

Because the workers have log-linear utility, their saving rate is constant and in-

dependent of the return from saving. Any saver has two options in managing their

saving, namely becoming either a lender or an entrepreneur. An agent selecting to be

a lender lends his/her saving at and obtains rt+1at when old, where rt+1 denotes the

real interest rate. An agent becoming an entrepreneur selects one technology from

the two types of technologies. Because an entrepreneur’s wealth is equal to his/her

saving, if ei > at, the entrepreneur has to borrow ei−at. However, due to the presence

of capital market frictions, each entrepreneur can pledge only up to a constant frac-

tion of the project revenue for the repayment, λieiRif
′
i(kt+1), where 0 ≤ λi ≤ 1. The

fraction, λi, differs between the two types of projects. The entrepreneur’s borrowing

constraint is represented by

λieiRif
′
i(kt+1) ≥ rt+1(ei − at) for i = 1, ..., N. (18)

As λi becomes smaller, the credit constraint becomes stronger.

Because an entrepreneur is always able to choose to become a lender, earnings

from investment will not be smaller than those from lending:

f ′
i(kt+1)eiRi − rt+1(ei − at) ≥ rt+1at, (19)
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that is:

rt+1 ≤ f ′
i(kt+1)Ri for i = 1, ..., J.

(18) can be rewritten as:

rt+1 ≤
Rif

′
i(kt+1)(

1− at
ei

)
/λi

for i = 1, 2.

By defining:

Φi ≡
Rif

′
i(kt+1)

max
{
1,
(
1− at

ei

)
/λi

} ,

we can summarize (18) and (19) as:

rt+1 ≤ Φi for i = 1, 2.

Let us assume here that rt+1 < Φi. Then, all agents become entrepreneurs and adopt

type i technology and there is no lender in this economy. Obviously, this cannot be

an equilibrium as we have rt+1 ≥ Φi. Next, let us suppose that rt+1 > Φi. Then, at

least one of (18) and (19) for i is not satisfied and thus type i is not adopted. In

equilibrium, because we must have positive investment, it follows that:

rt+1 = max {Φ1,Φ2} , (20)

showing that the technology yielding higher value on the right-hand side of (20) is

adopted.

In this paper, we consider a special case of (20), that is:

N = 2, R1 = R2 = 1, λ1 = λ2 = λ and e1 = e2 = e.

In this case, (20) reduces to

rt+1 = max

{
Rf ′

1(kt+1)

max
{
1,
(
1− at

e

)
/λ

} , Rf ′
2(kt+1)

max
{
1,
(
1− at

e

)
/λ

}}
=

R

max
{
1,
(
1− at

e

)
/λ

}max {f ′
1(kt+1), f

′
2(kt+1)} .

Thus, we can confirm that the workers select the technology with a higher marginal

productivity of capital, which is our technology choice assumption in the main text.
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It should be noted that the interest rate may be lowered by the existence of credit

constraints but it does not affect our analysis because the saving rate in our model

is independent of the interest rate.

Appendix B: Proofs

Proof of Proposition 1. For case (i), we first notice that kt0 = xt0 ≤ 1 for some t0.

As a > 1 in FL, which makes xt increase; it follows that kt1 = xt1 ∈ (1, a] for some

t1 > t0. As b ∈ (0, 1) in FR, which makes xt decrease, we have that xt ≤ a for t ≥ t1.

Moreover, there is the smallest integer n ≥ 1 such that kt1+n = c + xt1+n ≤ 1 or

xt1+n ≤ 1− c and that kt1+n−1 = c+ xt1+n−1 > 1 or xt1+n−1 > 1− c. Thus, it follows

that xt ≥ b(1− c) for t ≥ t1 + n. For case (ii), the statement is evident from (9).

Proof of Proposition 3. Since Ta,b is a circle homeomorphism by Proposition 2, the

rotation number exists, which we denote by α. We claim that it must satisfy:

a1−αbα = 1. (21)

There are two cases to consider. First, when α is irrational, then we know from

Theorem 1 in Coelho et al (1995) that Ta,b is uniquely ergodic and we let its unique

invariant measure be µ. By definition, α = µ(b, Ta,b(b)) = µ(b, ab). Since µ is invariant

under Ta,b, it follows that α = µ(b, ab) = µ(T−1
a,b (b, ab)) = µ(1, a). By the Ergodic

Theorem and the fact that |DT n
a,b|, where D denotes the derivative, is bounded away

from 0 and infinity (see for this point, Coelho et al. (1995), Proposition 2), we have

0 = lim
n→∞

1

n
log |DT n

a,b(x)| =
∫

log |DTa,b|dµ(x),

which implies

0 = µ(b, 1) log a+ µ(1, a) log b = (1− α) log a+ α log b.

This9 gives (21).

9This also says that the Lyapunov exponent limn→∞(1/n)
∑n−1

t=0 log |T ′
a,b(xt)| = log a1−αbα is

zero, which indicates that there is neither expansion nor contraction on average for the trajectories
generated by the map. This applies to the case where the rotation number of Ta,b is rational as
well. In fact, each periodic point of Ta,b is neither repelling nor attracting.
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Next, when α is rational or α = p/q where p and q are prime integers, there is

some x0 ∈ [b, a] such that T q
a,b(x0) = x0, implying a(1−α)qbαqx0 = x0, and thus we

obtain (21). This means that DT q
a,b is identically unity and therefore, every point in

[b, a] is a periodic point of period q.

Taking logarithm of (21) and solving for α, we obtain:

α = log a/ log(a/b).

For the topological conjugacy (see e.g. the proof of Theorem 1 in de Faria and Tresser

(2014) ), let h : I = [0, 1] → Ia,b = [b, a] be given by:

h(t) = b(a/b)t, (22)

which is clearly a homeomorphism. To prove conjugacy, it suffices to check that

h ◦ Rα = Ta,b ◦ h. There are two cases to consider: (i) 0 ≤ t < 1 − α, and (ii)

1− α < t ≤ 1.

For case (i), as Rα(t) = t+ α, it follows that

h ◦Rα(t) = h(t+ α)

= b
(a
b

)t+α

=
(a
b

)α

h(t)

= ah(t) = Ta,b ◦ h(t).

Similarly, for case (ii), as Rα(t) = t+ α− 1, it follows that

h ◦Rα(t) = h(t+ α− 1)

= b
(a
b

)t+α−1

=
(a
b

)α b

a
h(t)

= bh(t) = Ta,b ◦ h(t).

Thus, the topological conjugacy between Rα and Ta,b is proven.

Finally, the absolutely continuous invariant measure µ for Ta,b in Ia,b, when α is

irrational, can be expressed as the push-forward of the Lebesgue measure λ in [0, 1]

23



via the homeomorphism h. See again the proof of Theorem 1 in de Faria and Tresser

(2014) . That is, for a Borel measurable set E ⊂ Ia,b:

µ(E) = λ(h−1(E)) =

∫
h−1(E)

dt =

∫
E

(h−1(x))′dx.

From (22) we have:

(h−1)′(x) =

(
log(x/b)

log(a/b)

)′

=
1

x log(a/b)
.

Thus, we obtain:

dµ(x) =
dx

x log(a/b)
,

as desired.

Proof of Proposition 4. We first show that for any initial condition (k0, x0), the tra-

jectory of xt (t = 0, 1, 2, . . . ) generated by the iteration of the map (7) is eventually

trapped in the interval Ia,b,c = [(1 − c)b, (1 − c)a] and that its dynamics is governed

by (15). That is, there is some t0 ≥ 0 (depending on the initial condition) such that

for t ≥ t0, xt ∈ [(1− c)b, 1− c) if and only if kt < 1 and xt ∈ Ia,b,c.

From Proposition 1 and the inevitable occurrence of technology change for c ∈
[0, 1), it suffices to assume x0 = k0 ∈ L = [(1− c)b, 1) ⊂ [(1− c)b, a]. By partitioning

L = L1 ∪ L2, where L1 = [(1− c)b, (1− c)) and L2 = [1− c, 1), we have two cases to

examine.

Case (i): Let x0 = k0 ∈ L1. Then, F (k0, x0) = FL(x0, x0) ∈ [ab(1−c), a(1−c)]2 ⊂
[1, a(1 − c)]2. The last inclusion is followed by the assumption that c ≤ 1 − 1/ab in

(16). Thus, x1 ≥ 1 and k1 ≥ 1. Then there is the smallest integer n ≥ 1 such that

F n+1(k0, x0) = F n
R ◦ FL(k0, x0) = F n

R ◦ FL(x0, x0) = (bnx1 + c, bnx1) = (kn+1, xn+1)

with xn+1 < 1. There are two subcases to follow. That is, subcase (i-1): kn+1 ≥ 1

and subcase (i-2): kn+1 < 1.

For subcase (i-1), from kn+1 − xn+1 = c, we have xn+1 ∈ L2. As kn+1 ≥ 1,

we have F (kn+1, xn+1) = FR(kn+1, xn+1) = (bxn+1 + c, bxn+1) = (kn+2, xn+2). As

xn+1 ∈ [(1 − c), 1) = L2, we have xn+2 = bxn+1 ∈ L1. We also obtain kn+2 ∈ L,

that is, kn+2 < 1, because kn+2 = xn+2 + c and |L2| = c. Thus, F (kn+2, xn+2) =
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FL(xn+2, xn+2), which brings us to the beginning of case (i) and we are done for

k0 = x0 and t ≥ 0. For subcase (i-2), kn+1 < 1 implies xn+1 < 1 − c and hence

xn+1 ∈ L1. Thus, again, this subcase goes back to the beginning of case (i). Therefore,

the argument above shows that the dynamics of xt is governed by (15) for case (i)

for any t ≥ 0.

Case (ii): Let x0 = k0 ∈ L2. As k0 < 1, we have F (k0, x0) = FL(x0, x0) =

(ax0, ax0). Thus, k1 = x1 ∈ (a(1 − c), a], which implies x1 /∈ Ia,b,c. However, as c ≤
1− 1/ab by (16), we have a(1− c) > ab(1− c) ≥ 1 and hence x1 = k1 > 1. Therefore,

there is the smallest integer m ≥ 1 such that Fm+1(k0, x0) = Fm
R ◦ FL(k0, x0) =

Fm
R (x1, x1) = (bmx1 + c, bmx1) = (km+1, xm+1) with xm+1 < 1, which implies that the

argument reduces to that of case (i). Thus, we are also done for k0 = x0 ∈ L2 and

for t ≥ m+ 1.

Thus, the above argument shows that for any initial conditions (k0, x0), xt ∈ Ia,b,c

for t ≥ t0 for some t0 and that the sequence of xt can be described by (15) for t ≥ t0.

For conjugacy, let hc : Ia,b → Ia,b,c with hc(x) = (1 − c)x. Then, we see that for

x ∈ Ia,b, hc ◦ Ta,b(x) = τa,b,c ◦ hc(x) ∈ Ia,b,c. Because τa,b is topologically conjugate to

the rigid rotation by Proposition 3, so is τa,b,c by the chain of topological conjugacy.

For the invariant measure, we can take a homeomorphism φ : [0, 1] → Ia,b,c =

[(1 − c)b, (1 − c)a] such that φ(t) = hc ◦ h(t) = (1 − c)b(a/b)t and use the same

argument as in Proposition 3. This completes the proof.
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Figure 1: A piecewise linear circle homeomorphism of R/Z. In this figure, yt = ϕ(xt).
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Figure 2: Its lifts in R, corresponding to Figure 1.
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Figure 3: Bifurcation diagram of the capitalists’ assets xt with respect c ∈ [0, 1).
a = 3

√
3, b = 1/2, and θ ≈ 0.6115. Proposition 4 explains that the dynamics of xt

for c ∈ [0, θ) can be completely characterized by the rotation of R/Z.
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Figure 4: Period-three cycle with ρ = 1/3. a = 4, b = 0.5, and c = 0.4.
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Figure 5: Period-five cycle with ρ = 2/5. a = 8, b = 0.25, and c = 0.4
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Figure 6: Rotation numbers for a ∈ [4, 8] with ab = 2 and c = 0.4
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Figure 7: Period-eight cycle with ρ = 3/8. a = 4
√
2, b =

√
2/4, and c = 0.4
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Figure 8: Quasi-periodic cycle with ρ that is irrational but close to 3/8. a ≈ 4
√
2 +

0.01, b =
√
2/4, and c = 0.4. 100 iterations.
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Figure 9: Quasi-periodic cycle with ρ that is irrational but close to 3/8. a ≈ 4
√
2 +

0.01, b =
√
2/4, and c = 0.4. 300 iterations.
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Figure 10: Quasi-periodic cycle with ρ that is irrational but close to 3/8. a ≈
4
√
2 + 0.01, b =

√
2/4, and c = 0.4. 600 iterations.
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Figure 11: Time series of a period-eight cycle with ρ = 3/8.

Figure 12: Time series of a quasi-periodic cycle with ρ near 3/8.
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Figure 13: A computer-generated histogram and the theoretical density curve on
Ia,b,c. The parameters are the same as in Figure 8. The number of iterations is 300.
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Figure 14: A computer-generated histogram and the theoretical density curve on
Ia,b,c. The parameters are the same as in Figure 8. The number of iterations is 600.
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Figure 15: A computer-generated histogram and the theoretical density curve on
Ia,b,c. The parameters are the same as in Figure 8. The number of iterations is 1,000.
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Figure 16: A computer-generated histogram and the theoretical density curve on
Ia,b,c. The parameters are the same as in Figure 8. The number of iterations is
10,000.

43


