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1 Introduction

Exhaustible natural resources and population decline are two major obstacles to persistent

economic growth. First, triggered by the Club of Rome�s 1972 report, The Limit to the

Growth, the e¤ects of exhaustible natural resources on long-run economic growth have been

widely discussed since the 1970s. The Club of Rome�s gloomy prediction was critically eval-

uated by many economists. Stiglitz (1974a, 1974b) revealed that the presence of exhaustible

natural resources does not necessarily terminate economic growth, since the prices of ex-

haustible natural resources continue to rise, which makes �rms substitute capital and labor for

exhaustible resources1. Therefore, although exhaustible natural resources are indispensable

inputs in production, persistent income growth can still be sustained by technical progress.

Second, population decline is a relatively new issue. The recent decline in fertility rates ob-

served in many high-income countries rekindled research interest in the relationship between

population scale and economic growth. In particular, a small number of authors such as

Christiaans (2011), Jones (2020), Sasaki (2015), and Sasaki and Hoshida (2017) examined

growth models in which the growth rate of the labor force population takes negative values.

They found that negative population growth may yield outcomes that cannot be observed in

the case of positive population growth.

In this study, we consider the two aforementioned issues in a single setting. We analyze

a one-sector growth model in which exhaustible natural resources are necessary for produc-

tion and the population growth rate may take negative values. We �rst characterize the

steady-state growth equilibrium and then investigate the conditions under which the per

capita income and consumption continue to expand in the long run. Our baseline analytical

framework is close to Groth and Schou�s (2002) growth model with exhaustible natural re-

sources, where the production technology exhibits increasing returns to scale2. They showed

that the per capita income and consumption grow in the long-run equilibrium without exoge-

nous technical progress if the production technology exhibits a certain degree of increasing

returns. Our study departs from Groth and Schou (2002) in two respects: �rst, we treat a

decentralized, competitive economy with external increasing returns, while Groth and Schou

1See also Solow (1974), Dasgupta and Heal (1974), and Suzuki (1978).
2Groth and Schou (2002) generalized the optimal growth model with exhaustible natural resources explored

by Stigliz (1974b), who assumed that the aggregate production function exhibits constant returns to scale.
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(2002) studied an optimal growth model in which the central planner realizes e¢ cient re-

source allocation. Second, Groth and Schou (2002) assumed that the growth rate of the

labor force is non-negative, but we focus on the case where the population shrinks at a �xed

rate3. Additionally, Sasaki and Mino (2021) investigated a semi-endogenous growth model

with exhaustible resources and population decline. They assumed that the household saving

rate is �xed over time. In contrast, this study explores a fully micro-founded model that

explicitly formulates the optimizing behaviors of �rms and households.

Speci�cally, our model considers �nal-goods-producing �rms, resource-extracting �rms,

and households. The �nal goods �rms employ capital, labor, and exhaustible natural re-

sources. The private technology of each �rm satis�es constant returns to scale, whereas the

social technology that involves external e¤ects associated with the aggregate capital exhibits

increasing returns. The resource-extracting �rms extract natural resources without paying

any cost to maximize the present value of their revenues. The households select the optimal

sequence of consumption to maximize a discounted sum of utilities. For simplicity of exposi-

tion, we assume that the households own the �rms; thus, the sales of natural resources are

distributed to the households. Given these assumptions, we �rst de�ne the perfect-foresight-

competitive equilibrium in our economy We con�rm that, given a set of plausible restrictions

on magnitudes of the model parameters, the perfect-foresight competitive equilibrium path

converges to a unique steady-state growth equilibrium. We then explore the conditions under

which per capita income and consumption continue to increase in the steady-state growth

equilibrium. We �nd that in our baseline setting, the per capita income and consumption

cannot increase in the steady-state growth equilibrium, as long as the population growth rate

is strictly negative; hence, population expansion is a necessary condition for the persistent

growth of per capita income and consumption.

We then examine alternative situations in which both the per capita income and consump-

tion may expand in the steady-state growth equilibrium under negative population growth.

First, we investigate the case in which the degree of external e¤ects is su¢ ciently high in

our baseline model. In this case, we �nd that the per capita income and consumption can

grow at a positive rate in the long-run equilibrium under negative population; however, the

3Althouth Groth and Shou (2002) mostly focused on the case of positive population growth, they also
referred to the case of constant population.
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degree of increasing returns should be implausibly high. We also examine the models that

explicitly consider technical progress. We �rst recon�rm that in the neoclassical setting in

which the aggregate production technology satis�es constant returns to scale and there is

exogenous labor augmenting technical progress, the steady-state growth rate of per capita

income and consumption can be positive under negative population growth, if the rate of

technical progress exceeds a certain level. However, since the endogenous growth theory was

developed to generalize the traditional neoclassical growth models with constant returns and

exogenous technical progress, we also consider the prototype R&D-based endogenous growth

model. In this case, we �nd that the technology of knowledge production should exhibit

strong increasing returns, which is not consistent with existing empirical observations. Con-

sequently, our study suggests that it is population decline, rather than exhaustible natural

resources, that might terminate persistent economic growth.

The reminder of this paper is organized as follows. Section 2 sets up the baseline model.

Section 3 analyzes the existence and stability of the steady-state growth equilibrium. Section

4 explores the conditions under which the per capita income and consumption increase in

the steady-state growth equilibrium. Section 5 examines the role of technical progress that

may sustain persistent expansion of the per capita income and consumption under negative

population growth. Section 6 concludes.

2 Baseline Model

2.1 Setup

We consider a competitive economy in which there are �nal-goods-producing �rms, resource-

extracting �rms, and households. The behavior of each agent is speci�ed ass follows.

Final goods �rms

There is a continuum of identical �rms with a unit mass that produce homogeneous �nal

goods. The production function of each �rm is given by

Yt = AK
�
t
�K

t L

�
t R̂

1����
t ; A > 0; � > 0; � > 0; �+ � < 1; 
 > 0; (1)
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where Yt Kt; Lt; and R̂t denote output, capital stock, labor, and input of an executable

resource use by the �rm, respectively. Since the mass of �rms is normalized to unity, each

variable denotes its aggregate value as well. Here, �K

t represents Romer�s (1986) type of

positive external e¤ects associated with capital stock in the economy at large. If there are

no external e¤ects (i.e. 
 = 0) and A grows at a positive, constant rate, then the produc-

tion technology reduces to Stiglitz�s (1974a, 1974b) original setting. The �rm maximizes a

discounted sum of net cash �ow given by

�Y;0 =

Z 1

o
exp

�
�
Z t

0
rsds

��
AK�

t
�K

t L̂

�
t R̂

1����
t � wtL̂t � It � ptR̂t

�
dt

subject

_Kt = It � �Kt; K0 = given > 0:

Here, rt is the real interest rate, wt is the real wage, It is gross investment, and pt denotes

the price of resources in terms of the �nal good. The �rm selects
n
It; Lt; R̂t

o1
0
under given

sequences of prices, frt; wt; ptg1t=0 ; and the external e¤ects,
�
�Kt
	1
t=0
.

Owing to the assumption of the representative �rm, in equilibrium it holds that �Kt = Kt

for all t � 0; implying that the social production function that internalizes the external e¤ects

can be written as

Yt = AK
�+

t L̂�t R̂

1����
t : (2)

In what follows, we assume that the marginal product of capital in the social production

function is diminishing:

Assumption 1 �+ 
 < 1:

Resource extracting �rms

Assuming a continuum of identical �rms with a unit measure that extract an exhaustible

resource without any cost, each �rm maximizes a discounted sum of its revenue

�S;0 =

Z 1

0
exp

�
�
Z t

0
rsds

�
ptRtdt
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subject to

_St = �Rt; and
Z 1

0
Rtdt � S0 = given > 0; (3)

where St is the stock of the exhaustible resource, and Rt denotes the level of resource extrac-

tion in each moment.

Households

We assume that households are identical and constitute a continuum whose mass is de-

noted by Lt; which changes at a rate of n so that Lt = L0ent: We set L0 = 1: In this paper,

the members of the dynastic family may die, meaning that n may take a negative value4. For

simplicity of exposition, we assume that households directly own the �nal good �rms and the

resource extraction �rms. We employ a dynastic family setting, so that the representative

household maximizes a discounted sum of utilities for all members of the dynasty that is

given by

U0 =

Z 1

0
e�(��n)t

c1��t

1� �dt

subject to the �ow budget constraint

_bt = rtbt + wt + pt
Rt
Lt
� ct � nbt; b0 = given, (4)

together with the no-Ponzi-game condition: limt!1 exp
�
�
R t
0 rsds

�
bt � 0: Here, bt is the

per-capita stock of �nancial asset (IOU) and ct is the per capita consumption.

Market equilibrium conditions

The market equilibrium conditions for �nal goods, labor, and resource markets are re-

spectively given by

Yt = It + ctLt; L̂t = Lt; and R̂t = Rt: (5)
4As usual, we assume that the event of death follows a Poisson processes with a constant density �: Thus

the probability of survival at time t of an agent born at time 0 is

�t = e
��t

It is also assumed that the mas of newly born agents at time t is given by dNt = �Ntdt; where � denotes the
birth rate. Sincet Nt = N0e

�t; the labor force population at time t is given by

Lt = �tNt = e
(���)t

Then we denote � � � = n:
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We assume that �nancial assets represent claims to capital stock, and, hence, the equilibrium

condition for the bond market is

btLt = Kt: (6)

De�nition of the competitive equilibrium

We de�ne the perfect-foresight competitive equilibrium in our economy as follows:

De�nition 1 The perfect-foresight competitive equilibrium (PFCE) is established if the fol-

lowing conditions are met:

(i) The �nal good �rms maximize a discounted sum of cash �ow under given sequences of�
rt; wt; pt; �Kt

	1
t=0
:

(ii) The resource extracting �rms maximize a sum of discounted revenues under given se-

quences of frt; pt; Rtg1t=0 :

(iii) The households maximize a discounted sum of utilities under given sequences of frt; wt; ptg1t=0
.

(iv) The markets for �nal goods, labor, resources, and bonds clear in each moment.

(v) The consistency condition, �Kt = Kt; holds in each moment.

2.2 Optimization Conditions

To characterize the PFCE of our economy, we �rst derive the optimization conditions for

the �rms and households. The Hamiltonian function for the �nal-goods �rm�s optimization

problem is set as

Hf
t = Dt

�
AK�

t
�K

t L̂

�
t R̂

1����
t � wtL̂t � It � ptR̂t

�
+ qft (It � �Kt) ;
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where Dt = exp
�
�
R t
0 rsds

�
and qft denotes the implicit price of capital. The �rst-order

conditions for an optimum include the following:

max
L̂t

Hf
t =) �

Yt
Lt
= wt; (7)

max
R̂t

Hf
t =) (1� �� �) Yt

R̂t
= pt; (8)

max
It
Hf
t =) Dt = q

f
t ; (9)

_qft = �@H
f
t

@Kt
= �qft �Dt�

Yt
Kt
: (10)

together with the transversality condition: limt!1 q
f
tKy = 0:

Since (9) leads to _qft =q
f
t =

_Dt=Dt = �rt, from (10) we obtain

�
Yt
Kt

= rt + �: (11)

Similarly, the optimization conditions for resource-extracting-�rms can be obtained by

setting the following Hamiltonian function:

He
t = DtptRt � qetRt;

where qet is the implicit price of the stock of resource. The �rst-order conditions give:

max
Rt

He
t =) Dtpt = q

e
t ; (12)

_qet = �@H
e
t

@St
= 0; ; (13)

and the transversality condition: limt!1 qetSt = 0: Thus, (12) ; (13) and _Dt=Dt = �rt yield

the following relation (Hotteling�s rule):

_pt
pt
= rt: (14)

Finally, the Hamiltonian function for the household�s optimization problem is given by

Hh
t = e

�(��n)t c
1��
t

1� � + q
h
t

�
rtbt + wt +

ptRt
Lt

� ct � nbt
�
;

8



where qht is the utility price of bond. The �rst-order conditions are:

max
ct
Hh
t =) e�(��n)tc��t = qht ; (15)

_qht = �@H
h
t

@bt
= qht (n� rt) : (16)

These conditions lead to the Euler equation:

_ct
ct
=
1

�
(rt � �) ; (17)

together with the transversality condition: limt!1 qht bt = 0:

3 Model Analysis

3.1 De�nition of the Steady-State Growth

Before analyzing our model, we de�ne the steady-state growth of our economy.

De�nition 2 The steady-state growth of our economy is established, if each of Yt; Kt; Lt; Rt; Ct; It;

and St changes at a constant rate over time, and each variable takes a strictly positive value

for all t � 0:

Denote the steady rate of change in Xt by gX ; where Xt = Yt;Kt; Lt; Rt; Ct; It; and St:

Then, the market equilibrium condition for the �nal goods, Yt = Ct+ It; gives, in the steady-

sate growth,

gY =
It
Yt
gI +

Ct
Yt
gC :

Additionally, the capital accumulation equation, _Kt = It � �Kt; gives

gK =
It
Kt

� �: (18)

Because we restrict our attention to the case where Yt; Kt; It and Ct are strictly posi-

tive, the above two equations mean that gY = gK = gI = gC Otherwise, at least one of

It=Kt; It=Yt and Ct=Yt continues to change, so that gY and/or gK cannot stay constant
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over time5. Similarly, (3) shows that gs = gR: Consequently, to �nd a meaningful long-run

equilibrium of our economy, we should derive a complete dynamic system whose stationary

solution hods that gY = gK = gI = gC as well as gS = gR:

3.2 Dynamic System

Denoting the aggregate consumption as Ct = ctLt and combining (11) ; (17) and Lt = ent,

we obtain the Euler equation of the aggregate consumption:

_Ct
Ct
=
1

�

�
�
Yt
Kt

��� � �
�
+ n: (19)

The equilibrium condition of the �nal good market given in (5) yields

_Kt
Kt

=
Yt
Kt

� Ct
Kt

� �: (20)

From (8) ; (14) ; and R̂t = Rt given in (5) ; it holds that

_Rt
Rt
=
_Yt
Yt
� rt: (21)

In view of (2) ; (11) ; and (21), we obtain

_Yt
Yt
= (�+ 
)

_Kt
Kt

+ �n+ (1� �� �)
_Yt
Yt
� � Yt

Kt
+ �

!
:

Hence, from (20) the rate of change in the �nal goods is expressed as

_Yt
Yt
=
�+ 


�+ �

�
Yt
Kt

� Ct
Kt

� �
�
+

�

�+ �
n+

�
1� �� �
�+ �

��
� � � Yt

Kt

�
: (22)

Letting xt = Yt=Kt and zt = Ct=Kt; the dynamic behaviors of xt and zt are respectively

given by

_xt
xt
=

�

 � � � � (1� �� �)

�+ �

�
xt +

�

 � �
�+ �

�
zt +

�n+ (1� �� 
) �
�+ �

; (23)

5The above discussion follows Shlict (2006) and Jones and Scrimgeour (2008) who presented alternative,
simple proofs of Uzawa�s (1961) theorem that gives the necessary and su¢ cient conditions for the existence of
the steady-state growth in a one-sector neoclassical growth model with technical change.
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_zt
zt
=
��
�
� 1
�
xt + zt + n+

�
1� 1

�

�
� � �

�
: (24)

Additionally, denoting Rt=St = vt; from (3) and (21) ; the dynamic equation of vt is expressed

as
_vt
vt
=




�+ �
xt �

�+ 


�+ �
zt + vt +

�n� (1� �� 
) �
�+ �

: (25)

Di¤erential equations (23) ; (24) and (25) constitute a complete dynamic system. Evidently,

when all of xt; zt and vt are constant over time, it holds that gY = gK = gI = gC and

gS = gR: Hence, the stationary solution of the dynamics system derived above satis�es our

de�nition of the steady-state growth.

3.3 Existence and Stability of the Steady-State Growth Path

In our baseline model, we impose the following conditions:

Assumption 2 � > 
 and � > �:

The �rst assumption states that the external e¤ects associated with the aggregate capital

do not exceed the labor share of income. Since in reality the value of � is around 2=3; this is a

natural assumption. The second assumption is also plausible because the conventional value

of the intertemporal elasticity of consumption (= 1=�) is less than one so that � is higher

than 1:0:

Although the presence of externalities makes our model di¤er from the optimal growth

model examined by Groth and Schu (2002), the complete dynamic system of our model has

the same structure as theirs. Letting the steady-state values of xt zt and vt be x; z and

v;respectively, we see that x; z and v ful�ll the following conditions:

�

 � � � � (1� �� �)

�+ �

�
x�

�

 � �
�+ �

�
z +

�n+ (1� �� 
) �
�+ �

= 0; (26)

��
�
� 1
�
x+ z + n+

�
1� 1

�

�
� � �

�
= 0; (27)




�+ �
x� �+ 


�+ �
z + v +

�n+ (1� �� 
) �
�+ �

= 0: (28)

Since (23) and (24) constitute a complete dynamic system with respect to xt and zt; we �rst

focus on this subsystem. The �xt = 0 and _zt = 0 loci in (23) and (24) are depicted by Figure
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1. The _xt = 0 and _zt = 0 loci are respectively given by

_xt = 0 locus: zt =
�
1 +

� (1� �� �)
� � 


�
xt +

�n+ (1� �� 
) �

 � � ;

_zt = 0 locus: zt =
�
1� �

�

�
xt +

�

�
� n�

�
1� 1

�

�
�:

Under Assumptions 1 and 2, both loci are positively sloped, and the _xt = 0 locus is steeper

than the _zt = 0 locus. If we allow n < 0; the sings of their intercepts on the vertical axis

are not predetermined. Figure 1 assumes the intercept of the _zt locus to be positive, while

that of the _xt = 0 locus to be negative. As the �gure indicates, regardless of the signs of the

intercepts, the necessary condition to hold x > 0 and z > 0 is

�

�
� n�

�
1� 1

�

�
� >

�n+ (1� �� 
) �

 � � ; (29)

under which the intercept of the _zt = 0 locus is higher that of the _xt = 0 locus, so

that there may exist an interior steady state in which there exist positive x and z that

ful�ll (26) and (27) : Then, given x and z; (28) determines v, which is strictly positive under

appropriate restrictions on the parameter values6.

As to the stability of the subsystem, the coe¢ cient matrix of the linearized system of (23)

and (24) evaluated at the steady state is given by

J1 =

24 x 0

0 z

3524 
����(1����)
�+� � 
��

�+�

�
� � 1 1

35 ;
which leads to

det J1 =
xz

�+ �

h
(
 � �)�

�
� � (1� �� �)

i
: (30)

Because 0 < �+� < 1; under Assumption 2 the determinant of J is strictly negative, so that

the steady-state solution of (23) and (24) exhibits a regular saddle point property. As Figure

1 shows that the stable saddle paths are positively sloped, and it is less steep than the _zt = 0

6 In this studyr, we restrict our attention to the interior steady state. We can con�rm that depending on
the parameter values, we may have a boundary steady state in which x = 0 and z > 0: Sasaki and Mino (2021)
showed that the boundary steady state also satis�es stability.
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locus at least around the steady state.

[Figure 1]

Let us denote the saddle paths in Figure1 as

zt = � (xt) ; �
0 (xt) > 0; lim

xt!x
� (xt) = z: (31)

Then, using (24) ; (25) and (31) ; we express a complete dynamic system as follows:

_xt
xt
=

�

 � � � � (1� �� �)

�+ �

�
xt �

�

 � �
�+ �

�
� (xt) +

�n+ (1� �� 
) �
�+ �

; (32)

_vt
vt
=




�+ �
xt �

�+ 


�+ �
� (xt) + vt +

�n+ (1� �� 
) �
�+ �

: (33)

Hence, the _xt = 0 and _vvt = 0 loci in the (xt; vt) space are respectively given by

_xt = 0 locus:
�

 � � � � (1� �� �)

�+ �

�
xt �

�

 � �
�+ �

�
� (xt) +

�n+ (1� �� 
) �
�+ �

= 0;

_vt = 0 locus: vt = �
�+ 


�+ �
� (xt)�




�+ �
xt �

�n+ (1� �� 
) �
�+ �

:

The above shows that _xt = 0 locus is the vertical, while the sign of the slope of _vt = 0 locus

is not predetermined under our restrictions of parameter values. The coe¢ cient matrix of

(32) and (33) linearized at the stationary point is

J2 =

24 x 0

0 v

3524 
����(1����)
�+� �

�

��
�+�

�
� 0 (x) ; 0

1
�+� �

�+

�+� �

0 (xt) ; 1

35 ;
which leads to

det J2 =
xv

�+ �

�
�� (1� �� �) + (
 � �)

�
1� � 0 (x)

�	
: (34)

Note that the saddle paths in Figure 1 is less steep than the _zt = 0 locus with slope of

1� �=� in (xt; vt) space, which means that 0 < � 0 (xt) < 1 at least around the steady state.

Hence, (34) shows that det J2 < 0 under Assumption 2. The phase diagram of (32) and (33)
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is illustrated in Figure 2. In this �gure, we assume that _vt = 0 locus has a positive slope. We

see that if the slope of _vt = 0 locus is negative, the stable saddle paths are negatively sloped

as well. In addition, if the slope of the _vt = 0 locus is negative, the intercept of that locus

on the vertical axis, which is given by �+

�+� � (0)�

�n+(1���
)�
�+� should be strictly positive. (In

the case of Figure 2, �+
�+� � (0) �
�n+(1���
)�

�+� can be negative, but it must be higher than a

certain level.)

[Figure 2]

In our dynamic system, Kt; St and Lt are predetermined endogenous variables, while

ct and Rt are jump variables. From the social production function (2) and the equilibrium

condition, R̂t = Rt; it holds that

vt = Rt=St =
1

S0t

�
xtAK

�+
�1
t L�t

� 1
1����

: (35)

This means that the initial levels of xt and vt must satisfy

v0 =
1

S0

�
x0AK

�+

0 L�0

� 1
1����

Figure 2 also shows the graph of (35) : In the �gure, Point B is a unique initial position of the

economy that can converge to the steady state: the initial levels of R0 and c0 are selected to

make the initial position of the economy is Point B. Moreover, once x0 and z0 are selected,

the initial levels of c0 and R0 (so Y0) are respectively given by

R0 =
�
x0AK

�+
�1
0 L�0

� 1
1����

;

c0 = � (x0)
K0
L0
:

Consequently, if there is a feasible, interior steady state, the PFCE of our economy is uniquely

determined. To sum up, we have con�rmed the following:

Proposition 1 Provided that the dynamic system involves an interior steady state, then there

exists a unique, stable PFCE path that converges to the steady-state growth equilibrium.
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4 Persistent Growth of Per Capita Income and Consumption

4.1 Growth Rates of Income and Consumption

From (2) ; the steady-state rate of change in Yt; Kt; Lt and Rt satisfy

gY = (�+ 
) gK + �n+ (1� �� �) gR:

Equation (21) shows that gR = gY � r; where r
�
= � YtKt

� �
�
is the steady state rate of net

rate of return to capital. Thus, using the steady-state growth condition, gY = gK ; we �nd

that

gY =
�

� � 
n�
1� �� �
� � 
 r:

Hence, the steady-state growth rate of per capita output is given by

gy = gY � n =



� � 
n�
1� �� �
� � 
 r: (36)

Further, the steady-state rate of change in per capita consumption, ct; is given by

gc =
1

�
r � �

�
: (37)

The steady-state growth conditions include gY = gC ; so that gy = gc should hold on the

steady-state growth path. Figure 3 illustrates the graphs of (36) and (37) : Panel (a) assumes

that the population growth rate, n, is strictly positive and the balanced growth rate, g� =

gy = gc; is also strictly positive. As the �gure shows, under our assumption of � > 
; the

necessary and su¢ cient condition for positive growth of per capita income and consumption

in the steady-state growth equilibrium is 
n
1���� > � or


 >
(1� �� �)

n
: (38)

However, if the population growth rate is strictly negative (or n = 0), the graphs of (36) and

(37) are given as in Figure 3-(b). In this case, it is impossible to hold that both gy and gc

have positive values.

[Figure 3]
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Consequently, given Assumption 2, to hold positive growth of per capita income and

consumption in the long-run equilibrium, the population growth rate, n; must be positive

and the degree of external e¤ect, 
; should be higher than a certain level shown by (38) :

Proposition 2 Under � > 
; the necessary and su¢ cient conditions for the presence of the

steady-state growth equilibrium on which the balanced growth rate of per capita income

and consumption is strictly positive are:

n > 0 and 
 >
(1� �� �)

n
: (39)

4.2 The Case of Strong Increasing Returns

We have con�rmed that given Assumption 2, it is impossible to hold that both the per capita

income and consumption expand on the steady-growth path in the presence of exhaustible

resources and negative population growth. In this subsection, we assume that the external

e¤ect of aggregate capital is large enough to hold 
 > �: Figure 4 shows the graphs of (36)

and (37) under 
 > �;. All panels in this �gure show the cases that hold g� = gy = gc > 0:

Panels (a) and (b) assume that n > 0: Based on these graphs, we �nd that if one of the

following conditions are met

�n

1� �� � > � and
1� �� �

 � � >

1

�
; (40)

� >
�n

1� �� � and
1

�
>
1� �� �

 � � ; (41)

then it holds that g� = gy = gc > 0: (Conditions (40) and (41) are assumed in panels (a) and

(b), respectively.) Conversely, if n < 0; then as shown by panel (c), g� = gy = gc > 0;holds

under the following condition:
1

�
>
1� �� �

 � � : (42)

[Figure 4]

Note that if 
�� is su¢ ciently small, the saddle-point conditions, det J1 < 0 and det J2 <

0 given in (30) and (34) ; may hold even if 
 > �: The following proposition summarizes the

�ndings in the case of strong increasing returns:

16



Proposition 3 Suppose that 
 > �: (i) If the population growth rate is positive, then the

positive growth in the per capita income and consumption is realized in the steady-state

growth equilibrium, if

�n

1� �� � > � and
1� �� �

 � � >

1

�
;

or if

� >
�n

1� �� � and
1

�
>
1� �� �

 � � :

(ii) If n � 0; then the per capita income and consumption continue to increase in the

steady-state growth equilibrium, if and only if

1

�
>
1� �� �

 � � :

In reality, the income share of natural resources, 1 � � � �; is relatively small, and it is

usually set at around 0:05: Hence, if we set � = 1:5; � = 0:345, and � = 0:65; then (42) can

be established if 
 > 0:725: In this case, the degree of returns to scale of aggregate social

production function (2) is higher than 1.725. This value is much higher than the degree of

returns to scale suggested by previous empirical studies such as Basu and Fernald (1997).

Therefore, although it is theoretically possible to establish positive growth in the per capita

income and consumption in the long run under negative population growth, in our model

economy, we should assume an empirically implausible degree of increasing returns.

5 The Role of Technical Progress

So far, we have not explicitly considered the presence of technical progress as a source of pro-

ductivity growth of the aggregate production technology. Instead, following Romer (1986),

we have assumed that productivity growth is generated by the spillover of knowledge embod-

ied with the capital stock in the economy at large. In this section, we brie�y discuss the role

of technical progress in the model with exhaustible natural resource.
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5.1 Exogenous Technical Progress

Let us re-express the aggregate production function as

Yt = QtK
�
t L

�
t R

1�1���
t ; 0 < � < 1; 0 < � < 1; �+ � < 1:

This expression means that under a given level of the total factor productivity (TFP) denoted

as Qt; the aggregate production technology exhibits constant returns to scale with respect

to capital, labor and resource input, and that a rise in Qt represents technical progress. In

the baseline model, we set Qt = K


t ; meaning that TFP growth stems from the external ef-

fects associated with the aggregate capital. Following the tradition of the neoclassical growth

theory, Stiglitz (1974a, 1974b) assumed that the aggregate production function involves ex-

ogenous TFP growth, that is, Qt = e�t; where � > 0: In this case, the production is written

as

Yt = K
�
t (AtLt)

� R1����t ;

where At = eat and a = �=�: Then we �nd that the steady-state growth rate of the aggregate

income is given by

gY = a+ n�
1� �� �

�
r; (43)

meaning that the steady-state growth rate of the per capita income is given by

gy = a�
1� �� �

�
r (44)

The steady-state growth rate of per capita consumption is given by (37) : By inspecting

the graphs of (37) and (44) ; we con�rm that as long as a > 0; the balanced growth rate,

g� = gy = gc; is strictly positive if and only if

� <
�a

1� �� � ; (45)

or a > �(1����)
� : Therefore, if we set � = 1:5; � = 0:02; � = 0:345 and � = 0:65; then

if a > 0:0016; the per capita income and consumption can grow at a positive rate in the

steady-state growth equilibrium. Notice that in the traditional neoclassical environment
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with constant returns and exogenous growth of labor e¢ ciency, the conditions for positive

growth of the per capita income and consumption are independent of the population growth

rate. Moreover, under plausible parameter values, a very small growth in labor e¢ ciency may

sustain long-run expansion of the per capita income and consumption even in the presence

of exhaustible natural resources. However, considering that the endogenous growth theory

has been developed in response to the neoclassical growth models with exogenous technical

progress, we should examine the case in which technical progress evolves endogenously.

5.2 Endogenous Technical Progress

If Qt evolves endogenously through the purposeful activities of �rms, we should consider

R&D investments of �rms. As an example, consider a simpli�ed version of Romer�s (1990)

model. The production function of the �nal goods is

Yt = K
�
t (At�tLt)

�R1����t ; (46)

where �t 2 [0; 1] denotes the rate of labor allocation to the �nal good production. The

production function of knowledge is given by

_At = � (1� �t)LtA�t ; � > 0 and � > 0: (47)

Equation (47) means that

gA;t = � (1� �t)LtA��1t ;

so that
_gA;t
gA;t

= �
_�t

1� � + n+ (� � 1) gA;t:

First, suppose that � 6= 1: In the steady-state growth equilibrium, both �t and gA;;t remain

constant over time, it holds that

gA =
n

1� � :
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Hence, the steady-state growth rate of the aggregate income is given by

gY =
n

1� � + n�
1

�
(1� �� �) r; (48)

and the steady growth rate of per capita income is

gy =
n

1� � �
1

�
(1� �� �) r: (49)

As a result, (37), (49) and gy = gc determine the balanced growth rate of the per capita

income and consumption.

If 0 < � < 1; then the graphs of (49) and (37) are given as panel (a) in Figure 5, which

shows the case in which g� = gy = gc > 0: As �gure reveals, it holds that g� > 0; if the

following condition is met:
�n

(1� �) (1� �� �) > �: (50)

Panel (b) assumes that n < 0: In this case, there is no steady-state growth path that satis�es

g� = gc = gy > 0: Therefore, the steady-state characterization in the case of semi-endogenous

growth (0 < � < 1) is essentially the same as the case of � > 
 discussed in Section 4.2.

[Figure 5]

Next, assume that � > 1: In this case, if n > 0, the graphs of (37) and (49) are the same

as panel (b) so that it is impossible to hold g� = gy = gc > 0: If � > 1 and n < 0; then the

graphs are given in panel (a). Hence, the necessary condition for the presence of a positive

growth in per capita income and consumption under n < 0 is the same as (50) : The following

proposition summarizes our �nding:

Proposition 4 In our R&D-based endogenous growth model, persistent growth of per capita

income and consumption is possible, if 0 < � < 1 and n > 0 or if � > 1 and n < 0:

In both cases, the necessary and su¢ cient condition for g� = gy = gc > 0 is

�n

(1� �) (1� �� �) > �:
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Finally, consider the hairline case in which � = 1: Given this condition, we have

gA;t = � (1� �t)Lt:

Since �t 2 [0; 1] ; the above expression means that when Lt continues to decease, gA;t ulti-

mately converges to zero and technical progress is terminated. Consequently, At and �t stay

constant in the steady-state growth equilibrium, and from (49) the steady-state growth rate

of per capita income is given by

gy = �
1� �� �

�
r: (51)

Hence, from (37) and (51) ; we see that regardless of the sign of n; it is impossible to hold

g� = gy = gc > 0:

In summary, in the case of semi-endogenous growth setting (0 < � < 1) as well as in the

case of � = 1; the per capita income and consumption cannot expand in the steady-state

growth equilibrium under negative population growth. Persistent expansion in the per capita

income and consumption under negative population growth is attained only when � > 1 so

that the stock of existing knowledge in the �rms�R&D activities exhibits increasing returns7.

However, as was seen, if � > 1 and n > 0; there is no steady-state growth path on which

the per capita income continues to increase. This obviously contradicts Jones�(1995) �nding

that the labor share of the R&D sector in the US economy was tripled during 50 years after

World War II, while both the per capita income and the labor force population persistently

increased during that period.

6 Conclusion

After almost 50 years since the publication of the Club of Rome�s report, it seems that the

negative impact of exhaustible natural resources on economic growth has not been so serious

as the report predicted. This is because energy-saving technologies and alternative sources of

energy have been developed. In this sense, the theoretical investigations by Stiglitz (1974a,

7Agihon and Howitt (2009, Section 3 in Chapter 16) and Bretschger (2013) analyzed R&D-based en-
dogenous growth models with exhaustible resources. Aghion and Howitt used a quality ladder model, while
Bretschger (2013) employed a variety expansion model of growth. Both studies explored the conditions for
persistent growth of income; however, they did not consider the e¤ects of population decline. See also Cabo
et al. (2016).
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1974b) and others conducted in the 1970s did not miss the point. However, following the

neoclassical tradition, these studies assumed constant returns to scale and exogenous tech-

nical progress, under which the balanced growth rate of per capita income and consumption

is independent of the population growth rate. We have shown that once we depart from the

traditional neoclassical setting, it is hard to sustain persistent growth of per capita income

and consumption in an economy with exhaustible natural resources and population decline:

we should assume an implausibly high degree of increasing returns either in �nal goods pro-

duction or in R&D activities of �rms. Consequently, our study suggests that it is population

decline, rather than exhaustible natural resources, that might terminate persistent growth in

per capita income and consumption.

Finally, we can state that a permanent decline in population is not a realistic assump-

tion but a thought experiment. In reality, population changes endogenously. Therefore, as

conducted by Jones (2020), we should examine an alternative model in which the population

growth rate is a choice variable of the households8. Such a model allows us to discuss the link-

age between exhaustible natural resources, population change, and long-run economic growth

in a micro-founded, uni�ed framework. Nevertheless, this topic needs further investigation

by future studies9.

8 It is to be noted that Cigno, (1981) endogenized the population growth rate in Stiglitz�s (1974a) model.
The author used an ad-hoc model of population change and did not consider the case of negative population
growth.

9Naso et al. (2020) empirically con�rmed that the negative e¤ect of population decline on economic growth
would be much larger than that of exhaustible resources. See also Ashral et al. (2012).
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