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Abstract

Dating from the seminal work of Ellison and Glaeser [11] in 1997, a wealth of
evidence for the ubiquity of industrial agglomerations has been published. However,
most of these results are based on analyses of single (scalar) indices of agglomeration.
Hence it is not surprising that industries deemed to be similar by such indices can
often exhibit very different patterns of agglomeration – with respect to the number,
size, and spatial extent of individual agglomerations. The purpose of this paper
is thus to propose a more detailed spatial analysis of agglomeration in terms of
multiple-cluster patterns, where each cluster represents a (roughly) convex set of
contiguous regions within which the density of establishments is relatively uniform.
The key idea is to develop a simple probability model of multiple clusters, called
cluster schemes, and then to seek a “best” cluster scheme for each industry by
employing a standard model-selection criterion. Our ultimate objective is to provide
a richer characterization of spatial agglomeration patterns that will allow more
meaningful comparisons of these patterns across industries.
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1 Introduction

Economic agglomeration is the single most dominant feature of industrial location patterns

throughout the modern world. In Japan, with a population density more than ten times

that of the US, land is generally considered to be extremely scarce. Yet, 65% of the total

population and 86% of total employment are concentrated in so-called densely inhabited

districts accounting for only 10% of total economic area (3% of total area).1 Essentially

similar observations can be made for any other developed country.2 The extent of this

concentration phenomenon explains why economic agglomeration is now a major area

of research in urban and regional economics. This is underscored by the fact that the

majority of material in the latest Handbook of Regional and Urban Economics [17] is

devoted to this topic. This handbook also indicates that economic agglomeration plays a

key role in a broader range of fields including economic growth, international trade and

economic development. Industrial agglomeration has also gained increasing interest in the

management literature, dating from the seminal work of Porter [33] on “industrial cluster

theory.”

In terms of empirical work, a substantial number of industrial agglomeration studies

have been published during the last decade. Some of these studies have provided indices

of industrial agglomeration that allow testable comparisons of the degree of agglomera-

tion among industries (Duranton and Overman [10], Brülhart and Traeger [4], and Mori,

Nishikimi and Smith [28]). The results of these works suggest that industrial agglom-

eration is far more ubiquitous than previously believed, and extends well beyond the

traditional types of industrial agglomeration (such as information technology industries in

Silicon Valley3 and automobile manufacturing in Detroit). Moreover, the degree of such

agglomeration has been shown to vary widely across industries.

1For a definition of “economic area” see footnote 14 below.
2In France, the Île-de-France (metropolitan area of Paris), produces 30% of total GDP while accounting

for only 2.2% of the area of France and 18.9% of its population. Even within the Île-de-France, only 12%
of the available land is used for urban purposes, and the remaining area is devoted to agriculture, or
is undeveloped (Fujita [13]). In the US, 75% of the population is concentrated in 2% of the land area
(Rosenthal and Strange[34]).

3See for example the well-known study by Saxenian [35].
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But while these studies provide ample evidence for the ubiquity of industrial agglom-

erations, they tell us very little about the actual spatial structure of agglomerations. In

particular (to our knowledge), there have been no systematic efforts to determine the

number, location and spatial extent of agglomerations within individual industries. Most

indices of agglomeration currently in use measure the discrepancy between industry-specific

regional distributions of establishments/employment and some hypothetical reference dis-

tribution representing “complete dispersion.”4 But even if industries are judged to be

similar with respect to these indices, their spatial patterns of agglomeration may appear

to be quite different. Such patterns are basically multidimensional in nature, and are not

easily compared by any single index.

This can be illustrated by a sample of our results for Japanese manufacturing industries

(developed in more detail in Section 5 below, and in our companion paper, [32]). Here we

consider two industries that are virtually indistinguishable in terms of their overall degree

of spatial concentration (as measured by the Kulback-Leibler measure of concentration

sketched in Section 5). But the actual patterns of agglomeration for these two industries

are quite different. The agglomeration pattern for the first industry, classified as “plastic

compounds and reclaimed plastics,”is shown in Figure 12(b) [For now, the area marked

in gray can be considered as industrial agglomerations.] While some establishments of

this industry are attracted to port cities along the northern coast, the main industrial

concentration lies along the inland Industrial Belt extending westward from Tokyo to

Hiroshima. Moreover, the individual clusters of establishments within this belt are seen

to be densely packed from end to end. Our second industry, classified as “soft drinks

and carbonated water,”exhibits a very different pattern of agglomeration. As seen in

Figure 13(b), this industry is spread throughout the nation, but exhibits a large number

of local agglomerations. A closer inspection of these industries reveals the nature of these

differences. On the one hand, plastic components constitute important inputs to a variety

4Examples of such reference distributions are (1) the regional distribution of all-industry employment,
used by Ellison and Glaeser [11], (2) the regional distribution all-industry establishments, used by Duranton
and Overman [10], and (3) the regional distribution of economic area used by Mori et al. [28] (see Section
5 below).
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of manufactured goods, from automobiles to TV sets. Hence the concentration of this

industry along the industrial belt forms essentially a series of intermediate markets for

other manufacturing industries using these components. On the other hand, soft drinks

and carbonated water are more directly oriented to final markets serving consumers. So

while there are still sufficient scale economies to warrant industrial agglomerations, these

agglomerations are widely scattered and essentially follow patterns of population density.

Thus while summary measures of spatial concentration (or dispersion) are unques-

tionably useful for a wide range of global comparisons, the above illustration suggests

that more detailed representations of spatial agglomeration patterns can in principle allow

much richer types of comparisons. With this in mind, the central objective of the present

paper is to propose a methodology for representing and identifying such agglomeration

patterns.

Before doing so, it is important to note that there have been other attempts to develop

statistical measures that are more multidimensional in nature. Most notably, the K-density

approach of Duranton and Overman [10] utilizes pairwise distances between individual

establishments, and is capable of indicating the spatial extent of an agglomeration. In

a similar vein, Mori et al. [28] proposed a spatially decomposable index of regional

localization that yields some information about the most relevant geographic scales of

agglomeration within individual industries. However, neither of these approaches is

designed to identify specific (map) locations of industrial agglomerations, from which

spatial patterns of agglomerations can be characterized.

Methodologically, our approach is closely related to cluster-identification methods

proposed by Besag and Newell [3], Kulldorff and Nagarwalla [27], and Kulldorff [26],

that have been used for the detection of disease clusters in epidemiology.5 As with

the agglomeration indices mentioned above, these methods start by postulating a null

hypothesis of “no clustering” (in terms of a uniform distribution of industrial locations

across regions), and then seek to test this hypothesis by finding a single “most significant”

5While “agglomeration” can in principle be viewed as a special type of “clustering,” we shall use these
two term interchangeably throughout the analysis to follow. However, one possible distinction between
these terms is suggested in Section 5.3 below.
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cluster of regions with respect to this hypothesis. Candidate clusters are typically defined

to be approximately circular areas containing all regions with centroids within some

specified distance from a reference point (which may be the centroid of a “central” region).

While this approach is in principle extendable to multiple clusters by recursion (i.e., by

removing the cluster found, and repeating the procedure) such extensions are piecemeal at

best.6

Hence our strategy is essentially to generalize their approach by finding the single

most significant “cluster scheme” rather than “cluster.” We do so by formalizing these

schemes as probability models to which appropriate statistical model-selection criteria can

be applied for finding a “best cluster scheme.” Here a cluster scheme is simply a partition

of space in which it is postulated that firms are more likely to locate in “cluster” partitions

than elsewhere.7 Our probability model then amounts to a multinomial sampling model on

this partition.8 These candidate cluster schemes can in principle be compared by means of

standard model-selection criteria, including Akaike’s [1] Information Criterion, Schwarz’s

[36] Bayesian Information Criterion (BIC ), and the Normalized Maximum Likelihood of

6In particular, the recursive application of such procedures gives rise to the notorius “multiple testing”
problem that these procedures were originally designed to overcome. In essence, multiple applications of
this procedure will tend to identify too many clusters as being significant. For a recent discussion of this
“false discovery”problem in the context of spatial clustering, see Castro and Singer [5] together with the
references cited therein.

7An alternative approach might be to characterize spatial distributions of establishments by smooth
surfaces, utilizing recent advances in density estimation methods (e.g., Silverman [38]). However, our
present discrete characterization of agglomerations in terms of spatially disjoint clusters was motivated by
the following two considerations. First, an examination of the data shows that spatial distributions of
industrial establishments are typically spiky, i.e., concentrations take place in a small set of municipalities.
Indeed, there are usually a large number of municipalities with no establishments whatsoever. In a
companion paper involving a study of the 163 3-digit manufacturing industries in Japan (Mori and Smith
[32]), the average percent of all 3207 municipalities in Japan having any establishments in a given industry
was found to be only 22.6%. Moreover, 89.5% of these 163 industries have establishments in fewer than
one half of all municipalities. Our second motivation for the present discrete approach is the observation
that a certain percent of the land area in most regions is unsuitable for industrial location (such as woods,
lakes, and marshes). While such constraints are difficult to capture with continuous densities, they can be
easily handled within the present discrete framework. For example, to construct uniform distributions for
testing null hypotheses of “no clusters,” it is a simple matter to replace the total area of each region by
its total feasible area, designated here as its “economic” area (as in Section 5 below).

8It should be noted that other probability models of multiple clusters have been proposed in the
literature. The most well-known of these is the model-based formulation of Dasgupta and Raferty [7] in
which multiple clusters are modeled as Bayesian mixture distributions. An alternative Bayesian model
which is closer in spirit to the present approach is that of Gangnon and Clayton [14, 15]. Here multiple
clusters are modeled as a hierachical Poisson process with gamma priors on cluster intensities. However
the present approach is much simpler, and in our view, is more appropriate for the analysis of industrial
agglomeration.
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Konkatnen and Myllymäki [23].

To find a best model (cluster scheme) with respect to such criteria, it would of course

be ideal to compare all possible cluster schemes constructible from the given system of

regions. But even for modest numbers of regions this is a practical impossibility. Hence a

second major objective of this paper is to develop a reasonable algorithm for searching the

space of possible cluster schemes. Our approach here is essentially an elaboration of the

basic ideas proposed by Besag and Newell [3] in which one starts with an individual region

and then adds contiguous regions within a given distance from this initial region to identify

the single most significant cluster. Here we find it useful to extend the Besag-Newell

concept of clusters by introducing a more flexible class of spatially coherent sets which we

designate as convex solids. The relevant notion of “convexity” for our purposes is based

on minimal travel distances between regional centers (rather than straight-line distances)

and hence is somewhat more meaningful economically. This particular cluster definition

is useful for growing larger clusters, since arbitrary sets can be “convexly solidified” in a

natural way.

In this context, cluster schemes are grown by (i) adding new disjoint clusters, or by (ii)

either expanding or combining existing clusters until no further improvement in the given

model-selection criterion is possible. The final result is thus a “locally best cluster scheme”

with respect to this criterion. While the criteria listed above are conceptually quite

different, it turns out that the locally best cluster schemes found are in high agreement

across different criteria. Thus, in the present paper, we will focus on BIC, which turns

out to be the most parsimonious criterion in terms of the number of clusters found (see

Mori and Smith [30, §3])

The paper is organized as follows. We begin in Section 2 by defining a probabilistic

location model for an establishment, where location probabilities are assumed to be

industry-specific, and independent for each establishment within a given industry as well

as across industries. Our criterion for model selection in terms of BIC is also developed.

In Section 3, we introduce the notion of convex solids, and then in Section 4, present
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a practical procedure for cluster detection which searches for the best cluster scheme

consisting of a set of distinct “convex” clusters. The results of this procedure are then

illustrated in Section 5 in terms of the selected pair of Japanese industries discussed

above. Here we also sketch a classification scheme for agglomeration patterns in terms of

“global extent” and “local density” that can be employed to quantify the spatial scale of

industrial agglomeration and dispersion.9 Finally in Section 6, we briefly discuss a number

of directions for further research.

2 A Probability Model of Agglomeration Patterns

We start by assuming that the location behavior of individual establishments in a given

industry can be treated as independent random samples from an unknown industry-specific

locational probability distribution, P , over a continuous location space, Ω (which represents,

for example, a national location space). Hence for any (measurable) subregion, S ⊆ Ω, the

probability that a randomly sampled establishment locates in S is denoted by P (S). In

this context, the class of all possible location models corresponds to the set of probability

measures on Ω.

However, observable location data is here assumed to be only in terms of establishment

counts for each of a set of disjoint basic regions, Ωr ⊆ Ω, indexed by R = {1, . . . , kR}.10

These regions are assumed to partition Ω, so that ∪r∈RΩr = Ω. Hence the only relevant

features of the location probability distribution, P , for our purposes are the location

probabilities for each basic region:

P = [P (r) ≡ P (Ωr) : r ∈ R] (1)

We now consider an approximation of P by probability models, PC, that postulate

areas of relatively intense locational activity. Each model is characterized by a “cluster

scheme,” C, consisting of disjoint clusters of basic regions, Cj ⊂ R, j = 1, . . . , kC, within

9This classification scheme is developed in more detail in our companion paper, Mori and Smith [32].
10In our application in Section 5 below, basic regions are municipalities.
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which locational activity is postulated to be more intense. For the present, such clusters

are left unspecified. A more detailed model of individual clusters is developed in Section 3

below.

If the full extent of cluster Cj in Ω is denoted by ΩCj
= ∪r∈Cj

Ωr, j = 1, .., kC, then

the corresponding location probabilities, pC(j) ≡ PC

(
ΩCj

)
, j = 1, .., kC , are implicitly

taken to define areas of concentration.11 To complete these probability models, let the set

of residual regions be denoted by R0(≡ C0) = R − ∪kCj=1Cj, and let ΩR0 = Ω− ∪kCj=1ΩCj
,

with corresponding location probability, pC(0) = PC (ΩR0) = 1−
∑kC

j=1 pC(j).

Each cluster scheme, C = (R0, C1, .., CkC), then constitutes a partition of the regional

index set, R, and the location probabilities [pC(j) : j = 0, 1, .., kC] yield a probability

distribution on C.12 Finally, to specify location probabilities for basic regions, it is assumed

that within each cluster, Cj , the location behavior of individual establishments is completely

random.13 To define “complete randomness” in the present setting, it is important to

focus on those locations within each basic region where establishments could potentially

locate (excluding bodies of water, etc.) Such locations are here taken to correspond to the

economic area of each region.14 Hence, if for each basic region r ∈ R, we let ar denote the

(economic) area of Ωr, so that the total area of cluster Cj is given by

aCj
=
∑

r∈Cj

ar (2)

then for each establishment locating in Cj , it is postulated that the conditional probability

11Here it is implicitly assumed that the regions {Ωr : r ∈ Cj} in each cluster are contiguous, so that
ΩCj is a connected set. This assumption is not crucial for the present section, but will play a central role
in the construction of clusters below.

12A formal definition of cluster schemes is given in Definition 4.1 below.
13This implicitly assumes that the regions within a given cluster not only have high densities of

establishments but also that these densities are similar. Moreover, since we require (in Section 4 below)
that clusters be disjoint, the low-density peripheries of clusters will in many cases be ignored.

14 The economic area of a region is obtained by subtracting forests, lakes, marshes and undeveloped
area from the total area of the region (available from the Statistical Information Institute for Consulting
and Analysis [39]. For additional discussion of economic area, see Mori and Smith [32, §4.1.2].
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of locating in basic region, r ∈ Cj, is proportional to the area of region r,15 i.e., that

PC(Ωr | ΩCj
) =

ar
aCj

, r ∈ Cj , j = 0, 1, .., kC (3)

But since Ωr ⊆ ΩCj
implies that PC(Ωr|ΩCj

) = PC(Ωr)/PC(ΩCj
) = PC(r)/pC(j), it then

follows that for all r ∈ R

PC(r) = pC(j)
ar
aCj

, r ∈ Cj (4)

Hence for each cluster scheme, C, expression (4) yields a well-defined cluster probability

model, PC = [PC(r) : r ∈ R], which is comparable with the unknown true model (1). Note

moreover that since all area values are known, it follows that for each given cluster scheme,

C = (R0, C1, .., CkC ), the only unknown parameters are given by the kC-dimensional vector

of cluster probabilities, pC = [pC(j) : j = 1, .., kC].16

Within this modeling framework, we now consider a sequence of n independent location

decisions by individual establishments. For each establishment, i = 1, .., n, let the location

choice of establishment i be modeled by a random (indicator) vector, X(i) =
(
X

(i)
r : r ∈ R

)
,

with X
(i)
r = 1 if establishment i locates in region r, and X

(i)
r = 0, otherwise. This set of

location decisions is then representable by a random matrix of indicators, X = (X(i) : i =

1, . . . , n), with the following finite set of possible realizations (location patterns):

∆R(n) =
{
x = (x(i)r : r ∈ R, i = 1, .., n) ∈ {0, 1}n×kR :

∑
r∈R

x(i)r = 1, i = 1, .., n
}

(5)

By independence, the probability distribution of X under the unknown true distribution

in (1) is given for each location pattern, x ∈ ∆R(n), by

P (x) =
∏n

i=1

∏
r∈R

P (r)x
(i)
r =

∏
r∈R

P (r)nr (6)

15In the theory of spatial point processes, this hypothesis is referred to as complete spatial randomness
(see for example Diggle [8]). See also Section 4.3 below.

16Note that pC(0) is constructable from pC as shown above.
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where the total number of estabishments locating in region r is denoted by

nr =
∑n

i=1
x(i)r (7)

[see expression (5)]. Similarly, for each cluster probability model, PC, the postulated

distribution of X is given for each pattern, x ∈ ∆R(n), by:

PC(x|pC) =
∏

r∈R
PC(r)nr =

∏kC

j=0

∏
r∈Cj

(
pC(j)

ar
aCj

)nr

(8)

where the relevant parameter vector, pC, for each such model has been made explicit. In

most contexts, it will turn out that the locational frequencies nj(x) =
∑

r∈Cj
nr , j =

0, 1, .., kC, are sufficient statistics, since by definition

PC(x|pC) =
∏kC

j=0

[
pC(j)

∑
r∈Cj

nr
∏

r∈Cj

(
ar
aCj

)nr
]

= aC(x)
∏kC

j=0
pC(j)nj(x) (9)

where the factor, aC(x) =
∏kC

j=0

∏
r∈Cj

(ar/aCj
)nr , is independent of parameter vector, pC.

This likelihood function will form the central element in our comparisons among

candidate cluster-scheme models. As mentioned in the introduction, the specific model

selection criterion to be used here is the BIC of Schwarz [36] As with a number of

other criteria, BIC is essentially a “penalized likelihood” measure. To state this criterion

precisely, we first recall from expression (9) above, that for any given cluster scheme, C,

the log likelihood of parameter vector, pC, given an observed location pattern, x, is of the

form

L(pC|x) =
∑kC

j=0
nj(x) ln pC(j) + ln aC(x) (10)

But since the second term is independent of pC, it follows at once (by differentiation)

that the maximum-likelihood estimate, p̂C = [p̂C(j) : j = 1, .., kC], of pC is given for each

j = 1, . . . , kC simply by the fraction of establishments in Cj, i.e.,

p̂C(j) = nj(x)/n (11)

9



By substituting (11) into (10) we obtain a corresponding estimate of the maximum

log-likelihood value for model PC,

LC(x) = L(p̂C|x) =
∑kC

j=0
nj(x) ln [nj(x)/n] + ln aC(x) (12)

But since likelihood values are well known to increase with the number of parameters

estimated, it follows in particular that values of LC(x) will increase as more clusters are

introduced.17 Hence the “best” cluster scheme with respect to model fit alone is the

completely disaggregated scheme in which every basic region constitutes its own cluster.

To avoid this obvious “over fitting” problem, the BIC criterion penalizes those cluster

schemes with larger numbers of clusters, kC, and for any given sample size, n, is of the

form,

BICC(x) = LC(x)− kC
2

ln(n) (13)

In the present setting, the sample size (number of establishments) for each industry is fixed,

and hence plays no direct role in model selection for that industry. But when comparing

cluster patterns for different industries, it is equally clear that this penalty term will be

more severe in industries with larger numbers of establishments. So, all else being equal,

BIC tends to yield more parsimonious cluster schemes for larger industries. Moreover, it

tends to yield more parsimonious cluster schemes for all industries than the other model

selection criteria mentioned above. It is for this reason that we choose to focus on BIC

in the present application. More systematic comparisons of these criteria in terms of

simulated establishment location patterns will be given in Smith and Mori [40].18

17To be more precise, maximum log-likelihood can never decrease as more clusters are added, and will
almost always increase.

18In addition to the three criteria above, the comparison in Smith and Mori [40] will also include
standard likelihood-ratio tests, which constitute meaningful model selection criteria within the present
nested-model framework.
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3 A Model of Clusters as Convex Solids

Given the set of basic regions, R, it would in principle seem desirable to treat cluster

schemes, C, as arbitrary partitions of R, and then to identify the best cluster scheme from

this class, i.e.,

C∗ = arg max
C

BICC (14)

But from a practical viewpoint, the number of possible partitions can be enormous for even

modest numbers of basic regions.19 Moreover, without further restrictions, the components

of such partitions can be quite bizarre, and difficult to interpret as “clusters.” This has

long been recognized by cluster analysts, who have typically proposed that clusters be

roughly circular in shape (as in Besag and Newell [3], Kulldorff and Nagarwalla [27], and

Kulldorff [26]). Hence our first objective is to develop a more flexible class of candidate

clusters, designated as convex solids, which amount to a type of “approximate convexity”

for cluster shapes. To this end, we begin by representing our regional system in terms of a

discrete network over the set of basic regions on which these convex solids are defined.

3.1 A Discrete Network Representation of the Regional System

Recall in Section 2 that the relevant location space, Ω, is partitioned into a set of basic

regions, Ωr ⊆ Ω, indexed by R = {1, .., kR}. For our present purposes it is convenient to

consider a larger world region, W , in which Ω resides, so that W − Ω denotes the “rest

of the world,” as shown schematically in Figure 1 below. As in Section 2 we identify Ω

with the set of regional labels for R. In this framework, the boundary of the given location

space consists of the subset of basic regions, R, that share boundary points with W − Ω

(where “boundary points” correspond to the edges of each basic region cell in the figure20).

This distinguished set of boundary regions (shown in gray) will play an important role in

Section 3.3 below.

19In our Japanese data, the number of basic regions is over 3000.
20More generally, a boundary point of Ω is any point ω ∈ Ω for which there exist points outside of Ω

that are arbitrarily close to ω (in Euclidean distance). We suppress topological details here in order to
avoid confusion with similar graph-theoretic topological concepts to be developed below.
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[Figure 1]

Within this basic continuous geographical framework, we next develop a discrete

network representation of the regional system that contains all relevant information needed

for our cluster model. The nodes of this network, are represented by the set R of basic

regions, and the links are taken to represent pairs of regional “neighbors” in terms of

the underlying road network. Here it is assumed that data is available on minimal travel

distances, t(r, s), between each pair of regions, r, s ∈ R, say between their designated

administrative centers.21 These neighbors should of course include regional pairs (r, s)

for which the shortest route from r to s passes through no regions other than r and

s. But for computational convenience, we choose to approximate this relation by the

standard “contiguity” relation that takes each pair of basic regions sharing some common

boundary to be neighbors.22 While this approximation is reasonable in most cases, there

are exceptions. Consider for example the coastal regions, r and s, joined by a bridge, as

shown in Figure 2 below. Here it is clear that the shortest route (path) between regions r

and s passes through no other regions, even though r and s share no common boundary.

Hence to maintain a reasonable notion of “closeness” among neighbors, it is appropriate

to include such regional pairs as neighbors. Finally, it is mathematically convenient to

include r as a neighbor of itself (since r is always “closer” to itself than to any other

region).

[Figure 2]

If this set of neighbors for region r ∈ R is denoted by N(r), then for the region r shown

in the schematic regional system of Figure 1, N(r) is seen to consist of eight neighbors

other than r itself. Our only formal requirement is that neighbors be symmetric, i.e.,

that r ∈ N(s) if and only if s ∈ N(r). If we now denote the full set of neighbor pairs by

21In the application below (Section 5) for the case of Japan, we use road-network distances as travel
distances between municipality offices.

22In the terminology introduced by Cliff and Ord [6] these are known as “queen” contiguities, rather
than “rook” contiguities, where only regions sharing a full boundary face are considered neighbors. Such
contiguity relations are easily calculated in most standard Geographical Information System software.
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L = ∪r∈R ∪s∈N(r) (r, s) ⊆ R2, then this defines the relevant set of links for our discrete

network representation, (R,L), of the regional system.23 A simple example of such a

regional network, (R,L), is shown in Figure 3 below. Here R consists of twenty five square

regions shown on the left. These regions are connected by the road network shown by

dotted lines on the left, with travel distances on each of the forty links (to be discussed

later) displayed on the right. Hence L in this case consists of the forty distinct regional

pairs associated with each of these links, together with the twenty five identity pairs (r, r).

[Figure 3]

Next we employ travel distances between neighbors to approximate the entire road

network by a shortest-path metric on network (R,L). To do so, we note that minimum

travel distances naturally satisfy the metric conditions (i) t(r, r) = 0, and (ii) t(r, s) =

t(s, r), for all neighbor pairs (r, s). In addition, for every triad of mutual neighbors,

r, v, s ∈ R [i.e., with r ∈ N(s) and v ∈ N(r) ∪N(s)] these distances must also satisfy the

metric triangle-inequality condition (iii) t(r, s) ≤ t(r, v) + t(v, s).24 Given these metric

conditions, one can extend t to a shortest-path metric on (R,L) in the following way.

Let each sequence, ρ = (r1, r2, .., rn), of linked neighbors [i.e., with (ri, ri+1) ∈ L for

i = 1, .., n − 1] be designated as a path in (R,L), and let the set of all paths in (R,L)

be denoted by P = {ρ = (r1, .., rn) : n > 1, (ri, ri+1) ∈ L, i = 1, .., n − 1}. If for

each pair of regions, r, s ∈ R, we denote the subset of all paths from r to s in P by

P(r, s) = {ρ = (r1, .., rn) ∈ P : r1 = r, rn = s}, then to ensure that shortest paths between

all pairs of regions are meaningful, we henceforth assume that that P(r, s) 6= ∅ for all

r, s ∈ R, i.e., that the given regional network (R,L) is connected.25 In this context, if

the length, l(ρ), of path, ρ = (r1, r2, .., rn), is now taken to be the sum of travel distances

23Equivalently, the network (R,L) can be viewed as a graph with vertices, R, and edges, L. Note also
that both L and the individual neighborhoods, N(r), depend on travel distance, t. But for notational
simplicity we leave this dependency implicit.

24Since travel from r to s can always be accomplished by taking shortest routes from r to v, and then
for v to s, it must be true that the minimum travel distance, t(r, s) cannot exceed the combined distance,
t(r, v) + t(v, s), of these two trips.

25See however the discussion regarding major off-shore islands in our application of this clustering
methodology to Japan (Mori and Smith [32, §4.2.1]).
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on each of its links, i.e., l(ρ) =
∑n−1

i=1 t(ri, ri+1), then for any pair of regions, r, s ∈ R,

the shortest-path distance, d(r, s), from r to s is taken to be the length of the (possibly

nonunique) shortest path from r to s:

d(r, s) = min{l(ρ) : ρ ∈ P(r, s)} (15)

The set of all shortest paths in P(r, s) (also called “geodesics” from r to s ) is then denoted

by Pd(r, s) = {ρ ∈ P(r, s) : l(ρ) = d(r, s)}. The shortest-path distances in (15) are easily

seen to define a metric on R, i.e., to satisfy (i) d(r, r) = 0, (ii) d(r, s) = d(s, r), and

(iii) d(r, s) ≤ d(r, v) + d(v, s) for all r, s, v ∈ R.26 Moreover, these distances always agree

with travel distances between neighbors [i.e., d(r, s) = t(r, s) for all (r, s) ∈ L]. But for

non-neighbors, (r, s) /∈ L, it will generally be true that d(r, s) > t(r, s) (since the shortest

route from r to s on the actual road network may not pass through any intermediate

regional centers). Hence these shortest-path distances are only an approximation to

shortest-route distances. The advantage of this approximation for our present purposes is

that for any r and s, the number of paths in P(r, s) is generally much smaller than the

number of routes from r to s on the road network, so that shortest paths in Pd(r, s) are

more easily identified.

3.2 Convexity in Networks

Within this network framework we now return to the question of defining candidate

clusters as spatially coherent groups of basic regions. As mentioned in the Introduction,

the standard approach to this problem is to require that clusters be as close to “circular”

as possible. To broaden this class, we begin by observing that a key property of circular

sets in the plane is their convexity. More generally, a set, S, in the plane is convex if and

only if for every pair of points, s, v ∈ S, the set S also contains the line segment joining s

and v. But since lines are shortest paths with respect to Euclidean distance, an equivalent

26As in footnote 24 above, the triangle inequality follows directly from the additivity of path lengths
together with the fact that any path from r to v to s is necessarily a path from r to s.
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definition of convexity would be to say that S contains all shortest paths between points

in S. Since shortest paths are equally well defined for the network model above, it then

follows that we can identify convex sets in the same way.

In particular, a set of basic regions, S, is now said to be d-convex if and only if for

every pair of regions r and s in S, the set of regions on every shortest path from r to s is

also in S.27 More formally, if for any path, ρ = (r1, .., rn) ∈ P, we now denote the set of

distinct points in ρ by 〈ρ〉 = {r1, .., rn} ⊆ R, and if the family of all nonempty subsets of

R is denoted by R = {S ⊆ R : S 6= ∅}, then

Definition 3.1 (d-Convexity) (i) A subset of basic regions, S ⊆ R, is said to be d-

convex iff for all s, r ∈ S, ρ ∈ Pd(r, s)⇒ 〈ρ〉 ⊆ S. (ii) The family of all d-convex sets in

R is denoted by Rd.

For example, suppose that in the schematic regional system of Figure 4 below it is assumed

that regional squares sharing boundary points (faces or corners) are always neighbors,

and that travel distance, t, between neighbors is simply the Euclidean distance between

their centers. Then with respect to the induced shortest-path distance, d, it is clear that

the set, S, on the left consisting of four black squares is not d-convex, since the gray

squares in the middle figure belong to shortest paths between the black squares. But even

if these gray squares are added to S, the resulting set is still not d-convex because the four

white squares remaining in the middle belong to shortest paths between the gray squares.

However, if these four squares are added, then the resulting set on the right is seen to be

d-convex since all squares on every shortest path between squares in the set are already

included.

[Figure 4]

This process of adding shortest paths actually yields a well-defined constructive proce-

27Our present notion of d-convexity is an instance of the more general notion of geodesic convexity
applied to graphs, and appears to have first been introduced by Soltan [41]. For more explicit minimal-path
(geodesic) treatments of d-convexity, see for example Farber and Jamison [12] and Duchet [9].
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dure for “convexifying” a given set, which can be formalized as follows. Let

I(r, s) =
⋃

ρ∈Pd(r,s)
〈ρ〉 (16)

denote the (r, s)-interval of all points on shortest paths from r to s, and let the mapping,

I : R → R, defined for all S ∈ R by

I(S) =
⋃

r,s∈S
I(r, s) (17)

be designated as the interval function generated by d. For notational convenience, we

set I0(S) = S, I1(S) = I(S), and construct the mth-iterate of I recursively by Im(S) =

I(Im−1(S)) for all m > 1 and S ∈ R. Since {r, s} ⊆ I(r, s) for all r, s ∈ R, it follows from

(17) that for each set, S ∈ R,

S ⊆ I(S) (18)

By the same argument, it follows that for any S ∈ R and r ∈ Im(S) with m > 0, we must

have r ∈ I[Im(S)] = Im+1(S). Hence these interval iterates satisfy the following nesting

property for all S ∈ R,

Im(S) ⊆ Im+1(S), m ≥ 0 (19)

and thus constitute a monotone nondecreasing sequence of sets. It then follows that for

any subset, S ⊆ R, of nodes in the finite network, (R,L), there must be an integer, m

(≤ |R− S|),28 such that Im(S) = Im+1(S).29 The smallest such integer:

m(S) = min{m : Im(S) = Im+1(S)} (20)

is called the geodesic iteration number of set, S.30 With these definitions, it is well known

28Throughout this paper we denote cardinality of a set A by |A|.
29Since Im(S) 6= Im+1(S) implies from (19) that |Im+1(S)− Im(S)| ≥ 1, and since Im(S) ⊆ R for all

m, it follows that this expansion process can involve at most |R− S| steps.
30This concept was first introduced by Harary and Neiminen [16], who showed that without further

assumptions, the bound m(S) ≤ |R − S| cannot be significantly reduced. However, in our present
application this iteration number is typically small.
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that the unique smallest d-convex set containing a given set S ∈ R is given by the d-convex

hull ,31

cd(S) = Im(S)(S) (21)

The mapping, cd : R → R, defined by (21) is designated as the d-convexification function.

With this definition, it is shown in Proposition A.3 of the Appendix that d-convex sets are

equivalently characterized as the fixed points of this mapping, i.e, a set S ∈ R is d-convex

if and only if cd(S) = S. So the family of all d-convex sets can be equivalently defined as

Rd = {S ∈ R : cd(S) = S} (22)

However, for purposes of constructing d-convex sets, it is more useful to note that they

are equivalently characterized as the fixed points of the interval function, I : R → R (as

shown in the Corollary to Proposition A.3). Hence Rd can also be written as

Rd = {S ∈ R : I(S) = S} (23)

This in turn implies that a simple constructive algorithm for obtaining cd(S) is to iterate I

until the iteration number, m(S), is found. This procedure is in fact illustrated by Figure

4 above, where m(S) = 2.

But while this particular set, I2(S), does indeed look reasonably compact (and close

to circular), this is not always the case. One simple counterexample is shown in Figure 5

below. Given the regional network, (R,L), in Figure 3 above, suppose that S consists of

the four regions shown in black on the left in Figure 5. These regions are assumed to be

connected by major highways as shown by the heavy lines on the right in Figure 3, with

travel distances, t = 1, on each link. All other road links are assumed to be circuitous

secondary roads, as represented by a travel distance of t = 3 on each link. Here it is clear

that the d-convexification, cd(S), of S is obtained by adding all other regions connected

31For a proof of this assertion, see Proposition A.2 in the Appendix. For further properties of interval
functions and d-convex hulls, see for example Duchet [9].
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by the ring of major highways (as shown in gray on the right in Figure 5), since shortest

paths between such regions are always on these highways. But since the central region

shown in white is not on any of these paths, we see that cd(S) is a d-convex set with a

“hole” in the middle.

[Figure 5]

This is very different from convex sets in the plane, which are always “solid.” But

in more general metric spaces this need not be true. Indeed, for the present case of a

network (or graph) structure, the notion of a “hole” itself is not even meaningful. For

example, if the central node in Figure 5 were pulled “outside” the coastal regions (leaving

all links in tact) then the network, (R,L), would remain the same. So it is clear that the

above notion of a “hole” depends on additional spatial structure, including the positions

of regions relative to one another.

3.3 Convex Solids in Networks

These observations motivate the spatial structure that we now impose in order to char-

acterize “solid” subsets of R in (R,L). The key idea here is to recall from Figure 1 that

relative to the rest of the world, there is a distinguished collection of boundary regions, R,

that are essentially “external” to all subsets of R. If for any subset, S ⊆ R, and boundary

region, r ∈ R, it is true that r /∈ S, then it is reasonable to assert that r is outside of S.32

This set of boundary regions, R, thus defines a natural reference set for distinguishing

regions in complement, R− S, of S that are “inside” or “outside” of S. In particular, we

now say that a complementary region, r ∈ R − S, is inside S if and only if every path

joining r to a boundary region in R must pass through at least one region of S. For

example, given the set, S, of black squares in Figure 6, the complementary region r is seen

to be inside of S since every path to the boundary, R, must intersect S. Similarly, the

complementary region s is not inside S, since there is a path from s to R that does not

32Even if r is an element of S, it must always be part of the boundary of S. Hence it is still reasonable
to assert that r is “on the outside” of S.
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intersect S. To formalize this concept, we now let the set of all paths from any region,

r ∈ R, to R be denoted by P(r, R) = ∪r∈RP(r, r). Then for any nonempty set, S ∈ R,

the set of all complementary regions inside S is given by,

S0 = {r ∈ R− S : ρ ∈ P(r, R)⇒ 〈ρ〉 ∩ S 6= ∅} (24)

and is designated as the interior complement of S.

[Figure 6]

With this concept, we now say that a set, S ∈ R, is solid if and only if its interior

complement is empty. In addition, we can now solidify a set S by simply adjoining its

interior complement. More formally, we now say that:

Definition 3.2 (Solidity) For any nonempty subset, S ∈ R,

(i) S is said to be solid iff S0 = ∅.

(ii) The set formed by adding S0 to S,

σ(S) = S ∪ S0 (25)

is designated as the solidification of S.

(iii) The family of all solid sets in R is denoted by Rσ.

The justification for the terminology in (ii) is given by Lemma A.1 in the Appendix,

where it is shown that for any set, S ∈ R, the set, σ(S), is solid in the sense of (i) above.

The mapping, σ : R → R, induced by (25) is designated as the solidification function. As

with the d-convexification function above, it also follows that solid sets are precisely the

fixed points of the solidification function.33

With these definitions, the two properties of d-convexity and solidity are taken to

constitute our desired model of clusters in R. Hence we now combine these properties as

follows:

33See Lemma A.2 in the Appendix.
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Definition 3.3 (d-Convex Solids) For any nonempty subset, S ∈ R,

(i) If S is both d-convex and solid, then S is designated as a d-convex solid in R.

(ii) The composite image set,

σcd(S) = σ[cd(S)] (26)

is designated as the d-convex solidification of S.

If we now let Rσd denote the family of all d-convex solids in R, then it follows at once

from Definitions 3.1 through 3.3 that

Rσd = Rσ ∩Rd (27)

3.4 Convex Solidification of Sets

As with (24) and (25) above, expression (26) induces a composite mapping, σcd : R → R,

designated as the d-convex solidification function. We now examine this function in more

detail. To do so, it is instructive to begin by observing that the order in which these two

maps are composed is critical. In particular it is not true that the d-convexification of a

solid set is necessarily a d-convex solid. This can be illustrated by the example in Figures

3 and 5 above. If the exterior squares are taken to define the relevant boundary set, R,

in Figure 3, then it is clear that the original set, S, of four black squares is solid, since

there are paths from every complementary region to R that do not intersect S.34 But,

the d-convexification, cd(S), of S is precisely the non-solid set that was used to motivate

solidification. So in this case, the composite image, cd[σ(S)] = cd(S) is not solid (and

hence not a d-convex solid).

With this in mind, the key result of this section, established in Theorem A.1 of the

Appendix, is to show that the terminology in Definition 3.3 is justified, i.e., that:

34Note also from this example that the notion of “solidity” by itself is rather weak. However, when
applied to d-convex sets, this turns out to be exaclty what is needed for “filling holes.”
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Property 3.4 (d-Convex Solidification) For any set, S ∈ R, the image set, σcd(S),

is a d-convex solid.

Hence if one is enlarging a given cluster, C, by adding a set, S, of new regions, i.e.,

C → C ∪ S, then to construct a new cluster containing C ∪ S, one need only d-convexify

this set by the algorithm

C ∪ S → I(C ∪ S)→ I2(C ∪ S) · · · → cd(C ∪ S) (28)

and then solidify the resulting set by identifying all regions in the interior complement

[cd(C ∪ S)]0 of cd(C ∪ S) and forming

σcd(C ∪ S) = cd(C ∪ S) ∪ [cd(C ∪ S)]0 (29)

This algorithm has already been illustrated by the simple case in Figure 4, where no

solidification was required. A somewhat more detailed illustration is given in Figures 7

and 8 below. Figure 7 exhibits a subsystem of nineteen (hexagonal) basic regions in R,

along with the major road network (solid and dashed lines) connecting the centers of

these regions. As in Figure 4, it is assumed that there are primary roads (freeways) and

secondary roads. Some regions lie along freeway corridors, as denoted by solid network

links with travel distance (or time) values of t = 1. Other regions are connected by

secondary roads denoted by dashed network links with higher values of t = 3.

[Figure 7]

A possible sequence of steps in the formation of a composite cluster in this subsystem

is depicted in Figure 8. Stage 1 begins at the point where it has been determined that an

existing cluster (d-convex solid), C1, of three regions (shown in black) should be expanded

to include a secondary set, S1, of two regions (also shown in black). Given the shortest-path

distances, d, generated by the t-values in Figure 7, it is clear that the d-convexification,

cd(C1 ∪ S1), of this composite set, C1 ∪ S1, is given by adding the gray regions shown in
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Stage 2. This larger ring of regions lies entirely on freeway corridors, and thus includes

all shortest paths joining its members (in a manner similar to the ring of regions in

Figure 5). Hence the two regions in the center of this ring lie in the internal complement

of cd(C1 ∪ S1), and are thus added in Stage 3 to form an new cluster (d-convex solid),

C2 = σcd(C1 ∪ S1), containing C1 ∪ S1. In Stage 4 it is determined that one additional

singleton set, S2, should also be added to the existing composite cluster, C2. Again, Stage

5 shows that all regions on the freeway corridors from S2 to C2 should be added to form a

new d-convexification, cd(C2 ∪ S2). Finally, this d-convex set is again seen to have two

regions in its interior complement, which are thus added to achieve the final d-convex solid

cluster, C3 = σcd(C2 ∪ S2).

[Figure 8]

Before proceeding, it is appropriate to note several additional features of this d-convex

solidification procedure that parallel the basic procedure of d-convexification itself. First,

as a parallel to d-convex hulls in (21), it is shown in Theorem A.3 of the Appendix that

for any given set of regions, S, the d-convex solidification, σcd(S), yields a “best d-convex

solid approximation” to S in the sense that:

Property 3.5 (Minimality of d-Convex Solidifications) For any set, S ∈ R, the

d-convex solidification, σcd(S), of S is the smallest d-convex solid containing S.

Hence this process of cluster formation can be regarded as a smoothing procedure that

approximates each candidate set of high-density regions by a more spatially coherent

version of this set.

Next, as a parallel to the fixed-point property of d-convexifications, it is shown in

Theorem A.4 of the Appendix that the procedure in (28) and (29) always yields a fixed

point of the composite mapping, σcd : R → R:

Property 3.6 (d-Convex Solid Fixed Points) A set, S ∈ R, is a d-convex solid if

and only if σcd(S) = S.
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Hence the family, Rσd, of all d-convex solids in (27) can equivalently be written as

Rσd = {S ∈ R : σcd(S) = S}. In this form, each new cluster is seen to be a natural

“stopping point” of the combined d-convexification and solidification procedure above.

Finally, it should be noted that while this process of d-convex solidification tends to

produce reasonably cohesive clusters in most cases, there are exceptions. For example, as

with many spatial constructions, this procedure is prone to “edge effects.” In the present

case of Japan, where the coastline is often highly irregular, the d-convex solidification of

regional groups near the coast can in some cases require the annexation of large vacant

regions. More generally, when the entire regional network, (R,L), is itself highly irregular

in space, the basic notion of d-convex solids in (R,L) can become somewhat problematic.

4 A Cluster-Detection Procedure

Given the cluster model developed above, the set of relevant cluster schemes for regional

network (R,L) can now be formalized as follows:

Definition 4.1 (Cluster Schemes) A finite partition, C = (R0, C1, . . . , CkC), of R is

designated as a cluster scheme for (R,L) iff

(i) [d-convex solidity] Ci ∈ Rσd for all i = 1, .., kC ,

(ii) [disjointness] Ci ∩ Cj = ∅ for all i, j with 1 ≤ i < j.

Let C(R,L) denote the class of admissible cluster schemes for (R,L).

Below, we develop our search procedure to identify the best cluster scheme. Before

developing the details of this procedure, however, it is useful to begin with an overview.

For any given industry, we start with the single best cluster consisting of a single

basic region. Then at each subsequent step, we decide whether we should (i) stay with

the current cluster scheme; (ii) expand one of the existing clusters; or (iii) start a new

cluster. In alternative (ii), we compare potential expansions of all the existing clusters.

Such expansions involve annexations of nearby regions which are then further enlarged

to maintain d-convex solidity. A new cluster in alternative (iii) consists of the best basic
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region in the current set of residual regions, R0. At each step, the best option among these

three is selected, and the system of clusters continues growing until option (i) is evaluated

as the best among the three.

Before completing the description of this procedure (in Section 4.2), we specify the

details of option (ii) above in the next section.

4.1 Operational Rules for Cluster Expansion

At each step of the search procedure outlined above, option (ii) involves the expansion of

an existing cluster by first annexing certain nearby regions and then further enlarging this

set to maintain “spatial cohesiveness.” In view of the above definition of a cluster scheme,

this requires that such annexations be enlarged so as to maintain both d-convex solidity

and disjointness with respect to other existing clusters. This procedure can sometimes

require the annexation of other existing clusters, as illustrated by Figure 9 below. Given

the subsystem of a regional network shown in Figure 7 above, suppose that the current

cluster scheme includes the clusters C1 and C2 shown in Stage 1 of Figure 9. Suppose

also that it has been determined that the next step of the search procedure should be an

expansion of cluster C1 to include the set Q shown in Stage 1. The composite cluster,

σcd(C1∪Q), resulting from d-convex solidification of C1∪Q, includes C1∪Q together with

the gray region shown in Stage 2. But since cluster C2 is seen to overlap this composite

cluster, it is clear that disjointness between clusters can only be maintained by annexing

cluster C2 as well. This results in the larger composite cluster, σcd[σcd(C1 ∪ Q) ∪ C2],

shown by the combined black and gray region of Stage 3 in Figure 9.

[Figure 9]

More generally, if some current cluster, Cj ∈ C = (R0, C1, . . . , CkC), is to be expanded

by annexing a set Q ⊆ R0, then the d-convex solidification, σCd
(Cj ∪Q), must be further

enlarged to include all clusters, Ci ∈ C, intersecting σCd
(Cj ∪Q). For any given current

cluster scheme C = (R0, C1, . . . , CkC), this procedure can be formalized in terms of the
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following operator, UC : R→ R, defined for all S ∈ R by

UC(S) = σcd(S) ∪ {Ci ∈ C : Ci ∩ σcd(S) 6= ∅} (30)

where the relevant sets, S, of interest will be of the form, S = Cj ∪Q, with Cj ∈ C and

Q ⊆ R0. Observe next this single operation is not sufficient, since the resulting image sets,

UC(S), may fail to be d-convex solids. Moreover, the d-convex solidification, σcd[UC(S)],

may again fail to be disjoint from other existing clusters in C. So it should be clear that

what is needed here is an iteration of this operator until both conditions are met. To

formalize such iterations, we proceed as in Section 3.2 above by letting the iterates of UC

be defined for each S ∈ R by U0
C(S) = S, U1

C(S) = UC(S), and Um
C (S) = UC[Um−1

C (S)]

for all m > 1. Since it is clear by definition that Um
C (S) ⊆ Um+1

C (S) for all m ≥ 0, this

yields a monotone nondecreasing sequence of sets in R. Hence by the same arguments

leading to (20) above, it again follows that there must be an integer, m (≤ |R − S|),

such that Um
C (S) = Um+1

C (S). As a parallel to (20) we may thus designate the smallest

integer, m(S|C) = min{m : Um
C (S) = Um+1

C (S)}, satisfying this condition as the expansion

iteration number of S given C. Finally, if (as a parallel to d-convex hulls) we now designate

the resulting fixed point of UC,

uC(S) = U
m(S|C)
C (S) (31)

as the C-compatible expansion of S, then it is this set that satisfies the expansion properties

we need. First observe that the fixed point property, UC[uC(S)] = uC(S), of this expanded

set implies at once from (30) that for all clusters Ci ∈ C with Ci ∩ uC(S) 6= ∅ we must

have Ci ⊆ uC(S). Thus uC(S) is always disjoint from any clusters, Ci ∈ C, that have

not already been absorbed into uC(S). Moreover, this in turn implies from (30) that

uC(S) = σcd[uC(S)], and hence that uC(S) must be a d-convex solid.
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4.2 Cluster-Detection Procedure

In terms of Definition 4.1, the objective of this procedure, which we now designate as the

cluster-detection procedure, is to find a cluster scheme, C∗ ∈ C(R,L), satisfying,

C∗ = arg max
C∈C(R,L)

BICC (32)

From a practical viewpoint, it should be stressed that the following search procedure will

only guarantee that the cluster scheme found is a “local maximum” of (32) with respect

to the class of admissible “perturbations” in C(R,L) defined by the procedure itself.

To specify these perturbations in more detail, we begin with the following notational

conventions. At each stage, t = 0, 1, 2, ..., of this procedure, let Ct = (Rt,0, Ct,1, . . . , Ct,kCt
),

denote the current cluster scheme in C(R,L). The procedure then starts at stage t = 0 with

the null cluster scheme, C0 = {R0,0} = {R}, which contains no clusters. By expressions

(2), (12) and (13), it then follows that the corresponding initial value of the objective

function in (32) must be BICC0 = L0 ≡
∑

r∈R nr ln(ar/a), where a ≡
∑

r∈R ar. Given

data, [Ct , BICCt ], at stage t, we then seek the modification (perturbation), Ct+1, of Ct in

C(R,L) which yields the highest value of BICCt+1 . As outlined above, these modifications

are of two types: (i) the formation of a new cluster in scheme Ct, or (ii) the expansion of

an existing cluster in scheme Ct. We now develop each of these steps in turn.

4.2.1 New Cluster Formation

Given the current cluster scheme, Ct = (Rt,0, Ct,1, . . . , Ct,kCt
), at stage t, one can start

a new cluster, {r}, by choosing some residual region, r ∈ Rt,0, which is disjoint with all

existing clusters. Hence the set of feasible choices for r is given by R0(Ct) = Rt,0. For

each r ∈ R0(Ct), the corresponding expanded cluster scheme is then given by C0
t (r) =(

R0
t,0(r), C

0
t,1(r), C

0
t,2 , . . . , C

0
t,k

C0
t (r)

)
, where R0

t,0(r) = Rt,0−{r}, kC0
t (r)

= kCt + 1, C0
t,1(r) =

{r}, and C0
t,i = Ct,i−1 for i = 2, . . . , kC0

t (r)
. The superscript “0” in cluster scheme, C0

t (r),

indicates that a change is made to the residual region, Rt,0, rather than to one of the
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clusters in Ct. Note that since {r} is automatically a d-convex solid, and since r ∈ R0(Ct)

guarantees that disjointness of all clusters is maintained, it follows that C0
t (r) ∈ C(R,L),

and hence that C0
t (r) is an admissible modification of Ct.

The best candidate for new cluster formation is of course the region, r∗0 ∈ R0(Ct), that

yields the highest value of the objective function, i.e., for which r∗0 = arg maxr∈R0(Ct)BICC0
t (r)

.

For purposes of comparison with other possible modifications of Ct, we now set

C0
t ≡ C0

t (r
∗
0) (33)

4.2.2 Expansion of an Existing Cluster

Next, we consider a potential expansion of each cluster, Ct,j ∈ Ct, by annexing a set

Q of nearby regions in Rt,0. While the basic mechanics of this expansion procedure

were developed in Section 4.1 above, the specific choice of Q was not. Recall that such

annexations can potentially result in large expansions of Ct,j, given the need to preserve

both d-convex solidity and disjointness. Hence to maintain reasonably “small increments”

in our search process, it is appropriate to restrict initial annexations to single regions

whenever possible. Of course, when such regions are already part of another cluster, it will

be necessary to annex the whole cluster in order to preserve disjointness. But to motivate

our basic approach, it is convenient to start by considering the annexation of a single

region not in any other cluster, i.e., to set Q = {r} for some r ∈ Rt,0. Here it would seem

natural to consider only regions in the immediate neighborhood of Ct,j. However, this

often turns out to be too restrictive, since there may exist much better choices that are

not direct neighbors of Ct,j.

In fact, it might seem more reasonable to consider all possible regions in R− Ct,j , and

simply let our model-selection criterion determine the best choice. But if one allows choices

of r “far away” from Ct,j, then our d-convex solidity and disjointness criteria can lead

to the formation of very large clusters that violate any notion of spatial cohesiveness.35

35This is particularly evident in our application below, where an unconstrained choice of regions can in
some cases lead to the inclusion of regions r separated from Ct,j by undeveloped mountain regions, or even
the inland sea of Japan. More generally, the inclusion of large less developed regions of the nation can lead
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So it is convenient at this point to introduce a new set of neighborhoods which strike a

compromise between these two extremes. To do so, we first extend shortest-path distances,

d, between points to corresponding distances between points and sets by letting

d(r,Q) = min {d(r, s) : s ∈ Q} (34)

for r ∈ R and Q ∈ R. Since d is a metric on R, it is well known that for each set, Q ∈ R,

(34) yields a well-defined distance function that preserves the usual continuity properties

of d on R.36 Hence one can define well-behaved neighborhoods of Q in terms of this

distance function as follows. For each Q ∈ R, the δ-neighborhood of Q in R is defined to

be δ(Q) = {r ∈ R : d(r,Q) < δ}. Hence the appropriate choices for expansions of Ct,j are

taken to be regions in δ(Ct,j) for some pre-specified choice of parameter δ.37

As mentioned above, there are two cases that need to be distinguished here. First

suppose that for some given cluster Ct,j we consider the annexation of a region not in any

other cluster, i.e., a region r ∈ Rt,0 ∩ δ(Ct,j). Then follows from expression (31) that the

corresponding Ct-compatible expansion of Ct,j ∪ {r} is given by

Cj
t,1(r) = uCt(Ct,j ∪ {r}). (35)

Thus the cluster scheme, Cj
t(r), resulting from this expansion has the form

Cj
t(r) =

(
Rj
t,0(r), C

j
t,1(r), C

j
t,2(r) , . . . , C

j
t,k

C
j
t (r)

(r)

)
(36)

where, by expression (30), the set of all other clusters in Cj
t(r) is given by

to an exaggerated depiction of agglomeration involving areas that are mostly devoid of establishments.
It should be noted that this is in part due to our use of economic area (rather than total area), which
effectively ignores such undeveloped land when expanding clusters.

36See for example in Berge [2, Chapter 5].
37In the application of Section 5, the value used was δ = 36.0 km, which was chosen so that any

single expansion of a cluster cannot include large sections without economic area (e.g., inland sea and
lakes). This particular neighborhood size covers about 90% of the shortest-path distances between
neighboring jurisdictional offices. It is also worth noting from a practical viewpoint that this use of
uniform δ-neighborhoods has the added advantage of controlling (at least in part) for size differences
among basic regions.
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{
Cj
t,2(r), . . . , C

j
t,k

C
j
t (r)

(r)

}
=
{
Ct,i ∈ Ct : Ct,i ∩ Cj

t,1(r) = ∅
}

(37)

and where the corresponding residual region has the form:

Rj
t,0(r) = R−

⋃k
C
j
t (r)

i=1
Cj
t,i(r) (38)

As above, if r∗j now denotes the region in Rt,0 ∩ δ(Ct,j) that yields the highest value of the

objective function, i.e., for which r∗j = arg maxr∈Rt,0∩δ(Ct,j)BICCj
t (r)

, then the best cluster

expansion for Ct,j in Ct starting with regions in Rt,0 ∩ δ(Ct,j) is given by Cj
t(r
∗
j ).

Next recall that it is possible that another cluster, Ct,i in Ct, intersects δ(Ct,j) so that

the annexation of Ct,i is a possible expansion of Ct,j . For this case it is necessary to annex

the entire cluster Ct,i in order to preserve disjointness. So if we now define the index

set, Ij(Ct) = {i 6= j : Ct,i ∩ δ(Ct,j) 6= ∅} [not to be confused with interval sets I(·) in

Section 3.2 above], and for each i ∈ Ij(Cj) replace (35) with the Ct-compatible expansion

Cj
t,1(i) = uCt(Ct,j ∪Ct,i), then as a parallel to (36) through (38), the cluster scheme, Cj

t(i),

resulting from this expansion now has the form

Cj
t(i) =

(
Rj
t,0(i), C

j
t,1(i), C

j
t,2(i) , . . . , C

j
t,k

C
j
t (i)

(i)

)
(39)

with the set of all other clusters in Cj
t(i) given by

{
Cj
t,2(i), . . . , C

j
t,k

C
j
t (i)

(i)

}
=
{
Ct,i ∈ Ct : Ct,i ∩ Cj

t,1(i) = ∅
}

(40)

and with corresponding residual region:

Rj
t,0(i) = R−

⋃k
C
j
t (i)

k=1
Cj
t,k(i) (41)

If i∗j now denotes the cluster in Ij(Ct) that yields the highest value of the objective function,

i.e., for which i∗j = arg maxi∈Ij(Ct)BICCj
t (i)

, then the best cluster expansion for Ct,j in Ct
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is given by Cj
t(i
∗
j). Hence the best cluster expansion, Cj

t , of Ct starting with cluster Ct,j

is given by

Cj
t ≡ arg max

C∈{Cj
t (r
∗
j ),C

j
t (i
∗
j )}
BICC , j = 1, .., kCt (42)

4.2.3 Revision of the Cluster Scheme

Finally, given these candidate modifications,C0
t ,C

1
t , . . . ,C

kCt
t , of Ct in C(R,L) [as defined

by (33) together with (42)], let C∗t be the best candidate, as defined by

C∗t = arg max
C∈{Cj

t :j=0,1,..,kCt}
BICC (43)

There are then two possibilities left to consider: IfBICC∗t
> BICCt , then set [Ct+1, BICCt+1 ] =

[C∗t , BICC∗t
], and proceed to stage t+ 1. On the other hand, if BICC∗t

≤ BICCt , then no

(local) improvement can be made, and the cluster-detection procedure terminates with the

(locally) optimal cluster scheme, C∗ = Ct.

Finally, it is of interest to note that this cluster-detection procedure is roughly analogous

to “mixed forward search” procedure in stepwise regression, where in the present case we

add new clusters or merge existing ones until some locally optimal stopping point is found.

With this analogy in mind, it is in principle possible to consider “mixed backward search”

procedures as well. For example, one could start with a maximal number of singleton

clusters, and proceed by either eliminating or merging clusters until a stopping point is

reached. Some experiments with this approach produced results similar to the present

search procedure, but proved to be far more computationally demanding.

4.3 A Test of Spurious Clustering

While the cluster-detection procedure developed above will always find a (locally) best

cluster scheme, C∗, with respect to the BIC criterion used, there is still the statistical

question of whether such clustering could simply have occurred by chance. Hence one

can ask how the optimal criterion value, BICC∗ , obtained compares with typical values

obtainable by applying the same cluster-detection procedure to randomly generated spatial
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data. This can be formalized in terms of the hypothesis of complete spatial randomness

(see footnote 15), which in this present context asserts that the probability, pr, that any

given establishment will locate in region, r ∈ R, is proportional to the areal size, ar, of

that region, i.e., that

pr =
ar∑
j∈R aj

(44)

While the sampling distribution of BICC under this hypothesis is complex, it can easily

be estimated by Monte Carlo simulation. More precisely, for any given industrial location

pattern of n establishments, one can use (44) to generate, say, 1000 random location

patterns of n establishments, and apply the cluster-detection procedure to each pattern.

This will yield 1000 values of BICC, say BIC1, . . . , BIC1000. If the value for the actual

cluster scheme, BIC0 = BICC∗ , is say bigger than all but five of these in the ordering of

values, {BIC1, . . . , BIC1000}, then the chance, p, of getting a value as large as this (under

the hypothesis that BIC0 is coming from the same population of random patterns) is,

p = (5 + 1)/(1000 + 1) ∼ 0.005. This would indicate very “significant clustering.” On

the other hand, if BIC0 were only bigger than say 800 of these values, then the p-value,

p = (200 + 1)/(1000 + 1) ∼ 0.20, would suggest that the observed cluster scheme, C∗, is

not sufficiently significant to warrant further investigation. This procedure was used in

the following illustrative application (as well as in the more extensive application in Mori

and Smith [32]).

5 An Illustrative Application

In this section we illustrate the above procedure in terms of the two Japanese industries

discussed in the Introduction, which for convenience we refer to here as simply “plastics”

and “soft drinks,”respectively. These two industries are part of the larger study in Mori

and Smith [32] that applies the present methodology to 163 manufacturing industries in

Japan. As discussed in Section 4.2 of that paper, the test of spurious clustering above

identified 9 industries with spurious clustering, so that only 154 industries were used in
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the final analysis. The appropriate notion of a “basic region,”r, for purposes of this study

was taken to be the shi-ku-cho-son (SKCS), which is a municipality category equivalent

to a city-ward-town-village in Japan. The relevant set R was then taken to be the 3207

municipalities geographically connected to the major islands of Japan, as shown in Figure

10 below.

[Figure 10]

5.1 Comparison with a Scalar Measure of Agglomeration

The choice of these two industries is motivated by their similarity in terms of overall degree

of agglomeration. This can be illustrated in terms of the D-index developed in Mori et al.

[28],38 which for a given industry i is defined as the Kullback-Leibler [25] divergence of

its establishment location probability distribution, Pi ≡ [Pi(r) : r ∈ R], [as in expression

(1)] from purely random establishment locations. Here the latter is characterized by the

uniform probability distribution, P0 ≡ [P0(r) : r ∈ R], with P0(r) = ar/
∑

j∈R aj [as in

expression (44)]. By using the sample estimate of Pi, namely, P̂i = [P̂i(r) : r ∈ R] with

P̂i(r) ≡ nr/n [as in expression (7)], a corresponding estimate of this D-index is given by

D(P̂i|P0) =
∑
r∈R

P̂i(r) ln

(
P̂i(r)

P0(r)

)
. (45)

The intuition behind this particular index is that it provides a natural measure of

distance between probability distributions. So by taking uniformity to represent the

complete absence of clustering, it is reasonable to assume that those distributions “more

distant” from the uniform distribution should involve more clustering. The histogram of

divergence values, D, for the 154 industries in Japan is shown in Figure 11 below, and is

seen to range from D = 0.47 up to 5.98. With respect to this overally range, the D values,

1.95 and 2.05, for soft drinks an plastics, respectively, are seen to be virtually identical.

38Other scalar indices could be used here, such as the well known index of Ellison and Glaeser [11]. But
in fact, such indices tend to be highly correlated with D (refer to Mori et al. [28, §D]). So, the arguments
in this section would remain essentially the same.
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[Figure 11]

But in spite of this overall similarity, the agglomeration patterns obtained for these

two industries are subtantially different, as seen in Figures 12 and 13 below.

[Figures 12 and 13]

Diagram (a) of each figure displays the establishment densities for each industry, i, where

those basic regions with higher densities are shown as darker. In Diagram (b), the

individual clusters in the derived cluster scheme, C∗i , are represented by enclosed gray

areas. The portion of each cluster in lighter gray shows those basic regions which contain

no establishments (but are included in C∗i by the process of convex solidification). Finally,

the hatched area in Diagram (c) depicts the “e-containment” for industry i, as discussed

further in Section 5.2 below.

Before examining these patterns in detail, it is of interest to consider the results of the

cluster-detection procedure itself. By comparing the establishment densities and cluster

schemes in Diagrams (a) and (b) of each figure, respectively, it is clear that these cluster

schemes closely reflect the underlying densities from which they were obtained. Notice

also individual clusters (convex solids) are by no means “circular” in shape. Rather each

consists of an easily recognizable set of contiguous basic regions (municipalities) in R

that approximates some area of higher establishment density in Diagram (a) of the figure.

Notice also that certain clusters in each pattern are themselves mutually contiguous. We

shall return to this point below.

To compare these two agglomeration patterns in more detail, we begin by observing

that while the plastics industry is more than twice as large as soft drinks in terms of the

number of establishments (1555 versus 777), its agglomeration pattern contains only 43

clusters versus 55 clusters for soft drinks. This illustrates the relative parsimoniousness of

our cluster-detection procedure with respect to larger industries, as mentioned following

the definition of BIC in expression (13) above. Notice also that clustering is indeed much

stronger in the plastics industry than in soft drinks. This can be seen in several ways.

33



First, the share of plastics establishments in clusters is much larger than for soft drinks

(93.9% versus 64.6%). Second, the average size of these clusters is greater not only in

terms of establishments per cluster (as implied by the statistics above), they are also more

than three time larger in terms of average areal extent.

5.2 Global Extent versus Local Density of Agglomerations

Aside from these general comparisons in terms of summary statistics, the level of spatial

detail in each of these agglomeration patterns allows a much broader range of comparative

measures. While such measures are developed in more detail in Mori and Smith [32],

their essential elements are well illustrated in terms of the present pair of industries.

As mentioned in the Introduction, the plastics industry is primarily concentrated along

the Industrial Belt of Japan as in Figure 12(b). More generally, industries often tend

to concentrate within specific subregions of the nation, i.e., are themselves “spatially

contained.” The question is how to make this precise in terms of our present model

of cluster schemes. Here we adopt a two-stage approach. First, we identify the most

“significant” clusters in the optimal cluster scheme, C∗, for a given industry, by measuring

their relative contribution to the overall value of BICC∗ for that industry. For this set

of essential clusters,39 we then define the essential containment (e-containment) for that

industry to be the convex solidification of its essential clusters, in other words, the smallest

convex solid40 containing all essential clusters for the industry. The e-containment for

the plastics industry is shown in Figure 12(c) and in this case, clearly distinguishes the

“Industrial Belt” portion of the plastics industry. In contrast, the e-containment for soft

drinks [Figure13(c)] is seen to be much larger, and reflects the wide scattering of significant

clusters for this industry.

While these visual summaries of “containment” can be very informative, it is often

39To be more precise, the set of essential clusters is defined by a recursive procedure that involves both
the choice of a threshold value, µ, for “substantial” contributions to BIC, as well as a threshold value, ζ,
ensuring that this set of clusters contains a “substantial” share of establishments in this industry. For
more detail, see Mori and Smith [32, §3.1]

40Recall Property 3.3 of convex solidification above.
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more useful to quantify such relations for purposes of analysis. One possibility here is to

define the global extent (GE) of an industry to be the fraction of area in its e-containment

relative to the nation as a whole.41 In the present case, the GE values for plastics and soft

drinks are 0.298 and 0.589, respectively. So in terms of this measure, it is clear that the

agglomeration pattern of the soft drinks industry is much more globally dispersed than

that of plastics.

Next observe that while the global extent of the plastics industry is much smaller than

that of soft drinks, the average size of its essential clusters is actually much larger. As is

clear from Figures 12 and 13, these clusters are thus more densely packed inside the e-

containment of the plastics industry. To capture this additional dimension of agglomeration

patterns, we now designate the fraction of e-containment area represented by these essential

clusters as the local density (LD) of the industry. Since the LD values for plastics and soft

drinks are given respectively by 0.465 and 0.133, it is also clear that the agglomeration

pattern for plastics is much more locally dense than that of soft drinks.

5.3 Refinements of Cluster Schemes

Finally, recall that in terms of our basic probability model of cluster schemes, C, individual

clusters, Cj, are implicitly assumed to constitute sets of basic regions with similar (and

unusually high) establishment density. But the relations between these clusters is left

unspecified. In this regard it was observed above that the opimal cluster schemes, C∗,

for both plastics and soft drinks contain clusters that are mutually contiguous. Here it

is natural to ask why such clusters were not “joined” at some stage during the cluster-

detection procedure. The reason is that our basic cluster probability model assumes

that location probabilities are essentially uniform within each cluster [as in expression

(3)], so that maximum-likelihood estimates for cluster probabilities, pC(j), are simply

proportional to the number of establishments, nj, in that cluster. Hence with respect

to the BIC measure underlying this procedure, contiguous clusters with very different

41As discussed in Mori and Smith [32, §3.2], we here use the full geographic areas of basic regions rather
than economic area, to give a better representation of “extent.”
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uniform densities often yield a better fit to establishment data than does their union with

its associated uniform density. As one illustration, the contiguous chain of clusters for the

plastics industry [Figure 12(b)] around Nagoya are shown in the enlargement in Figure 14

below. Here the establishment densities in these contiguous areas are sufficiently different

so that by treating each as a different cluster, one obtains a better overall fit in terms of

BIC – even though the resulting scheme is penalized for this larger number of clusters.

[Figure 14]

This example illustrates a case in which there are not only very different establishment

densities among contiguous clusters, but also a strong “central” cluster: Nagoya in this

case. More generally, this example shows that there is often more spatial structure in

cluster schemes than is captured by a simple listing of their clusters. In particular, this

example suggests that groupings of contiguous clusters might best be treated a single

agglomerations for an industry. So the grouping in Figure 14 might be designated as the

“Nagoya agglomeration” centered around the “Nagoya cluster.” More generally, while we

have implicitly used the terms “clusters” and “agglomerations” interchangeably in this

paper, it would seem that latter term is best reserved for maximal contiguous sets of

clusters.

6 Directions for Further Research

In this paper we have developed a simple cluster-scheme model of agglomeration patterns

and have constructed an information-based algorithm for identifying such patterns. This

approach opens up a number of possible directions for further research. Here we touch on

two areas where initial investigations are already under way.

6.1 Cluster-Based Choice Cities for Industries

In previous work (Mori et al. [29]) we reported on an empirical regularity between the

(population) size and industrial structure of cities in Japan, designated as the Number-
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Average Size (NAS ) Rule. This regularity (also established for the United States by Hsu

[18]) asserts a negative log-linear relation between the number and average population

size of those cities where a given industry is present. Hence the validity of NAS depends

critically on how such “industrial presence” is defined. In a forthcoming paper (Mori and

Smith [31]) we have employed the present cluster-detection procedure to identify cities

where given industries exhibit a “substantial” presence with respect to their agglomeration

patterns. In particular, if U denotes the relevant set of cities in R,42 and if Ci is the

cluster scheme identified for industry i, then each city U ∈ U containing establishments

from at least one of the clusters in Ci is designated as a cluster-based (cb) choice city for

industry i. This cluster-based approach to industrial presence yields a somewhat sharper

version of the NAS rule for the case of Japan. In addition, by identifying those cb-choice

cities shared by different industries, this also provides one approach to analyzing spatial

coordination between industries. In ongoing work (Hsu, Mori, and Smith [19]), we are

examining the consequences of such industrial coordination for city size distributions,

and in particular for the Rank Size Rule. In addition, by examining the spacing between

cb-cities for industries, one can also formulate a range of testable propositons about the

spatial structure of urban hierarchies.

6.2 Regional Agglomeration Analysis

As emphasized in the Introduction, most analyses of industrial agglomeration have relied

on overall indices of agglomeration, and hence have necessarily been aggregate in nature.

However the present identification of local cluster patterns for industries allows the

possibility for more disaggregate spatial analyses. Of particular interest is the question

of why industries agglomerate in certain regions and not others. While this question

has of course been addressed by a variety of theoretical models, there has been little

empirical work done to date. This is in large part due to the conspicuous absence of “local

agglomeration” measures. While the present cluster-scheme model is not itself numerical,

42In Mori and Smith [31] the relevant notion of a city is formally defined to be an Urban Employment
Area (UEA) in R, as proposed originally by Kanemoto and Tokuoka [22].
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it nonetheless suggests a number of possibilities for such measures.

The simplest are of course binary variables indicating the “presence” or “absence” of

agglomeration. Indeed, the above definition of cb-choice cities yields precisely a binary

variable of this type on the set of cities, U . Hence, given appropriate socio-economic data

for cities, U ∈ U , one could in principle test for significant predictors of industrial presence

in these cities by employing standard logit or probit models.

Alternatively, one may focus directly on the individual clusters for each industry. Here

one might characterize the degree of local agglomeration for each industry in terms of the

contribution of these clusters to the industry as a whole. Natural candidates include the

fraction of industry establishments or employment in each cluster. Given the availability

of data at the municipality level, one could in principle aggregate such data to the cluster

level, and use this to identify predictors of local agglomeration by more standard types

of linear regression models. As one illustration, data on population education levels is

available in Japan at the municipality level. Thus, by employing appropriate summary

measures “education accessability” across cluster municipalities, and by treating “industry”

as a categorical variable, one can attempt to compare the relative importance of local

accessibility to education in attracting various industries. Regression analyses of this type

will be presented in subsequent work.

7 APPENDIX. Formal Analysis of d-Convex Solids

To develop formal properties of d-convex solids, we require a few additional definitions.

First, for any path, ρ = (r1, r2,.., rn−1, rn) ∈ P(r1, rn), let ρ̃ = (rn, rn−1, .., r2, r1) ∈ P(rn, r1)

denote the reverse path in P . Next, for any two paths, ρ = (r1, .., rn), ρ′ = (r′1, .., r
′
m) ∈ P ,

with rn = r′1, the combined path, ρ ◦ ρ′ = (r1, .., rn, r
′
2, .., r

′
m) ∈ P is designated as the

concatenation of ρ and ρ′. It then follows by definition that the length of any concatenated
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path, ρ ◦ ρ′, is simply the sum of the lengths of ρ and ρ′, i.e., that

l(ρ ◦ ρ′) =
∑n−1

i=1
d(ri, ri+1) + d(rn, r

′
2) +

∑m−1

i=2
d(r′i, r

′
i+1)

=
∑n−1

i=1
d(ri, ri+1) +

∑m−1

i=1
d(r′i, r

′
i+1)

= l(ρ) + l(ρ′) (46)

Using (46), as well as (18) through (21), it is convenient to establish the following well-

known properties of d-convex sets, as in Definition 3.1 of the text. First, we show that for

the d-convexification function, cd : R → R, in (21), the naming of this function is justified

by the fact that:

Proposition A.1 (d-Convexification) For all S ∈ R, the image set, cd(S), is d-convex.

Proof: For any r1, r2 ∈ cd(S) and shortest path, ρ ∈ Pd(r1, r2), it must be shown that

〈ρ〉 ⊆ cd(S). But by definition, ri ∈ cd(S)⇒ ri ∈ Iki(S) for some ki, i = 1, 2. Hence by

(19) it follows that {r1, r2} ⊆ Ik1+k2(S), and thus that 〈ρ〉 ⊆ I(Ik1+k2(S)) = Ik1+k2+1(S) ⊆

cd(S).�

Next we show that the d-convex hull, cd(S), can be characterized as the unique smallest

d-convex superset of S. More precisely, if Rd denotes the family of all d-convex sets in R,

then we have:

Proposition A.2 (Minimality of d-Convexifications) For all S ∈ R,

cd(S) = ∩{C ∈ Rd : S ⊆ C} (47)

Proof: By Proposition A.1, cd(S) ∈ Rd, and by (18)

S ⊆ I(S) ⊆ cd(S) (48)

Hence it suffices to show that for all sets, C, with C ∈ Rd and S ⊆ C, we must have

cd(S) ⊆ C. By the definition of cd(S) this in turn is equivalent to showing that Ik(S) ⊆ C
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for all k ≥ 1. But by (17),

S ⊆ C ⇒
⋃

r,s∈S
I(r, s) ⊆

⋃
r,s∈C

I(r, s)⇒ I(S) ⊆ I(C) (49)

Moreover, by (16) and (17) together with the definition of d-convexity it follows that

C ∈ Rd ⇒ I(C) =
⋃

r,s∈C
I(r, s) ⊆ C (50)

Hence we may conclude from (49) and (50) that I(S) ⊆ C. Finally, since the same

argument shows that Ik(S) ⊆ C ∈ Rd ⇒ Ik+1(S) = I[Ik(S)] ⊆ C, the result follows by

induction on k.�

Finally, using these two results, we show that d-convex sets can be equivalently

characterized as the fixed points of the d-convexification mapping, cd : R → R:

Proposition A.3 (d -Convex Fixed Points) For all S ∈ R,

S ∈ Rd ⇔ cd(S) = S (51)

Proof: If cd(S) = S then by Proposition A.1 above, S ∈ Rd. Conversely, if S ∈ Rd then

by (48), S ⊆ cd(S), and by Proposition A.2, cd(S) ⊆ S. Thus cd(S) = S, and the result is

established.�

This in turn implies that the family, Rd, of d-convex sets can be equivalently defined

as in expression (22) of the text. But while this definition provides a natural parallel to

the case of d-convex solids developed below, the more useful interval characterization of

Rd in expression (23) of the text, can easily be obtained from Proposition A.3 as follows:

Corollary (Interval Fixed Points) For all S ∈ R,

S ∈ Rd ⇔ I(S) = S (52)

Proof: Since S ∈ Rd ⇒ I(S) ⊆ S by (50) [with C = S], and since S ⊆ I(S) holds
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for all S [by (18)], it follows on the one hand that S ∈ Rd ⇒ I(S) = S. Conversely,

since I(S) = S ⇒ Ik(S) = S for all k ≥ 1[by recursion on k], it follows from (21) and

Proposition A.3 that I(S) = S ⇒ cd(S) = S ⇒ S ∈ Rd. �

Given these properties of d-convex sets, one objective of this Appendix is to show that

each of these properties is inherited by d-convex solids. To do so, we begin with an analysis

of solid sets as in Definition 3.2 of the text. First, in a manner paralleling Proposition A.1

above, we show for the solidification function, σ : R → R, defined by (25), the naming of

this function is justified by the fact that:

Lemma A.1 (Solidification) For all S ∈ R, the image set, σ(S), is solid.

Proof: If V = σ(S) = S ∪ S0, then it must be shown that for all r ∈ R− V there is some

path, ρ ∈ P(r, R) with 〈ρ〉∩V = ∅. But for any r ∈ R−V = R− (S ∪S0), it follows that

r ∈ R− S and r /∈ S0, so that by the definition of S0 in (24) it must be true that there is

some boundary region, r ∈ R, and path, ρ ∈ P(r, r) with 〈ρ〉 ∩ S = ∅. Next we show that

〈ρ〉 ∩ S0 = ∅ as well. To do so, suppose to the contrary that 〈ρ〉 ∩ S0 6= ∅, so that for

some r0 ∈ S0, ρ = (r, .., r0, .., r) = ρ1 ◦ ρ2 with ρ1 ∈ P(r, r0) and ρ2 ∈ P(r0, r). Then again

by the definition of S0 it must be true that 〈ρ2〉 ∩ S 6= ∅, which contracts the fact that

〈ρ2〉 ⊆ 〈ρ〉 and 〈ρ〉 ∩ S = ∅. Hence ∅ = (〈ρ〉 ∩ S) ∪ (〈ρ〉 ∩ S0) = ρ ∩ (S ∪ S0) = 〈ρ〉 ∩ V ,

and the result is established.�

If the family of all solid sets in R is denoted by Rσ = {S ∈ R : S0 = ∅}, then we next

show that these sets are precisely the fixed points of the solidification function:

Lemma A.2 (Solid Fixed Points) For all S ∈ R,

S ∈ Rσ ⇔ σ(S) = S (53)

Proof: If S ∈ Rσ then S0 = ∅, so that σ(S) = S by (25). Conversely, if σ(S) = S, then

by Lemma A.1, S ∈ Rσ.�

As a parallel to (52), this in turn implies that the family of solid sets in R can be
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equivalently defined as follows:

Rσ = {S ∈ R : σ(S) = S} (54)

Finally, solid sets also exhibit the following nesting property:

Lemma A.3 (Solid Nesting) For all S, V ∈ R,

S ⊆ V ⇒ σ(S) ⊆ σ(V ) (55)

Proof: Since S ⊆ V ⊆ V ∪V0 = σ(V ), it suffices to show that S0 ⊆ σ(V ). Hence consider

any r ∈ S0, and observe from the above that r ∈ V ⇒ r ∈ σ(V ). Hence it remains to

consider r ∈ S0 − V . Here we show that r must be in V0. To do so, observe first that

r /∈ V ⇒ r ∈ R − V . Moreover, r ∈ S0 implies that for any path, ρ ∈ P(r, R) we must

have 〈ρ〉 ∩ S 6= ∅. But S ⊆ V then implies 〈ρ〉 ∩ V 6= ∅. Hence r ∈ V0 ⊆ σ(V ), and the

result is established.�

With these properties of solid sets, we are now ready to analyze d-convex solids in

R. As asserted in the text, our key result is to show that d-convexity is preserved under

solidifications:

Theorem A.1 (Solidification Invariance of d-Convexity) For all d-convex sets,

S ∈ R, the image set, σ(S), is also d-convex.

Proof: Suppose to the contrary that for some d-convex set, S, the image set σ(S) is

not d-convex. Then there must exist some pair of elements, r1, r2 ∈ σ(S) = S ∪ S0, and

some shortest path, ρ ∈ Pd(r1, r2), with 〈ρ〉 ∩ [R− σ(S)] 6= ∅. But if {r1, r2} ⊆ S then by

the d-convexity of S we would have 〈ρ〉 ⊆ S ⊆ σ(S). So at least one of these elements

must be in S0. Without loss of generality, we may suppose that r1 ∈ S0 and that r is

some element of 〈ρ〉 ∩ [R − σ(S)], so that ρ = (r1, .., r, .., r2) = ρ1 ◦ ρ2 with ρ1 ∈ P(r1, r)

and ρ2 ∈ P(r, r2). But then we must have S ∩ 〈ρ1〉 6= ∅. For if not then we obtain a

contradiction as follows. Since r /∈ σ(S)⇒ [r ∈ R − S and r /∈ S0], there must be some

42



path, ρ3 ∈ P(r, R) with 〈ρ3〉 ∩ S = ∅. Hence the combined path, ρ1 ◦ ρ3 ∈ P(r1, R), then

satisfies 〈ρ1 ◦ ρ3〉 ∩ S = ∅, which contradicts the hypothesis that r1 ∈ S0. Thus we may

assume that there is some s1 ∈ S ∩ 〈ρ1〉, and consider the following two cases:

(i) Suppose first that r2 is also an element of S0. We then show that this contradicts the

hypothesized shortest-path property of ρ as follows. Observe first that if ρ̃2 ∈ P(r2, r)

denotes the reverse path for ρ2 ∈ P(r, r2) above, then the same argument used for

ρ1 ∈ P(r1, r) above now shows that there must be some s2 ∈ S ∩ 〈ρ̃2〉 = S ∩ 〈ρ2〉, so that

ρ = (r1, .., s1, .., r, .., s2, .., r2) = ρ′1 ◦ ρ′2 ◦ ρ′3◦ ρ′4 with ρ′1 ∈ P(r1, s1), ρ
′
2 ∈ P(s1, r), ρ

′
3 ∈

P(r, s2),and ρ′4 ∈ P(s2, r2). These paths are shown in Figure 15 below.

[Figure 15]

But if we choose any shortest path, ρ′5 ∈ Pd(s1, s2) [as in Figure 15], then it follows

from the d-convexity of S, together with s1, s2 ∈ S and r /∈ S that l(ρ′5) < l(ρ′2 ◦ ρ′3)

[since every shortest path in Pd(s1, s2) lies in S, and 〈ρ′2 ◦ ρ′3〉 * S]. Hence for the path,

ρ′ = ρ′1 ◦ ρ′5 ◦ ρ′4 ∈ P(r1, r2), we must have

l(ρ′) = l(ρ′1) + l(ρ′5) + l(ρ′4)

< l(ρ′1) + [l(ρ′2) + l(ρ′3)] + l(ρ′4)

= l(ρ′1 ◦ ρ′2 ◦ ρ′3 ◦ ρ′4)

= l(ρ) (56)

which contradicts the shortest-path property of ρ.

(ii) Finally, suppose that r2 ∈ S, and for the point s1 ∈ S ∩ 〈ρ1〉 above, consider the

representation of ρ as ρ = (r1, .., s1, .., r, .., r2) = ρ′1 ◦ ρ′2 ◦ ρ2 with ρ′1 ∈ P(r1, s1), ρ
′
2 ∈

P(s1, r), and ρ2 ∈ P(r, r2), as shown in Figure 16 below.

[Figure 16]

Then we again show that this contradicts the shortest-path property of ρ as follows.

For any shortest path, ρ′6 ∈ Pd(s1, r2) [as in Figure 16], the d-convexity of S, together

43



with s1, r2 ∈ S and r /∈ S, now implies that l(ρ′6) < l(ρ′2 ◦ ρ2). Thus for the path,

ρ′′ = ρ′1 ◦ ρ′6 ∈ P(r1, r2), we must have

l(ρ′′) = l(ρ′1) + l(ρ′6)

< l(ρ′1) + [l(ρ′2) + l(ρ2)]

= l(ρ′1 ◦ ρ′2 ◦ ρ2)

= l(ρ) (57)

which again contradicts the shortest-path property of ρ. Hence for each pair of elements,

r1, r2 ∈ σ(S) = S∪S0, there can be no shortest path, ρ ∈ Pd(r1, r2), with 〈ρ〉∩[R−σ(S)] 6=

∅, so that σ(S) is d-convex.�

With this result, we can now establish parallels to Propositions A.1, A.2, and A.3 above

for d-convex solids, as in Definition 3.3. First, we show that for the d-convex solidification

function, σcd : R → R, in (26), the naming of this function is justified by the fact that:

Theorem A.2 (d-Convex Solidification) For each set, S ∈ R, the image set, σcd(S),

is a d-convex solid.

Proof: First observe from Definition 3.3 that we may use expressions (52) and (53) to

define the family of all d-convex solids in equivalent terms as

Rσd = Rσ ∩Rd (58)

Hence it suffices to show that σcd(S) ∈ Rd ∩Rσ. But by Proposition A.1, it follows that

cd(S) ∈ Rd, and hence as a direct consequence of Theorem A.1 that σcd(S) = σ[cd(S)] ∈ Rd.

Moreover, since cd(S) ∈ R also implies from Lemma A.1 that σ[cd(S)] ∈ Rσ, it then

follows that σcd(S) ∈ Rσd.�

Next, as a parallel to Proposition A.2 we now have:
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Theorem A.3 (Minimality of d-Convex Solidifications) For each set, S ∈ R,

σcd(S) = ∩{C ∈ Rσd : S ⊆ C} (59)

Proof: First observe from Theorem A.2 that σcd(S) ∈ Rσd and from expression (48) that

S ⊆ cd(S) ⊆ σ[cd(S)] = σcd(S) [since by definition, V ∈ σ(V ) for all V ]. Hence, it suffices

to show that σcd(S) ⊆ C whenever S ⊆ C ∈ Rσd. But by Proposition A.2, C ∈ Rσd ⊆ Rd

and S ⊆ C imply that cd(S) ⊆ C. Moreover, since C ∈ Rσd ⊆ Rσ, we may then conclude

from Lemma A.3 together with Lemma A.2 that

cd(S) ⊆ C ⇒ σ[cd(S)] ⊆ σ(C) = C (60)

⇒ σcd(S) ⊆ C

and the result is established.�

Finally, we may use these results to show that d-convex sets are equivalently characterized

as fixed points of the d-convex solidification function, cσd : R → R:

Theorem A.4 (d -Convex Solid Fixed Points) For all S ∈ R,

S ∈ Rσd ⇔ cσd(S) = S (61)

Proof: If cσd(S) = S then by Theorem A.2, S ∈ Rσd. Conversely, if S ∈ Rσd then

since S ∈ Rσd ⊆ Rd implies from Proposition A.3 that cd(S) = S, we may conclude from

Lemma A.2 that

cσd(S) = σ[cd(S)] = σ(S) = S (62)

and the result is established.�
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Figure 12: Spatial distributions of establishments and clusters : compounding plastic
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Figure 14: Spatial distributions of establishments and clusters : soft drinks and carbonated
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