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Abstract

The spatial structure of transport network is subject to increasing returns in trans-
portation, distance and density economies. Transport costs between locations are thus
in general endogenous, and are determined by the interaction between the spatial
distribution of transport demand and these increasing returns, although such inter-
dependence has long been ignored in regional models. By using a simple model, the
present paper explains the formation of transport hubs endogenously, and shows how
the balance of these two types of increasing returns influences the spatial distribution
of transport hubs.
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1 Introduction

The transport cost has been undoubtedly one of the most essential elements in the urban

and regional economics. But, in the formal models proposed so far in this literature,

transport networks are either given exogenously or irrelevant.1 The present paper aims to

disclose the role of two types of increasing returns in transportation, distance economies and

density economies, in determining the location of a transport hub, and the spatial structure

of the transport network. The former refers to a decrease in transport costs per distance

by longer hauling,2 while the latter refers to a decrease in transport costs for a given link

by a larger transport density on that link.3 Although these two increasing returns have

been recognized as major causes for the formation of hubs and trunk links, to the best of

my knowledge, they have never been simultaneously considered in explaining the spatial

structure of transport network, not to mention the interdependency between the transport

network structure and location behavior of economic agents.4

As the formation of a transport hub necessarily requires concentration of transport

demand, the industrial and population agglomerations influence their location. But, there

is also an economic force working in the opposite direction. Namely, since the location

of transport hubs, or more generally, the spatial structure of transport network is subject

to the increasing returns specific to transportation, the size and location of industrial and

population agglomerations are also influenced by the increasing returns in transportation.

This latter channel has largely been ignored in the regional models for far.

For instance, it is hard to believe that the disproportionate growth of the largest city,

1While the former type of models can be easily imagined, the latter case may require some explanation.
There are two typical examples of this case. One is the two-region setup where the transport network
consists of an only link between the two regions, and the other is the “system of cities” setup (introduced by
Henderson [18]) in which interregional spatial structure is assumed away all together.

2Fuel efficiency is probably the most common source of the distance economy. But, time efficiency is also
improved by longer hauling which justifies the services by express trains.

3Major sources of density economies are an increase in matching efficiency for transport services, and
scale economies by using larger vehicles and airplanes for concentrating transport flows to a major hubs and
trunk links.

4Some evidences have been reported for the presence of density economies in transportation. See
Brueckner and Spiller [8], Brueckner, Dyer and Spiller [7], and Caves, Christensen and Thretheway [11]
for the case of air transportation, and Braeutigam, Daughety and Turnquist [5, 6] for the case of rail
transportation, and Mori and Nishikimi [28] for the case of ocean transportation.
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Tokyo, in Japan during the last century was irrelevant to the advancement of the rail

transport technology. In 1889, when it took 20 hours by rail to reach from Tokyo to the

550km apart next largest city, Osaka, the (population) size of Tokyo was only 10% larger

than that of Osaka.5 When the travel time between the two cities reduced to 8 hours in

1935, it was 1.6 times larger. In 1965, right after the opening of the service of Shinkansen,

the bullet train, halved the travel time, the size of Tokyo (17.9 million) had become twice

as large as Osaka. When the travel time further reduced to 2.5 hours in 2005, Tokyo had

grown to the size 2.7 times (33.3 million) as large as Osaka.6

It is to be noted that the distance between these two cities has been crucial to realize

such drastic improvement in transport access for two reasons. First, to match the cost for

the state-of-the-art mass transportation, each hub city needs to support a sufficiently large

travel demand, which is possible only if they are reasonably far apart from one another

so that they do not need to compete for their hinterlands (density economies). Second, a

larger travel time reduction can be attained only by maintaining the maximum speed for

a longer distance, which is only possible by stopping less for a longer distance (distance

economies). It follows that the presence of these two increasing returns implies a certain

unavoidable distance between major transport hubs.

The locations which happened to coincide with major express stops for Shinkansen

obviously attracted a larger population. Indeed, between 1980 and 2005, among the 11

cities7 along the Shinkansen line connecting Tokyo and Osaka, the population growth rate

of 4 cities, Tokyo, Osaka, Nagoya and Kyoto, at which the express trains stop was 31.2%,

and was clearly higher than 20.3% for the case of the rest at which only local ones stop.

A similar argument applies at smaller spatial scales. In particular, the locations of

subcenters within a large metro area typically coincide with hubs of the urban transport

network. Since the urban transport modes (e.g., subways and busses) are also subject

5The population sizes here are those of prefectures, since it is safe to assume that the metro areas of Tokyo
and Osaka are roughly contained within their respective prefectures then.

6“Cities” and “metro areas” are used interchangeably throughout the paper. The definition of a city prior
to 1980 is based on Eaton and Eckstein [13], while that in 1980 or later on the Urban Employment Area by
Kanemoto and Tokuoka [24].

7Only those identified as metro areas are included.
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to economies of density and distance, the spatial distribution of subcenters should also

depend on these increasing returns in transportation.8

The rest of the paper is organized as follows. It starts by reviewing the related literature

in Section 2, and proceeds in Section 3 by presenting the general structure of transport

technology subject to the distance and density economies. It is followed by the represen-

tation of the general transport network structure under a simple spatial distribution of

transport demand in Section 4, and the definition of a transport network equilibrium in

Section 5. In Section 6, by specifying transport technology explicitly, the mechanism in

which the two increasing returns interact to pin down the location of a hub is presented.

In Section 7, certain implications are discussed regarding the macro structure of a large

hierarchical transport network. Finally, the paper is closed by the remarks on the basic

results, limitations of the present analysis, and future research directions.

2 Related Literature

Regarding the impact of transport network structure on the location and pricing behaviors,

there have been several important contributions. Hakimi [17] was the first to recognize

that the set of vertices of a transport network includes the optimal location of firms in the

classical least cost approach of Weber [41]. Louveaux, Thisse and Beguin [27] extended the

Hakimi’s result by allowing distance economies, and showed further that a transshipment

location may also be a candidate for the optimal location in the Weber problem above.

Brueckner and Spiller [8] formalized the mechanism in which density economies lead to

fare reduction in the trunk link of a given transport network. Krugman [26], Fujita and

Mori [15], Mun [32], and Behrens, Lamorgese, Ottaviano and Tabuchi [3] investigated

interaction between the hub-location advantage in an exogenous transport network and

industrial/population agglomeration economies.9

8The existing literature explain the subcenter locations mainly as a result of the interaction between land
market and transport costs without increasing returns in transportation (e.g., Ota and Fujita [34], Henderson
and Mitra [19], Sasaki [35], Sasaki and Zhang [36, 37, 38]).

9Konishi [25] also investigated the causality between population agglomeration and transport network
structure, but in the absence of increasing returns to scale or externalities. In particular, he argued that
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Endogenous formation of hub-and-spoke network structure in the presence of transport

density economies was first formulated by Hendricks, Piccione and Tan [20].10 But, no

insight has been obtained regarding relative locations among hubs, as their model ab-

stracted interregional space by assuming each pair of regions being equidistant. Mori and

Nishikimi [28] proposed the first general equilibrium model with economies of transport

density in which a hub formation and industrial location are endogenous. In the absence of

distance economies in their model, however, it was not possible to investigate the spacing

of hubs as in the present paper (for the reason to be clear in page 13).11 Finally, there

are recent works by Behrens, Gaigne and Thisse [2] and Takahashi [40] which explicitly

formulate the behavior of the transport sector. But, as their models are restricted to a

two-region economy, the role of transport sector in shaping the transport network is yet to

be studied.

3 The basic framework

Imagine a regional economy which extends over a one-dimensional location space, X ≡

[0, F] as shown in Figure 1, where F > 0 is the fringe location of the region. At each

location on X, some interregional transport demand is generated, where each shipment

is of measure zero and independent from one another. For simplicity, assume that any

shipment must go through the gateway hub located at the left end of the regional space, 0,

before reaching the final destination (outside the region). Thus, all the transport demands

in this regional economy are directed toward this gateway.

[Figure 1]

population concentration at a hub in a given transport network is partly explained by a larger labor
requirement for transport service at the hub, even in the absense of any increasing returns to scale.

10Scale economies in traffic density have long been recognized, e.g., O’Kelly [33] and Campbell [10]. But,
it has not been explicitly modeled before their work.

11It is to be noted that both distance and density economies are essential in order to explain the spacing
of hubs. In other words, the result of Mori and Nishikimi where only the density economies is considered
cannot be straightforwardly extended into a more general location space with more than three regions.

4



From each location, x ∈ X, the gateway can be reached either directly by using only in-

dividual transport mode, or indirectly by using mass transport mode which connects transport

hubs by mass transport links. The transport cost on the mass transport links is subject to the

mass transport technology, otherwise it is subject to the individual transport technology. In the

present model, the formations of transport hubs (except for the gateway hub) and mass

transport links are endogenous. Once a transport link is formed, the transport rate (per

shipment) on the link is given by τ(d, Q) which is a continuous function of the link length,

d, and the transport density, Q, on the link.

Regarding the transport distance, this technology exhibits the following properties:

τ(d, Q) > τ(d′, Q) > 0 (1)

τ(d, Q)/d < τ(d′, Q)/d′ (2)

if d > d′ > 0 for any Q ∈ (0, ∞). Property (1) means that other things being equal, the

transport rate is strictly higher for a longer transport link, while (2) expresses economies of

transport distance (or long hauling), i.e., for a given transport density, the average transport

cost (per distance) decreases in distance transported.12

Regarding the transport density, while the aggregate transport costs is larger under a

higher density, the transport rate is smaller, i.e.,

Q′τ(d, Q′) ≤ Qτ(d, Q) (3)

τ(d, Q′) > τ(d, Q) > 0 (4)

if Q > Q′ > 0 for any d ∈ (0, ∞). Property (4) expresses economies of transport density which

are external to each shipper, i.e., they take τ as given and do not take into account their

contribution to the density, Q.13

12The strict inequality in (2) does not need to hold for all d > d′ > 0 to obtain the basic results below. But,
it is assumed for simplicity of the argument.

13The monotonicity in (3) can be strict. But, allowing the equality makes analysis much simpler without
sacrificing the basic result. Refer to footnote 19 below in Section 6.

5



In reality, any single transport mode (e.g., bus, train, airplane, ship) exhibits the distance

and density economies only in a limited range of the transport distance and density. Thus,

the transport rate τ here may be interpreted as the lower envelope of the transport rates

which can be realized by all available mass transport modes. By imposing the properties

given in (2) and (4), it is essentially assumed that there are large varieties of available

transport modes, and in effect, increasing returns are at work for the entire range of

distance and density levels with implicit modal choice.

Finally, the individual transportation is assumed to be linear in distance and indepen-

dent of transport density, such that the transport cost for unit distance is a constant given

by t > 0.

4 Transport network

Let K ≡ {0, 1, 2, . . . , K} represent indices of hubs which exist in equilibrium (to be defined

later), and H ≡ {h0, h1, h2, . . . , hK} denote the set of their locations, where hi ∈ X. Let

h0 ≡ 0 be the location of the gateway, and without loss of generality, assume that hi < hj if

i < j. Given K and H, the set of locations, Di ⊂ X, is called the direct (transport) hinterland

of hub i ∈ K, if hub i is the first hub among all the existing hubs, 0, . . . , K, through which

the shipments from each location x ∈ Di to the gateway pass. By definition, Di ∩Dj = ∅ if

i 6= j, and ∪i∈KDi = X. Under the given transport technology, it can be shown that each Di

is a continuous interval on X if each shipment takes place along the cost minimizing route.

Denote by bi the boundary between the two adjacent direct hinterlands Di−1 and Di of

hubs i− 1 and i for i = 1, . . . , K, let b0 ≡ 0 and bK+1 ≡ F for notational convenience. Then,

hubs and the boundaries of their direct hinterlands are aligned so that hi−1 < bi ≤ hi,

Di = [bi, bi+1) for i = 0, . . . , K− 1, and DK = [bK−1, F].

If hub j is connected to hub i directly by a mass transport link, and all the transport

flows passing j go through i before reaching the gateway, then call hub i the parent

hub of hub j. Denote by g(hi) the location of the parent hub of hub i, and define G ≡

{g(h1), g(h2), . . . , g(hK)}. Also, denote by `i the mass transport link between hi and g(hi),
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and define L ≡ {`1, `2, . . . , `K}. If the set of direct hinterlands of hubs is denoted by

D ≡ {D0, D1, . . . , DK}, then the physical structure of transport network T can be identified

by {H, G, D}, or equivalently by {H, L, D}.14

Next, let gk(hi)(k ≥ 1) represent the k-times mapping of hi by g, when such mapping

is well-defined, i.e., gk(x) ∈ H. By definition, shipments from the direct hinterland, Dj,

of hub j to the gateway must pass hub i if gk(hj) = hi for some integer k ∈ [1, K). Hence,

a transport network is hierarchical as there exists an order in which traffic flows through

hubs toward the gateway, and the order can be defined relatively to the gateway. Namely,

for hub i ∈ K, let λi ∈ {1, . . . , K} be an integer satisfying gλi(hi) = h0. Then hub i is said

to be of order λi relative to the gateway. Similarly, if for hub j ∈ K there exists an integer

k ∈ K such that gk(hj) = hi, then hub j is said to be in the hinterland of hub i, and of order

k relative to hub i. A hub is said to be of higher order if it is more directly connected to the

gateway, i.e., the value of the order is smaller.

Now, denote by Ki(⊂ K) the index set of hubs in the hinterland of hub i, i.e., Ki ≡

{j ∈ K|∃k ∈ K s.t. gk(hj) = hi}. Then the total hinterland, Hi, of hub i can be expressed by

∪j∈Ki Dj,15 and accordingly, the transport density of hub i is computed as |Hi| ≡ ∑j∈Ki
|Dj|,

where |Dj| represents the size of transport demand generated in Dj. It follows that the

transport rate on the link i is given by τ(|`i|, |Hi|), where |`i| ≡ |hi − g(hi)|.16

An example of a three-order transport network with five hubs under the gateway is

depicted in Figure 2 below. There are two first-order hubs, 1 and 3, where hub 1 is just a

local hub near the gateway, wheras hub 3 is a major regional hub which collects transport

demands generated in the hinterland, H2 ≡ D2 and H4 ≡ D4 ∪ D5, of its child hubs, 2

and 4, respectively, besides those generated in its own direct hinterland, D3. Hub 4 is

also a minor regional hub at which the transport flow coming from a local hub 5 merges.

Such a hierarchical transport network is ubiquitous in reality, but in order to explain this

“agglomeration” of transport flows endogenously within a model, an explicit consideration

14In a more general situation in which the destinations of transport flows are not unique, there could be
multiple mass transport links from a given location. But, the present model focuses on a simplest setting
such that it is not the case.

15Note that the entire spatial economy, X, belongs to the transport hinterland of the gateway, i.e., H0 ≡ X.
16Here, |`i| represents the length of the link i, i.e., the distance between hi and g(hi).
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of distance and density (or bulk-scale) economies is essential.

[Figure 2]

5 Transport network equilibrium

For a given transport network, T , denote by T(x) the equilibrium transport rate between

the gateway and location x ∈ X. Since each shipment must take place along the cost

minimizing route in equilibrium, it follows that for each i ∈ {1, . . . , K},

T(hi) = T(g(hi)) + τ(`i, |Hi|) . (5)

Under the cost minimization by individual shippers, it is also true that the transport rate

at boundary, bi, between the direct hinterlands of hubs i− 1 and i is the same for the route

via either hub, and that each hub i is contained in its direct hinterland, i.e., hi ∈ Di. It

follows that

hi−1 < bi ≤ hi ∀i = 1, . . . , K (6)

and that

T(hi) + t(hi − bi) = T(hi−1) + t(bi − hi−1) . (7)

Since (7) can be equivalently written as

T(hi) = T(hi−1) + t(2bi − hi−1 − hi) , (8)

then by applying it recursively at each boundary, bj, for j = 1, . . . , i− 1, the transport rate

at each hub i can be expressed as

T(hi) = t
i

∑
j=1

(2bj − hj−1 − hj) . (9)
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The equilibrium condition (9) implies that

T(x) ≤ tx ∀x ∈ X . (10)

A typical transport cost schedule is shown in Figure 3 which corresponds to the network

depicted in Figure 2. Namely, it takes local minima at hub locations, and local maxima

at the boundaries of their direct hinterlands. In particular, the location h3 of the major

regional hub offers the minimum transport rate within its total hinterland, H3 = ∪5
i=2Di.

This figure clearly indicates that the endogenous transport cost structure is very different

from that under the individual linear transport technology, which in turn suggests a

potentially large influence of increasing returns in transportation on the location behavior

of economic agents.

[Figure 3]

In summary, the transport network equilibrium in the present context can be defined

as follows.

Definition 5.1 (Transport network equilibrium) Transport network, T , is in equilibrium if

and only if each shipment in X takes place along the cost minimizing route in T , i.e., (5), (6) and

(9) are satisfied, so that there is no incentive for unilateral deviation of individual shippers from T .

Obviously, this equilibrium concept is very restrictive in the sense that it does not allow

for any collective deviation from the existing transport network structure. Thus, there is

no possible mechanism which results in an active formation of a transport link/hub even

if it is viable once realized. Nonetheless it is still worth investigating the properties of

a “viable” location for a hub in the present context, and this task is pursued in the next

section.
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6 On the location of hubs

In order to illustrate the basic effects of distance and density economies on the location of

hubs, the analysis in this section focuses on a simplest setting. Namely, besides the basic

properties (1) through (4) for transport distance and density, the mass transport technology,

τ(·), is assumed to satisfy the following conditions at the limits:

lim
Q↓0

τ(d, Q) > td ∀d > 0 , (11)

lim
Q↑∞

τ(d, Q) ∈ [0, td) ∀d > 0 , (12)

lim
d↓0

τ(d, Q) ∈ (0, ∞) ∀Q > 0 . (13)

Properties (4) and (11) indicate that for any given transport distance, d > 0, the individual

transportation is more efficient than the mass transportation for a transport density close

to zero, while the opposite is true for a sufficiently large transport density (due to density

economies) under properties (4) and (12). Property (13) assumes the cost for stopping as

one of the sources of distance economies.

Now, consider the situation in which the distribution of transport demand on X is

uniform with density ν > 0, and no hub exists so that all shipments to the gateway

generated in X rely on individual technology. In this context, it is possible to compute the

viability of a hub if it were formed at each given location, h ∈ X, and the (mass) transport

link is formed from h to the gateway. This hub viability at a location, h ∈ X, can be defined

in terms of the transport rate on the potential transport link from h to the gateway under

the present transport density, F− h, without the hub, i.e.,

τ∗(h; F, ν) ≡ τ(h, ν[F− h]) . (14)

Namely, if τ∗(h; F, ν) ≤ th, then there exists a unique equilibrium boundary of the direct

hinterland, b ∈ (0, h), of this hub (so that the direct hinterland of hub h becomes [b, F]) as

10



depicted in Figure 4 for the case of a strict inequality.17

[Figure 4]

Using the concept of hub viability, the following proposition summarizes the condition

under which a transport hub can be sustained in equilibrium at all.

Proposition 6.1 For a given ν [resp., F], there exists a threshold hinterland size, F̃ [resp., transport

demand density, ν̂] such that there is a location at which a hub is viable if and only if F ≥ F̃ [resp.,

ν ≥ ν̂]. Moreover, if F = F̃ [resp., ν = ν̂], a hub is viable only at the (possibly multiple) critical

location, h̃ [resp., ĥ], which satisfies τ∗(h̃; F̃, ν) = th̃ [resp., τ∗(ĥ; F, ν̂) = tĥ ] with its direct

hinterland extending over an interval, [h̃, F̃] [resp., [ĥ, F]]. If F > F̃ [resp., ν > ν̂], a hub is viable

at any location within a continuous vicinity of h̃ [resp., ĥ] such that τ∗(h; F, ν) ≤ th.

Proof. Note first that if a hub is viable at location h ∈ (0, F), then it must be true that

τ(h, ν[F − h]) ≤ th. Define τ∗(h; F, ν) as in (14). Then, τ∗(h) > th near h = 0 by (13)

and the continuity of τ∗ (by the continuity of τ), i.e., there is no cost advantage for a hub

formation in the vicinity of the gateway. Similarly, τ∗(h) > th near h = F by (11) and the

continuity of τ∗, i.e., there is no cost advantage for a hub formation in the vicinity of the

fringe location, F. But, as for h ∈ (0, F), if the transport density, F− h, at h is sufficiently

large (i.e., for a sufficiently large F), then τ∗(h; F, ν) < th by (4) and (12). Since τ∗(h; F, ν) is

continuous and decreasing in F, it follows that there exists a critical hinterland size, F̃, and

a hub location, h̃ ∈ (0, F̃), such that τ(h̃, ν[F̃− h̃]) = th̃. For F > F̃, again by the continuity

of τ∗ and by (4) there is a continuous interval around h̃ such that τ∗(h; F, ν) ≤ th. The

result regarding ν̂ and ĥ can be proved in a similar manner. Q.E.D.

Note that this result can be applied to check the viability of a new hub within the

direct hinterland of any existing hub by re-interpreting the gateway location as that of

this existing hub i ∈ K and the fringe location, F, as the boundary location of the direct

hinterland of this hub i, i.e., bi−1 and bi. It is also possible to extend the viability concept to

see the possible formation of a higher-order hub in a more general hierarchical network.

17If τ∗(h; F, ν) = th then b = h.
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In that case, however, a more explicit equilibrium selection concept must be introduced as

the formation of a higher-order hub may involve disappearance of some existing hubs.18

This more general case will be considered in a subsequent work discussed in Section 8.3.

To help understanding the hub viability under given levels of distance and density

economies using a concrete example, a simple specification of the mass transport cost

function can be given by

τ(d, Q) =
φ + ρd

Q
(15)

where φ/Q represents the fixed cost, and ρ/Q the marginal cost on a given transport link

with transport density, Q. A relatively larger value of φ [resp., ρ] implies larger distance

[resp., density] economies.19 Under this specification, τ∗ at the gateway, the fringe location,

F, and an interior location, h ∈ (0, F), take the values,

τ∗(0) =
φ

νF
> 0 , (16)

τ∗(F) ≡ lim
h↑F

τ∗(h) = ∞ , (17)

τ∗(h) =
φ + ρh

ν[F− h]
, (18)

respectively. Moreover, τ∗ is increasing and convex:

∂τ∗(h)
∂h

=
1
ν

[
ρ

F− h
+

φ + ρh
(F− h)2

]
> 0 , (19)

∂2τ∗(h)
∂h2 =

2(φ + ρF)
ν(F− h)3 > 0 . (20)

As indicated in Figure 5, the critical hinterland size, F̃, the critical density of transport

18If the new higher-order hub could offer a substantial cost reduction, it will attract transport demands in
the hinterland of nearby lower-order hubs.

19The specification in (15) is rather special in that condition (3) holds with equality. Alternatively, the mass
transport technology can be given by, e.g., τ(d, Q) = φ+ρ

Qα with α ∈ (0, 1) or τ(d, Q) = α + φ+ρd
Q , so that (15)

holds with strict inequality. But, the analysis becomes far more complex without changing the basic results.

12



demand, ν̂, as well as the critical hub locations, h̃ and ĥ, are determined uniquely as below:

F̃ = 2
√

f /ν + r/ν (21)

h̃ =
√

f /ν (22)

ν̂ =
1
F2

(
2 f + 2

√
f
√

f + Fr + Fr
)

(23)

ĥ =
√

f /ν̂ (24)

where f ≡ φ/t and r ≡ ρ/t are the fixed and marginal cost for mass transportation relative

to the rate of individual transportation. The interpretations of f and r are the same as those

of φ and ρ. A larger value of f relative to r means relatively larger distance economies.

[Figure 5]

When the fixed cost, f , for transportation is larger, the possible locations, h̃ and ĥ, of a

hub is necessarily farther from the gateway to utilize distance economies. When ν is larger,

the density economies are relatively more pronounced, and hence, the mass transportation

becomes efficient for a smaller transport distance. As a result, the hub location becomes

closer to the gateway.

The viable location for a hub is thus determined by the balance between distance

and density economies. If the former [resp., latter] is relatively stronger, the spacing

of transport hubs tends to be larger [resp., smaller] as the transport efficiency increases

relatively more by longer hauling [resp., carrying larger volume]. It is analogous to the

agglomeration shadow around an existing industrial agglomeration suggested by the new

economic geography models (e.g., Fujita and Krugman [14]) in which a new agglomeration

is unlikely to form, since it is too close to the existing agglomeration in order for a firm to

exercise monopoly power in the local market. In the present case, “agglomeration” is in

terms of transport demand.

It is to be noted that both distance and density economies are necessary in order to

investigate the spatial distribution of hubs. When transport demand is generated at each

point in a continuous location space as in the present model, if there were no density
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economies, then there would be no cost advantage of pooling transport demand, while if

there were no distance economies, a continuum of hubs would form (i.e., hubs will form

without leaving any space between them).20

7 Implications to the structure of a transport network

In this section, preliminary implications for the size and spacing of hubs from the present

model are discussed. Although a fuller analysis under more general equilibrium concepts

is beyond the scope of the present paper, some interesting insights can still be obtained

from the present simplistic setup.

In general, if density economies are more pronounced than distance economies, mass

transportation tends to collect transport demand along the way as a local train stops every

station in order to carry as many passengers as possible. Consequently, the hierarchy of

hubs tends to deepen. In this “local train” network, the size distribution of hubs becomes

relatively less skewed, as the size of a parent hub is larger than its child hub only by the

size of shipments from its own direct hinterland.

If distance economies are more pronounced instead (say, when the cost of stopping is

high, as for the case of airplanes), then the hierarchy is less likely to be formed among hubs,

and each hub tends to be directly linked to the gateway. In that case, the traffic volume at

the gateway will be disproportionately large as all the shipments gather there, while all

the other hubs are small as they are of the lowest-order. The resulting size distribution of

hubs will then be relatively more skewed.

Below, it is shown that for a sufficiently large spatial economy, the depth of a hub

hierarchy would eventually hit its upper bound even if density economies are very strong

(Section 7.1), while a higher-order hub would eventually develop, and the hub hierarchy

would deepen, even if distance economies are very strong (Section 7.2). Hence, there is a

tendency that the skewness of hub size distributions under different levels of distance and

20The continuity of the location space is not essential in this argument as long as the location space consists
of more than two locations.
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density economies converge, though there may not be a common limit.

This possibility of the emergence of order in the size distribution of transport hubs may

be in part responsible for the Rank-Size Rule for cities, a well-known log-linear relationship

between the size and rank in terms of size of cities. In fact, it is not difficult to confirm in

reality that most major cities are associated with major transport hubs. In the case of Japan,

the Spearman’s rank correlation between the population size of a city and passenger traffic

volume of the airport in that city in year 2000 is 0.645 (highly significant).21

7.1 On the upper limit of the hub hierarchy depth

Consider a situation in which the spatial size of the economy expands, i.e., F increases

gradually. Then, a hub becomes viable first at h̃1 ≡ h̃ when F reaches F̃1 ≡ F̃. Similarly, if

F reaches F̃2 ≡ h1 + F̃, the second hub becomes viable at h2 ≡ h1 + h̃. In this manner, it is

possible to construct an equilibrium i-order “local train” hierarchical hub system with i (≥ 1)

hubs in which hubs are located at hi ≡ hi−1 + h̃ for F ≥ F̃i, since there is no incentive for

unilateral deviation of shippers from the existing transport pattern. This network structure

is depicted in Figure 6.

[Figure 6]

Notice, however, that as the hierarchy of hubs deepens, the fixed cost of mass transporta-

tion accumulates, and at some point, there would emerge a possibility of cost reduction

by directly connecting an existing hub i (≥ 2) to the gateway by a trunk link so that all

the shipments via hub i would be transported to the gateway directly by a mass transport

mode.

To see this, assume that hubs are formed at hi = hi−1 + h̃ and g(hi) = hi−1, for all

i = 1, . . . , KF, where KF is the ceiling of F/h̃. Now, define the relative cost for the direct trunk

link from hub n(≥ 2) to the gateway as

∆∗τ(F) ≡ φ + ρnh̃
Hn

/
n

∑
i=1

φ + ρh̃
Hi

(25)

21Airport size data are obtained from Civil Aviation Bureau of Japan [12].
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where Hi ≡ [bi, F]. Since H1 > Hi for all i > 1,

∆∗τ(F) <
φ + ρnh̃

Hn

/
φ + ρh̃

nH1

=
φ/n + ρh̃

Hn

/
φ + ρh̃

H1

=
1/n + ρ

√
tν/φ

1 + ρ
√

tν/φ

H1

Hn
. (26)

But, since
H1

Hn
<

F
F− nh̃

=
F

F− n
√

tνφ
, (27)

and since limF→∞ F/(F− nh̃) = 1, it follows from (26) and (27) that

lim
F→∞

∆∗τ(F) =
1/n + ρ

√
tν/φ

1 + ρ
√

tν/φ
< 1 . (28)

Hence, if the hub hierarchy deepens as F increases, for any given hub n ≥ 2, the formation

of a direct trunk link to the gateway would eventually become less costly than stopping

at hub n− 1. As (26) indicates, if density economies are relatively more important than

distance economies (i.e., φ is small relative to ρ), then such a trunk link is less effective for

cost reduction. However, the analysis above suggests that for a sufficiently large spatial

economy, for any given levels of distance and density economies (i.e., for any values of ρ

and φ), the depth of the hub hierarchy has a limit, if an appropriate collective action (or

in the presence of a large agent aiming for reducing total transport costs) is allowed as

in reality. It corresponds to the fact that major trunk links (e.g., express and bullet trains,

jumbo jet links) are only formed at a large interregional scale.

This result has an implication to the size distribution of transport hubs. When density

economies dominates distance economies, the hub hierarchy tends to be deeper (e.g., trains

tend to stop larger number of stations), so that the size distribution of hubs is relatively

less skewed. But, the viability of major regional hubs which climb up the hub hierarchy

for a larger spatial economy implies the tendency that the skewness of the size distribution

increases (at the upper tail) as the spatial size of the economy increases.
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7.2 On the lower limit of a hub hierarchy depth

Next, consider a situation in which each hub is directly linked to the gateway, so that the

hub hierarchy is of only a single order. Such a configuration is likely to be an equilibrium

when distance economies are very strong. But, for sufficiently remote hubs for which the

distance cost dominates, there can be a substantial cost reduction by pooling transport

demand among neighboring hubs (although such an action is infeasible by unilateral

deviations of individual shippers/passengers).

To see this, consider a “hub-and-spoke” network so that local hubs are located at

h1, h2, . . ., each of which is directly connected to the gateway by a mass transport link, i.e.,

g(hi) = h0 and Hi = Di for all i ≥ 1, as shown in Figure 7.

[Figure 7]

Now, define the relative transport cost from hub n to the gateway when hub n is connected

to a neighbor hub n− 1 instead of the gateway as

∆T∗∗(hn) ≡
[

φ + ρhn−1

Dn−1 + Dn
+

φ + ρ(hn − hn−1)

Dn

]
− φ + ρhn

Dn
. (29)

In (29), the bracketed term represents the transport rate at hub n when transport demands

at hubs n and n− 1 are pooled at hub n− 1,22 while the last term is the (current) transport

rate on the direct link between hub n and the gateway. Since (29) can be rewritten as

Dn

ρhn−1
∆T∗∗(hn) =

Dn

Dn−1 + Dn

[
φ

ρ

1
hn−1

+ 1
]
− 1 , (30)

it follows that

lim
hn−1→∞

∆T∗∗(hn) < 0 . (31)

Hence, for a sufficiently remote hubs, n and n− 1, a cost reduction is possible by pooling

their transport demand.23

22The first [resp., second] term in the bracket is the transport rate between hub n− 1 and the gateway
[resp., hubs n and n− 1].

23Obviously, for a hub to be viable at large hn, the fringe location, F, should also be large.
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If the distance economies are relatively stronger than density economies, there will be

relatively small advantage of integrating transport demand among hubs, i.e., higher-order

hubs is less likely to be formed. In particular, when these two hubs, n and n− 1, are located

closely to the gateway, because of the fixed cost, φ, the integration of transport demand

from both hubs is more costly than the direct shipment from each hub. But, when these

two hubs are sufficiently far from the gateway, the fixed cost of the additional stopping

will eventually become negligible, relative to the benefit of cost sharing on the long link

to the gateway. It follows that as long as ρ (and φ) is strictly positive, the formation of a

higher-order hub in an area sufficiently far from the gateway would lead to a substantial

cost reduction in the transportation from the peripheral region. Hence, under possibilities

of some form of coalition leading to the formation of trunk links, it is likely that the hub

hierarchy deepens as the economy expands spatially.

This result has an implication to the size distribution of transport hubs. When distance

economies dominates density economies, the hub hierarchy tends to be shallower (e.g.,

airlines stop far less than trains before reaching the final destinations), so that the size

distribution of hubs is relatively more skewed (e.g., only the gateway has disproportion-

ately large traffic in the network depicted in Figure 7). But, the fact that the formation of

higher-order hubs becomes possible for a large spatial economy implies that the skewness

of the size distribution may decrease (at the upper tail) as the spatial size of the economy

increases.

8 Concluding remarks

In this paper, a simple model of transport network formation was proposed to show that

the increasing returns in transportation restricts the structure of transport network in its

own right. In particular, it has been shown that the two types of increasing returns in

transportation, i.e., distance and density economies, play a crucial role in determining the

viable locations of transport hubs.

Under larger density economies, it is more efficient to stop more frequently to accumu-
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late transport demand, hence the spacing between the parent and child hubs tends to be

smaller. Under larger distance economies, it is more efficient to have a larger transport

distance, hence a larger spacing between a parent and child hubs would result.

This section closes the paper by discussing implications of the two increasing returns in

transportation to the size and spacing of cities (Section 8.1), the limitations of the present

analysis (Section 8.2), and future research directions (Section 8.3).

8.1 Implications to the size and spacing of cities

As transport hubs have a better transport access than non-hub locations, they are natu-

rally more likely locations for industries and population. This result has an important

implication to the economics of agglomeration in which the location (and the spatial

distribution) of industrial and population agglomeration is a central subject. Other than a

few specific exceptions (discussed in Section 2), either no increasing returns are assumed

for transportation, or transport network structure is exogenous in this literature. But, the

result of the present analysis indicates that increasing returns in transportation could be a

major determinant of the size and location of economic agglomerations, as they determine

endogenously the transport cost structure within the spatial economy.

The balance between distance and density economies not only affects the spacing

of hubs, but also generates economic subregions in terms of an endogenous transport

hinterland of a hub. Though the thorough investigation of the hierarchical transport

network is beyond the scope of this paper, a preliminary analysis in Section 7 suggests that

a wide spread transport demand makes possible the formation of a higher-order regional

hub which requires both a large local hinterland and a large distance to the gateway. As a

result, larger regional hubs would be formed farther apart from each other, which may in

turn explain a larger spacing between major cities.

As transport costs account for increasing and non-negligible share in the international

trade,24 the mechanism underlying the transport network formation should obtain a

24E.g., Anderson and von Wincoop [1] estimated the ad valorem tax equivalent transport costs as 21
percent for industrialized countries. According to Hummels [22], the ratios between aggregate transport
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serious attention in explaining the specialization pattern among countries as well.

8.2 Limitations of the present analysis

The present analysis is a modest step toward incorporating endogenous transport network

structure to the general equilibrium urban and regional models. At this point, however, it

only focuses on the most basic role of distance and density economies of transportation in

determining the locations of hubs.

An obvious shortcoming of the present model is the lack of microeconomic foundation

for these increasing returns. First, although density economies assumes underlying match-

ing externalities between supply and demand of transport services (refer to footnote 3),

the mechanism is completely in a black box. Second, while the ranges of both transport

density and distance for which increasing returns are effective differ depending on the

type of transport mode in reality, these increasing returns are assumed to be effective for

the entire range of density and distance levels, i.e., the modal choice is implicit in the

present model. Third, the “viability” of a hub at a given location only guarantees the

cost reduction by the hub formation. But, it does not specify any concrete mechanism by

which the hub is to be formed. This is indeed the difficulty that the modeling of transport

network formation faces in general, as it must consider a collective decision making or the

presence of large agents to coordinate the adjustment of a mass of transport flows, since

the trunk link cannot start from a marginal size in a decentralized self-organization.25

Finally, in order to accomplish the ultimate objective mentioned above, it is also essential

to endogenize the spatial distribution of transport demand, i.e., that of economic agents by

explicitly modeling the production and consumption sectors.

costs and aggregate tariff duties for the US imports were 1 : 2 in 1958, 1 : 1 in 1965, and 3 : 1 in 2004.
25It is somewhat similar to the city formation as it requires a large agent in the “system of cities” model

by Henderson [18]. An exceptional formulation has been proposed in the new economic geography by
Fujita and Krugman [14] in which a city forms in a self-organizing manner from an arbitrarily small size in a
continuous location space. But, the same technical trick cannot be applied to the transport network.
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8.3 Future research directions

Despite many limitations listed in the previous section, there still are interesting extensions

of the present model. An immediate agenda is to investigate the properties of equilibria in

a large spatial economy. As the preliminary analysis in Section 7 indicated, there would

likely exist equilibria with multi-order hierarchical transport network if the hinterland of

the gateway grows large. While the non-linear effects of the two increasing returns make it

difficult to identify all equilibria, it is still possible to find an equilibrium network structure

for a spatially growing economy (i.e., in terms of an increasing F) by a myopic adjustment.

In the way that a viable hub location h̃ is identified when the spatial size of economy

reaches a certain point, F̃, in Section 6, it is possible to ask if there is a potential trunk

link from each hub (to another hub or the gateway) which if formed will reduce transport

cost in the hinterland of the hub in question (or average transport cost of the entire

economy). Such an adjustment is obviously ad-hoc compromise for computability. But, it

is nonetheless useful as an initial attempt for explaining endogenous formation of a large

transport network in the presence of distance and density economies.

It is also to be noted that in reality the locations of hubs of multiple transport modes

tend to coincide, which in turn leads to the formation of a hub city. While the presence of

large agents is particularly important in explaining the network structure of each specific

transport mode, their spatial coordination may largely be subject to self-organization,

where increasing returns in a given transport mode influences the network structure of

another transport mode through the endogenous transport density. Since the coordination

among different transport modes is far from perfect, the use of myopic adjustment is not

necessarily unrealistic to explain the mechanism underlying the actual network structure.

A preliminary analysis in this direction indicates that in a large spatial economy, the

size distributions of hubs exhibit a striking similarity across transport hinterlands of

higher-order hubs (i.e., Hi of hub i in Section 4). A fuller investigation in this direction is

to be conducted in a subsequent work.26

26The result exhibits a close resemblance to the similarity of size distributions of cities across subregions
within a given economy reported for the cases of the US and Japan by Hsu, Mori and Smith [21].
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Figure 3: Transport cost schedule under the network in Figure 2
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