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Abstract

Nonlinear time series models, especially those with regimigiching and conditionally heteroskedastic
errors, have become increasingly popular in the econonmdsfiaance literature. However, much of the
research has concentrated on the empirical applicatioverisius models, with little theoretical or statistical
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analysis associated with the structure of the processdseaadsociated asymptotic theory. In this paper,
we first derive necessary conditions for strict statiogaaitd ergodicity of three different specifications of
the first-order smooth transition autoregressions witkteskedastic errors. This is important, among other
reasons, to establish the conditions under which the toaditLM linearity tests based on Taylor expansions
are valid. Second, we provide sufficient conditions for ¢stiescy and asymptotic normality of the Quasi-
Maximum Likelihood Estimator for a general nonlinear cdimfial mean model with first-order GARCH
errors.

KEYWORDS. Nonlinear time series, regime-switching, smooth traosjtSTAR, GARCH, log-moment,
moment conditions, asymptotic theory.

1 Introduction

Recent years have witnessed a vast development of nonlieelamiques for modelling the condi-
tional mean and conditional variance of economic and firstiche series. In the vast array of new
technical developments for conditional mean models, thed@mTransition AutoRegressive (STAR)
specification, proposed by Chan and Tong (1986) and dewklbpd_uukkonen, Saikkonen, and
Terasvirta (1988) and Terasvirta (1994), has found a rrrabsuccessful applications (see van Dijk,
Terasvirta, and Franses (2002) for a recent review). Tine temooth transition” in its present mean-
ing first appeared in Bacon and Watts (1971). They presehtsid gmooth transition specification
as a model of two intersecting lines with an abrupt changen fooe linear regression to another at
an unknown change-point. Goldfeld and Quandt (1972, pp-2883 generalized the so-called two-
regime switching regression model using the same ideaeltirtie series literature, the STAR model
is a natural generalization of the Self-Exciting Threshldoregressive (SETAR) models pioneered
by Tong (1978) and Tong and Lim (1980) (see also Tong (1990)).

In terms of the conditional variance, Engle’s (1982) Autessive Conditional Heteroskedastic-
ity (ARCH) model and Bollerslev’s (1986) Generalized ARGBEXRCH) model are the most popular
specifications for capturing time-varying symmetric vibilgtin financial and economic time series
data. McAleer (2005) provide an overview of different umigge and multivariate conditional volatil-
ity models.

Despite their popularity, the structural and statisticalgerties of these models were not fully es-
tablished until recently. Chan and Tong (1986) derived tificient conditions for strict stationarity
and geometric ergodicity of a two-regime STAR model, whiaeettansition function is given by the
cumulative Gaussian distribution. Although several pafve been published in the literature with
general conditions for strict stationarity and ergodiaifynonlinear time series models, especially
threshold-type models, few attempts have been made to etvapd the dynamics of more general
smooth transition processes (see Chen and Tsay (1991) fearinreference on the ergodicity of
threshold models). In general, only very restrictive sigdfit conditions are provided. For general
nonlinear homoskedastic autoregressions, see Bhatyachad Lee (1995), An and Huang (1996),
An and Chen (1997), Lee (1998), among many others. Nonlimeatels with ARCH errors (not
GARCH) have been considered, for example, by Masry and Agast (1995), Cline and Pu (1998,



1999, 2004), Lu (1998), Lu and Jang (2001), Chen and CheriLj26fivang and Woo (2001), Lieb-
scher (2005), and Saikkonen (2007). Stability of nonlireagtoregressions with GARCH type errors
has been analyzed by Liu, Li, and Li (1997), Ling (1999), adlihe (2007). Of these articles, those
of Liu, Li, and Li (1997) and Ling (1999) are restrcited togbhold AR-GARCH models, whereas
the one by Cline (2007) analyses a very general nonlinearegressive models with GARCH errors.
Cline (2007) obtained sharp results for geometric ergtdimiit a difficulty with the application of
these results is that the assumptions employed are quitzajemd are difficult to verify. A threshold
AR-GARCH model is the only example that is explicitly tredtey the authors. Furthermore, con-
ditional heteroskedasticity is driven by the observedeseinstead of the autoregressive errors as in
the usual GARCH specification. Ferrante, Fonseca, and V{@003) considered threshold bilinear
Markov processes. Only recently, Meitz and Saikkonen (2608fly the stability of general nonlinear
autoregressions or ordgrwith first-order GARCH errors. However, they explicitly dyse only a
STAR model with two limiting regimes.

Consistency and asymptotic normality of the nonlineartlsegsares estimator are given under the
assumption that the errors are homoskedastic and indepteride recent paper, Mira and Escribano
(2000) derived new conditions for consistency and asyrigpbatrmality of the nonlinear least squares
estimator. However, estimation of the conditional varem@s not considered in these papers.

Significant efforts have been made to fully understand topgties of univariate and multivari-
ate GARCH models. Nelson (1990) derived the necessary dfidiesnt log-moment condition for
stationarity and ergodicity of the GARCH(1,1) model. Thimdition was extended to higher-order
models by Bougerol and Picard (1992). Weak stationarity taedexistence of fourth moments of
a family of power GARCH models have been investigated in He &erasvirta (1999a,b), while
Ling and McAleer (2002a,b) derived the necessary and seffficGonditions for the existence of all
moments for these models.

Concerning the estimation of parameters for GARCH modeds,and Hansen (1994) and Lums-
daine (1996) proved that the local Quasi-Maximum Likeliddestimator (QMLE) was consistent
and asymptotic normal under strong conditions. Jeanth&8®88] established the consistency re-
sults of estimators for multivariate GARCH models. His geoof consistency did not assume a
particular functional form for the conditional mean, bus@sed a log-moment condition and some
regularity conditions for purposes of identification. Maeeently, Ling and McAleer (2003) pro-
posed the vector ARMA-GARCH model and proved the consistefthe global QMLE under only
the second-order moment condition. They also proved thepistic normality of the global (local)
QMLE under the sixth-order (fourth-order) moment conditi€omte and Lieberman (2003) studied
the asymptotic properties of the QMLE for the BEKK model ofglnand Kroner (1995). Berkes,
Horvath, and Kokoszka (2003) proved the consistency ayhpiotic normality if the QMLE of the
parameters of the GARCHJg) model under second- and fourth-order moment conditioespeac-
tively. Boussama (2000), McAleer, Chan, and Marinova (208fd Francq and Zakoian (2004) also
considered the properties of the QMLE under different gmations of the symmetric and asymmet-



ric GARCH(p,q) model.

However, most of the theoretical results on GARCH modelehassumed a constant or linear
conditional mean (see McAleer (2005) for further detailé)has not yet been established whether
these results would also hold if the conditional mean wendinear. Chan and McAleer (2002)
combined the general STAR model with GARGHY) errors, but their results were derived under the
assumption that the conditional mean parameters were known

This paper extends existing results in the literature iresswespects. The sufficient conditions
for strict stationarity and geometric ergodicity of a gexterlass of first-order STAR models with
GARCH(1,1) errors are established. STAR models with moae thvo regimes are also considered.
Second, consistency and asymptotic normality of the QMLEhefa general nonlinear conditional
mean model with first-order GARCH errors are derived undeakn@nditions. Finally, a simulation
experiment highlight the small sample properties of the GVL

The structural and statistical properties developed ig pEiper can also be used to derive the
distributions associated with various test statisticppsed in the nonlinear time series literature.
These properties provide the foundation for developingenrommplete tests for important economic
and financial hypotheses. For instance, the correlatiowd®et prices over time is often used as a
test for the weak form of the Efficient Market Hypothesis (EMi#hich assumes that prices follow
a linear process. However, if prices follow a nonlinear pss; such as a STAR-type process, the
correlation between prices over time may appear insigmfigafinite samples. Thus, formal tests of
nonlinear dependence would also provide an important dstgnfor testing the EMH.

The plan of the paper is as follows. Section 2 provides a gesnr of the models considered
in the paper. Stationarity, ergodicity and the existencenoments are discussed in Section 3. The
asymptotic properties of the QMLE are considered in Sectioln Section 5 we present simulation
results concerning the finite sample properties of the QMhdEan empirical illustration is shown in
Section 6. Finally, Section 7 gives some concluding remafdktechnical proofs are given in the
Appendix.

2 Model Specification

In this section we consider three different classes of STMRCH models. The first specification is
an additive logistic STAR model with multiple regimes in tb@nditional mean and GARCH errors.
This model nests the SETAR-GARCH process of Li and Lam (19%63imilar specification with
Gaussian errors was proposed in Suarez-Farifias, PedirdaVedeiros (2004) and Medeiros and
Veiga (2000, 2005). The second specification is a restritdeth of the multiple-regime logistic
STAR model with GARCH errors.

This particular functional form with homoskedastic erraras discussed in van Dijk, Terasvirta,
and Franses (2002). Finally, the third specification is tkpdBential STAR-GARCH (ESTAR-
GARCH) model, of which the Exponential STAR (ESTAR) Ter#sv (1994) model is a special



case.

DEFINITION 1. TheR-valued proces$y;, t € Z} follows an autoregressive model with time-varying
coefficients and GARCH(1,1) errors if

p

e = folse)+ > filst)yi—i + e, 1)
=1

€t = Ut\/h_m and )

hy =w+ 0563_1 + Bh_1, (€)

where{n,} is a sequence of independently and identically distributexd mean and unit variance
random variablesy; ~ 1ID(0, 1) and f;(s¢) = fj(st; Aj), 5 = 0,1,..., p, are nonlinear functions of
the variabless; and are indexed by the vector of paramet&rsc RE,

It is clear that the model defined by equations (1)—(3) is laimtb the functional coefficient
autoregressive model proposed by Chen and Tsay (1993).nDieyeon the choice of the functions
fi(s;A), 7 =0,1,...,p, different specifications of the STAR model can be derivelde following
cases are considered:

1. The Multiple Regime Logistic STARJ-GARCH(1,1) (or MLSTARp)-GARCH(1,1)) model:
Sets; = y;—q, d € N, and

[i(s:A) = ¢oj + ZQSijG(ytde%’»Cz’)a J=0,...,p, (4)
=1

where
1

1+ e~ Yi(yt—a—ci)’

G (Yi—a; i, ¢i) = (5)

2. The Generalized STAR-GARCH(1,1) (or GSTAR{)-GARCH(1,1)) model:
Sets; = y;—q, d € N, and

[i(s65X) = ¢oj + ¢1;G(ye—a;7, €), (6)
where 1
G —d> 7 = ) 7
(Yt—a; 7, ) |+ o T Gra—an)] (7)
withc = (c1,...,cm)'

3. The Exponential STAR)-GARCH(1,1) (or ESTAR{)-GARCH(1,1)) model:

Sets; = y;_q, d € N, and

[i(56:A) = doj + ¢1;G(Yi—a; 7, ©), (8)

5



where
G (yeea;y,¢) = 1 — e 7 We-a=), 9)

ExAmPLE 1. Consider a three regime MLSTAR(1)-GARCH(1,1) model wihergransition variable
iS yi—1, ¢oo = —0.001, p19 = 0.001, ¢og = 0.001, ¢pp; = —0.001, ¢1; = 0.001, ¢2; = 0.001,
1 = 1000, 2 = 1000, ¢; = —0.01, c3 = 0.01, w = 1075, & = 0.05, and 3 = 0.85. Figure 1 shows
the scatter plotfy(y:—1) and f1(y:—1) versusy,—,. One characteristic of such specification is that
the linear parameters in each limiting regimes are allowed¢ different.
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Figure 1: Upper panelfy(y;—1) versusy,_; for one realization of the model described in Example
1. Lower panel:f; (y;—1) versusy,_; for one realization of the model described in Example 1.

ExaMPLE 2. Consider a three regime GSTAR(1)-GARCH(1,1) model wherérainsition variable
IS yi—1, ¢oo = —0.001, ¢p19 = 0.002, ¢91 = 0.025, ¢1; = 0.0.25, v = 100000, ¢; = —0.01,

ca = 0.01, w = 107°, o = 0.05, and 3 = 0.85. Figure 2 shows the scatter plgt(y;_1) and
f1(yt—1) versusy; 1. Contrary to the MLSTAR model, the linear parameters in diaaiing extreme
regime are restricted to be equal. Furthermore,

ExXAMPLE 3. Consider a three regime ESTAR(1)-GARCH(1,1) model wher¢réimsition variable
IS y:_1, doo = —0.001, ¢19 = 0.002, g1 = 0.025, ¢11 = 0.0.25, v = 100000, ¢ = 0, w = 1077,
a = 0.05, and 8 = 0.85. Figure 3 shows the scatter plgt(y;—1) and fi(y—1) versusy,_;. As



x 107 Generalized STAR-GARCH Model
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Figure 2: Upper panelfy(y;—1) versusy,_; for one realization of the model described in Example
2. Lower panel:f; (y:—1) versusy;_; for one realization of the model described in Example 2.



in the previous example, the linear parameters in each ilmgiextreme regime are restricted to be
equal.

x 107 Exponential STAR-GARCH Model
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Figure 3: Upper panelfy(y;—1) versusy,_; for one realization of the model described in Example
3. Lower panel:f; (y:—1) versusy;_; for one realization of the model described in Example 3.

3 Probabilistic Properties

In this section only first-order models will be consideredle/in Section 4 general nonlinear models
will be analyzed. Consider the following set of assumptions

AssSUMPTION1 (Error Term). The sequencgn, } of IID(0, 1) random variables is drawn from a con-
tinuous (with respect to Lebesgue measure on the real luméjnodal, positive everywhere density,
and bounded in a neighborhood of 0.

ASSUMPTIONZ2 (Model Structure).p = 1 ands; = y;—; in Equation (1).

AssuMPTION 3 (Identifiability and Positiveness of the Varianc@)jhe parameters of the model de-
fined by (1)—(3) satisfy the following conditions: (R.2a)> 0,i =1,...,m,andc; < ¢ < --- <
cm N (4); (R1.b)y > 0andc; <o < -+ < ¢y in(6); (R.1C)y > 0in (8); (R.2)w > 0, > 0, and
8> 0.



Assumption 1 is standard. Note that we do not assume symroétifye distribution, which
is particularly useful when modelling financial time seriedssumption 2 forces the model to be
of first-order. This will be crucial to the results in this §ea but will be relaxed in Section 4.
The restrictions (R.1a)—-(R.1c) in Assumption 6 are impurta guarantee that the model is globally
identifiable. Restriction (R.2) is a sufficient condition fa > 0 with probability one.

Note thatz; = (y:, hs,n;)’ is @ Markov chain with homogenous transition probabilitpessed
as

z: = F (z;-1) + e, (20)

where
fo(ye—1) + f1(ye—1)ye—1
F(z1) = | w+ (B+an?y) i
0

andet = (Et, 0, Ut),.
The following theorems state the necessary conditionstfict stationarity and geometric ergod-
icity of the STAR-GARCH models considered in this paper.

THEOREM 1 (Stationarity — MRLSTAR(1)-GARCH(1,1) modelDefine¢ = Yoty ¢ Under
Assumptions 1-2, and if (R.1a) in Assumption 6 holds, theegs]y;,t € Z} defined by equations
(1)—(3) and (4) is strictly stationary and geometricallygedic ifa + 3 < 1, |¢o1| < 1 and|¢| < 1.
Furthermore, the procesgz,;, t € Z} admits a unique causal expansion.

THEOREM 2 (Stationarity — GSTAR(1)-GARCH(1,1) modelBetp = ¢g1 + ¢11. Under Assumption
1, and if (R.1b) in Assumption 2 holds, the procégst € Z} defined by equations (1)—(3) and (6)
is strictly stationary and geometrically ergodicdf+ 3 < 1, |¢o1| < 1 and|¢| < 1. Furthermore,
the procesqz;,t € Z} admits a unique causal expansion.

THEOREM 3 (Stationarity — ESTAR(1)-GARCH(1,1) modelBetp = ¢ + ¢11. Under Assumption
1, and if (R.1c) in Assumption 2 holds, the procégst € Z} defined by equations (1)—(3) and (8)
is strictly stationary and geometrically ergodicdf+ 5 < 1 and W < 1. Furthermore, the process
{z:,t € Z} admits a unique causal expansion.

If the conditions of the above theorems are met, the prosgggé and{h,} have the following
causal expansions:

oo j—1
Yr = Aojt—1 + Z H fo(e—1-5) [1(Wi—1-k) + [1(Ye—1-1)Et—5] , (11)
j=1 k=0
oo j
he=w |1+ J[(B+eniy)|. (12)
7=1k=1



4 Parameter Estimation and Asymptotic Theory

In this section we discuss the estimation of general noatinatoregressive models with GARCH(1,1)
errors. The STAR-GARCH models analyzed previously aregpstial cases.
Consider the following assumption.

AsSSUMPTION4. TheR-valued procesgy;,t € 7} follows the following nonlinear autoregressive
process with GARCH errors (NAR-GARCH):

Y = 9(yi—1;A) + &, (13)
er = v/, (14)
hy =w+ ae? | + Bh_1, (15)

wherey; 1 = (y1—1,...,¥—p) andm; ~ 11D(0,1).
AssSuMPTIONS. The nonlinear functiog(y;—1; A) satisfy the following set of restrictions:
1. g(yt—1; ) is continuous il and measurable ig;_;.
2. g(yi+—1; A) is parameterized such that the parameters are well defined.
3. g(y+—1; A) andwvarepsilon; are independent.
4. Elg(yt-1;A)|? < oo,g=1,2,4.
5. E{exp[g (yt-1;A)]"} < 00, ¢ =1,2,4.
6. E ‘%g(yt_l;)\)‘q <o00,q=1,2,4.
7. E ‘%;Xg(yt_l; )\)‘q < o00,q=1,2.

Setvy) = (X,Tr’)', where X is the vector of parameters of the conditional mean, as dgfine
in Section 2, andr = (w,«,3)" is the vector of parameters of the conditional variance. Hes t
distribution ofn, is unknown, the parameter vectgris estimated by the quasi-maximum likelihood
(QML) method. Consider the following assumption.

ASSUMPTIONG. The true parameter vectap, € ¥ C RY is in the interior of ¥, a compact and
convex parameter space, whe¥e= dim() + dim(r) is the total number of parameters.

The quasi-log-likelihood function of the NAR-GARCH modslgiven by:

1 T
Lr() =7 ) b(¥),
t=1

. (16)
—12—11 (2 )_11 (hy) — =
T T A T Ty

10



Note that the processeg and h;, t < 0, are unobserved, and hence are only arbitrary constants.
Thus, L7 (1) is a quasi-log-likelihood function that is not conditiormad the true(yo, ko), making it
suitable for practical applications. However, to prove dsgmptotic properties of the QMLE, it is
more convenient to work with the unobserved proggss +, hy ) : t =0,£1,£2,...}.

The unobserved quasi-log-likelihood function conditioo 7y = (yo,y—1,y—2,...) IS

1
Lur() = lut(¥),
t=1
1 1 1 €2 40
_ - - . N u,t
=7 > 5 In(27) 5 In(hy ) G

t=1

The main difference betweefi- () andL,, (1) is that the former is conditional on any initial val-
ues, whereas the latter is conditional on an infinite sefigast observations. In practical situations,
the use of (17) is not possible.

Let

peT pew \ T =

17)T = argmaxLp (1)) = argmax ( ! ZM@) ,

and

B = argmaxC, () = argmax (% Zeu,tw)) .

hew YeW P

Define L(¢) = E[l,+(¢)]. In the following subsection, we discuss the existencé (@p) and
the identifiability of the NAR-GARCH models. Then, in Subsex 4.2, we prove the consistency of
;[)T andq,Abu,T. We first prove the strong consistencyz?»;,T, and then show that

sup [Lo, (%) — Lr()] “3 0,
bE

so that the consistency quT follows. Asymptotic normality of both estimators is considd in
Subsection 4.3. We prove the asymptotic normalitngfT. The proof oﬁZT is straightforward.
4.1 Existence of the QMLE

The following theorem proves the existencefdh)). It is based on Theorem 2.12 in White (1994),
which establishes that(v) exists under certain conditions of continuity and meadlitatof the
guasi-log-likelihood function.

THEOREM4. Under Assumptions 1 and Z(1)) exists, is finite, and is uniquely maximized/gt

4.2 Consistency

The following theorem states the sufficient conditions toorsg consistency of the QMLE.

11



THEOREMS5. Under Assumptions 1-6, the QMLEqfis strongly consistent fog,,, fp 2 .

4.3 Asymptotic Normality

First, we introduce the following matrices:

_ 82lu,t(¢) _ agui(‘#) agu,t(q/’)
A(¢O) =E |:W " ) B(¢O) =E |: a¢ 0 a¢l ¢0:| )
and
. 1 T 1 E% 82ht 1 8? 8ht 8ht
Al =72 |, (1) o~ (25 1) G s
Et><%8ht+%85t>+i<%a€t+ @)
\w2) \owpay "oy ) T \ov oy T oy
1 < (1) Dly(3)
B (¢) = 7 7
T T ; o o
N 1 T 1 E? 2 8ht 8ht E% 85,5 8&
~73 |aw (o) Siow * nowow “

_ & () (O de 02 O
2h2 \ oY o' O oy’
Consider the additional assumption:

ASSUMPTION7. There exists no set of cardinal 2 such thaPr[n, € A] = 1.

As in Francqg and Zakoian (2004), Assumption 7 is necessaridéntifying reasons when the
distribution ofr; is non-symmetric.

The following theorem states the asymptotic normality ftesu

THEOREM 6. Under Assumptions 1-6, 7, the additional assumplide}| = 4 < oo, then
T2(3hy — 4h) 5 N(0,92), (20)

whereQ = A (1) 'B(1pg)A(tpy) 1. If the distribution ofy, is symmetric and 1] = k4, then

A(y) = (%1 £2> , B(yg) = <]?)1 ];)2> , with

12



1 Ohy Oht

Ay =E |5t
! {hf X ON

1/’0]

1 aEt 85,5
] +4E {hff))\@)\’ ] , and
P P

wj

Furthermore, the matriced\ (¢,) and B(v,) are consistently estimated by () and Br(v),
respectively.

2 85,5 aEt

E |22t ot

] * {hf X ON
Py

d’J

1 Oh; Ohy
Ay =E|5——
2 {h? orm On’

B 1 Ohy Ol
By =(r—LE {hf X ON

1m0
h? O On'

BQ = (H4—1)E |:

5 Monte Carlo Simulations

In this section we report the results of a simulation studgigleed to evaluate the finite sample
properties of the QMLE. We consider three different modelcsjcations as described bellow:

e Model 1: MLSTAR(1)-GARCH(1,1)

A three regime model where the transition variableyis;, ¢g90 = —0.001, ¢19 = 0.001,
qbg() = 0.001, ¢01 = —0.001, ¢11 = 0.001, ¢21 = 0.001, Y1 = 1000, Y2 = 1000, Ccl = —0.01,
¢ =0.01,w=107%, & = 0.05, and3 = 0.85.

¢ Model 2: GSTAR(1)-GARCHY(1,1A three regime model where the transition variablg;is,
Poo = —0.001, ¢19 = 0.002, ¢91 = 0.025, 11 = 0.0.25, v = 100000, ¢; = —0.01,
c2 = 0.01,w = 1075, a = 0.05, and = 0.85.

e Model 3: ESTAR(1)-GARCH(1,1¥onsider a two regime model where the transition variable
IS Yt—1, ¢oo = —0.001, ¢10 = 0.002, ¢pp1 = 0.025, ¢1; = 0.0.25, v = 100000, ¢ = 0,
w=10"%a = 0.05, ands = 0.85.

The results are illustrated in Table 1.

6 Empirical lllustration

7 Concluding Remarks

In this paper we have derived the necessary and sufficiemitamms for strict stationarity and ge-
ometric ergodicity of three different classes of first-ar8dAR-GARCH models, and the sufficient

13



Table 1: SMULATION : ESTIMATION RESULTS
The table shows the mean and the standard deviation of quesmum likelihood estimator of the parameters of Models
1-3 over 1000 replications. We report the results with b@ @d 1000 observations.
200 observations
Model 1 Model 2 Model 3
Parameter True Value Mean Std. Dev. Mean Std. Dev. Mean &d.D

®00
®10
$20
®o1
P11
P21

w
(6%
B
1000 observations

Model 1 Model 2 Model 3
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conditions for the existence of moments. This is importamtrder to find the conditions under which
the traditional LM linearity tests are valid. The asymptqtiroperties of the QMLE have also been
considered. We have proved that the QMLE is strongly cogisisind asymptotically normal under
weak conditions. These new results should be importanhfoestimation of STAR-GARCH models

in financial econometrics.

Appendix

A Proofs of Theorems 1- 3

The proofs of the theorems are based on Chan, Petrucceily, Bmd Woolford (1985), and makes use of the
results in Tweedie (1988).
Let A be ak x k matrix thenp(A) denotes the spectral radius Af. That is, the maximum absolute

k
eigenvalue ofA.. Let2 be a bounded set of matrices &l = { A A edi=1,..., k} thenp.(2A)
=1

(2

denotes the joint spectral radius of the¥ethat is

1/k
p-(20) = timsup( sup A1)
k—oco \Aec2Ak

For the purpose of the following proofs, consider a firstasf 8 TAR-GARCH models defined as:

Yt = fo(ye—1) + f1(Ye—1)yt—1 + &4, (A.1)
g = T]t\/h_t, and (A2)
he = w+asf_y + Bh, (A.3)

where

fo(ye—1) = do0 + $10G(yt—1;7,¢)
fiye—1) = do1 + 611G (yt—1;7, ¢)

andG (y;_1;7, c) is a twice differentiable function with the range equal§ota ]. Now, letz; = (v, y:_1, he)’
then the STAR(1)-GARCH(1,1) model could have the followigrkovian representation

Zy = F(Zt_l,T]t) (A4)
where
Jo(ye—1) + fi(ye—1)ye—1 h(ze—1)"?n;
F(zi—1,m:) = Yt—1 + 0 . (A.5)
h(Zt_l) 0

The proof of ergodicity for STAR(1)-GARCH(1,1) is based dretresults from Meitz and Saikkonen
(2008), which provided sufficient conditions to verify edigcity for the following process:
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Y = f(Ye—1, s Yt—p) + hi/Qﬂt
hy = Q(Ut—h ht—l) (A-6)

Ut = Yt — f(yt—h ey yt—p)

wheref is a nonlinear function such thgty;_1, ..., y:—,) defined a nonlinear autoregressive process of order
p. hy is a positive function of; such that < ¢ andr, is a sequence of i@, 1) random variables independent
of {ys : s < t}. Model (A.6) can be rewritten as a Markov chain such that

Zy = F(ZH,m)

WhereZt = (yt7 Yt—15 -y Yt—p> ht)/ and

FWe—1, s Yt—p) he(Zi—1)"*n
Yt—1 0
F(Zy_1,m) = +
Yt—p 0
hi(Zi—1) 0

Meitz and Saikkonen (2008) showed that the following cdodg are sufficient to ensure geometric er-
godicity for the Markov chainZ;.

Condition 1. n; has a (Lebesgue) density which is positive and lower sertimoous onR. Furthermore, for
some reat > 1, E(n?") < oo.

Condition 2. The functiorf is of the form
f(x) = a(z) = + b(z), x € RP;

where the functions : R? — RP andb : R? — R are smooth and bounded.

Condition 3. Giveru(z) from the previous assumption, rewritér) = (a1 (z), az(z), ..., ap(x))" and define
the(p + 1) x (p + 1) matrix such that

a1(z) aq(x) ap(z) 0
1 0 0 0

Ale) = |
0 0 1 0

Then there exists a matrix norjfe || induced by a vector norm such thet || < p VA € 2 where
A= {A(x) : z € R’} and somé < p < 1.

Condition 4. a. The functiop : R x Ry — R, is smooth and for some > 0, ( )inﬂg N g(u,z) = g.
- u,xr)ERXR 4 -

b. Forallz € Ry, g(u,x) — oo asu — oc.

c. dh* € Ry such that the sequenég(k = 1,2, ...) defined byhy = ¢(0, hg—1), k = 1,2, ...
converges tg* ask — oo forall hg € Ry. If g(u,z) > h* forallu € R and allz > h* it
suffices that this convergence holds foriajl> h*.
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d. There exist nonnegative real numbemndc, and a Borel measurable functign: R — R
such that

g(@" 2y, 2) < (a4 P(n))x + ¢

Vz € R,. Furthermoreg + ¢(0) < 1 andE[(a + 1 (n:))"] < 1 where the real number> 1
is as in Assumption 1.

e. For each initial value, € Z, there exits a control sequen@;@, e ez(fiZQ such that theép +
2) x (p + 2) matrix

©y, .9 OROR

o _[9 (0) :
VF, = a—ele_,_g(zo,el oo Cpg) Tt o Jr2Fp_,_2(zo,el sy €pio
i

is non-singular.

PropPoOsITIONL. Under Assumptions (?)-(?), the Model as defined in equai@®s- (??) is geometrically
ergodic in the sense &f

Proof: Itis sufficient to verify Conditions 1 to 5 in Meitz and Saikiken (2008). Condition 1 is satified by
Assumption (?) withr = 1. Definef(yi—1) = Ao,t—1 + A1,t—1y:—1 and let

a(x) =0y + 01G(x;7,¢)
b(x) = ¢o + p1G(w37, ¢)
g(u,z) = w+ au® + Bz

Hence,f(xz) = a(z)x + b(z) and hence Condition 2 is satisfied. FollowiRga sufficient condition to ensure
Condition 3 is

p({®1,®2}) <1

®, = <¢0 0) By — <¢0 + ¢ 0)
1 0 1 0

Let b;; denotes thed4, j) element of the matrbB for ¢,j = 1,2 such thatB = Hle A;, where A; €
{®1,D5}Vi = 1,..., k. Given the structure ob; and ®, it is easy to verify thab; = 0 andbey = 0 for
all k € Z,. This implies the eigenvalues @ are0 and ¢}, (¢o + ¢1)™ for somel,m € Z,. Given the
assumptions thatyy| < 1, [¢o + ¢1] < 1 and|go(do + ¢1)| < 1, it is obvious thatfy(dg + ¢1)™ — 0 as
k — oo. Hence, Condition 3 is satisfied.

Letg = w, giventhatv > 0, a > 0 andj > 0 then

where

w9l 7) =w =g.

In addition,Vz € R, g(u,z) — oo asu — oo. Sincea + 5 < 1, > 0 andg > 0 therefored < 4 < 1.
Now, hx, = ¢g(0,hk—1) = w + Bhir—1 and for any nonnegative initial valuey < oo, it is straightforward to
show that

w(l = g1
hyy = ——"T1— 2
1-p

Hence,h, — %5 ask — oo. Moreover, letc = w, a = g andy(n;) = an? theng(z'/?n;, ) = (a +

+ B ho.
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Y(ne))z+ ¢, with a+¥(0) = 8 < 1. From Condition 1y = 1 and therefor&(a+ ¥ (n:))" = E(a+v¥(n:)) =
a + B8 < 1. Hence Condition 4 is satisfied.

To verify Condition 5, it is useful to note that= 1 so thatvF'?, = VF.” such that

s Oys 1/
gel Odes 3

VR = 8—23 hy* 0
Oy ohy
861 862

Let the control sequence tel”, e{”, e{”) = (e;,0,0) where|e;| < cc. Note thath/? > 0 fori = 2,3.

EvaluatingVF?fO) at the specified control sequence gives

Ohs _ ,0hs

9e1  Pae, 0
oh

8—62 = 20&62]12 =0

and hence, there exists a control sequence sucFVtﬁé(P is non-singular and therefore Conditions 1 to 5 are
satisfied. This completes the pro®.

A.1 Proof of Theorem 1

Theorem 2.1 in Chan, Petruccelli, Tong, and Woolford (1985)

A.2 Proof of Theorem 2

A.3 Proof of Theorem 3

B Proofs of Theorems 4-6

B.1 Proof of Theorem 4

Itis easy to see th#(z,), as in (10), is a continuous function in the parameter veptdBimilarly, we can see
thatF(z,) is continuous ire;, and therefore is measurable, for each fixed valug.of
Furthermore, under the restrictions in Assumption 2, anithef stationarity conditions of either Theo-

rem 1, 2, or 3 are satisfied, thé&n| sup |hy |
hew

< oo andE [Sup |yu,t|] < oo. By Jensen’s inequality,
pew

E [sup |1n|hu7t||] < o0o. ThuS,E[|l,+(¥)|] < coVp € .
PYeT
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Let i+ be the true conditional variance amgl; = hé{fm. In order to show that(¢) is uniquely
maximized aup,, rewrite the maximization problem as

max [£() — L(1,)] = max {E [m (—) sy 1] } . (B.7)

peT pew Pt Pt

Writing e, = €; — €0+ + €0,¢, €quation (B.7) becomes

max [£() — L(3h,)] = maX{E {m (@) bty 1} E [M]

pew Ypew hu,t hu,t Pt

s

—E [2nthé£?(5t“50¢)1 } (B.8)

hu,,t
ho,t ho,t [€t —€o t]2
= E |l ) - = 1| — B
%éa&/{ { |: . (hu,t) h%t + :| [ hu,t ,

2!y (20 — €0.0)
E : =0
hu,t

where

by the Law of Iterated Expectations.
Note that, for any: > 0, m(z) = In(z) — = <0, so that

ho,t ho,t
E|l ~ ) - —| <0.
|:n <hu,t> hu,t:| o 0
Furthermorem(x) is maximized at: = 1. If  # 1, m(z) < m(1), implying thatE[m(z)] < E[m(1)], with
equality only ifz = 1 a.s.. However, this will occur only % =1, a.s.. In addition,

E [Et - €o,t]2 -0
hu,t

if and only ife; = €¢,+. Hencegy = 4. This completes the prooll

B.2 Proof of Theorem 5
Following White (1994), Theorem 3.ﬁ;u7T L8 4, if the following conditions hold:
(1) The parameter spade is compact.

(2) L, 7(¢)is continuous inpy € ¥. Furthermore,,, r(v) is a measurable functiongf, t = 1,...,T,
forally € .

(3) L(2) has a unique maximum at,.

4) Th_{goilelgp |Lur(P) — L(P)] =0, as..

Condition (1) holds by assumption. Theorem 4 shows that @iond (2) and (3) are satisfied. By Lemma
1, Condition (4) is also satisfied. Thug, ;- “% ;.
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Lemma 2 shows that

lim sup |Ly7(¥) — Lr(¢)] =0a.s.,
T—>oo,¢,€\1,

implying thatq,bT %" 4p,. This completes the prool

B.3 Proof of Theorem 6

We start by proving asymptotic normality of the QMLE using thnobserved log-likelihood. When this is
shown, the proof using the observed log-likelihood is immaexby Lemmas 2 and 4. According to Theorem
6.4 in White (1994), to prove the asymptotic normality of & LE we need the following conditions in
addition to those stated in the proof of Theorem 5:

(5) The true parameter vectgr, is interior tow.

(6) The matrix

existsa.s. and is continuous .
(7) The matrixAr () =5 A(v,), for any sequence, such thatp, =3 1.

(8) The score vector satisfies

LT 3 (mt ) 4 N(0, B(z,)).

t=1

Condition (5) is satisfied by assumption. Condition (6)dals from the fact that, (1) is differentiable
of order two onyy € W, and the stationarity of the STAR-GARCH model. The non-slagty of A (i)
andB(v,) follows from Lemma 4. Furthermore, Lemmas 3 and 5 implie$ @endition (7) is satisfied. In
Lemma 6 below, we prove that condition (8) is also satisfigds Tompletes the prooll

C Lemmas

LEMMA 1. Suppose thay; follows a STAR-GARCH model satisfying the restrictionsssuinptions 1 and 2,
and the stationarity and ergodicity conditions are met. A,he

lim sup £, (%) — L&)| = 0, a.s.
T—>oo,¢,e

PROOF Setg(Y¢, %) = lut(1) — E[lu:()], whereYy = [y, i1, yi—2, - ... HenceE [g(Yi, )] = 0.
It is clear thatE [Sup lg(Ye,v)|| < oo by Theorem 4. Furthermore, g§Y:, ) is strictly stationary and
Ppe

ergodic, thenhm sup |T~1 Zf 19(Ye, v ‘ =0, a.s.. This completes the prooll
—>Do,¢,€\1,

LEMMA 2. Under the assumptions of Lemma 1,

lim sup |Ly,7(¥) — Lr(¢)| =0,a.s..
T—>oo,¢,e\p
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PROOEF First, write

t—1
hy = Zﬁi (w+ ozef_l_i) + Bthy and
i—0
=2
hut =B (w+ asiyo) + Zﬁ” (w+agi_y_;) + B'huo,
i=0

such that
|he — Dot = |Bt710‘ (58 - 63,0) + 5t (ho — hu,0) |
< B laled — 2| + B [ho — huol -

Under the stationarity of the process, and if (R.2) in Asstiomp2 and the log-moment condition hold, it is
clear that < 8 < 1. Furthermorep,, o andej ,, are well defined, as

Pr | sup (huo > K1)| = 0asK; — oo, andPr | sup (g7, o > K2)| — 0asKy — oo.
Ppew pew

Thus,
sup |y — byt < Kppt, a.s.,and
pew

2 _ .2 i
sup ‘50 - 5u,0‘ < K.py, a.s.,
Pew

hu,t - ht

where K, and K. are positive and finite constants,< p; < 1, and0 < p, < 1. Hence, a%; > w and
sup |ly — Iy ¢ < sup [E% Tl

log(z) <z —1,
o)
pew pew Pt

1 1
< sup (—2) Knpie? + sup (—> Knpt, a.s..
Ppew \W PYew \W

Following the same arguments as in the proof of TheoremsriBdl in Francq and Zakoian (2004), it can be
shown that

lim sup [Ly,7(¢) — Lr(¥)| =0,a.s..

T—>oo,¢,e\1,

This completes the prooll

LEMMA 3. Under the conditions of Theorem 6,

IEA
c &5 '1,,] . (C.9)
25, 2, < e
921, ()
E _ o %] < 0. (C.11)
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PROOFR Set

811; t(1/f) 8hu t o Oet
vOlu t = 81,[7 5 Vohu t = 31/) 5 V0€t = 31/)
Yo Yo
821u t(¢) 8 hu t 2 8281‘/
\1) ut = (7| V2h wt = and Vie, = ———
T ooy Tt Gy |, T ayoy |,
Then,
Volus = —— (Z 1) ohu, - L¥
Ohwt = Zhu,t hu,t oftut hu,t 0ct
and

2 £ 1 &7
volu,t = hu ) -1 2h“ B VO w,t 2h2 . 2h“ B vohu tVOh’u t

+ < ] > (Voe:Vohy, s + Vohu,:Voer) +

R VoetVoe) + 6tvgst) )

1
hu,t (

Sety = (X, 7r’)', where, as stated befork,is the vector of parameters of the conditional mean and
is the vector of parameters of the conditional variance.nAthé proof of Theorem 3.2 in Francq and Zakoian
(2004), the derivatives with respect #oare clearly bounded. We proceed by analyzing the derivatiith
respectto\. Ase; = 41 — fo(ye—1; A) — f1(ye—1; N)yi—1, we have

Oer _ 0fo(yi—1;A) _ 0fi(yi-1;A)

X X ox b (C.12)
d%ey Pfolyi—1;N)  O*fr1(ye—1; )

o ' . ' _ C.13
OANON IAON AN b (C.13)
ah“t — 2 Z(ﬁ Er 1 Zagt 1= Z),and (C.14)
Phuy i ‘3 €t—1—i  Op_1-; Oct_1-;
a,\ax_mgﬁ (5““ AN T ox o ) (€19

As the derivatives of the transition function are boundgthg strict stationarity and ergodicity conditions
hold, (C.12)—(C.15) are clearly bounded. Hence, the redegiaf the proof follows from the proof of Theorem
3.2 (part {)) in Francq and Zakoian (2004). This completes the priliof.

LEMMA 4. Under the conditions of Theorem A,(¢,) andB(%),,) are nonsingular and, when. has a sym-
metric distribution, are block-diagonal.

PrROOF First, note that (R1a)—(R1c) in Assumption 2 and Assummpfiguarantee the minimality (identifia-
bility) of the different specifications of the STAR modelswsiered in this paper. Therefore, the results follow
from the proof of Theorem 3.2 (pari]) in Francq and Zakoian (2004). This completes the priliof.
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LEMMA 5. Under the conditions of Theorem 6,

3lu +( 8lt
@ e 5[ ’
82 u t 82lt
b i . d
) lim sup Z[ aww az/;aw ) @5, an
8 lu f 82 u, f(
li — =0,
© w7 Z awaw [ apoy’ .

PROOF
First, assume that, andh,, o are fixed constants. It is easy to show that

Ohy 8hu’t -1 % _ 85u,0
DA oA |28 Pog Ty
Oe Oe
< t—1 _0 u,0
< 2ap (66A u,0 3N ><OO7

as0 < 5 < 1 andy, is stationary and ergodic. Hence, following the same argusees in the proof of Theorem
3.2 (part (i7)) in Francq and Zakoian (2004), it is straightforward towstihat

| [P -2 <o
Furthermore, as
Ohe _ Ous _
Ow Ow
o gt =
%_/Z B 8§;,t =(t— 1872 (2 —€20) + 18 (ho — huy),

it is clear that

lim sup
T—>oo,¢,e\1,

Ly {az“(w ) altw)] H o,

pt on on

The proof of part (a) is now complete. The proof of part (b)Jdads along similar lines. The proof of part
(c) follows the same arguments as in the proof of Theorem&# (v)) in Francq and Zakoian (2004). This
completes the prool

LEMMA 6. Under the conditions of Theorem 6,

\}ng L N, By,

0

PROOF Let Sy = Zle c'Voly. .+, Wherec is a constant vector. The$y is a martingale with respect t6;,
the filtration generated by all past observationg0fBy the given assumptionk,[St| > 0. Using the central
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limit theorem of Stout (1974),
7128, 4 N (0, ¢/B(ep,)c) .

By the Cramér-Wold device,
T

_ Oly,
72y Zet (0, Blugy).
t=1 Yo
By Lemma 5,
T
T12Y 5hg(¢) _315(%0) as g
t=1 v Yo v Yo
Thus,
T
T2y —8%(1/’) 4 N(0, B).
t=1 'l/J 'l/JO

This completes the prooll
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