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Abstract. In this paper we show that realized variation measures constructed from high-

frequency returns reveal a large degree of volatility risk in stock and index returns, where we

characterize volatility risk by the extent to which forecasting errors in realized volatility are

substantive. Even though returns standardized by ex post quadratic variation measures are

nearly Gaussian, this unpredictability brings greater uncertainty to the empirically relevant ex

ante distribution of returns. Explicitly modeling this volatility risk is fundamental. We propose

a dually asymmetric realized volatility model, which incorporates the fact that realized volatility

series are systematically more volatile in high volatility periods. Returns in this framework

display time varying volatility, skewness and kurtosis. We provide a detailed account of the

empirical advantages of the model using data on the S&P 500 index and eight other indexes

and stocks.

Keywords: Realized volatility, volatility of volatility, volatility risk, value-at-risk, forecasting,

conditional heteroskedasticity.

1. Introduction

This paper considers the unpredictable time series component of realized volatility. We argue
that a large and time varying realized volatility risk (defined as the time series volatility of realized
volatility) is an essential stylized fact of index and stock returns that should be incorporated into
econometric models of volatility. Our main contribution is twofold. First, we provide empirical and
theoretical motivation showing how the stochastic structure of the innovations in volatility have
fundamental implications for applications of volatility models. Second, we go beyond extensions of
standard realized volatility models to account for conditional heteroskedasticity (e.g., Corsi et al.,
2008) and bring to the forefront of our modeling approach the fact that realized volatility series
exhibit a substantial degree of (time-varying) volatility themselves.

In a standard stochastic volatility setting where return innovations (conditional on the latent
volatility) follow a Gaussian distribution, the degree of volatility risk is the key determinant of the
excess kurtosis in the conditional distribution of returns. Even though asset returns standardized
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2 REALIZED VOLATILITY RISK

by ex post quadratic variation measures are nearly Gaussian, returns standardized by fitted or
predicted values of time series models of volatility are far from normally distributed. Given the
volatility in volatility this is expected and should not be seen as evidence against those models;
explicitly modeling the higher moments is necessary. If future realized volatility is relatively
unpredictable, a focus on forecasting models will be insufficient for meaningfully modeling the
tails of the return distribution, which in many cases (e.g., risk management) is the main objective
of the econometrician.

Our paper is a first step in trying to fully exploit the fact that the realized volatility framework
allows not only for significant advances in modeling and forecasting the conditional volatility of
asset returns, but also the higher moments and the longer term distributions of price changes.
Both strongly depend on the volatility risk. The intuition for this argument is straightforward.
When realized volatility is available we do not have to rely only on rare realizations on return
data to identify the tails of the return distribution: naturally, days of very high volatility are far
more frequent than days of very high volatility and large return shocks. Likewise, a model with
time-varying return kurtosis (an implication of time varying volatility risk) which would be very
hard to identify from return data alone can be easily estimated in a realized volatility framework.

In light of these arguments we propose a new model for returns and realized volatility. The
main new feature of this model is to explicitly account for the fact that realized volatility series
are systematically more volatile in high volatility periods. While this finding has been suggested
before in the options literature (see for example Heston, 1993, Jones, 2003), this relation has
received little attention in the volatility literature. In the first paper to consider the volatility of
realized volatility, Corsi et al. (2008) extend the typical framework for modeling realized volatility
by specifying a GARCH process to allow for clustering in the squared residuals of their realized
volatility model. The same approach is followed by Bollerslev et al. (2009). In this paper we
consider a parsimonious specification where the variance of the realized volatility innovations is a
linear function of the square of the volatility level, which we take to be the conditional mean of
realized volatility. Another salient aspect of our model is the emphasis on extended leverage effects
(following Scharth and Medeiros, 2009). Because of the returns/volatility, volatility/volatility risk
asymmetries, we call this framework the dually asymmetric realized volatility model.

Our empirical analysis uses high frequency data for the S&P 500 index and eight more series
(between major stocks and indexes) from 1996 to 2009 to document the importance of volatility
risk and analyze the performance of the dually realized volatility model when compared to other
standard alternatives. We show that our volatility risk specification consistently improves fore-
casting performance across these series and enhances the ability of the realized volatility model
to account for large movements in volatility. Consistently with the central theme of this paper,
however, the forecasting improvements brought by the best models are small in relation to the
volatility of realized volatility. Our results for the volatility of realized volatility are stronger than
the ones obtained by Corsi et al. (2008) in that we can conclude that ignoring volatility risk has
an adverse impact on point and density forecasting for realized volatility.

Other contributions to the realized volatility modeling and forecasting literature are exempli-
fied by Andersen et al. (2003), the HAR (heterogeneous autoregressive) model of Corsi (2009),
the MIDAS (mixed data sample) approach of (Ghysels et al., 2007) and the unobserved ARMA
component model of Koopman et al. (2005), and Shephard and Sheppard (2010). Martens et al.
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(2009) develop a nonlinear (ARFIMA) model to accommodate level shifts, day-of-the-week, lever-
age and volatility level effects. Andersen et al. (2007) and Tauchen and Zhou (2005) argue that
the inclusion of jump components significantly improves forecasting performance. McAleer and
Medeiros (2008a) extend the HAR model to account for nonlinearities. Scharth and Medeiros
(2009) introduce multiple regime models linked to asymmetric effects. Bollerslev et al. (2009)
propose a full system for returns, jumps and continuous time for components of price movements
using realized variation measures.

This paper is structured as follows. Section two presents the main argument of the paper and
motivates the new model. Section three introduces our model for realized volatility and describes
how Monte Carlo techniques can be used for translating the features of our conditional volatility,
skewness and kurtosis framework into refined density forecasts for returns. In section four we
consider the empirical performance of our model. Section five concludes.

2. Volatility risk and the conditional distribution of asset returns

Our interest is to model the conditional distribution of asset returns via realized volatility. Our
basic setting is the canonical standard stochastic volatility framework (see for example Ghysels
et al., 1996), which consists of a time series model for the (latent) volatility process and a mixture
specification where the distribution of returns conditional on this volatility is gaussian. In a early
study, Andersen et al. (2001) argued that stock and index returns scaled by realized volatility
measures are approximately normal. This was not a remarkable result: realized volatility is an
ex post quantity. Using recent and accurate methods for measuring volatility, however, Fleming
and Paye (2011) show that the presence of jumps make the standardized series platykurtic. The
presence of jumps do not importantly impact our analysis, so that we ignore them for simplicity.

The basic result for our analysis is that in the stochastic volatility framework the excess kurtosis
of the conditional distribution of returns is a positive function of the volatility of volatility (the
volatility risk). The interpretation of the model, however, will vary depending on whether we
directly model the variance, the volatility or the log variance. We start with a linear model for the
variance, from which the salient relation is immediately clear. Consider the following specification

rt = σtεt,

σ2
t = ψt + htηt,

(1)

where εt ∼ N(0, 1), E(ηt) = 0, E(η2
t ) = 1. The disturbances εt and ηt are serially independent.

ψt is interpreted as the conditional mean of the variance of returns and ηt is a random shock to
volatility. Our main interest is in ht, which determines the volatility risk.

Assume for now that εt and ηt are independent. In the model above the conditional return
skewness is zero and the conditional variance and kurtosis of returns are given by

(2) E(r2
t ) = E(σ2

t )E(ε2
t ) = ψt
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The second equation gives the main result. It shows that the excess kurtosis of the conditional
distribution of returns is a positive function of the ratio between the variance of the variance
disturbances h2

t and the conditional mean of the return variance σ2
t . A similar result holds when

we have a linear model for the realized volatility,

rt = σtεt,

σt = ψt + htηt,
(4)

from where we can define the volatility of volatility variable ht as the volatility risk.
Algebra shows that the conditional variance and kurtosis of the returns for this model are

respectively

(5) E(r2
t ) = E(σ2

t )E(ε2
t ) = E(ψ2

t + 2ψthtηt + h2
t η

2
t ) = ψ2

t + h2
t ,

E(r4
t )

E(r2
t )2

=
E(σ4

t )E(ε4
t )

(ψ2
t + h2

t )2
= 3

(
1 +

4ψ2
t h2

t + 4ψth
3
t E(η3

t ) + h4
t (E(η4

t )− 1)
ψ4

t + 2ψ2
t h2

t + h4
t

)
.(6)

In this case the expression for the conditional return kurtosis is more complicated, but brings
the same conclusion. The conditional kurtosis is a positive function of the volatility risk The
main difference is that now it also depends on the distribution of the standardized innovations
to realized volatility, being positively related to the skewness and kurtosis of this distribution.
Not surprisingly, the first equation also implies that ignoring time variation in the volatility of
volatility will render forecasts of the conditional variance of returns biased even if the conditional
mean of the realized volatility is consistently forecasted.

In Figures 1 and 2 we illustrate the impact of volatility risk the distribution of returns. For
low values of the volatility of volatility (or more generally, for a low conditional coefficient of
variation in volatility) the distribution of returns is still very close to the gaussian case. This
is consistent with the evidence that returns standardized by the realized volatility are nearly
normally distributed: since the impact of the volatility of volatility is non-linear and grows slowly
with the variable, the effect of errors in the underlying realized volatility estimator are not enough
to generate excess kurtosis on the scaled returns. Figure 1 illustrates the consequences of the
non-Gaussianity on the distribution of realized volatility shocks, where we assume a positively
skewed and leptokurtic distribution with parameters calibrated with the S&P 500 data. The
excess kurtosis on the volatility amplify the excess kurtosis on returns for a given volatility risk
level.

If the εt and ηt are dependent then trivially E(r3
t ) = E(σ3)E(ε3

t ) = 0, so that in this type of
model the observed negative skewness on the ex ante distribution of returns must come from the
negative dependence between εt and ηt. Writing the expression for the third moment,

(7) E(r3
t ) = E(3ψ2

t htηtε
3
t + 3ψth

2
t η

2
t ε3

t + h3
t η

3
t ε3

t ),

which is not particularly illuminating, but highlights the fact that given the dependence structure
between the two shocks a higher volatility risk will also increase the conditional skewness in the
returns.
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Finally, if we choose to model the log of the realized variance (log(σ2
t ) = ψt + htηt) we obtain

(8) E(r2
t ) = E(σ2

t )E(ε2
t ) = exp(ψt)E(exp(htηt)),

E(r4
t )

E(r2
t )2

= 3
E(exp 2htηt)
[E(exp htηt)]2

.(9)

In this case both the conditional variance and the conditional kurtosis depend on the distribution
of ηt. For example, if ηt is assumed normal the standard formula for the moment generating
function of the normal distribution gives a conditional variance of exp(ψt + h2

t /2) and a kurtosis
3 exp(2h2

t ).
This analysis provides the ingredients for adequately modeling the empirically relevant ex ante

distribution of returns in a stochastic volatility framework: the conditional mean of volatility, the
volatility risk, the distribution of the shocks to volatility and the dependence structure between
the shocks to returns and the shocks to volatility. The volatility risk parameter is an extremely
important quantity in the model as it is the main determinant of the excess kurtosis in the
conditional distribution of returns and amplifies the negative conditional skewness in the returns.
For risk management, option pricing and other applications where the full conditional distribution
of returns is the object of interest, understanding and modeling this volatility risk is therefore
fundamental.

The realized volatility literature so far has been mostly concerned with the conditional mean of
volatility, and this is the gap that we intend to fill with the model presented in the next section.
Our main argument is that the availability of realized volatility allows not only for significant
advances in modeling the conditional volatility of returns but also the higher moments of this
distribution. The reason is straightforward: since realized volatility is an observable quantity it
is much easier to model and estimate the volatility of realized volatility than the tail heaviness
parameter from return data in GARCH or stochastic volatility models. With realized volatility we
do not have to rely only on rare realizations in returns to identify the tails of the conditional return
distribution. This becomes even more relevant in the presence of conditional heteroskedasticity
in realized volatility as, since identifying time-varying kurtosis in a GARCH setting is very hard
(Brooks et al., 2005, Creal et al., 2008).

An intuitive example further clarifies this point. Suppose we observe at a particular day a
realized volatility of 10 and a return of 0. The return provides no information about the tails of
the conditional return distribution for a GARCH or another latent variable model. However if we
accept that returns given volatility are normally distributed and assume that return and volatility
shocks are uncorrelated then we have learned that on this particular day the “ex post 1% value
at risk” was −2.326 × 10, that is, a event comparable with the October 19th, 1987, crash in the
Dow Jones index could have happened at the tail according to the model. Naturally, days of very
high volatility are far more frequent than days of very high volatility and tail return shocks.

2.1. Volatility risk: empirical regularities. Volatility risk is a substantive issue empirically.
This is illustrated more systematically by Table 1, which displays for a number of different series
the sample statistics of the ratio between the in-sample realized volatility forecasts calculated from
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the best fitting model of the empirical study in Section 4 and the measured realized volatilities.
The reader is referred to Section 4.1 for details on the data and realized volatility measurement.
The ratio is extremely skewed to the right. For the S&P 500 index, at least 10% of time the actual
volatility exceeds the forecast by approximately 30% and for 1% of the time the actual volatility
exceeded the prediction by 80%. In a setting with out of sample uncertainty we can expect these
values to be even higher. Figure 3 shows the high magnitude of the percentage forecasting errors in
realized volatility for the S&P 500 index. Table 2 shows the descriptive statistics for the returns
scaled by these volatility predictions. As our analysis suggested, Table 2 reveals a substantial
degree of excess kurtosis for all series. For the indexes (but not the stocks) the distribution is
pronouncedly negatively skewed due to the volatility feedback effect.

We now consider the time series properties of the volatility of realized volatility. Figure 4 shows
the residuals of the HAR model for realized volatility considered in Corsi et al. (2008). Figure 5
display the sample autocorrelations for the squared and absolute residuals. The figures provide
unambiguous evidence for the presence of conditional heteroskedasticity in realized volatility, in
line with Corsi et al. (2008), Bollerslev et al. (2009) and other previous studies. Figure 6 shows a
pattern common to all our series: when we extend the model with a GARCH(1,1) specification for
the residuals, as would be natural to account for this conditional heteroskedasticity in this case,
there is always a strong relation between the estimated conditional volatility of realized volatility
and the fitted values of the model. Thus, there seems to be a close positive association between
volatility risk and the level of volatility. This is a new finding in the volatility literature, even
though this relation has been explored many times before in the context options pricing (see for
example Heston, 1993, Jones, 2003). This stylized fact motivates the new model presented in the
next section.

3. The Dually Asymmetric Realized Volatility Model

The dually asymmetric realized volatility (DARV) model is a step in analyzing and incorporating
the modeling qualities of a more realistic specification of the volatility risk within a standard
realized volatility model. The dual asymmetry in the model comes from leverage effects (as seen
in the last section) and the positive relation between the level of volatility and the degree of
volatility risk. The fundamental issue that arises in specifying the model is how to specify the
relation between the volatility level and risk.

We directly model the time series of realized volatility (RVt), as we justify in Section 3.2. To
be consistent with the notation of the last section, let the conditional variance of the residuals
be denoted by h2

t . In this paper we choose the specification h2
t = θ0 + θ1V L2

t , where V Lt (the
volatility level) is the conditional mean of volatility (E(RVt|Ft−1), where Ft−1 is the information
set at end of the previous day). Another option would be to directly allow for the asymmetry
of positive or negative shocks in volatility in a GARCH model, but we have found our simpler
specification to perform better. A possibility for extending our specification would be to model
the nonlinearities in the volatility level/risk relation, but more complicated specifications of this
type are out of the scope of this paper.

The general specification of our model in autoregressive fractionally integrated and heterogenous
autoregressive versions are:



REALIZED VOLATILITY RISK 7

DARV-FI Model:

rt = µt + RVtεt,

φ(L)(1− L)d(RVt − ψt) = λ1I(rt−1 < 0)rt−1 + λ2I(r5,t−1 < 0)r5,t−1

+ λ3I(r22,t−1 < 0)r22,t−1 + htηt,

h2
t = θ0 + θ1V L2

t ,

DARV-HAR Model:

rt = µt + RVtεt,

RVt = φ0 + φ1RVt−1 + φ2RV5,t−1 + φ3RV22,t−1

+ λ1I(rt−1 < 0)rt−1 + λ2I(r5,t−1 < 0)r5,t−1

+ λ3I(r22,t−1 < 0)r22,t−1 + htηt,

h2
t = θ0 + θ1V L2

t ,

(10)

where rt is the log return at day t, µt is the conditional mean for the returns, RVt is the realized
volatility, εt is i.d. N(0, 1), ψt shifts the unconditional mean of realized volatility, d denotes the
fractional differencing parameter, Φ(L) is a polynomial with roots outside the unit circle, L the lag
operator, I is the indicator function, rj,t−1 is a notation for the cumulated returns

∑t−1
i=t−j rt−i,

RVj,t−1 =
∑t−1

i=t−j RVt−i, ht is the volatility of the realized volatility, ηt is i.i.d. with E(ηt) = 0
and E(η2

t ) = 1, εt and ηt are allowed to be dependent and V Lt = E(RVt|Ft−1).

3.1. Model details.

3.1.1. Long memory specification. Following the evidence of fractional integration in realized
volatility, ARFIMA models are the standard in the literature. Fractionally integrated models
have been estimated for example in Andersen et al. (2003), Areal and Taylor (2002), Beltratti
and Morana (2005),Deo et al. (2006), Martens et al. (2009), Thomakos and Wang (2003), among
others. Nevertheless, the estimation of ARFIMA models in this context has encountered a few
shortcomings. Although I(d) processes are a seemingly reasonable approximation for the data
generating process of volatility series, there is no underlying theory to formally support this speci-
fication. Instead, the results of Diebold and Inoue (2001) and Granger and Hyung (2004) challenge
fractional integration as the correct specification for realized volatility series by showing that long
memory properties can be engendered by structural breaks or regime switching.1 Statistical tests
for distinguishing between those alternatives, such as the one proposed Ohanissian et al. (2004),
have been hampered by low power. Finally, Granger and Ding (1996) and Scharth and Medeiros
(2009) discuss how estimates of the fractional differencing parameter are subject to excessive
variation over time.

Given the lack of stronger support for a strict interpretation of fractional integration evidence
and the higher computational burden in estimating and forecasting this class of models, some

1Nevertheless, empirical work has found evidence of long range dependence even after accounting for possible
regime changes and structural breaks in the volatility of asset returns (Lobato and Savin, 1998, Martens et al.,
2009, Beltratti and Morana, 2006, Morana and Beltratti, 2004, Hyung and Franses, 2002, Scharth and Medeiros,
2009).
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researchers have chosen to apply simpler time series models which are consistent with high persis-
tence over the relevant horizons (like the HAR model of the last section), even though they do not
rigorously exhibit long memory (hence being labeled ’quasi-long memory’ models). Since this de-
bate bears little relevance for our analysis we have chosen to present the dually asymmetric model
in both a fractionally integrated version and a HAR version. After preliminary specification tests
using the Schwarz criterion we have selected an ARFIMA(1,d,0) model specification throughout
this paper.

3.1.2. Extended Leverage Effects. Bollerslev et al. (2006) and Scharth and Medeiros (2009) high-
light the impact of leverage effects for the dynamics of realized volatility. The latter argues for
the existence of regime switching behavior in volatility, with large falls (rises) in prices being as-
sociated with persistent regimes of high (low) variance in stock returns. The authors show that
the incorporation of cumulated daily returns as a explanatory variable brings some modeling ad-
vantages by capturing this effect. While Scharth and Medeiros (2009) consider multiple regimes
in a nonlinear model, we focus on a simpler linear relationship to account for the large correlation
between past cumulated returns and realized volatility. This extended leverage effect is shown in
Figure 8, which plots the time series of S&P 500 realized volatility and monthly returns (re-scaled).
The sample correlation between the two series is −0.52. It seems that virtually all episodes of
(persistently) high volatility are associated with streams of negative returns; once the index price
recovers the realized volatility tends to quickly fall back to average levels.

3.1.3. The distribution of the volatility disturbances. To account for the non–Gaussianity in the
error terms we follow Corsi et al. (2008) and assume that the i.i.d. innovations ηt follow the
standardized normal inverse Gaussian (which we denote by NIG∗), which is flexible enough to
allow for excessive kurtosis and skewness and reproduce a number of symmetric and asymmetric
distributions. A more complex approach would rely on the generalized hyperbolic distribution,
which encompasses the NIG distribution and requires the estimation of an extra parameter. On
the other hand typical distributions with support on the interval (0,∞), which would be a desirable
feature for our case, were strongly rejected by preliminary diagnostic tests.

Finally, to model the asymmetry in the conditional return distribution we let ηt and εt be
dependent and model this dependence via a bivariate Clayton copula. The copula approach
is a straightforward way to account for non-linearites in this dependence relation and has the
important advantage of not requiring the joint estimation of the return and volatility equations.
Let U = Φ(εt) and V = 1−Υ(νt), where Φ(.) and Υ(.) are the corresponding normal and NIG∗

cdfs for εt and ηt respectively. The joint CDF or copula of U and V is given by:

Cκ ≡ P (U ≤ u, V ≤ v) =
(
u−κ + v−κ − 1

)−1/κ(11)

In this simple copula specification, returns and volatility are negatively correlated and display
lower tail dependence (days of very low returns and very high volatility are linked, where the
strength of this association is given by the parameter κ).

3.1.4. Days-of-the-week and Holiday effects. To reduce bias in our estimators and avoid distortions
of the error distribution, we control the mean of the dependent variable for day of the week and
holiday effects using dummies. Martens et al. (2009) and Scharth and Medeiros (2009) show that
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volatility sometimes tend to be lower on Mondays and Fridays, while substantially less volatility
is observed around certain holidays.

3.2. The impact of microstructure noise and other issues. Our analysis ignores the pres-
ence of remaining measurement errors in volatility. Though standard in this literature, this may
be an important omission as it will lead us to overestimate the time series volatility of volatil-
ity. Additionally, the theory of realized volatility estimation indicates that the variance of the
realized variance estimator is positively related to the integrated variance itself (see for example
Barndorff-Nielsen and Shephard, 2002). Regarding this problem we offer the following remarks (i)
our use of the efficient realized kernel estimator of Barndorff-Nielsen et al. (2008) in next section
minimizes the impact of microstructure noise for our results. (ii) the theory of section 2 implies
that the presence of large measurement noise should cause excess kurtosis in the returns scaled
by realized volatility. To the extent that empirically these scaled returns are actually platykurtic
(see Table 3), but returns standardized by realized volatility forecasts are highly leptokurtic (Ta-
ble 2), we can be confident that our analysis is mostly capturing true volatility risk and not the
estimator variance. (iii) as mentioned previously, the positive relation between the volatility level
and volatility risk is confirmed by the options literature (iv) the variance of the realized volatility
estimator is a source of modeling risk, with similar impacts for applications of realized volatility
models.

We have chosen to specify a linear model for the realized volatility, even though a log specifica-
tion is more common in the realized volatility literature. Corsi et al. (2008) and Bollerslev et al.
(2009) show that the log transformation is not enough to fully account for the heteroskedasticity
in volatility. The reason we work with the level is that the log transformation by construction
obscures the volatility level/risk association, which we consider to be an important relationship to
be modeled. The empirical results of Section support this view. We have the following additional
comments (i) in contrast with most previous studies our interest lies in the distribution of the RVt

itself, which we therefore model directly (ii) there is virtually no loss of forecasting performance
in modeling the level (see for example Corsi et al., 2008) (iii) the fact that the estimated error
distribution is very right skewed and the conditional variance of RV shrinks with the level of the
variable eliminates the possibility of negative volatility in the model for all practical purposes in
our data.

In contrast with Bollerslev et al. (2009), which also considers a full system for returns, realized
volatility and the volatility of volatility, our model does not consider jump components in the
realized volatility.2 The use of jumps does not seem to bring important forecasting advantages in
our framework. On the other hand, the inclusion of a jump equation would substantially increase
the complexity of the model, requiring us to model and estimate the joint distribution of returns,
volatility and jump shocks. For predicting and simulating the model multiple periods ahead this
is a substantial burden. Since the ultimate interest lies in the conditional distribution of returns
a parsimonious alternative is to ignore the distinction between continuous and jump components
in realized volatility and to carefully model the distribution of returns given realized volatility
(considering the possible impact of jumps on it).

2The literature on the non-parametric measurement of the jump components includes Andersen et al. (2007),
Tauchen and Zhou (2005) and Barndorff-Nielsen and Shephard (2006), among others.
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3.3. Estimation and Density Forecasting. We estimate the two versions of the dually asym-
metric realized volatility model by maximum likelihood. The fact that the conditional volatility
of volatility ht depends on the conditional mean of the realized volatility brings no issues for the
estimation. However, a full maximum likelihood procedure for the ARFIMA model Sowell (e.g.,
1992) is unavailable under the assumptions of conditional heteroskedasticity and the NIG distri-
bution for the errors ηt. We then follow the standard approach in the literature and turn to a
consistent approximate maximum likelihood procedure where the fractional differencing operator
(1−L)d is replaced by a truncation of its corresponding binomial expansion.3 The use of this ap-
proximate estimator does not impact in any away the main arguments of this paper. For reference
the log-likelihood function is given by:

`(d̂, φ̂, ψ̂, λ̂, θ̂, α̂, β̂;RV1...T , X1...T ) = T log(α̂)− T log(π) +
T∑

t=1

log
[
K1(α̂δ̂(1 + ŷ2

t )1/2)
]

−0.5
T∑

t=1

log(1 + ŷ2
t ) + T δ̂(α̂2 − β̂2)1/2 + δ̂β̂

T∑
t=1

ŷt

−0.5
T∑

t=1

log(ĥt)

(12)

where X collects the additional explanatory variables, α and β are the tail heaviness and asymme-
try parameters of the standardized NIG distribution. γ = (α̂2 − β̂2)1/2 and ŷt = η̂t/ĥt−ω̂

δ̂
, where

ω and δ are the location and scale parameters associated with the standardized NIG distributed
with parameters α and β.

The copula specification for the joint distribution of return and volatility innovations allows us
to estimate the copula by maximum likelihood in a separate stage once we have obtained estimates
for ηt and εt from the marginal models. For simplicity we estimate the mean of returns µt by the
sample mean (since the daily expected return is very small µt is immaterial for our analysis), so
that ε̂t = (rt − µ̂)/RVt.

An analytical solution for the return density implied by our flexible normal variance-mean
mixture hypothesis (realized volatility is distributed normal inverse gaussian and returns given
volatility are normally distributed) is not available. Except for a few cases such as one day ahead
point forecasts for realized volatility, many quantities of interest based on our model have to
be obtained by simulation. We consider the following Monte Carlo method which can be easily
implemented and made accurate with realistic computational power. Conditional on information
up to day t we implement the following general procedure for simulating joint paths for returns
and volatility (where ∼ is used to denote a simulated quantity):

(1) In the first step the functional form of the model is used for the evaluation of forecasts
R̂V t+1 and ĥt+1 conditional on past realized volatility observations, returns, and other
variables.

(2) Using the estimated copula we randomly generate S pairs of return (ε̃t+1,j , j = 1, .., S) and
volatility (η̃t+1,j , j = 1, .., S) shocks with the according marginal distributions. Antithetic
variables are used to balance the return innovations for location and scale.

3(1− L)d = 1− dL +
d(d−1)L2

2!
− d(d−1)(d−2)L3

3!
+ ...
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(3) We obtain S simulated volatilities through R̃V t+1,j = R̂V t+1 +htη̃t+1,j , j = 1, ..., S. Each
of these volatilities generate a returns r̃t+1,j = µ̂t + R̃V t+1,j ε̃t+1,j

(4) This procedure can be iterated in the natural way to generate multiple paths for returns
and realized volatility.

4. Empirical Analysis

4.1. Realized volatility measurement and data. Suppose that at day t the logarithmic prices
of a given asset follow a continuous time diffusion:

dp(t + τ) = µ(t + τ) + σ(t + τ)dW (t + τ), 0 ≤ τ ≤ 1, t = 1, 2, 3...

where p(t + τ) is the logarithmic price at time t + τ , is the drift component, σ(t + τ) is the
instantaneous volatility (or standard deviation), and dW (t + τ) is a standard Brownian motion.
Andersen et al. (2003) and Barndorff-Nielsen and Shephard (2002) showed that the daily compound
returns, defined as rt = p(t) − p(t + 1), are Gaussian conditionally on Ft = σ(p(s), s ≤ t), the
σ-algebra (information set) generated by the sample paths of p, such that

rt|Ft ∼ N

(∫ 1

0

µ(t− 1 + τ)dτ,

∫ 1

0

σ2(t− 1 + τ)dτ

)

The term IVt =
∫ 1

0
σ2(t − 1 + τ)dτ is known as the integrated variance, which is a measure

of the day t ex post volatility. In this sense the integrated variance is the object of interest. In
practical applications prices are observed at discrete and irregularly spaced intervals and the most
widely used sampling scheme is calendar time sampling (CTS), where the intervals are equidistant
in calendar time. If we set pi,t, i = 1, .., n to be the ith price observation during day t, realized
variance is defined as

∑n
i=1 r2

i,t. The realized volatility is the square-root of the realized variance
and we shall denote it by RVt. Ignoring the remaining measurement error, this ex post volatility
measure can modeled as an “observable” variable, in contrast to latent variable models.

In real data high frequency measures are contaminated by microstructure noise. The search for
unbiased, consistent and efficient methods for measuring realized volatility has been one of the
most active research topics in financial econometrics over the last years. While early references
such as Andersen et al. (2001) suggest the simple selection of an arbitrary frequency to balance
accuracy and dissipation of microstructure bias, a procedure known as sparse sampling, a number
of recent articles developed estimators that dominate this procedure. In this paper we we turn
to the theory developed by Barndorff-Nielsen et al. (2008) and implement the consistent realized
kernel estimator based on the modified Tukey-Hanning kernel. Some alternatives are the two time
scales estimator of Zhang et al., 2005 and Aı̈t-Sahalia et al., 2011, the multiscale estimator of
Zhang (2006) and the preaveraging estimator of Jacod et al. (2009). See McAleer and Medeiros
(2008b) and Gatheral and Oomen (2010) for a review and comparison of methods.

Our empirical analysis will focus on the realized volatility of the S&P 500 (SPX), Dow Jones
(DJIA), FTSE 100, CAC 40 and Nikkei 225 indexes and the IBM, GE, Wal-Mart (WMT) and
AT&T stocks. For conciseness the S&P 500 index will be at the center of our analysis, with the
other series being used when appropriate to show that our results hold more generally. The raw
intraday data was obtained from the Reuters Datascope Tick History database and consists of tick
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by tick open to close quotes filtered for possible errors. For the S&P 500 index we use the informa-
tion originated in the E-Mini S&P500 futures market of the Chicago Mercantile Exchange, while
for the remaining indexes we use the actual index price series from different sources.4 Following
the results of Hansen and Lunde (2006), we adopt the previous tick method for determining prices
at time marks where a quote is missing.

The period of analysis starts in January 2, 1996, and ends in June 30, 2009, providing a total
of 3343 trading days in the United States. We clarify that our in-sample period used for revising
the stylized facts, presenting the volatility risk findings and discussing the estimation diagnostics
covers the whole sample, while the out-of-sample period used in section four runs from 2001 to the
end of the sample. We need our out-of-sample period to be unusually long since the behavior of
realized volatility markedly favors different kinds of models in particular years (for example, crisis
periods strongly favor models with leverage effects) and a reasonable number of tail realizations
are necessary to compare different alternatives for modeling volatility risk.

Figure 7 displays the time series of returns, realized volatility and log realized volatility. Table
3 presents descriptive statistics for returns, standardized returns, realized volatility and changes
in realized volatility. In light of our previous discussion, one striking feature of Table 3 is the
extreme leptokurtosis in the realized volatility changes (∆RVt). In fact, only 10% of observations
account for close to 80% of the variation in realized volatility across the sample.

4.2. Full Sample Parameter Estimates and Diagnostics. We consider five alternative speci-
fications chosen to illuminate the improvements introduced by different elements of the model: the
homoskedastic ARFIMA(1,d,0) model with and without (extended) leverage effects, the ARFIMA-
GARCH model with and without leverage effects and the HAR-GARCH model with leverage ef-
fects. We leave the simpler HAR specifications out of the analysis as they are essentially redundant
to the fractionally integrated counterparts. We consider the dependence between the return and
volatility innovations on all specifications.

Tables 4 and 5 show the parameter estimates for all our specifications for the S&P 500 series.
While most of the estimates are unexceptional and in line with the previous literature, we draw
attention to two noteworthy results. First, in the ARFIMA setting considering either conditional
heteroskedasticity or extended leverage effects substantially change our estimates for the fractional
differencing parameter and the unconditional mean of realized volatility. Second, the leverage effect
coefficients are significantly larger in the dually asymmetric estimations in comparison to other
models. This interaction is likely to be consequential for our forecasting results.

Table 6 displays a variety of estimation diagnostics. Not surprisingly, the inclusion of leverage
effects and time varying volatility risk considerably improve the fit of the specifications according to
the Schwarz criterion and other standard statistics. The first piece of evidence in favor of the DARV
model also comes from this analysis: our specification for the volatility risk unambiguously improve
the fit of the model compared to the specifications with GARCH effects, though both alternatives
seem to appropriately account for the autocorrelation in the squared residuals. On the other hand,
an adverse result affecting all specifications come from the (small) sample autocorrelation in the

4The fully electronic E-Mini S&P500 futures contracts feature among the most liquid derivatives contracts in the
world, therefore closely tracking price movements of the S&P 500 index. The index prices used for the other series
are unfortunately less frequently quoted. The volatility measurements for DJIA, FTSE 100, CAC 40 and Nikkei
225 indexes are therefore of somewhat inferior quality compared to the S&P 500 index and the stocks.
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residuals. Reversing this result would require ad hoc modifications in our setting, leaving some
role for more complex models or structural breaks to capture these dynamics.

The ability to correctly model the conditional distribution of realized volatility is fundamental
for the cardinal issues of this paper. To investigate this problem we implement a Kolmogorov-
Smirnov test for the hypothesis that the standardized residuals are well described by the estimated
NIG distribution. The two versions of the DARV model are easily consistent with this hypothesis,
while the alternative models are either strongly rejected or susceptible to the choice of significance
level.

4.3. Point Forecasts. We now turn to out of sample forecasts. All out of sample implementations
re-estimate the models quarterly using the full past data to calculate the desired statistics. As
we have argued in Section 2, the set of realistic assumptions for the behavior of realized volatility
imply that if our main objective is to model for the conditional distribution of returns then an
excessive focus on the point forecasting abilities of different volatility models may be inappropriate:
the conditional mean of volatility is far from enough to describe the tails of the return distribution.
Without a model for the realized volatility risk we do not have an expressive model for the returns.
Moreover, the time series volatility of realized volatility is so high that it is extremely hard to obtain
economically substantive improvements in predicting realized volatility.

However, this should not be confused with the argument that forecasting does not matter as
the conditional mean of volatility is approximately the conditional volatility of returns itself. Out
of sample predictions have been the main basis of comparison in the volatility literature and are
the subject of extensive analysis (e.g., Hansen and Lunde, 2005). Forecasting is a very useful tool
for studying and ranking volatility models, even though it may not be very informative about the
relative modeling qualities of various alternatives: because volatility is so persistent even a simple
moving average will have a similar performance to more theoretically sound models.

The evaluation of forecasts is based on the mean absolute error (MAE), the root mean squared
error (RMSE) and the estimation of the Mincer-Zarnowitz regression:

RVt = α + βR̃V t|t−1,i + εt,i

where RVt is the observed realized volatility on day t and R̃V t|t−1,i is the one-step-ahead forecast
of model i for the volatility on day t. If the model i is correctly specified then α = 0 and β = 1.
We report the R2 of the regression as a measure of the ability of the model to track variance
over time and test of superior predictive ability (SPA) test developed by Hansen (2005). The null
hypothesis is that a given model is not inferior to any other competing models in terms of a given
loss function.

The point forecasting statistics for the S&P 500 series are displayed in Table 7, where we
consider one, five and and twenty two days ahead predictions. The results for the other series
are arranged in Table 8 and are limited to one period ahead predictions for conciseness. In 8 we
report the R2 for changes in volatility and the respective SPA test for the RMSE (in parenthesis).
The foremost message that the results bring is again that asymmetric effects are essential for
improving forecasting performance in realized volatility: forecasts are significantly improved for
all series when leverage effects are included. The results for the S&P 500 series suggest however
that this advantage is decreasing in the forecasting horizon.
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In line with the full sample results, the dually asymmetric model outperforms the standard
ARFIMA-GARCH and HAR-GARCH models in one day ahead forecasting for all series, even
though the difference is only significant at the 5% level in the SPA test for the FTSE and AT&T
series (the difference is also significant at the 5% level in a meta test across all series, which we do
not report in the table). This improvement in forecasting is also supported by the longer horizon
results for the S&P 500 series, which reveal statistically significant differences. Finally, the results
indicate no expressive divergence between the HAR and ARFIMA specifications.

4.4. Volatility Risk. While we emphasize the positive evidence from the forecasting exercise for
our volatility risk model we stress again that the difference in forecasting performance by itself is
unlikely to be economically substantial, though in line with improvements generally reported in the
volatility literature. Our main question is whether the dually symmetric specification introduce
a better model for volatility risk, and consequently to the tails of the conditional distribution of
returns. We consider this problem in this section.

To answer this question we need to define an informative metric for how well different models
are able to describe the relevant dimension of the conditional distribution of realized volatility.
Since the time series volatility of realized volatility is latent and dependent on the specification
for the conditional mean of the series, a meaningful direct analysis of volatility risk forecasting is
infeasible. For this reason we investigate conditional forecasts of realized volatility. Our approach
consists in calculating ex post empirical quantiles for the daily realized volatility changes (∆RVt)
in the 2001-2009 period and calculating (out of sample) forecasts for the change in volatility given
that it exceeds the relevant quantile.

We provide two motivations for this method. First, since the true conditional realized volatility
quantiles are unobservable the use of the ex post quantiles is a straightforward way of obtaining
an uniform conditioning case for comparing different models by their performance in the upper
tail of the distribution. And most importantly, analyzing whether the dually asymmetric model
is better capable of accounting for the largest movements in volatility observed in our data goes
to the heart of our problem of better describing volatility risk and the tails of the conditional
return distribution. Again, because the volatility innovations are unobservable the use of ∆RVt

is adequate for comparing the models. To complement this analysis we also consider conditional
forecasts based on ex post realized volatility quantiles themselves. We interpret the results of this
section as being the main empirical evidence for the DARV model, since they directly address the
issue of volatility risk.

The results for the S&P 500 index are organized in Tables 9 and 10, while the finding for the
remaining series are summarized in Table 11. For the S&P 500 we consider forecasts conditional on
the change in volatility and the volatility exceeding the 80th, 90th, 95th and 99th percentiles, while
for the other series we only consider the 90th percentile. As expected the models with constant
volatility risk perform extremely poorly compared to the heteroskedastic models, again highlighting
the importance of time varying realized volatility risk. More importantly, the results strongly
support the dually asymmetric model. With the only exception of the CAC index the DARV
model improves the conditional forecasts for the changes in volatility, in most cases substantially.
The same pattern holds for the forecasts conditional on the realized volatility quantile.

From the S&P 500 we can see that these results are even more striking at the 99th percentile,
where in contrast with the DARV models the GARCH specifications have almost no forecasting
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power: the improvement in RMSE of going from the ARFIMA-GARCH model to the DARV model
is about the same as going from constant volatility risk to the ARFIMA-GARCH model.

4.5. Value-at-Risk. To conclude our empirical analysis we implement a value-at-risk analysis for
the S&P 500 index. Even though this exercise is not particularly informative about the modeling
qualities of the different specifications studied in this paper, we consider it important to check
whether our models yield plausible results for this standard risk management metric. In addition,
we also wish to use this section to further illustrate the possible pitfalls of excessively relying on
point forecasts and ignoring volatility risk. To do so we introduce as a reference a more standard
way of calculating value-at-risk measures, namely considering rt ∼ N(0, R̃V t) (where R̃V t is the
forecasted realized volatility). We label this approach (incorrect for our models) the point forecast
method, in contrast with the appropriate Monte Carlo method of section 3.3.

The evaluation of value-at-risk forecasts is based on the likelihood ratio tests for unconditional
coverage and independence of Christoffersen (1998), where conditional skewness is allowed for in
all models. Our analysis is similar to Beltratti and Morana (2005), who study the benefits of
value-at-risk with long memory. Let q̂i

t|t−1(α) be the (1 − α) interval forecast of model i for day
t conditional on information on day t − 1. In our application, we consider 1%, 2.5% and 5%
value-at-risk measures, i.e., α = 0.01, 0.025 and 0.05, respectively. We construct the sequence of
coverage failures for the lower α tail as:

Ft|t−1 =





1 if rt+1 < q̂i
t+1|t(α)

0 if rt+1 > q̂i
t+1|t(α)

where rt is the return observed on day t. The unconditional coverage (UC) is a test of the null
E(Ft+1|t) = α against E(Ft+1|t) 6= α. The test of independence is constructed against a first-order
Markov alternative. Finally, let z be the predicted cumulative density function evaluated at the
observed returns that are below the value-at-risk. If the model is well specified then we should
expect that the sample average of z is close to α/2, so that we use this as a proxy for checking
whether the models generate adequate expected shortfall values.

The value-at-risk performance of the models are organized and presented in Table 12. The
results show that as expected from our analysis the method of calculating VaRs based only on the
point forecast of volatility is severely biased towards underestimating the value-at-risk, failing to
provide adequate coverage at all intervals. The Monte Carlo method in turn significantly reduces
or eliminates the problem of excess violations for all models (even though the exercise has no power
for ranking them). However, most models are rejected for the 5% Value-at-Risk. For reference,
Table 13 reports the predicted cumulative density function from all the models calculated at the
lowest returns observed in our sample. Despite the fact that the 2007-2009 financial crisis brought
realized volatility to unprecedent levels in the data we do not observe catastrophic failures of our
value-at-risk intervals (even for the misspecified models), supporting the robustness arguments of
Section 2.

5. Conclusion

In this paper we have shown that realized variation measures constructed from high-frequency
returns reveal a large degree of volatility risk in stock and index returns, where we characterize
volatility risk by the extent to which forecasting errors in realized volatility are substantive. Even
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though returns standardized by ex post quadratic variation measures are nearly gaussian, this un-
predictability brings considerably more uncertainty to the empirically relevant ex ante distribution
of returns. We have demonstrated how the study of volatility risk (or equivalently, the volatility
of realized volatility) is essential for developing better models of the conditional distribution of
returns, as this concept is inexorably related to the higher moments of the return distribution
under the standard stochastic volatility setting. We have argued that the availability of realized
volatility allows not only for significant advances in modeling the conditional volatility of returns
but also the higher moments.

Far from exhausting the analysis of the empirical properties of this volatility risk, we have shown
the close positive relation between the volatility of realized volatility and the level of volatility.
To account for this fact we propose the dually asymmetric realized volatility model and present
extensive empirical evidence that by recognizing that realized volatility series are systematically
more volatile in high volatility periods we are able to improve the out of sample performance of re-
alized volatility models. Particularly in predicting the possibility of large movements and extremes
in daily volatility (using conditional forecasts) we have found the difference to be substantial in
many cases, with direct consequences to risk management and pricing applications.

To keep our discussion concise we have left out some important issues that will be explored
in future work. We select two examples. First, in practice advances in realized volatility model-
ing may not be translated so neatly into improvements in modeling the conditional distribution
of returns. Two aspects of the link between realized volatility and returns should be studied
more carefully. The assumption that returns standardized by realized volatility are approximately
normal and independent seems to be inadequate for some series. Is there a role for jumps in ad-
justing the distribution? Do the problems in measuring realized volatility make this relation less
straightforward? We have also only considered a simple model for the dependence between return
and volatility innovations. Second, we have mostly analyzed the performance of different models
in one day ahead applications. Because financial quantities are so persistent many incongruent
models are misleadingly competitive at very short horizons. More emphasis should be placed in
investigating whether different models are consistent with a realistic longer horizon dynamics. Our
analysis suggests that to do so we may need a more solid understanding of asymmetric effects.
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Table 1. Descriptive Statistics for RVt/R̂V t ratios

Mean Std. Dev. Skewness Kurtosis Q0.75 Q0.9 Q0.95 Q0.99

S&P 500 1.00 0.25 1.86 12.17 1.11 1.28 1.43 1.84
DJIA 1.01 0.30 1.94 15.52 1.15 1.35 1.53 1.95
FTSE 1.00 0.33 2.97 27.12 1.13 1.37 1.55 2.14
CAC 1.00 0.25 2.14 21.84 1.12 1.29 1.41 1.76
Nikkei 1.00 0.27 1.19 6.72 1.14 1.33 1.47 1.86
IBM 1.00 0.22 1.13 6.96 1.11 1.25 1.38 1.72
GE 1.00 0.20 0.85 5.30 1.11 1.25 1.37 1.63
WMT 1.00 0.24 1.25 7.82 1.12 1.29 1.41 1.74
AT&T 1.00 0.27 1.67 10.25 1.12 1.32 1.48 1.87

Table 2. Descriptive Statistics for Returns Standardized by In-
Sample Realized Volatility Fitted Values

Mean Std. Dev. Skewness Kurtosis Q0.01

S&P 500 -0.019 1.061 -0.392 4.305 -2.780
DJIA 0.019 1.090 -0.340 3.944 -2.867
FTSE -0.009 1.147 -0.177 3.694 -2.905
CAC -0.011 1.053 -0.182 3.346 -2.654
Nikkei -0.054 1.083 -0.152 3.715 -2.832
IBM 0.035 1.033 -0.076 4.505 -2.539
GE -0.025 1.012 0.026 3.897 -2.479
WMT -0.039 1.001 0.066 3.909 -2.432
AT&T -0.037 1.028 0.024 4.397 -2.523

Table 3. Descriptive Statistics: S&P 500

Statistic rt RVt rt/RVt ∆RVt

Mean 0.012 0.984 0.042 0.000
Std. Deviation 1.343 0.605 1.013 0.359
Skewness -0.186 3.417 0.040 -0.913
Kurtosis 10.570 26.342 2.743 65.184
Min -9.470 0.212 -3.296 -6.840
Q0.1 -1.443 0.478 -1.282 -0.308
Q0.25 -0.610 0.606 -0.658 -0.135
Q0.75 0.654 1.153 0.711 0.127
Q0.9 1.368 1.584 1.382 0.301
Max 10.957 9.673 3.230 5.280
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Table 4. Estimated Parameters (S&P 500): ARFIMA Models

The table shows parameter estimates for different restrictions of the model: (1− φ1L)(1 − L)d(RVt − ψt) = λ1I(rt−1 <

0)rt−1 + λ2I(r5,t−1 < 0)r5,t−1 + λ3I(r22,t−1 < 0)r22,t−1 + htηt, h2
t = θ0 + θ1V L2

t + θ2h2
t−1 + θ3ν2

t−1,ηt ∼
NIG∗(α, β), (Φ(εt), 1−Υ(ηt)) ∼ Cκ

clayton

ARFIMA- ARFIMA+AE-
Parameter ARFIMA ARFIMA+AE GARCH GARCH DARV-FI
ψ 0.989 (0.029) 0.653 (0.028) 0.970 (0.053) 0.546 (0.028) 0.400 (0.025)
d 0.340 (0.011) 0.261 (0.008) 0.464 (0.012) 0.352 (0.013) 0.367 (0.015)
φ1 0.064 (0.017) 0.033 (0.019) -0.075 (0.017) -0.047 (0.020) -0.074 (0.019)
λ1 - - -0.055 (0.006) - - -0.049 (0.005) -0.072 (0.006)
λ2 - - -0.018 (0.003) - - -0.012 (0.003) -0.023 (0.004)
λ3 - - -0.014 (0.002) - - -0.011 (0.002) -0.013 (0.002)
θ0 0.105 (0.005) 0.089 (0.006) 0.002 (0.000) 0.001 (0.000) 0.013 (0.001)
θ1 - - - - - - - - 0.101 (0.007)
θ2 - - - - 0.845 (0.018) 0.852 (0.015) - -
θ3 - - - - 0.127 (0.017) 0.121 (0.015) - -
α 0.906 (0.046) 0.855 (0.052) 1.841 (0.125) 1.663 (0.117) 1.800 (0.168)
β 0.548 (0.046) 0.479 (0.049) 1.075 (0.106) 0.910 (0.095) 1.037 (0.140)
κ 0.169 (0.024) 0.157 (0.023) 0.207 (0.024) 0.228 (0.024) 0.254 (0.025)

Table 5. Estimated Parameters (S&P 500): HAR Models

The table shows parameter estimates for different restric-

tions of the model: RVt = φ0 + φ1RVt−1 + φ2RV5,t−1 +

φ3RV22,t−1 +λ1I(rt−1 < 0)rt−1 + λ2I(r5,t−1 < 0)r5,t−1 +

λ3I(r22,t−1 < 0)r22,t−1 +htηt, h2
t = θ0 +θ1V L2

t +θ2h2
t−1 +

θ3ν2
t−1, ηt ∼ NIG∗(α, β), (Φ(εt), 1−Υ(ηt)) ∼ Cκ

clayton

Parameter HAR/AE-GARCH DARV (HAR)
φ0 0.090 (0.008) 0.087 (0.009)
φ1 0.231 (0.016) 0.250 (0.016)
φ2 0.357 (0.017) 0.362 (0.022)
φ3 0.273 (0.016) 0.244 (0.018)
λ1 -0.052 (0.005) -0.072 (0.006)
λ2 -0.016 (0.003) -0.024 (0.004)
λ3 -0.007 (0.002) -0.009 (0.002)
θ0 0.001 (0.000) 0.001 (0.001)
θ1 - - 0.054 (0.003)
θ2 0.853 (0.014) - -
θ3 0.122 (0.014) - -
α 1.752 (0.136) 1.669 (0.149)
β 1.014 (0.116) 0.931 (0.121)
κ 0.242 (0.024) 0.272 (0.025)
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Table 6. Estimation Diagnostics (S&P 500)

The table show a variety of diagnostics for the estimations presented in Tables 4 and 5. In the table ν̂t denote the estimated

residuals and η̂ = ν̂t/ĥt = the standardized residuals. For the statistical tests in the table the p-values are reported. K-S
denotes the Kolmogorov-Smirnov Test. z is the probability integral transform of the standardized residuals using the
estimated NIG distribution

ARFIMA ARFIMA ARFIMA+AE HAR+AE
ARFIMA +AE GARCH GARCH DARV(FI) GARCH DARV(HAR)

Log-Likelihood 292.34 455.29 757.00 882.31 955.65 870.12 915.38
R2 0.688 0.723 0.739 0.778 0.789 0.778 0.787
BIC -455.59 -749.20 -1360.69 -1579.05 -1717.64 -1546.58 -1629.04
Std. Dev. (ν̂t) 0.323 0.295 0.312 0.288 0.281 0.288 0.283
Ljung-Box (1) (ν̂t) 0.000 0.000 0.000 0.021 0.009 0.325 0.000
Ljung-Box (5) (ν̂t) 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Ljung-Box (10) (ν̂t) 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Skewness (η̂t) 4.58 3.86 1.63 1.68 2.02 1.64 1.95
Kurtosis (η̂t) 65.02 52.03 9.82 10.47 14.24 9.88 13.74
ARCH (1) (η̂t) 0.000 0.000 0.306 0.397 0.693 0.422 0.692
ARCH (5) (η̂t) 0.000 0.000 0.910 0.876 0.315 0.843 0.340
ARCH (10) (η̂t) 0.000 0.000 0.293 0.510 0.158 0.636 0.194
K-S Test (η̂t) 0.000 0.000 0.051 0.076 0.716 0.015 0.913
Ljung-Box (1) (z − z̄) 0.073 0.362 0.000 0.039 0.927 0.251 0.181
Ljung-Box (1) (z − z̄)2 0.000 0.000 0.199 0.250 0.994 0.283 0.716
Ljung-Box (1) (z − z̄)3 0.003 0.011 0.002 0.115 0.998 0.619 0.357
Ljung-Box (1) (z − z̄)4 0.000 0.000 0.274 0.208 0.965 0.479 0.857
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Table 7. Forecasting Results: S&P 500.

The table reports the out-of-sample forecasting results for the S&P 500 daily realized volatility for the

period between Jan/2001 and Jun/2009, where each model is re-estimated quarterly and used for one

day ahead predictions. The specification for the conditional mean and conditional heteroskedasticity are

separated by dashes. AE means that the model is estimated with asymmetric effects. DARV denotes

the dually asymmetric realized volatility model. RMSE is the root mean squared error, MAE the mean

absolute error. R2 is the R-squared of a linear regression of the actual realized volatility on the forecasts.

R2(∆) is the R-squared of a linear regression of the observed realized volatility change (RVt − RVt−1) on

the forecasts. SPA is the p-value of the Superior Predictive Ability test developed by Hansen (2005). The

null hypothesis is that a given model is not inferior to any other competing models in terms of a given loss

function.

1 Day
Model R2 RMSE MAE MAPE R2(∆) SPA in MSE SPA in R2

ARFIMA 0.767 0.342 0.189 0.205 0.178 0.001 0.002
ARFIMA+AE 0.817 0.301 0.174 0.191 0.317 0.001 0.000
ARFIMA-GARCH 0.790 0.316 0.167 0.166 0.244 0.034 0.033
ARFIMA+AE-GARCH 0.829 0.283 0.157 0.160 0.380 0.573 0.585
DARV (FI) 0.834 0.277 0.156 0.161 0.407 0.719 0.727
HAR+AE-GARCH 0.827 0.285 0.159 0.166 0.374 0.405 0.416
DARV (HAR) 0.831 0.280 0.158 0.165 0.395 0.400 0.382

5 Days (cumulated)
Model R2 RMSE MAE MAPE R2(∆) SPA in MSE SPA in R2

ARFIMA 0.790 1.593 0.936 0.195 0.089 0.008 0.003
ARFIMA+AE 0.819 1.494 0.875 0.183 0.132 0.009 0.001
ARFIMA-GARCH 0.820 1.348 0.789 0.148 0.123 0.005 0.007
ARFIMA+AE-GARCH 0.834 1.296 0.749 0.141 0.165 0.009 0.012
DARV (FI) 0.841 1.269 0.733 0.139 0.201 0.538 0.536
HAR+AE-GARCH 0.842 1.265 0.740 0.143 0.173 0.014 0.015
DARV (HAR) 0.847 1.244 0.728 0.141 0.213 0.787 0.761

22 Days (cumulated)
Model R2 RMSE MAE MAPE R2(∆) SPA in MSE SPA in R2

ARFIMA 0.651 8.246 5.062 0.235 0.137 0.008 0.002
ARFIMA+AE 0.683 7.862 5.528 0.283 0.202 0.000 0.000
ARFIMA-GARCH 0.701 7.183 4.238 0.178 0.220 0.043 0.043
ARFIMA+AE-GARCH 0.714 7.031 4.066 0.170 0.272 0.010 0.011
DARV (FI) 0.720 6.953 3.994 0.167 0.283 0.252 0.290
HAR+AE-GARCH 0.732 6.806 4.059 0.178 0.309 0.010 0.007
DARV (HAR) 0.736 6.752 4.020 0.176 0.332 0.576 0.573
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Table 8. Forecasting Results: Other Series

The table reports the out-of-sample forecasting results the realized volatility of the others series in the period

between Jan/2001 and Jun/2009, where each model is re-estimated quarterly and used for one day ahead pre-

dictions. The specification for the conditional mean and conditional heteroskedasticity are separated by dashes.

AE means that the model is estimated with asymmetric effects. DARV denotes the dually asymmetric realized

volatility model. The table reports the R-squared of a linear regression of the actual realized volatility change

on the forecasts (R2(∆)). The parenthesis gives the p-value of the Superior Predictive Ability test developed by

Hansen (2005) for null hypothesis that a given model is not inferior to any other competing alternatives in MSE.

ARFIMA ARFIMA ARFIMA+AE HAR+AE
ARFIMA +AE GARCH GARCH DARV(FI) GARCH DARV(HAR)

DJIA 0.207 0.269 0.262 0.345 0.381 0.346 0.377
(0.000) (0.004) (0.018) (0.142) (0.802) (0.128) (0.659)

FTSE 0.236 0.314 0.259 0.347 0.368 0.334 0.346
(0.001) (0.001) (0.001) (0.023) (0.819) (0.002) (0.004)

CAC 0.199 0.265 0.232 0.278 0.301 0.269 0.283
(0.001) (0.005) (0.008) (0.167) (0.862) (0.013) (0.026)

Nikkei 0.213 0.256 0.223 0.266 0.270 0.258 0.259
(0.037) (0.096) (0.040) (0.510) (0.834) (0.120) (0.091)

IBM 0.193 0.232 0.254 0.290 0.296 0.294 0.301
(0.000) (0.000) (0.000) (0.423) (0.604) (0.354) (0.809)

GE 0.161 0.199 0.206 0.259 0.281 0.251 0.275
(0.004) (0.007) (0.007) (0.111) (0.851) (0.051) (0.576)

WMT 0.269 0.287 0.296 0.321 0.334 0.316 0.325
(0.002) (0.001) (0.078) (0.051) (0.789) (0.130) (0.340)

AT&T 0.211 0.221 0.237 0.252 0.259 0.251 0.259
(0.000) (0.000) (0.002) (0.019) (0.896) (0.005) (0.720)

Table 9. Conditional Forecasts (S&P 500): Large Realized Volatil-
ity Changes.

The table reports out of sample conditional forecasting results for the S&P 500 daily realized volatility for the period

between Jan/2001 and Jun/2009, where each model is re-estimated quarterly and used for one day ahead predictions. The

forecasts are conditional on the change in volatility ∆RVt exceeding the defined ex post empirical percentile (calculated

within the out of sample years). The specification for the conditional mean and conditional heteroskedasticity are separated

by dashes. AE means that the model is estimated with asymmetric effects. DARV denotes the dually asymmetric realized

volatility model. RMSE is the root mean squared error. R2 is the R-squared of a linear regression of the realized volatility

change on the forecasts.

∆RVt > 80th Percentile > 90th Percentile > 95th Percentile > 99th Percentile
Model R2 MSE R2 RMSE R2 RMSE R2 RMSE

ARFIMA 0.092 0.399 0.080 0.504 0.070 0.637 0.000 1.068
ARFIMA+AE 0.035 0.402 0.013 0.513 0.000 0.658 0.034 1.114
ARFIMA-GARCH 0.254 0.353 0.255 0.446 0.231 0.569 0.059 1.002
ARFIMA+AE-GARCH 0.246 0.354 0.248 0.448 0.214 0.577 0.039 1.015
DARV (FI) 0.300 0.343 0.317 0.428 0.285 0.549 0.198 0.900
HAR+AE-GARCH 0.242 0.355 0.244 0.449 0.209 0.578 0.037 1.016
DARV (HAR) 0.309 0.343 0.324 0.426 0.286 0.549 0.166 0.909
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Table 10. Conditional Forecasts (S&P 500): High Realized Volatility.

The table reports out of sample conditional forecasting results for the S&P 500 daily realized volatility for the period

between Jan/2001 and Jun/2009, where each model is re-estimated quarterly and used for one day ahead predictions. The

forecasts are conditional on the realized volatility exceeding the defined ex post empirical percentile (calculated within the

out of sample years). The specification for the conditional mean and conditional heteroskedasticity are separated by dashes.

AE means that the model is estimated with asymmetric effects. DARV denotes the dually asymmetric realized volatility

model. RMSE is the root mean squared error. R2 is the R-squared of a linear regression of the actual realized volatility on

the forecasts.

RVt > 80th Percentile > 90th Percentile > 95th Percentile > 99th Percentile
Model R2 MSE R2 RMSE R2 RMSE R2 RMSE

ARFIMA 0.542 0.633 0.397 0.818 0.198 1.044 0.000 1.452
ARFIMA+AE 0.663 0.544 0.563 0.700 0.473 0.874 0.134 1.403
ARFIMA-GARCH 0.584 0.582 0.455 0.744 0.299 0.919 0.004 1.305
ARFIMA+AE-GARCH 0.672 0.515 0.574 0.658 0.493 0.789 0.069 1.227
DARV (FI) 0.685 0.499 0.592 0.639 0.520 0.754 0.360 1.055
HAR+AE-GARCH 0.669 0.515 0.568 0.658 0.486 0.784 0.067 1.223
DARV (HAR) 0.682 0.502 0.589 0.646 0.517 0.758 0.347 1.049

Table 11. Conditional Forecasting Results: Other Series

The table reports out of sample conditional forecasting results for the other realized volatility series for the period

between Jan/2001 and Jun/2009, where each model is re-estimated quarterly and used for one day ahead predic-

tions. The forecasts are conditional on the change in realized volatility and the realized volatility exceeding the

defined ex post empirical percentile (calculated within the out of sample years). The specification for the condi-

tional mean and conditional heteroskedasticity are separated by dashes. AE means that the model is estimated

with asymmetric effects. DARV denotes the dually asymmetric realized volatility model. The Table reports the

R2 of a linear regression of the actual values on the forecasts.

ARFIMA ARFIMA ARFIMA ARFIMA+AE DARV(FI) HAR+AE DARV(HAR)
+AE GARCH GARCH GARCH

R2 of E(∆RVt|∆RVt > Q0.9) :

DJIA 0.100 0.074 0.147 0.136 0.224 0.141 0.210
FTSE 0.084 0.106 0.138 0.135 0.211 0.124 0.191
CAC 0.036 0.073 0.245 0.219 0.169 0.206 0.192
Nikkei 0.038 0.029 0.123 0.108 0.153 0.105 0.158
IBM 0.008 0.014 0.219 0.226 0.287 0.229 0.291
GE 0.170 0.120 0.270 0.264 0.285 0.253 0.294
WMT 0.059 0.082 0.105 0.109 0.170 0.116 0.165
AT&T 0.016 0.020 0.021 0.019 0.026 0.023 0.033

R2 of E(RVt|RVt > Q0.9) :

DJIA 0.333 0.463 0.389 0.506 0.542 0.494 0.540
FTSE 0.114 0.234 0.210 0.278 0.311 0.266 0.300
CAC 0.078 0.162 0.213 0.202 0.220 0.188 0.218
Nikkei 0.466 0.490 0.506 0.526 0.526 0.503 0.512
IBM 0.431 0.466 0.462 0.485 0.498 0.486 0.497
GE 0.435 0.478 0.463 0.499 0.520 0.480 0.511
WMT 0.135 0.186 0.186 0.216 0.241 0.206 0.228
AT&T 0.288 0.307 0.310 0.317 0.337 0.339 0.357
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Table 12. Value at Risk Analysis.

The table reports the out of sample value-at-risk results for the S&P 500 daily realized volatility

for the period between Jan/2001 and Jun/2009, where each model is re-estimated quarterly

and used for calculating 1%, 2.5% and 5% value-at-risk thresholds by the Monte Carlo Method

described in section 3.3 and the ad hoc point forecasting method where rt ∼ N(0, R̃V ). The

specification for the conditional mean and conditional heteroskedasticity are separated by dashes.

AE means that the model is estimated with asymmetric effects. DARV denotes the dually

asymmetric realized volatility model. The column failures indicates the proportion of days when

returns over the next day in the α lower tail of the predicted distribution. UC and IND are the

p-values of the likelihood ratio tests for unconditional coverage and independence (against a first

order Markov alternative) developed by Christoffersen (1998) (the joint test is omitted to save

space). ES is the average of the empirical cumulative density function of returns at the VaR

failures.

1% VaR
Monte Carlo Forecast VaR

Failures UC IND ES Failures UC IND
ARFIMA 0.007 0.162 0.643 0.006 0.021 0.000 0.951
ARFIMA+AE 0.008 0.358 0.599 0.006 0.023 0.000 0.943
ARFIMA-GARCH 0.009 0.815 0.536 0.005 0.025 0.000 0.806
ARFIMA+AE-GARCH 0.009 0.646 0.556 0.005 0.025 0.000 0.773
DARV (FI) 0.009 0.815 0.536 0.005 0.025 0.000 0.806
HAR+AE-GARCH 0.010 0.990 0.515 0.006 0.025 0.000 0.773
DARV (HAR) 0.009 0.646 0.556 0.004 0.026 0.000 0.740

2.5% VaR
Monte Carlo Forecast VaR

Failures UC IND ES Failures UC IND
ARFIMA 0.023 0.510 0.943 0.015 0.044 0.000 0.238
ARFIMA+AE 0.024 0.817 0.839 0.014 0.042 0.000 0.310
ARFIMA-GARCH 0.030 0.161 0.480 0.014 0.047 0.000 0.143
ARFIMA+AE-GARCH 0.030 0.125 0.950 0.014 0.046 0.000 0.193
DARV (FI) 0.030 0.161 0.932 0.013 0.046 0.000 0.193
HAR+AE-GARCH 0.029 0.204 0.506 0.013 0.047 0.000 0.155
DARV (HAR) 0.030 0.125 0.455 0.013 0.045 0.000 0.207

5% VaR
Monte Carlo Forecast VaR

Failures UC IND ES Failures UC IND
ARFIMA 0.054 0.447 0.654 0.027 0.071 0.000 0.837
ARFIMA+AE 0.056 0.250 0.032 0.027 0.072 0.000 0.011
ARFIMA-GARCH 0.060 0.035 0.130 0.026 0.076 0.000 0.941
ARFIMA+AE-GARCH 0.062 0.013 0.007 0.026 0.073 0.000 0.027
DARV (FI) 0.061 0.022 0.009 0.025 0.072 0.000 0.034
HAR+AE-GARCH 0.060 0.044 0.013 0.025 0.076 0.000 0.004
DARV (HAR) 0.059 0.055 0.014 0.025 0.075 0.000 0.001



REALIZED VOLATILITY RISK 27

Table 13. Robustness: Forecasted Return CDF at the Lowest Observed Returns
(S&P 500)

The table reports the forecasted cumulative density functions (using the Monte Carlo Method) evaluated at the ten
lowest observed returns in the period between Jan/2001 and Jun/2009. The specification for the conditional mean and
conditional heteroskedasticity are separated by dashes. AE means that the model is estimated with asymmetric effects.
DARV denotes the dually asymmetric realized volatility model.

ARFIMA ARFIMA ARFIMA+AE HAR+AE

Date Return RVt ARFIMA +AE GARCH GARCH DARV(FI) GARCH DARV(HAR)

29-Sep-08 -9.219 4.845 0.002 0.001 0.003 0.002 0.002 0.003 0.002

07-Oct-08 -5.911 4.017 0.007 0.009 0.019 0.024 0.026 0.023 0.027

09-Oct-08 -7.922 4.393 0.008 0.009 0.021 0.022 0.025 0.022 0.027

15-Oct-08 -9.470 3.665 0.018 0.013 0.044 0.039 0.031 0.047 0.043

22-Oct-08 -6.295 3.678 0.113 0.145 0.129 0.149 0.164 0.161 0.174

05-Nov-08 -5.412 2.499 0.057 0.053 0.066 0.067 0.065 0.086 0.084

19-Nov-08 -6.311 3.532 0.033 0.027 0.043 0.038 0.042 0.042 0.048

20-Nov-08 -6.948 5.858 0.035 0.068 0.045 0.077 0.100 0.083 0.106

01-Dec-08 -9.354 2.562 0.005 0.004 0.014 0.011 0.010 0.015 0.013

20-Jan-09 -5.426 2.505 0.019 0.016 0.023 0.019 0.025 0.014 0.019
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Figure 1. Kurtosis of the simulated distribution under the assumption that
shocks to realized have the NIG (upper line) and normal distributions.
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Figure 2. Densities for the simulated distributions (no volatility feedback).
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Figure 3. In-Sample Percentage Errors for the HAR model with leverage effects.
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Figure 4. Residuals series of the HAR model with leverage effects.
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Figure 5. Sample autocorrelations for the squared (left) and absolute (right)
residuals of the HAR model with leverage effects.
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Figure 6. GARCH standard deviation series (top) and realized volatility fitted
values (bottom) for the HAR model with leverage effects.
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Figure 7. Time Series of returns (top), realized volatility (middle) and log real-
ized volatility (bottom) for the S&P 500 index.
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Figure 8. Realized Volatility (top) and Monthly Returns (bottom) for the S&P
500 index.
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Figure 9. S&P500 Estimated Volatility of Realized Volatility.


