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Abstract 

 
 
This paper focuses on the selection and comparison of alternative non-nested volatility 
models. We review the traditional in-sample methods commonly applied in the volatility 
framework, namely diagnostic checking procedures, information criteria, and conditions for 
the existence of moments and asymptotic theory, as well as the out-of-sample model selection 
approaches, such as mean squared error and Model Confidence Set approaches. The paper 
develops some innovative loss functions which are based on Value-at-Risk forecasts. Finally, 
we present an empirical application based on simple univariate volatility models, namely 
GARCH, GJR, EGARCH, and Stochastic Volatility that are widely used to capture 
asymmetry and leverage. 
 

 
Keywords: Volatility model selection, volatility model comparison, non-nested models, 
model confidence set, Value-at-Risk forecasts, asymmetry, leverage. 
 
JEL: C11, C22, C52, C58. 
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1. Introduction 

 

Model selection and model comparison, especially of the conditional mean or first moment of 
a given random variable, has been widely considered in the sciences and social sciences for 
an extended period. The relevance and importance of such a topic comes from the recognized 
fact that the true data generating processes are generally unknown. 

As a result, several approaches have been proposed to verify if a given model is able to 
replicate or capture the empirical features observed on sample data (the realization of the data 
generating process), and to check if there is a preference across alternative models that might 
be considered given the sample data and the purposes of the analysis.  

In this paper we focus on model comparison and selection in a specific framework, namely 
univariate volatility models for financial time series. From the seminal work of Engle (1982) 
and Bollerslev (1986), GARCH models have become a very popular tool in empirical 
finance. They have been generalized in several ways (see, for example, Bollerslev et al. (1992, 
1994) and McAleer (2005)). A companion family of models is that of stochastic volatility 
(SV), introduced by Taylor (1982, 1986), and extended in several directions (see, for example, 
Ghysels et al. (1996) and Asai et al. (2006)). 

Traditional methods for model selection and comparison could easily be extended and 
applied within specific families of models (for instance, within GARCH or within SV 
specifications). However, some model classes, or some specific models within a given model 
class, may be non-nested, thereby requiring appropriate approaches or novel techniques for 
the model selection step. 

In the following, we will consider separately the comparison of alternative specifications in-
sample, thereby resorting to nested and non-nested model comparison, diagnostic checking, 
and out-of-sample model comparison based on the forecasts of given models. 

The discussion herein is based on univariate models that are capable of capturing financial 
time series asymmetry and/or leverage, but the results presented can be generalized to other 
model classes at the univariate level. The methods can also be generalized to the multivariate 
level, following Patton and Sheppard (2009) and Caporin and McAleer (2009, 2010). 

The remainder of the paper proceeds as follow. In subsection 1.1, we introduce the models to 
be used. Section 2 discusses the model selection and testing methods, distinguishing between 
in-sample and out-of-sample approaches. Section 3 includes an empirical example on a set of 
stock market indices. Finally, Section 4 gives some concluding comments. 
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1.1 Model specifications 

 

In this paper we illustrate some approaches to model selection and comparison making use of 
simple and well-known univariate volatility models. We consider the traditional 
GARCH(1,1), its extension to capture asymmetry, the GJR(1,1) model of Glosten et al. 
(2002), Exponential GARCH(1,1) (EGARCH), and the Autoregressive SV(1) (also known as 
SV) specifications. We choose these three models for two simple reasons, namely they are 
non-nested and can capture asymmetry and leverage (with the obvious exclusion of 
GARCH(1,1), which is a benchmark model). 

In order to simplify model evaluation and comparison, we assume in the following that the 
analyzed return series,  , has been filtered from its mean, so that we can focus on a zero-

mean series, 
tr

tε  , that display conditional heteroskedasticity, t t ztε σ= . Furthermore, the unit 

variance innovation,  , is a standardized residual. tz

If the conditional variances, 2
tσ  , follow a GARCH(1,1) model, the following equation 

represents their law of motion: 

 

2 2
1 ,t t

2
1tσ ω αε βσ−= + + −          (1) 

 

where 0ω ≥ , 0,  0α β≥ ≥ , and 1α β+ ≤  are sufficient conditions to guarantee positive 
conditional variances for all observations. 

If we introduce asymmetry to GARCH(1,1), we obtain the asymmetric or threshold model of 
Glosten et al. (1993), GJR(1,1): 

 

( )2 2 2
1 1 1 0t t t tI 2

1tσ ω αε γε ε βσ− − −= + + < + −        (2) 

 

Where the parameter γ  captures asymmetry, and ( )1 0tI ε − <  is an indicator function, which 

takes the value 1 when 1 0tε − <  , and 0 otherwise. 

A clarification is needed here in order to avoid a common misconception between asymmetry 
and leverage: (i) asymmetry is a feature that is intended to capture the empirical regularity 
that positive and negative shocks of equal magnitude have different impacts on volatility; (ii) 
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leverage is intended to capture the possibility that negative shocks increase volatility while 
positive shocks decrease volatility.  

As a matter of model design, few conditional volatility models allow for leverage effects. For 
example, GARCH is symmetric and hence has no leverage. Despite comments to the contrary 
in various econometric software packages (for instance, EViews and Matlab), the GJR model 
(also known as Threshold GARCH, or TGARCH) may be asymmetric, but it is unlikely to 
have leverage, as the ARCH effect must be negative, which is contrary to virtually every 
empirical finding in the financial econometrics literature. 

The third model we consider is the EGARCH(1,1), where the conditional variance equation is 
defined in term of log-variances: 

 

( ) (2
1 1ln lnt t tz zσ ω α γ β σ− − −= + + + )2

1t .       (3) 

 

Note that the coefficients need not to be positive, while 1β <  to avoid explosive variance 

patterns. In equation (3), the parameters α  and γ  influence the presence of asymmetry and 

leverage: if , the shock’s impact on conditional variances is 1 0tz − ≥ ( ) 1tzα γ −+  , while if 

 , the impact is (1 0tz − < ) 1tzγ α −− . As a result, if 0γ =  the model is symmetric, and hence 

cannot have leverage. We have asymmetry (with a larger impact on volatility of negative 
shocks as compared with positive shocks of similar magnitude) if 0γ < , and leverage 
(whereby negative shocks increase volatility and positive shocks decrease volatility) if γ  < 0  
and γ  < α  < - γ  . The EGARCH model can have leverage, but two restrictions on the 
parameters α  and γ  must be satisfied (some econometric software manuals state incorrectly 
that leverage arises through a constraint on a single parameter, namely γ ). 

Finally, we consider the stochastic volatility model, which assumes that the innovation term 
follows: 

 

1exp
2t h zε ⎛ ⎞= ⎜ ⎟

⎝ ⎠
t t           (4) 

 

where  is a unit variance innovation and the conditional variance  is driven by the 

following dynamic equation for : 
tz ( )exp th

th
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1 0 1th ht tφ φ+ = + +η           (5) 

 

where the parameters are not required to be positive, 1 1φ <  to avoid explosive patterns, and 

the innovation term, tη  , has variance 2
ησ . 

As shown Yu (2005), the SV model displays a leverage effect if the two innovation terms, tη  

and  , are negatively correlated, while asymmetry may be included following, for instance, 
the approaches of Danielsson (1994), So et al. (2002), and Asai and McAleer (2005). 

tz

 

2. Model Selection and Testing 

 

Selection of the best or the most appropriate model may be based on in-sample or out-of-
sample criteria, or both. In the following, we will address these two approaches separately. 
Such a choice derives from purely illustrative purposes, and should not be interpreted as a 
preference for one of the two methods. Indeed, identification of an optimal model would 
seem to require an optimal balance between these two approaches.  

In empirical applications we search for models that capture the features of the analyzed data, 
and that provide accurate out-of-sample forecasts. Both elements may not be present over all 
models and thus, in empirical studies, a trade-off will likely exist. This possible inconsistency 
may be resolved in part by evaluating the purpose of an empirical exercise. Structural 
analysis may have greater emphasis on in-sample fit, while forecasting exercises will 
necessarily concentrate on out-of-sample outcomes. Nevertheless, both aspects need to be 
considered, as does the role of research expertise. 

 

2.1 In-sample comparisons 

 

This paper examines conditional volatility (GARCH) models and stochastic volatility (SV) 
processes. We focus on alternative model specifications that belong to the same family (either 
GARCH or SV). If the models we compare have known mathematical and asymptotic 
properties (such as strict stationarity of the underlying random process, and consistency and 
asymptotic normality of the estimators), we may compare them by checking if the conditions 
ensuring the existence of moments or asymptotic properties are satisfied. In principle, models 
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where these conditions are not satisfied, or do not even exist, should be discarded. In practice, 
this is typically not the case. 

For instance, log-moment conditions ensuring strict stationarity and ergodicity of GARCH 
models are reported in Nelson (1990) and Bougerol and Picard (1992), among others. These 
conditions are also sufficient for consistency and asymptotic normality of quasi-maximum 
likelihood estimators (QMLE) (for example, see Elie and Jeantheau (1995), and Boussama 
(2000)). Stronger but simpler moment conditions for ergodicity, stationarity, consistency and 
asymptotic normality of the QMLE, have been provided in Ling and McAleer (2002a, b) and 
McAleer et al. (2007). In practice, log-moment conditions are generally difficult to verify, 
especially for multivariate processes, while moment conditions may be considered as a useful 
diagnostic check. Notably, well written software should implement these conditions (which 
are generally represented as non-linear parametric restrictions) within the estimation step, 
thereby implicitly checking them.  

As an example, consider the GJR model of equation (2). In this case, the stationarity and 
ergodicity condition, under the assumption that shocks follow a symmetric density, is given 
as 0.5 1α γ β+ + <  , while the condition for the existence of the fourth-order moment is 

. The log-moment condition is given as 

, but it could be difficult to verify as it requires the 

evaluation of the expectation of a function of an unknown random variance and of unknown 
coefficients. 

2 22 3 3 0.5 1β αβ α βγ αγ γ+ + + + + <2

)⎤ <⎦( )( 2 2
1 1 1ln 0 0t t tE z z I zα γ β− − −

⎡ + < +⎣

From a different viewpoint, we may compare models with respect to the features they are 
supposed to be capturing. For example, we may prefer volatility models with asymmetry to 
specifications characterized by a symmetric news impact curve. 

Model preference based on model flexibility should obviously be matched with the statistical 
significance of estimated parameters associated with a particular feature. For instance, 
referring to the GJR model, it can capture asymmetry though not leverage, and hence is more 
flexible than the symmetric GARCH(1,1) specification. However, GJR should be preferred 
empirically to GARCH if the estimated asymmetry coefficient, γ  , is statistically significant. 
Similarly, if we consider the SV model with leverage (this model can capture leverage, and 
hence asymmetry), replacing (5) with (see Danielsson, 1994): 

 

0 1 1 1 1 2 1t t t th h 1tφ φ δ ε δ ε η− − −= + + + + −         (6) 

 

Then tests of the coefficients 1δ  and 2δ  could be associated with the significance of both the 
size and sign of shocks. 
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Tests of significance associated with single parameters or of model features are linked to 
diagnostic procedures based on the likelihood function. In fact, model comparison could also 
consider testing nested and/or non-nested models. In general, when we compare models 
belonging to the same family (such as within GARCH or SV), these are typically nested 
comparisons. Therefore, the validity of parametric restrictions could be evaluated by 
significance tests or, more appropriately, by Likelihood Ratio (LR) or Lagrange Multipliers 
(LM) tests.  

In order to present some simple examples, the GJR(1,1) model nests the simple GARCH(1,1) 
model under a zero restriction on the parameter driving the asymmetry; APARCH nests 
GARCH which is obtained fixing the power coefficient to 2; SV model with asymmetry nests 
the simpler SV model under a zero parametric restriction similar to that of GJR. In these 
cases, assuming correct specification of the model (particularly of the innovation density), 
LM and LR tests have the standard asymptotic properties, and the LM statistic can be 
evaluated when the analytic score is available (see Fiorentini et al. (1996) for an example). 

For a comparison of models belonging to separate (or non-nested) families of hypotheses, 
such as GARCH versus SV, or EGARCH versus GARCH, non-nested tests are required. Ling 
and McAleer (2000) and McAleer et al. (2007) propose simple procedures to compare 
GARCH and GJR models against the EGARCH model. Denote by 2ˆtσ  the estimates of time t 
variance obtained from a GJR model, and consider the following EGARCH specification: 

 

( ) ( ) ( )2
1 1 1 ˆln ln lnt t t tv v2 2

tω α η γη β δ σ− − −= + + + +       (7) 

 

where  are the EGARCH conditional variances and 2
tv tη  are the EGARCH standardized 

residuals. The test of the EGARCH null hypothesis against the GJR alternative corresponds 
to testing δ  = 0. Similarly, the test with GJR as the null involves a test of δ  = 0 in the 
auxiliary regression: 

 

( )2 2 2 2
1 1 1 1 ˆ0t t t t t

2
tI vσ ω αε γε ε βσ δ− − − −= + + < + +       (8) 

 

where  is the estimate of the time t variance obtained from an EGARCH model. The 
corresponding tests for GARCH against EGARCH can be obtained as special cases of those 
given above. 

2
t̂v
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A different test for GARCH against EGARCH was proposed in Lee and Brorsen (1997). The 
authors suggested a test based on the likelihood of two competing non-nested models, based 
on the procedures developed in Cox (1961, 1962). The Cox test compares two parametric 
models by evaluating the difference between maximum likelihood values as a deviation from 
its expectation. Lee and Bronsen (1997) evaluate the test statistic by using Monte Carlo 
methods. However, it is not clear if the conditions underlying the Cox test are satisfied. In 
particular, the two likelihoods should belong to separate families, that is, for a given 
parameter choice, the null hypothesis cannot be arbitrarily closely approximated by the 
alternative. A further aspect that may affect the validity of the test of the EGARCH model as 
the null hypothesis is that the statistical properties of EGARCH are as yet not known. 

The approach of Cox (1961, 1962) is also closely related to the comparison methods outlined 
in Kim et at. (1998), who suggest a likelihood ratio test for non-nested models by obtaining 
the sampling distribution of the test statistic through Monte Carlo methods. In this case, the 
tested non-nested models are GARCH and Stochastic Volatility, making the Cox test more 
appropriate. 

The procedure outlined in Kim et al. (1998) involves the following steps: 

(1) Estimate the GARCH and SV model parameters and evaluate the corresponding 

likelihoods, denoted by ( )ˆ;SV SVL x θ  and ( )ˆ;GARCH GARCHL x θ , respectively, where the 

circumflex denotes estimated parameters, evaluate the likelihood ratio statistics: 
 

( ) ( ),
늿2 log ; log ;SV GARCH SV SV GARCH GARCHLR L x L xθ θ⎡ ⎤= −⎣ ⎦  
 

( ) ( ),
늿2 log ; log log ;GARCH SV GARCH GARCH SV SVLR L x L xθ θ⎡ ⎤= −⎣ ⎦  , 

 
where the first model represents the null hypothesis, and the SV density is evaluated 
by simulation methods, following the procedure in Kim et al. (1998); 

(2) Simulate M paths under the null, estimate both models on each path, and evaluate the 
M likelihood ratio statistics; 

(3) Test the null hypothesis using a Monte Carlo test, determining the p-value of the 
empirical likelihood ratio statistics under the simulated density of the LR test statistic. 

Note that, the LR test statistic is not constrained to be positive as the two models are non-
nested. Moreover, by reversing the null and alternative hypotheses, the test outcomes may 
lead to rejection or non-rejection of both models as the respective null hypotheses. Clearly, 
the procedure outlined in Kim et al. (1998) derives an approximate LR statistic density, and is 
also influenced by the fact that the true parameters are not known. To state the obvious, this 
test is computationally intensive. 

 9



Kobayashi and Shi (2005) propose a closely related test for EGARCH against SV. Their 
approach differs from the previous method as they modify the SV model. In fact, they 
consider the following SV parameterization: 

 

1exp
2t z th zε σ ⎛ ⎞= ⎜ ⎟

⎝ ⎠
t
 

         (9) 

( ) ( )
1 1

0 1 1
1 1exp exp

t t
t t

t t

h h
h h η

ε ε
tφ φ α β σ− −

−
− −

= + + + + η       (10) 

0 1
,

0 1
t

t

z
D

ρ
η ρ

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

⎟          (11) 

 

The model of Kobayashi and Shi (2005) is a slightly modified version of the model in 
Danielsson (1994), where the volatility equation includes a dependence on both the sign and 
size of the standardized innovations. Notably, the model includes both asymmetry and 
leverage as the parameters need not be positive. 

In the context of the slightly modified SV model, EGARCH is associated with the parametric 
restriction, . Kobayashi and Shi (2005) propose a Lagrange Multiplier (LM) test for 

the null hypothesis  (EGARCH) against an alternative of positive variance for the 

volatility equation. The LM test has an advantage that only EGARCH needs to be estimated. 
The Monte Carlo simulations reported to verify the size and power of the test show that the 
LM test for EGARCH against SV has good size and reasonable power (but the results would 
seem to be heavily dependent on the values of the parameters). 

2 0ησ =
2 0ησ =

In addition to hypothesis testing approaches, information criteria may also be considered to 
compare models by using their likelihood penalized by a function of the number of 
parameters and number of sample observations. These methods allow a comparison of 
models where the conditional variances depend on observable quantities, such as GARCH 
and EGARCH, but cannot be applied to compare GARCH and SV as the likelihood function 
for SV models differs from that of conditional variance specifications (see Kim et al. (1998) 
for an example of the evaluation of the SV likelihood by simulation methods). 

Alternative models of variances and volatility may also be compared through their ability to 
capture the heteroskedasticity inherent in financial time series. The most common approach 
for diagnostic checking is the Ljung-Box test statistic applied to the squared standardized 
residuals, with the preferred model as the one that permits greater whitening of the residuals. 
Furthermore, distributional hypotheses could also be considered in order to evaluate which 
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density is closer to the analyzed data. Standard tests such as the Jarque-Bera normality test, or 
the more general Kolmogorov-Smirnov, may be considered in this context. 

In-sample comparisons, and the subsequent choice of the best model, may be optimal for 
structural analysis, but it does not guarantee an optimal choice for out-of-sample forecasting. 
In this case, the literature provides a number of alternative approaches for model comparison. 
In the following section, we present some that are tailored for comparing conditional variance 
models. 

 

2.2 Out-of-sample comparisons 

 

A comparison of SV and GARCH models out-of-sample may follow two different 
approaches: a direct comparison of variance forecasts, or an indirect comparison of variance 
models through the possible uses of the corresponding variance forecasts. This dichotomy 
follows from Patton and Sheppard (2009), who present a number of alternative theoretical 
approaches. 

 

2.2.1. Direct model evaluation 

 

Within the direct comparison, alternative models are contrasted by tests directly based on 
variance forecasts. Denote by 2

,ˆ j tσ  the time t variance forecast of model j, and by 2
tσ  the true 

and unknown variance at time t. For each model we may evaluate, over a given forecast 
horizon, a set of standard quantities. Two well known examples are the Mean Absolute Error 
(MAE) and Mean Squared Error (MSE): 

 

( ) 2 2
,

1

1 ˆ
m

t j
t

MAE j
m tσ σ

=

= −∑          (12) 

 

( ) (
2

2 2
,

1

1 ˆ
m

t j t
t

MSE j
m

σ σ
=

= −∑ )  .        (13) 
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Given these quantities for each model, the preferred model will typically have lower values 
of both MAD and MSE, meaning lower deviations from the true variance.  

A closely related comparison method is the use of Mincer-Zarnowitz (1969) regressions, 
where the variance forecasts are used as explanatory variables for the true variance: 

 

2 2
,ˆt j t tσ α βσ ε= + +  .          (14) 

 

In this alternative framework, optimal models should have 0α =  and 1β = , with a higher 
value of R2. Therefore, models providing appropriate or similar coefficient values in (14) 
could be ranked by means of R2 values. 

However, two problems arise in both the Mincer-Zarnowitz-type regressions and in the use of 
MSE or MAE: (i) the true variance is not known; and (ii) ranking models on the basis of one 
or more statistical indicators is not necessarily a formal statistical test. 

With respect to the first issue, unbiased estimates of the true variance could be recovered by 
realized volatility estimators (see Barndorff-Nielsen and Shephard (2002a,b) and Barndorff-
Nielsen et al. (2008), among others). When high-frequency data are not available, the true 
variance could be approximated by the squared de-meaned return observed at time t, at the 
cost of a large noise component. Nevertheless, in the case of the Mincer-Zarnowitz 
regressions, Meddahi (2002) shows that the rankings based on R2 are consistent to the 
inclusion of noise in the proxy used for 2

tσ . 

Model equivalence could be tested more formally, for instance, by the approach proposed by 
Diebold and Mariano (1995), and generalized by Patton (2010). We may compare models by 
using tests based on loss function differentials, whereas MAE and MSE could be considered 
as specific loss functions. As shown in Patton (2010), the use of proxies for the underlying 
true volatility induces distortions in the model ranking for some loss functions. Patton (2010) 
proves that two loss functions are robust to noisy volatility proxies, and allows an unbiased 
model ordering. These loss functions are the MSE and QLIKE, as given below: 

 

( ) (
2

2
,

1

1 ˆ
m

t j t
t

MSE j h
m

σ
=

= −∑ )          (15) 
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( )
2

2
, 2

1 ,

1 ˆln
ˆ

m
t

j t
t j t

hQLIKE j
m

σ
σ=

⎛ ⎞
= +⎜⎜

⎝ ⎠
∑ ⎟⎟         (16) 

 

where  is a proxy for the true unobserved volatility th 2
tσ . Alternative models for 2

tσ  can be 
compared by tests of equal predictive ability, which are associated with the null hypothesis of 
the expected null loss function differential: 

 

( ) ( ) ( ) ( ) ( )0 ,: ,MSE tH E MSE j E MSE i E MSE j MSE i E lf j i⎡ ⎤− = − =⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 0=   (17) 

 

where we may write a similar expression for QLIKE, and the expectation is evaluated using 
the sample counterparts reported in (15) and (16). Building on the results in Diebold and 
Mariano (1996), the test statistic is given as: 

 

( ) ( )
( ),

,
,

,
MSE

MSE

MSE t

LF j i
i j

Var lf j i
τ =

⎡ ⎤⎣ ⎦
        (18) 

 

where  

( ) ( ) ( ) ( )( )2 22 2
, , ,

1 1

1 1
늿, ,

m m

MSE MSE t t j t t i t
t t

LF j i lf j i h h
m m

σ σ
= =

= = − − −∑ ∑ ( ), ,MSE tlf j i⎡ ⎤⎣ ⎦ and Var  is a  

heteroskedasticity and autocorrelation consistent variance estimator (with identical 
equivalence relations available for the QLIKE loss function). The test statistic is 
asymptotically distributed as a standardized normal, which allows a simple evaluation of the 
null hypothesis. In fact, the test is equivalent to a significance test of the intercept in a 
regression of the loss function differentials  ( ), ,MSE tlf j i  over a constant, and is thus readily 

available in all computer software packages that implement robust linear regression methods. 

A relevant limitation of the comparisons based on Diebold-Mariano type tests is that they 
represent pairwise comparisons, so that it is not possible to exclude a priori the possibility of 
having different model rankings associated with different robust loss functions. The literature 
contains several approaches that have attempted to resolve this issue, such as the Reality 
Check of White (2000), the Superior Predictive Ability test of Hansen (2005), and the Model 
Confidence Set (MCS) of Hansen et al. (2005). 
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We suggest the use of the Model Confidence Set as this method provides a confidence set of 
statistically equivalent models. The approach developed in Hansen et al. (2005) constitutes a 
testing framework for the null hypothesis of equivalence across models, which is described 
by mean of loss functions. By referring to the MSE loss function (similar quantities can be 
obtained for the QLIKE loss function), and assuming that the set M  contains a number of 
different models used to produce forecasts in a given out-of-sample range, the null hypothesis 
of MCS is given as: 

 

( )0 ,: , 0,  ,  ,MSE tH E lf j i i j i j⎡ ⎤ = > ∀ ∈⎣ ⎦ M        (19) 

 

The null hypothesis can be tested by means of two test statistics proposed in Hansen et al. 
(2005), namely: 

 

( )
( )

,

,

,
max

,
MSE

R j i

MSE t

LF j i
t

Var lf j i
∈=

⎡ ⎤⎣ ⎦
M         (20) 

( )
( )

2

, , ,

,

,
MSE

SQ
j i j i MSE t

LF j i
t

Var lf j i∈ >

⎛ ⎞
⎜=
⎜ ⎡ ⎤⎣ ⎦⎝ ⎠

∑
M

⎟
⎟

j i ⎟⎟⎟

 .       (21) 

 

Both tests statistics are based on a bootstrap estimate of the variance,

 

. As 

the distribution is non-standard, the rejection region is determined using bootstrap p-values 
under the null hypothesis. If the null of equal predictive ability across all models is rejected, 
the worst performing model is excluded from the set M . Such a model is identified using: 

( ), ,MSE tVar lf j i⎡ ⎤⎣ ⎦

 

( ) ( )
1/ 2

arg max , ,j MSE MSE
i i

j LF j i Var LF
−

∈
∈ ≠ ∈ ≠

⎛ ⎞⎛ ⎞ ⎛ ⎞
= ⎜⎜ ⎟ ⎜⎜⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑M
M,i j M,i j

    (22) 

 

where the variance is again determined through bootstrap techniques. The equal predictive 
ability of the remaining models should also be tested, thereby iterating the evaluation of the 
test statistics in (20) and (21), and the identification of the worst performing model in (22). 
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The procedure stops when the null hypothesis of equal predictive ability of the models still 
included in the set is not rejected. Subsequently, the MCS method provides a set of 
statistically equivalent models with respect to a given loss function. It should be noted that 
the optimal model set could contain a single model. 

 

2.2.2. Indirect model evaluation 

 

Indirect evaluation methods consider the uses of alternative variance forecasts. For instance, 
conditional variances could be used to price derivatives, or to define the market risk exposure 
of a portfolio. The literature has recently addressed the topic, focusing mainly on multivariate 
models (for example, see Caporin and McAleer (2010), Clements et al. (2009), Patton and 
Sheppard (2009), and Laurent et al. (2009), among others). At the univariate level, the 
approaches are much more widespread and have generally focused on specific applications. 
Many studies dealt with the evaluation of alternative GARCH specifications within a Value-
at-Risk (VaR) framework (for example, see Caporin (2008), Berkowitz (2001), and Lopez 
(1999, 2001)).  

Considerable empirical research has focused on tests for the evaluation of VaR forecasts. 
These are used to determine if a model is more appropriate with respect to competitors in 
determining the future expected risk of a financial instrument (such as a financial portfolio). 
In this framework, consider a variable displaying heteroskedasticity, possibly characterized 
by a time-varying mean, and with an unspecified conditional density (with additional 
parameters contained in the vector θ): 

 

(1| ; ,t
t t tx I f x )2 ,tμ σ θ− .           (23) 

 

The one-day VaR for tx  is defined as: 

 

(
( )1;

2
1 1 1

ˆ; | , | ,
tVaR x

t t
t t t ) 1tf x E I E I dx

α

α μ σ
+

+ + +
−∞

⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦∫ θ +       (24) 

 

where the time-varying mean and variance are replaced by their conditional expectations, the 
additional parameters are estimated, and α  is the VaR confidence level. Under normality, the 
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VaR has a simpler expression, namely ( ) ( )1 2
1 1 1; | t t

t t tVaR x E I E Iα μ α σ−
+ + + |⎡ ⎤ ⎡= +Φ ⎤⎣ ⎦ ⎣ ⎦ , 

where ( )1 α−Φ  is the α -quantile of the standardized normal. Thus, VaR depends on the 

models used to capture the mean and variance dynamics. 

The evaluation of alternative mean and variance specifications by using VaR could follow 
two approaches: (i) test if the VaR out-of-sample forecasts satisfy the condition 

( )( ;t tE I x VaR x )α α⎡ <⎣ ⎤ =⎦

))

, that is, if the expected number of VaR violations (namely, 

where returns are lower than the forecast VaR) is equal to the VaR confidence level; (ii) 
compare models by means of loss functions. Tests include the traditional method of Kupiec 
(1995) which, as shown in Lopez (1999, 2001) and Caporin (2008), have limited power in 
discriminating across alternative variance specifications. Thus, loss functions should be 
preferred, making an indirect comparison of GARCH and SV models very similar to the 
direct comparison. In the following, we provide an interpretation of VaR model comparisons 
by means of the Model Confidence Set which, to the best of our knowledge, would seem to 
be novel. 

Loss functions based on VaR forecasts have been proposed, for instance, by Lopez (1999) 
and Caporin (2008). We suggest the following: 

 

i) (( ;t tIF I x VaR x α= < ;         (25) 

ii) ;     (26) ( )( ) ( )(( )2
; 1 ;t t t t tPIF I x VaR x x VaR xα= < + − )α

iii) ( ) ( ) ;  t t t tAD x VaR x g xα= − ;       (27) 

iv) ( )( ) ( )
2

;t t tSD x VaR x g xα= − t

t

;        (28) 

v) t tASD AD SDλ= + ;         (29) 

vi) ( ) (
60

1
max ; ; ;

60
t

t t t
j

pRL VaR x VaR x )jα α−
=

⎛ ⎞
= ⎜

⎝ ⎠
∑ ⎟ .      (30) 

 

In the previous list, the first function (the indicator loss function, IF) identifies exceptions, 
while the second penalizes exceptions by using the squared deviation between realized 
returns and VaR (penalized indicator function – PIF). The third and fourth loss functions 
could be read as first-order and second-order losses, respectively, between VaR and realized 
returns (Absolute Deviation, AD, and Squared Deviation, SD, loss functions, respectively). 
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They both depend on ( )tg x , a function of the observed variable, tx  , that focuses the loss 

functions, for instance, only on negative returns ( ) ( )0t tg x I x= < , on VaR violations 

( ) ( )( );t t tg x I x VaR x α= <  or, finally, on the entire returns path (if set equal to 1). In the fifth 

loss function, we combine the previous two, adding a parameter, λ  , to modify the weight of 
a component (which can be used to increase or decrease the impact of squared deviations). 
Note that the fourth loss function is equivalent to the second if  and ( ) ( )0t tg x I x= <

( ;tVaR x )α  is always negative. Finally, the last loss function is also known as Regulatory 

Loss, and depends on a penalty term, tp  , which is calibrated over the number of exceptions 
in the last 250 days (3 up to 4 exceptions, 3.4, 3.5, 3.65, 3.75, 3.85 for 5, 6, 7, 8, and 9 
exceptions, respectively, and 4 for more than 9 exceptions). 

One striking advantage of these loss functions is that they are not based on the true volatility, 
but still depend on the volatility forecasts. Thus, they could be used within a MCS framework 
to compare alternative models, without suffering from the problems associated with the 
replacement of the true variance by a noisy proxy.  

These methods could also be used in the multivariate framework and be applied to portfolios, 
in which the included asset variances follow a heteroskedastic density. 

 

3. Empirical Example 

 

In this section we present an empirical comparison of the methods discussed above. Daily 
stock market total return indices, as reported in Table 1, are examined for 2000-2009. We 
consider the large cap stock market indices of France (CAC40), Germany (DAX), 
Switzerland (SMI), Hong Kong (HS), and USA (S&P500). Returns are computed from index 
levels as . For each series, we report the descriptive statistics and 

sample period, which differ across market indices as holidays have been removed from the 
data on a single series basis, and these are not common over the countries considered.  

( ) ( )1100 ln lnt tr I I −= −⎡⎣ t ⎤⎦

For each return series, we fit four specific models, namely GARCH(1,1), GJR(1,1), 
EGARCH(1,1), and SVOL(1). The models are estimated on a rolling basis, using a window 
of 1000 observations, and under normality. The four models are then used to produce one-
step-ahead variance forecasts, from 1 January 2004. 

The models are compared using some of the methods described in the previous section. In 
particular, we consider the Ling and McAleer (2000) test for comparing GJR and GARCH 
against EGARCH, the Likelihood Ratio test in comparing GARCH against GJR, the Diebold-
Mariano test using the MSE and QLIKE loss functions across all model pairs, and the Model 
Confidence Set approach using the MSE and QLIKE loss functions, the loss functions in 
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(26)-(30) with three VaR levels (1%, 5% and 10%), and the loss function in (31) with the 1% 
VaR level. For the ASD loss function, we set λ=1. Furthermore, in order to verify the stability 
of results over time, we compare the models over different out-of-sample periods, and we 
consider annual comparisons from 2004 to 2009 (that is, for 5 different years). 

We start with the in-sample comparison of models using the Ling and McAleer (2000) and 
LR tests. As we estimated the models over a rolling sample of 1000 observations, we have a 
set of around 1500 estimates of all models (for estimation samples ending from 31 December 
2003 to 30 December 2009). The number of estimates is not equal across all series as these 
differ with respect to national holidays. Table 2 reports the percentage of rejections of the 
null hypothesis at the 5% confidence level over the entire set of estimates available for each 
series. 

Table 2 highlights that GJR(1,1) is always preferred to its GARCH(1,1) counterpart for the 
CAC40, DAX, SMI, and S&P500 indices, while only for the HS index does GJR not improve 
in-sample over GARCH in 32% of cases. 

A different picture emerges when we compare non-nested models, namely GARCH and GJR 
against EGARCH. We use the Ling and McAleer (2000) test and consider four possible 
comparisons, modifying the null and alternative models accordingly. The Ling and McAleer 
(2000) test adds the fitted variances under the alternative to the auxiliary regression equation 
for the conditional variance equation under the null. A significant coefficient of the added 
variable provides evidence against the null model. The results for DAX, SMI and S&P500 
are quite similar in that there is a large fraction of rejections when the null model is the 
GARCH and GJR specification, and a small fraction of rejections when the null model is 
EGARCH. Therefore, EGARCH is the preferred conditional volatility model. This finding is 
not surprising as EGARCH is more flexible than GARCH and GJR, can exhibit asymmetry 
and leverage, and there are no restrictions on the parameters of the model. 

However, for CAC40 and HS, the results do not support a particular model, either suggesting 
that any alternative model is an improvement over the null (CAC40) in a large fraction of 
cases, or that no model can improve the null (HS) (again in a large percentage of cases). 

In order to shed some light on this result, we recomputed Table 2 over two subsamples, 2004-
2006 and 2007-2009, and the outcome is reported in Table 3. We do not report the LR test as 
the outcomes are stable across the two subsamples, with the exception of the HS index (for 
this index, the rejection frequency is higher in the second subsample). 

Table 3 suggests EGARCH is optimal for the S&P500 index over the period 2004-2006, 
while asymmetry is significant for the period 2007-2009, that is, the GARCH estimates 
clearly improve when we include the EGARCH variances, there is little to choose between 
GJR and EGARCH. 

For SMI, the empirical results are contrary to the above. GARCH is clearly rejected for 2004-
2006, but there is no clear preference between GJR and EGARCH. In 2007-2009, EGARCH 
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performs better as compared with GJR and GARCH. The results for the DAX and CAC40 
indices are similar to those of SMI for 2007-2009, while for 2004-2006 there is no clear 
preference across the alternative models for DAX. The results for CAC40 suggest a mild 
preference for GJR. 

Finally, for the HS index, the evidence suggests a small percentage of rejections of the null 
hypothesis, alluding to the fact thatt most models provide very similar conditional variance 
patterns. 

Moving to the out-of-sample comparison, we start from the Diebold-Mariano test outcomes 
(direct evaluation method) using the MSE and QLIKE loss functions. In order to evaluate 
model performance across different market phases, we consider separately each out-of-
sample year. Table 4 reports some salient empirical findings (the full set of empirical results 
is available from the authors upon request). 

Focusing on the MSE loss function, all empirical models seem very similar for all stock 
market indices, with the null hypothesis of zero loss function differential being rejected only 
in few cases. When we consider the QLIKE loss function, the null hypothesis is rejected 
more frequently, with the finding seemingly independent of the sample used for model 
evaluation (the results are similar for 2006 and 2008, two years with very different volatility 
and returns). In this case, there are some differences across the stock market indices, but the 
outcomes suggest a preference for GJR over GARCH, and of GJR and EGARCH over 
SVOL. Furthermore, GJR and EGARCH are generally equivalent. 

Although some preference ordering across models may appear in some cases, the limitation 
of the Diebold-Mariano test is that it only considers pairwise comparisons. As suggested in 
Section 2, the Model Confidence Set method overcomes this restrictive comparison. 

A number of tables collects the results over the entire set of loss functions, and over the out-
of-sample years and stock market indices. Tables 5-9 report the Model Confidence Set results 
based on the R statistic in (21) for selected out-of-sample periods. The results for the statistic 
SQ are equivalent and are not reported (the entire set of results is available from the authors 
upon request). 

For each stock market index, we evaluate the four alternative models by using the MSE and 
QLIKE loss functions, as well as the loss functions defined in (26)-(30). 

If we consider the S&P500 index (Table 5), the results differ across the out-of-sample 
evaluation periods. In 2004, all models are equivalent as they are all included in the 
confidence set independently of the loss function used for their evaluation. For 2006, some 
differences appear across the loss functions. For MSE and QLIKE, the optimal model is GJR; 
IF and PIF exclude, in most cases, SVOL from the confidence set; AD, SD, and ASD suggest 
that the optimal models are GJR and SVOL; finally, RL prefers the GARCH and EGARCH 
specifications. In summary, there is not a clear preference for a specific model. Model 
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preference depends on the loss function under consideration, and on the sample period used 
for model evaluation. 

The last finding may be interpreted as confirmation of the in-sample and direct model 
comparison outcomes, which did not provide a clear indication of a single model. This 
interpretation is corroborated by the 2008 results for the S&P500 index: MSE considers all 
models as equivalent; QLIKE prefers GJR; IF, PIF and RL indicate a preference for GARCH 
and GJR; while AD, SD and ASD suggest that the optimal models are EGARCH and SVOL. 

Similar patterns are observed for the other stock market indices in that all models are 
equivalent under some specific out-of-sample periods, and with model preferences changing 
with respect to the loss function used. Some behaviour is, however, common. When the 
Model Confidence Set includes fewer models than those that are available, the statistically 
equivalent models generally differ between the IF-PIF-RL loss functions and the AD-SD-
ASD loss functions. The former indicate a preference for GARCH and GJR, while the latter 
tend to support EGARCH and SVOL.  

Thus, it seems that the second set of loss functions has a preference for more flexible models. 
Such behaviour may depend on the structure of the loss functions themselves: AD and SD 
(and hence also ASD) monitor the entire evolution of conditional variances without focusing 
on the exceptions or without penalizing VaR with respect to past violations. The inevitable 
conclusion to be drawn is that when we give a large relevance to volatility spikes, most 
models appear relevant, and simple specifications may perform as well as their more flexible 
counterparts. If we consider the evolution over time of the conditional volatility, then more 
flexible models are to preferred. 

 

4. Concluding Remarks 

 

In this paper we reviewed some existing methods for model selection and testing of non-
nested univariate volatility models. We first considered in-sample methods, such as nested 
and non-nested hypothesis testing, and diagnostic checking procedures (such as Ljung-Box 
and distributional hypotheses). We then focused on out-of-sample approaches based on 
model forecast evaluation. Starting from the traditional mean squared error and mean 
absolute error criteria, we considered more general loss functions based on Value-at-Risk 
forecasts, compared by means of the Model Confidence Set approach. Finally, we presented 
an empirical example using the less common approaches for model comparison, namely non-
nested hypothesis testing and VaR-based loss functions. 

The paper was based on simple univariate specifications focusing on volatility asymmetry 
and leverage. The proposed loss function approaches can easily be used on the forecasts 
produced by other univariate specifications, as well as multivariate models. 
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Table 1: Sample Statistics of Index Returns 

Stock Market 
Index 

Number 
of observations Mean Standard 

Deviation Min Max Asym. Kurt. 

CAC40 2552 -0.016 1.577   -9.472 10.595   0.026   7.953 
DAX 2542 -0.005 1.674   -7.433 10.797   0.072   7.094 
SMI 2522 -0.004 1.313   -8.108 10.788   0.072   8.970 
HS 2489 0.009 1.708 -13.582 13.407 -0.038 10.612 
S&P500 2514 -0.011 1.401   -9.470 10.957 -0.104 10.662 
 

 

Table 2: Rejection Percentages of the Null Hypothesis in the Full Sample 

Market Index Test Null model Alternative CAC40 DAX SMI HS S&P500 
LR test GARCH GJR   100.00%   100.00%  100.00% 68.36%  99.80% 
Ling-McAleer GARCH EGARCH   70.44%   65.25%   84.79% 26.41% 83.44% 
Ling-McAleer GJR EGARCH   44.40%   59.24%   52.14%   9.98% 65.53% 
Ling-McAleer EGARCH GARCH   63.60%   36.12%   23.30% 39.05% 32.58% 
Ling-McAleer EGARCH GJR   55.66%   21.68%   22.84% 39.78% 39.47% 
Note: The null hypothesis of the LR test is associated with a preference for the GARCH model against the GJR. 
For the Ling and McAleer (2000) test, the alternative model column denotes the model whose variances are 
used as additional explanatory variables in the dynamics governing the variances as given by the null model. 
The rejection of the null hypothesis is associated with a non-significant coefficient and signals a preference for 
the null model over the alternative one. 

  

 

Table 3: Rejection Percentages of the Null Hypothesis in Two Subsamples 

Market Index Test Null model Alternative CAC40 DAX SMI HS S&P500 
2004 to 2006 

Ling-McAleer GARCH EGARCH 47.99% 43.15% 75.39% 22.52% 75.63% 
Ling-McAleer GJR EGARCH 10.89% 34.79% 13.55% 18.10% 61.46% 
Ling-McAleer EGARCH GARCH 63.81% 13.95% 10.53% 42.36% 10.86% 
Ling-McAleer EGARCH GJR 73.67% 8.74% 12.50% 43.30% 13.51% 

2007 to 2009 
Ling-McAleer GARCH EGARCH 92.95% 87.66% 94.20% 30.25% 88.08% 
Ling-McAleer GJR EGARCH 78.07% 83.99% 90.78% 1.98% 67.93% 
Ling-McAleer EGARCH GARCH 63.32% 58.53% 36.10% 35.80% 53.43% 
Ling-McAleer EGARCH GJR 37.47% 34.78% 33.20% 36.33% 64.49% 
Note: In the Ling and McAleer (2000) test, the alternative model column denotes the model whose variances are 
used as additional explanatory variables in the dynamics governing the variances as given by the null model. 
The rejection of the null hypothesis is associated with a non-significant coefficient and signals a preference for 
the null model over the alternative one. 
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Table 4: Diebold-Mariano Test Statistics for Selected Years 

GJR EGARCH SVOL EGARCH SVOL SVOL 
Index 

GARCH GARCH GARCH GJR GJR EGARCH
MSE loss function – out-of-sample period: 2004 

CAC40 -0.917 -0.926 1.008 -0.215 1.239 1.191 
DAX -0.206 -1.087 1.192 -1.334 1.085 1.848 
SMI 1.726 0.934 1.496 -1.145 0.018 0.689 
HS -1.520 -1.610 0.363 -0.758 1.082 1.246 

S&P500 -1.940 -0.658 -0.201 1.127 1.441 0.505 
QLIKE loss function – out-of-sample period: 2004 

CAC40 -2.181 -0.252 0.705 0.825 1.791 0.507 
DAX -3.057 -2.362 1.158 -0.562 3.038 2.840 

SMI -0.112 0.032 2.177 0.308 1.686 1.555 
HS -2.368 -1.889 1.173 -0.283 2.128 2.195 

S&P500 -2.383 -0.621 0.089 1.019 1.953 0.637 
MSE loss function – out-of-sample period: 2006 

CAC40 -0.522 -0.610 1.309 0.150 1.005 1.136 
DAX -0.740 0.057 2.215 1.674 1.857 1.534 
SMI -0.463 -1.327 1.140 -0.307 0.977 1.254 
HS -1.005 -1.845 0.652 -1.562 0.740 1.025 

S&P500 -2.422 1.464 0.743 1.614 1.921 -1.442 
QLIKE loss function – out-of-sample period: 2006 

CAC40 -1.931 -1.489 2.025 0.866 2.280 2.351 

DAX -2.043 -0.178 2.408 1.505 2.962 3.032 

SMI -2.717 -3.555 1.551 0.670 1.799 1.867 
HS -0.898 -1.066 0.931 -0.906 0.979 1.080 

S&P500 -2.198 0.445 1.049 2.082 2.510 0.422 
MSE loss function – out-of-sample period: 2008 

CAC40 -1.758 -2.082 0.598 0.517 1.166 1.400 
DAX -1.898 -1.746 0.990 1.347 1.493 1.482 
SMI -1.404 -1.724 0.890 0.586 1.112 1.219 
HS -1.734 -2.013 0.806 -0.251 1.210 1.436 

S&P500 -1.509 -1.046 1.826 0.574 1.892 1.844 
QLIKE loss function – out-of-sample period: 2008 

CAC40 -1.699 -0.746 1.940 0.765 2.020 1.641 
DAX -1.786 -0.786 2.570 0.761 2.549 2.355 

SMI -1.916 -0.594 1.734 1.310 1.948 1.865 
HS -3.017 -2.934 1.963 -0.816 2.015 2.048 

S&P500 -2.398 0.616 3.246 2.036 3.346 3.025 

Note: The test evaluates the null of zero expected difference between the 
loss function of the first row model minus the loss function of the second 
row model. The test statistic is distributed as a standardized normal.  
Significant values (5% confidence level) indicate a preference for the first 
row model (if negative - in bold) or for the second row model (if positive 
- in italics underlined). 
 



Table 5: S&P500 Model Confidence Set 

 IF PIF AD SD ASD 
 

MSE QLIKE 

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 

RL 

Out-of-sample period: 2004 
GARCH 0.15 0.04 0.31 1.00 1.00 0.27 1.00 1.00 0.16 0.19 0.27 0.24 0.28 0.33 0.24 0.27 0.30 0.69 

GJR 1.00 1.00 1.00 0.34 0.62 1.00 0.55 0.84 0.42 0.45 0.70 0.71 0.78 0.88 0.55 0.59 0.77 0.40 
EGARCH 0.34 0.24 0.31 0.12 0.16 0.27 0.14 0.23 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.20 

SVOL 0.34 0.07 0.31 0.12 0.25 0.27 0.14 0.40 0.78 0.76 0.70 0.97 0.94 0.88 0.88 0.84 0.77 1.00 
Out-of-sample period: 2006 

GARCH 0.06 0.06 0.17 0.06 0.18 0.57 1.00 0.21 0.02 0.01 0.01 0.02 0.03 0.04 0.02 0.02 0.01 0.29 
GJR 1.00 1.00 0.17 1.00 0.74 0.26 0.33 1.00 0.32 0.34 0.59 0.31 0.37 0.60 0.30 0.36 0.58 0.04 

EGARCH 0.06 0.06 1.00 0.06 1.00 1.00 0.33 0.94 0.02 0.01 0.01 0.02 0.03 0.04 0.02 0.02 0.01 1.00 
SVOL 0.06 0.06 0.17 0.04 0.06 0.26 0.08 0.03 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.01 

Out-of-sample period: 2008 
GARCH 0.27 0.04 0.46 0.56 1.00 0.43 0.48 1.00 0.04 0.02 0.05 0.08 0.09 0.08 0.07 0.07 0.08 0.63 

GJR 1.00 1.00 1.00 1.00 0.47 1.00 1.00 0.37 0.02 0.01 0.05 0.08 0.09 0.08 0.06 0.07 0.08 1.00 
EGARCH 0.52 0.04 0.07 0.04 0.01 0.06 0.03 0.37 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.01 

SVOL 0.22 0.04 0.07 0.01 0.01 0.06 0.03 0.12 0.73 0.41 0.26 0.47 0.27 0.11 0.54 0.39 0.15 0.04 
Note: The table reports the Model Confidence Set over different loss functions and periods. Bold values denote the models that are included at the 10% confidence level in 
the confidence set (these models are statistically equivalent if compared using the loss function reported in the first and second rows). The loss functions names correspond to 
those in (16)-(17) and (26)-(31), the second row reports the Value-at-Risk confidence level (when needed). 
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Table 6: CAC40 Model Confidence Set 

 IF PIF AD SD ASD 
 

MSE QLIKE 

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 

RL 

Out-of-sample period: 2004 
GARCH 0.60 0.11 0.44 0.08 0.12 0.87 0.76 0.21 0.02 0.02 0.02 0.03 0.04 0.04 0.03 0.02 0.04 0.30 

GJR 0.79 1.00 1.00 0.08 0.12 1.00 0.25 0.18 0.02 0.02 0.03 0.04 0.04 0.04 0.03 0.02 0.04 0.30 
EGARCH 1.00 0.45 0.44 0.08 0.05 0.58 0.13 0.08 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.05 

SVOL 0.60 0.11 0.44 1.00 1.00 0.87 1.00 1.00 0.02 0.02 0.03 0.04 0.04 0.04 0.03 0.02 0.04 1.00 
Out-of-sample period: 2006 

GARCH 0.68 0.08 1.00 0.63 0.79 1.00 0.68 0.94 0.11 0.31 0.12 0.24 0.28 0.43 0.15 0.30 0.24 0.78 
GJR 1.00 1.00 0.06 1.00 1.00 0.49 1.00 1.00 0.18 0.31 0.12 0.24 0.28 0.35 0.15 0.30 0.24 1.00 

EGARCH 0.83 0.34 0.06 0.49 0.70 0.40 0.37 0.94 0.20 0.47 0.92 0.24 0.31 0.53 0.22 0.38 0.70 0.20 
SVOL 0.38 0.06 0.02 0.49 0.40 0.04 0.37 0.44 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.10 

Out-of-sample period: 2008 
GARCH 0.08 0.11 1.00 0.22 0.43 1.00 0.40 1.00 0.01 0.01 0.02 0.04 0.04 0.03 0.04 0.03 0.04 1.00 

GJR 1.00 1.00 0.05 1.00 1.00 0.19 1.00 0.84 0.01 0.02 0.02 0.05 0.05 0.05 0.06 0.05 0.04 0.46 
EGARCH 0.45 0.42 0.01 0.13 0.08 0.01 0.08 0.73 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.02 

SVOL 0.14 0.11 0.05 0.13 0.04 0.09 0.08 0.61 0.85 0.58 0.29 0.57 0.24 0.05 0.65 0.32 0.11 0.02 
Note: The table reports the Model Confidence Set over different loss functions and periods. Bold values denote the models that are included at the 10% confidence 
level in the confidence set (these models are statistically equivalent if compared using the loss function reported in the first and second rows). The loss functions names 
correspond to those in (16)-(17) and (26)-(31), the second row reports the Value-at-Risk confidence level (when needed). 
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Table 7: DAX Model Confidence Set 

 IF PIF AD SD ASD 
 

MSE QLIKE 

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 

RL 

Out-of-sample period: 2004 
GARCH 0.26 0.00 0.70 1.00 1.00 0.90 1.00 1.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.93 

GJR 0.26 0.54 0.30 0.55 0.22 0.81 0.64 0.11 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.93 
EGARCH 1.00 1.00 0.70 0.02 0.22 0.90 0.01 0.27 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.05 

SVOL 0.26 0.00 1.00 0.55 0.22 1.00 0.64 0.11 0.36 0.30 0.17 0.55 0.49 0.37 0.51 0.40 0.26 1.00 
Out-of-sample period: 2006 

GARCH 0.43 0.08 0.06 0.39 0.80 0.48 0.38 0.95 0.04 0.20 0.60 0.18 0.35 0.70 0.10 0.25 0.65 0.65 
GJR 1.00 1.00 0.06 1.00 0.43 1.00 1.00 0.43 0.04 0.20 0.68 0.18 0.35 0.70 0.10 0.25 0.66 1.00 

EGARCH 0.13 0.08 1.00 0.39 1.00 0.17 0.38 1.00 0.04 0.20 0.68 0.18 0.35 0.70 0.10 0.25 0.66 0.39 
SVOL 0.12 0.01 0.06 0.10 0.10 0.17 0.10 0.14 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.03 

Out-of-sample period: 2008 
GARCH 0.10 0.10 0.69 0.02 1.00 0.70 0.13 0.74 0.00 0.01 0.01 0.02 0.04 0.04 0.01 0.01 0.04 1.00 

GJR 1.00 1.00 1.00 1.00 0.69 1.00 1.00 1.00 0.00 0.01 0.01 0.02 0.03 0.04 0.01 0.01 0.04 0.40 
EGARCH 0.14 0.54 0.43 0.01 0.04 0.26 0.02 0.46 0.03 0.13 0.71 0.02 0.42 1.00 0.01 0.26 1.00 0.02 

SVOL 0.10 0.05 0.01 0.00 0.03 0.05 0.02 0.34 1.00 1.00 1.00 1.00 1.00 0.33 1.00 1.00 0.49 0.01 
Note: The table reports the Model Confidence Set over different loss functions and periods. Bold values denote the models that are included at the 10% confidence 
level in the confidence set (these models are statistically equivalent if compared using the loss function reported in the first and second rows). The loss functions names 
correspond to those in (16)-(17) and (26)-(31), the second row reports the Value-at-Risk confidence level (when needed). 
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Table 8: SMI Model Confidence Set 

 IF PIF AD SD ASD 
 

MSE QLIKE 

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 

RL 

Out-of-sample period: 2004 
GARCH 1.00 0.95 0.14 1.00 0.80 0.22 1.00 0.82 0.69 0.69 0.81 0.98 0.98 0.95 0.93 0.91 0.81 0.94 

GJR 0.43 1.00 0.14 0.44 1.00 1.00 0.46 1.00 0.69 0.69 0.81 0.71 0.71 0.79 0.67 0.70 0.79 0.46 
EGARCH 0.49 0.95 1.00 0.66 0.51 0.22 0.61 0.49 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.09 

SVOL 0.43 0.06 0.14 0.66 0.51 0.22 0.58 0.49 0.78 0.74 0.81 0.98 0.98 0.95 0.93 0.91 0.79 1.00 
Out-of-sample period: 2006 

GARCH 0.31 0.00 0.20 0.41 1.00 0.19 0.39 1.00 0.03 0.01 0.02 0.07 0.06 0.18 0.05 0.03 0.05 0.71 
GJR 0.78 1.00 1.00 1.00 0.33 1.00 1.00 0.37 0.12 0.15 0.24 0.15 0.19 0.25 0.16 0.17 0.23 1.00 

EGARCH 1.00 0.57 0.20 0.41 0.33 0.20 0.39 0.37 0.12 0.16 0.26 0.15 0.19 0.39 0.16 0.17 0.30 0.22 
SVOL 0.31 0.00 0.18 0.25 0.33 0.16 0.22 0.29 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.05 

Out-of-sample period: 2008 
GARCH 0.14 0.14 0.28 0.86 0.93 0.42 1.00 1.00 0.02 0.02 0.01 0.09 0.04 0.06 0.06 0.04 0.03 1.00 

GJR 1.00 1.00 1.00 0.46 1.00 1.00 0.68 0.98 0.02 0.02 0.01 0.08 0.04 0.06 0.06 0.04 0.03 0.64 
EGARCH 0.52 0.15 0.15 0.18 0.13 0.06 0.18 0.29 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.03 

SVOL 0.21 0.14 0.15 1.00 0.93 0.06 0.60 0.79 0.19 0.02 0.01 0.24 0.04 0.06 0.22 0.04 0.03 0.48 
Note: The table reports the Model Confidence Set over different loss functions and periods. Bold values denote the models that are included at the 10% confidence 
level in the confidence set (these models are statistically equivalent if compared using the loss function reported in the first and second rows). The loss functions names 
correspond to those in (16)-(17) and (26)-(31), the second row reports the Value-at-Risk confidence level (when needed). 
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 IF PIF AD SD ASD 
 

MSE QLIKE 

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 

RL 

Out-of-sample period: 2004 
GARCH 0.36 0.07 0.69 0.71 1.00 0.74 0.77 1.00 0.28 0.47 0.46 0.39 0.43 0.42 0.31 0.43 0.46 1.00 

GJR 0.45 0.76 0.31 0.83 0.43 0.70 1.00 0.13 0.28 0.47 0.46 0.39 0.43 0.42 0.31 0.43 0.46 0.55 
EGARCH 1.00 1.00 0.31 0.71 0.43 0.70 0.67 0.57 0.86 1.00 1.00 0.74 0.81 0.93 0.77 0.95 1.00 0.18 

SVOL 0.41 0.07 1.00 1.00 0.43 1.00 0.81 0.13 1.00 0.85 0.82 1.00 1.00 1.00 1.00 1.00 0.92 0.10 
Out-of-sample period: 2006 

GARCH 0.27 0.70 0.16 0.67 0.01 0.57 0.70 0.68 0.01 0.01 0.02 0.03 0.03 0.02 0.01 0.01 0.03 0.46 
GJR 0.27 0.70 0.16 1.00 0.01 0.57 1.00 0.68 0.01 0.01 0.02 0.03 0.03 0.02 0.01 0.01 0.03 1.00 

EGARCH 1.00 1.00 1.00 0.67 1.00 1.00 0.70 1.00 0.01 0.00 0.02 0.03 0.02 0.01 0.01 0.01 0.01 0.74 
SVOL 0.27 0.70 0.16 0.67 0.01 0.38 0.70 0.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.02 

Out-of-sample period: 2008 
GARCH 0.24 0.01 0.31 1.00 0.81 0.13 1.00 0.26 0.00 0.00 0.01 0.04 0.04 0.03 0.01 0.02 0.02 1.00 

GJR 0.73 0.36 1.00 0.19 1.00 1.00 0.93 1.00 0.00 0.00 0.01 0.04 0.04 0.07 0.02 0.02 0.05 0.20 
EGARCH 1.00 1.00 0.31 0.19 0.81 0.24 0.57 0.40 0.00 0.00 0.01 0.04 0.04 0.63 0.02 0.02 0.36 0.03 

SVOL 0.24 0.01 0.04 0.00 0.00 0.13 0.03 0.10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 
Note: The table reports the Model Confidence Set over different loss functions and periods. Bold values denote the models that are included at the 10% confidence 
level in the confidence set (these models are statistically equivalent if compared using the loss function reported in the first and second rows). The loss functions names 
correspond to those in (16)-(17) and (26)-(31), the second row reports the Value-at-Risk confidence level (when needed). 

Table 9: HS Model Confidence Set 
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