
 
 
 
 
 
 
 

KIER DISCUSSION PAPER SERIES 

KYOTO INSTITUTE 
OF 

ECONOMIC RESEARCH 
 

 

KYOTO UNIVERSITY 

KYOTO, JAPAN 

Discussion Paper No.723 
 
 

“Modelling Conditional Correlations in the Volatility of  
Asian Rubber Spot and Futures Returns” 

 
 

 Michael McAleer 
 

 
September 2010 

 



1 

 

Modelling Conditional Correlations in the Volatility of  

Asian Rubber Spot and Futures Returns* 
 

 

Chia-Lin Chang 

Department of Applied Economics 

National Chung Hsing University 

Taichung, Taiwan 

 

 

Thanchanok Khamkaew 

Faculty of Economics 

Maejo University 

Chiang Mai, Thailand 

 

 

Michael McAleer 

Econometrics Institute 

Erasmus School of Economics 

Erasmus University Rotterdam 

and 

Tinbergen Institute 

The Netherlands 

and 

Institute for Economic Research 

Kyoto University 

Japan 

 

 

Roengchai Tansuchat 
Faculty of Economics 

Maejo University 

Chiang Mai, Thailand 

 

 

Revised: September 2010 

 

_____________________ 

* The authors wish to thank Felix Chan and Abdul Hakim for providing the computer programs. For financial 

support, the first author wishes to thank the National Science Council, Taiwan, the second and fourth authors 

are most grateful to the Faculty of Economics, Maejo University, Thailand, and the third author 

acknowledges the Australian Research Council, National Science Council, Taiwan, a Visiting Erskine 

Fellowship, College of Business and Economics, University of Canterbury, and the Japan Society for the 

Promotion of Science. 



2 

 

 

Abstract 

 

Asia is presently the most important market for the production and consumption of natural 

rubber. World prices of rubber are not only subject to changes in demand, but also to 

speculation regarding future markets. Japan and Singapore are the major futures markets 

for rubber, while Thailand is one of the world’s largest producers of rubber. As rubber 

prices are influenced by external markets, it is important to analyse the relationship 

between the relevant markets in Thailand, Japan and Singapore. The analysis is conducted 

using several alternative multivariate GARCH models. The empirical results indicate that 

the constant conditional correlations arising from the CCC model lie in the low to medium 

range. The results from the VARMA-GARCH model and the VARMA-AGARCH model 

suggest the presence of volatility spillovers and asymmetric effects of positive and 

negative return shocks on conditional volatility. Finally, the DCC model suggests that the 

conditional correlations can vary dramatically over time.  In general, the dynamic 

conditional correlations in rubber spot and futures returns shocks can be independent or 

interdependent.  

 

Keywords:  Multivariate GARCH, volatility spillovers, conditional correlations, spot 

returns, futures returns.  

 

JEL Classifications: C22, C32, G17, G32, Q14. 
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1.  Introduction 

 

Natural rubber is one of the most important agro-based industrial raw materials in the 

world. Rubber is produced entirely in developing countries. Asia is the largest producing 

region, accounting for around 96.6% of output in 2007, and Thailand is one of the world’s 

biggest rubber producers. However, rubber prices are determined in the Singapore and 

Japanese markets. The factors involved in setting Thailand’s rubber prices are quite 

interesting. According to the relevance of Thailand’s rubber price to the Japanese and 

Singapore markets, it is important to examine the relationship between the Thai spot 

market and the three major global rubber futures markets, namely Tokyo Commodity 

Exchange (TOCOM), Singapore Commodity Exchange and Agriculture Futures Exchange 

(SICOM), and Osaka Mercantile Exchange (OME). In particular, volatility spillover 

effects will be considered across and within these markets. 

 

Recent research has used the GARCH specification to model volatility spillovers across 

futures markets. The volatility transmission between futures and cash markets has received 

considerable attention in finance. Shocks in one market may not only affect the volatility in 

prices and returns in its own market, but also in related markets. [1] investigated volatility 

spillover effects across agricultural input prices, agricultural output prices and retail food 

prices, using GARCH models. [5] examined the inter-temporal information transmission 

mechanism between the palm oil futures market and the physical cash market in Malaysia.  

 

Despite the recent developments in the multivariate GARCH framework, most of the 

research in agricultural futures markets has been confined to univariate GARCH 

specifications. It is well known that the univariate GARCH model has two important 

limitations: (1) it does not accommodate the asymmetric effects of positive and negative 

shocks of equal magnitude; and (2) it does not permit interdependencies across different 

assets and/or markets. Modelling volatility in a multivariate framework leads to more 

relevant empirical models than using separate univariate models in financial markets, 

wherein volatilities can move together over time and across assets and markets.  

 

To date, few papers have paid attention to analyzing volatility spillovers across futures 

markets and physical cash markets in the context of multivariate GARCH models for 
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agricultural commodity future markets. For example, [6] examined volatility spillover 

effects by fitting a multivariate model to realized volatility and correlations. The dynamic 

relationships and causality among the volatilities and correlations of three grain futures 

prices, namely corn, soybean and wheat, were investigated by conducting impulse response 

analysis based on the vector autoregressive model.  

 

The purpose of this paper is to (1) to model the multivariate conditional volatility in the 

returns on rubber spot and futures price in three major rubber futures markets, namely 

TOCOM, OME and SICOM and two rubber spot markets, Bangkok and Singapore, using 

several recent models of multivariate conditional volatility, namely the CCC model [2], 

DCC model [4], VARMA-GARCH model [7], and VARMA-AGARCH model [9], and (2) 

to  investigate volatility transmissions across these markets. 

 

The remainder of the paper is organized as follows. Section 2 discusses the econometric 

methodology. Section 3 explains the data used in the empirical analysis, and presents some 

summary statistics. The empirical results are analysed in Section 4. Some concluding 

remarks are given in Section 5. 

 

2. Econometric methodology 

 

This section presents models of the volatility in rubber spot and futures prices returns, 

namely the CCC model [2], VARMA-GARCH model [7], VARMA-AGARCH model [9], 

and DCC model [4] (see [8] for a comprehensive discussion and comparison of these 

models in terms of their mathematical and statistical properties). The typical specifications 

underlying the multivariate conditional mean and conditional variance in returns are given 

as follows: 

 

 1t t t ty E y F                                                       (1) 

t t tD   
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where  1 ,...,t t mty y y  ,  1 ,...,t t mt     is a sequence of independently and identically 

distributed (iid) random vectors, tF  is the past information available to time t, 

 1 2 1 2

1 ,...,t mD diag h h .  

 

The constant conditional correlation (CCC) model [2] assumes that the conditional 

variance for each return, ith , 1,..,i m , follows a univariate GARCH process, that is  

 

2

, ,

1 1

r s

it i ij i t j ij i t j

j j

h h    

 

                                               (2) 

 

where ij  and ij  represents the ARCH effect and the GARCH effects, respectively. The 

conditional correlation matrix of CCC is    1t t t tE F E 
    , where  it   for 

, 1,...,i j m . From (1), t t t t tD D    ,  
1 2

diag t tD Q , and  1t t t t t tE F Q D D  
    , 

where tQ  is the conditional covariance matrix. The conditional correlation matrix is 

defined as 1 1

t t tD Q D   , and each conditional correlation coefficient is estimated from the 

standardized residuals in (1) and (2). Therefore, there is no multivariate estimation 

involved for CCC, except in the calculation of the conditional correlations. 

 

This model assumes independence of the conditional variance across returns. In order to 

accommodate possible interdependencies, [7] proposed a vector autoregressive moving 

average (VARMA) specification of the conditional mean in (1) and the following 

specification for the conditional variance: 

 

1 1

r s

t i t i j t j

i j

H W A B H  

 

                                                  (3) 

 

where  1 ,...,t t mtH h h  ,  2 2

1 ,...t mt   
 , and W, iA  for 1,..,i r  and jB  for 1,..,j s  are 

m m  matrices. As in the univariate GARCH model, the VARMA-GARCH model 

assumes that negative and positive shocks of equal magnitude have equivalent impacts on 
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the conditional variance. In order to separate the asymmetric impacts of the positive and 

negative shocks, [9] proposed the VARMA-AGARCH model for the conditional variance, 

namely 

 

1 1 1

r r s

t i t i i t i t i j t j

i i j

H W A C I B H    

  

                                  (4) 

 

where iC  are m m  matrices for 1,..,i r , and  1diag ,...,t t mtI I I , where  

 

0, 0

1, 0

it

it

it

I





 


. 

 

If 1m  , (3) collapses to the asymmetric GARCH, or GJR model. Moreover, the VARMA-

AGARCH model reduces to VARMA-GARCH when 0iC   for all i. If 0iC   and iA  

and jB  are diagonal matrices for all i and j, then VARMA-AGARCH reduces to the CCC 

model. The parameters of model (1)-(4) are obtained by maximum likelihood estimation 

(MLE) using a joint normal density. When t  does not follow a joint multivariate normal 

distribution, the appropriate estimator is defined as the Quasi-MLE (QMLE). 

 

Unless t  is a sequence of i.i.d. random vectors, or alternatively a martingale difference 

process, the assumption that the conditional correlations are constant may seen unrealistic. 

In order to make the conditional correlation matrix time dependent, [7] proposed a 

dynamic conditional correlation (DCC) model, which is defined as: 

 

1| (0, )t t ty Q  ,  1,...,t T                                       (5) 

,t t t tQ D D                                                               (6) 

 

where  1diag ,...,t t ktD h h  is a diagonal matrix of conditional variance, and t  is the 

information set available to time t. The conditional variance, ith , can be defined as a 

univariate GARCH model, as follows: 
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, ,

1 1

p q

it i ik i t k il i t l

k l

h h    

 

                                               (7) 

 

If t  is a vector of i.i.d. random variables, with zero mean and unit variance,  tQ  in (9) is 

the conditional covariance matrix (after standardization, it it ity h  ). The it  are used 

to estimate the dynamic conditional correlation, as follows: 

 

   1/2 1/2( ( ) ( ( ) ,t t t tdiag Q Q diag Q                                    (8) 

 

where the k k  symmetric positive definite matrix tQ  is given by 

 

1 2 1 1 1 2 1(1 )t t t tQ Q Q      
                                         (9) 

 

in which 1  and 2  are scalar parameters to capture the effects of previous shocks and 

previous dynamic conditional correlations on current dynamic conditional correlation, and 

  and   are non-negative scalar parameters, satisfying 1   . As tQ  is conditional on 

the vector of standardized residuals, (9) is a conditional covariance matrix. Q  is the k k  

unconditional variance matrix of t . 

 

3. Data 

 

The alternative multivariate GARCH models are estimated using data on daily closing 

prices of spot and futures returns, and are expressed in local currencies for the period 23 

September 1994 to 13 March 2009, giving a total of 3,755 observations. All data are 

obtained from Reuters. The data set comprises 2 daily RSS3 spot prices, namely RSS3 

F.O.B. spot price from Bangkok (TRSS3: Bath/kg.), RSS3 Noon spot price from Singapore 

(SRSS3: Singapore cent/kg.), and three daily RSS3 futures from different futures markets, 

namely Tokyo Commodity Exchange (TOCOM: Yen/kg.), Osaka Mercantile Exchange 

(OME: Yen/kg.), and Singapore Commodity Exchange and Agriculture Futures Exchange 

(SICOM: US cent/kg).  
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Returns of market i at time t are calculated as  , , , 1logi t i t i tr P P  , where ,i tP  and , 1i tP   are 

the closing prices of spot or futures for days t and t-1, respectively. 

  

4. Empirical results 

 

The empirical results of the unit root tests for all sample returns in each market are 

summarized in Table 1. The Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) 

tests are used to explore the existence of unit roots in the individual series. Both tests have 

the same null hypothesis to check for non-stationarity in each time series. The results show 

that all returns series are stationary. In order to see whether the conditional variances of the 

return series follow the ARCH process, the univariate ARMA-GARCH and ARMA-GJR 

models will be estimated. The ARCH and GARCH estimates are significant for the spot 

and futures returns, and are available from the authors upon request.  

 

[Insert Tables 1 and 2 here] 

 

The constant conditional correlations among the spot and futures returns from the CCC 

model are summarized in Table 2. Two entries for each pair are their respective estimates 

and the Bollerslev-Wooldridge [3] robust t-ratios. For the five returns, there are 10 

conditional correlations, with the highest estimated constant conditional correlation being 

0.685 between the standardized shocks to the volatilities in the SICOM and TOCOM 

returns, and the lowest being 0.236 between the standardized shocks to the volatilities in 

TRSS3 and TOCOM. 

 

The DCC estimates of the conditional correlations between the volatilities of spot and 

futures rubber returns based on estimating the univariate GARCH(1,1) models are given in 

Table 3. Based on the Bollerslev-Woodridge robust t-ratios, the estimates of the two DCC 

parameters, namely 1
ˆ( )  and 2

ˆ( ) , are statistically significant, except for the short run 

persistence of shocks in the dynamic correlation 1
ˆ( )  of trss3_ome, trss3 _tocom and 

trss3_sicom. The long run persistence to the conditional correlations is statistically 

significant and close to 0.99, which suggests that the assumption of constant conditional 

correlations is not supported empirically.  
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The short-run persistence of shocks in the dynamic conditional correlations is greatest 

between the returns in ome_tocom, at 0.108, whereas the largest long run persistence of 

shocks to the conditional correlations is between the returns of srss3_sicom, at 0.998 = 

0.996+0.002. The time-varying conditional correlations between pairs of returns are given 

in Figure 1, where it is clear there is significant variation in the conditional correlations 

over time. 

 

[Insert Table 3 here]  

[Insert Figure 1 here] 

 

Finally, the volatility spillover estimates between the volatilities of spot and futures rubber 

returns, based on estimating the VARMA-GARCH and VARMA-AGARCH models, are 

given in Tables 4 and 5, respectively. Panels 4a-4j show that volatility spillovers from the 

VARMA-GARCH model are present in 7 of 10 cases, whereas interdependences are 

present in the remaining 3 cases. Panels 5a-5j present evidence of volatility spillovers of 

the VARMA-AGARCH model in 8 of 10 cases, while significant interdependences are 

present in the remaining 2 cases. In addition, the estimates of the conditional variance 

show significant asymmetric effects of positive and negative returns shocks of equal 

magnitude on conditional volatility in all cases, thereby suggesting that the VARMA-

AGARCH model is preferable to its VARMA-GARCH counterpart. 

 

[Insert Tables 4 and 5 here] 

 

5.  Conclusion 

 

Asia is presently the world’s most important market for the production and consumption of 

natural rubber. World prices of rubber are subject to changes in demand and also to 

speculation regarding future markets. Japan and Singapore are the major futures markets 

for rubber, while Thailand is one of the world’s largest producers of rubber. As rubber 

prices are influenced by external markets, it is important to analyse the relationship 

between the relevant markets in Thailand, which produces natural rubber, and Japan and 

Singapore, which are key futures markets for setting rubber prices. Thus, the analysis of 
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natural rubber prices is of great significance to the countries that produce and sell natural 

rubber, and all countries that purchase the commodity at the established prices. 

 

In this paper, we estimated four multivariate conditional volatility models in rubber spot 

and futures returns from Asian rubber markets, namely Thailand, Singapore and Japan, for 

the period 23 September 1994 to 13 March 2009. All rubber return series were found to be 

stationary. The constant conditional correlations between spot and futures rubber returns 

from the CCC model were found to lie in the low to medium range. The VARMA-GARCH 

results showed that there were spillover effects between most pairs of spot and futures 

rubber returns, while some pairs of returns showed evidence of interdependence, as did the 

results arising from the VARMA-AGARCH model.  

 

In addition, the statistically significant asymmetric effects of negative and positive shocks 

of equal magnitude on the conditional variance suggested that VARMA-AGARCH was 

preferable to its VARMA-GARCH counterpart. The DCC estimates of the conditional 

correlations between the volatilities of spot and futures returns were statically significant, 

thereby suggesting that the conditional correlations were dynamic. 

 

These empirical results confirm the presence of spillover effects between most pairs of 

spot and futures rubber returns, while some pairs of returns also showed evidence of 

interdependence. This makes it clear that the market for natural rubber needs to analyse the 

production of rubber, as well as the determination of its price, in a multivariate framework. 
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Table 1 

Unit Root Tests 

 

Returns 
ADF test (t-statistic) Phillips-Perron test 

None C C&T None C C&T 

OME -57.745 -57.737 -57.730 -57.722 -57.714 -57.707 

SICOM -35.813 -35.809 -35.811 -51.772 -51.767 -51.751 

SRSS3 -27.108 -27.104 -27.104 -46.724 -46.719 -46.708 

TOCOM -58.532 -58.524 -58.517 -58.525 -58.518 -58.510 

TRSS3 -22.072 -22.073 -22.070 -48.714 -48.701 -48.697 

 

Note: None denotes no intercept and trend, C is intercept and T is trend. Entries in bold are 

significant at the 5% level. 
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Table 2 

Constant Conditional Correlations  

 

Returns OME SICOM t-ratios SRSS3 t-ratios TOCOM t-ratios TRSS3 t-ratios 

OME 1 0.483 (46.62) 0.393 (30.47) 0.685 (132.0) 0.262 (19.05) 

SICOM  1  0.526  (47.98) 0.524 (50.7) 0.275 (19.05) 

SRSS3    1  0.401 (32.27) 0.491 (44.35) 

TOCOM      1  0.236 (16.12) 

TRSS3        1  

 

Note: The two entries for each parameter are their respective parameter estimates and 

Bollerslev and Wooldridge [2] robust t-ratios. Entries in bold are significant at the 5% 

level. 
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Table 3 

 

Dynamic Conditional Correlations 

 

Returns 1̂  t-ratios 2̂  t-ratios 

trss3_srss3 0.014 (5.394) 0.981 (267.432) 

trss3_ome 0.003 (0.866) 0.987 (49.265) 

trss3_tocom 0.003 (1.370) 0.991 (125.691) 

trss3_sicom 0.002 (1.465) 0.994 (245.050) 

srss3_ome 0.021 (4.034) 0.958 (87.349) 

srss3_tocom 0.020 (3.776) 0.959 (85.918) 

srss3_sicom 0.002 (2.423) 0.996 (497.70) 

ome_tocom 0.108 (30.558) 0.878 (211.640) 

ome_sicom 0.017 (7.132) 0.978 (328.651) 

tocom_sicom 0.053 (12.488) 0.936 (181.221) 

 

Note: The two entries for each parameter are their respective parameter estimates and 

Bollerslev and Wooldridge [2] robust t-ratios. Entries in bold are significant at the 5% 

level. 
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Table 4  

 

VARMA(1-1)-GARCH(1,1) Estimates 

 

 

Panel 4a. VARMA-GARCH: TRSS3_SRSS3 

   TRSS3  
SRSS3  

TRSS3  
SRSS3  

TRSS3 0.013 

(3.224) 

0.088 

(5.298) 

0.802 

(27.089) 

0.117 

(5.379) 

-0.025 

(-1.554) 

SRSS3 0.015 

(3.860) 

0.078 

(6.106) 

0.868 

(37.473) 

0.004 

(0.200) 

0.046 

(4.737) 

Panel 4b. VARMA-GARCH: OME_TRSS3 

   OME  
TRSS3  

OME  
TRSS3  

OME 0.109 

(1.807) 

0.058 

(3.533) 

0.914 

(31.831) 

0.089 

(1.984) 

-0.048 

(-0.843) 

TRSS3 0.019 

(2.693) 

0.090 

(6.716) 

0.882 

(63.377) 

-0.006 

(3.317) 

0.009 

(-2.154) 

Panel 4c. VARMA-GARCH: TRSS3_TOCOM 

Panel 4d. VARMA-GARCH: SICOM_TRSS3 

   SICOM  
TRSS3  

SICOM  
TRSS3  

SICOM 0.032 

(4.600) 

0.081 

(6.111) 

0.880 

(44.355) 

0.060 

(3.660) 

-0.021 

(-0.949) 

TRSS3 0.044 

(4.297) 

0.116 

(5.233) 

0.674 

(14.038) 

-0.030 

(-2.487) 

0.114 

(5.694) 

Panel 4e. VARMA-GARCH: OME_SRSS3 

   OME  
SRSS3  

OME  
SRSS3  

OME 0.623 

(3.744) 

0.121 

(4.110) 

0.667 

(8.962) 

0.276 

(1.625) 

0.065 

(0.486) 

SRSS3 0.021 

(4.700) 

0.097 

(8.128) 

0.886 

(69.017) 

-0.004 

(-2.923) 

0.004 

(3.782) 

Panel 4f. VARMA-GARCH: SRSS3_TOCOM 

   SRSS3  
TOCOM  

SRSS3  
TOCOM  

   TRSS3  
TOCOM  

TRSS3  
TOCOM  

TRSS3 0.013 

(9.172) 

0.107 

(17.719) 

0.006 

(2.877) 

0.856 

(98.607) 

0.040 

(3.449) 

TOCOM 0.774 

(15.620) 

-0.314 

(-10.097) 

0.265 

(25.674) 

1.650 

(8.166) 

0.514 

(33.838) 
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SRSS3 0.033 

(7.347) 

0.093 

(8.312) 

0.890 

(78.160) 

0.008 

(5.703) 

-0.009 

(-6.221) 

TOCOM 0.792 

(3.246) 

0.244 

(3.004) 

0.561 

(5.383) 

0.509 

(2.418) 

0.018 

(0.179) 

Panel 4g. VARMA-GARCH: SRSS3_SICOM 

   SRSS3  
SICOM  

SRSS3  
SICOM  

SRSS3 0.041 

(1.329) 

0.022 

(0.876) 

-0.002 

(-0.025) 

0.343 

(4.846) 

0.242 

(10.442) 

SICOM 0.030 

(4.370) 

0.086 

(5.600) 

0.879 

(32.613) 

-0.018 

(2.664) 

0.049 

(-0.635) 

Panel 4h. VARMA-GARCH: OME_TOCOM 

   OME  
TOCOM  

OME  
TOCOM  

OME 0.284 

(4.545) 

0.047 

(2.286) 

0.915 

(27.924) 

0.075 

(2.664) 

-0.083 

(-2.132) 

TOCOM 0.526 

(1.713) 

0.188 

(2.997) 

0.246 

(2.235) 

0.492 

(2.994) 

0.134 

(2.022) 

Panel 4i. VARMA-GARCH: OME_SICOM 

   OME  
SICOM  

OME  
SICOM  

OME 0.489 

(3.518) 

0.108 

(3.416) 

0.698 

(9.896) 

0.170 

(1.421) 

0.088 

(0.814) 

SICOM 0.036 

(4.606) 

0.099 

(7.038) 

0.879 

(55.106) 

-0.004 

(-1.337) 

0.006 

(2.096) 

Panel 4j. VARMA-GARCH: SICOM_TOCOM 

   SICOM  
ENI  

SICOM  
ENI  

SICOM 0.036 

(4.518) 

0.108 

(7.248) 

0.875 

(55.777) 

0.001 

(1.105) 

-0.002 

(-1.113) 

TOCOM 0.817 

(3.083) 

0.241 

(2.654) 

0.546 

(4.544) 

0.219 

(1.270) 

0.181 

(2.005) 

 

Note: The two entries for each parameter are their respective parameter estimates and 

Bollerslev and Wooldridge [2] robust t- ratios. Entries in bold are significant at the 5% 

level. 
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Table 5 

 

VARMA(1-1)-AGARCH(1,1) Estimates 

 

 

Panel 5a. VARMA-AGARCH: SRSS3_TRSS3  

   TRSS3  
SRSS3  

 TRSS3  
SRSS3  

SRSS3 0.015 

(3.942) 

0.087 

(5.225) 

-0.019 

(-0.979) 

0.871 

(38.500) 

0.048 

(4.827) 

0.002 

(0.080) 

TRSS3 0.013 

(3.220) 

0.094 

(4.542) 

-0.012 

(-0.376) 

0.802 

(26.605) 

-0.026 

(-1.541) 

0.118 

(5.458) 

Panel 5b. VARMA-AGARCH: OME_TRSS3 

   OME  
TRSS3  

 OME  
TRSS3  

OME 0.112 

(1.871) 

0.054 

(2.099) 

0.008 

(0.262) 

0.912 

(30.861) 

0.090 

(1.972) 

-0.047 

(-0.775) 

TRSS3 0.019 

(2.695) 

0.100 

(4.667) 

-0.024 

(-0.809) 

0.887 

(66.205) 

-0.006 

(-2.264) 

0.008 

(3.405) 

Panel 5c. VARMA-AGARCH: TOCOM_TRSS3 

   TRSS3  
TOCOM  

 TRSS3  
TOCOM  

TOCOM 0.823 

(3.360) 

0.274 

(2.180) 

-0.056 

(-0.494) 

0.584 

(5.934) 

0.056 

(0.767) 

0.357 

(2.001) 

TRSS3 0.050 

(5.726) 

0.100 

(4.831) 

-0.024 

(-0.787) 

0.867 

(61.334) 

-0.016 

(-4.574) 

0.017 

(4.809) 

Panel 5d. VARMA-AGARCH: SICOM_TRSS3 

   SICOM  
TRSS3  

 SICOM  
TRSS3  

SICOM 0.032 

(4.636) 

0.084 

(5.053) 

-0.008 

(-0.382) 

0.883 

(44.908) 

0.062 

(3.767) 

-0.022 

(-1.009) 

TRSS3 0.045 

(4.291) 

0.101 

(3.978) 

0.032 

(0.792) 

0.675 

(14.244) 

-0.030 

(-2.498) 

0.114 

(5.737) 

Panel 5e. VARMA-AGARCH: OME_SRSS3 

   OME  
SRSS3  

 OME  
SRSS3  

OME 0.629 

(3.833) 

0.108 

(2.603) 

0.030 

(0.596) 

0.664 

(9.018) 

0.279 

(1.650) 

0.068 

(0.497) 

SRSS3 0.021 

(4.701) 

0.105 

(6.566) 

-0.016 

(-0.708) 

0.887 

(70.423) 

-0.005 

(-2.967) 

0.005 

(3.731) 

Panel 5f. VARMA-AGARCH: SRSS3_TOCOM 

   SRSS3  
TOCOM  

 SRSS3  
TOCOM  
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SRSS3 0.032 

(5.614) 

0.105 

(6.414) 

-0.011 

(-0.461) 

0.882 

(71.498) 

0.007 

(4.710) 

-0.008 

(-4.549) 

TOCOM 0.793 

(3.242) 

0.276 

(2.128) 

-0.068 

(-0.591) 

0.559 

(5.316) 

0.526 

(2.434) 

0.022 

(0.223) 

Panel 5g. VARMA-AGARCH: SICOM_SRSS3 

   SRSS3  
SICOM  

 SRSS3  
SICOM  

SICOM 0.031 

(4.362) 

0.084 

(4.932) 

0.005 

(0.202) 

0.879 

(32.493) 

0.050 

(2.630) 

-0.018 

(-0.621) 

SRSS3 0.042 

(1.386) 

0.031 

(0.875) 

-0.022 

(-0.602) 

0.004 

(0.059) 

0.338 

(4.811) 

0.242 

(10.449) 

Panel 5h. VARMA-AGARCH: OME_TOCOM 

   OME  
TOCOM  

 OME  
TOCOM  

OME 0.292 

(4.826) 

0.041 

(2.089) 

0.012 

(0.455) 

0.914 

(29.174) 

0.076 

(2.769) 

-0.085 

(-2.277) 

TOCOM 0.513 

(1.686) 

0.233 

(2.454) 

-0.090 

(-0.924) 

0.223 

(2.047) 

0.524 

(3.208) 

0. 137 

(2.100) 

Panel 5i. VARMA-GARCH: OME_SICOM 

   OME  
SICOM  

 OME  
SICOM  

OME 0.483 

(3.610) 

0.092 

(2.101) 

0.032 

(0.660) 

0.698 

(10.276) 

0.168 

(1.414) 

0.093 

(0.843) 

SICOM 0.036 

(4.603) 

0.100 

(6.062) 

-0.002 

(-0.082) 

0.879 

(55.146) 

-0.005 

(-1.341) 

0.006 

(2.101) 

Panel 5j. VARMA-AGARCH: SICOM_TOCOM 

   SICOM  
ENI  

 SICOM  
ENI  

SICOM 0.037 

(4.514) 

0.107 

(6.157) 

0.003 

(0.125) 

0.874 

(55.548) 

0.001 

(1.084) 

-0.002 

(-1.106) 

TOCOM 0.826 

(3.098) 

0.280 

(1.918) 

-0.083 

(-0.652) 

0.541 

(4.374) 

0.234 

(1.247) 

0.189 

(2.047) 

 

Note: The two entries for each parameter are their respective parameter estimates and 

Bollerslev and Wooldridge [2] robust t- ratios. Entries in bold are significant at the 5% 

level. 
 

 

 

 

 

 



19 

 

 

Figure 1 

Dynamic Conditional Correlations Between Pairs of Rubber Spot and Futures 
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