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Abstract 

 

Crude oil price volatility has been analyzed extensively for organized spot, forward and 

futures markets for well over a decade, and is crucial for forecasting volatility and Value-at-

Risk (VaR). There are four major benchmarks in the international oil market, namely West 

Texas Intermediate (USA), Brent (North Sea), Dubai/Oman (Middle East), and Tapis (Asia-

Pacific), which are likely to be highly correlated. This paper analyses the volatility spillover 

and asymmetric effects across and within the four markets, using three multivariate GARCH 

models, namely the constant conditional correlation (CCC), vector ARMA-GARCH 

(VARMA-GARCH) and vector ARMA-asymmetric GARCH (VARMA-AGARCH) models. 

A rolling window approach is used to forecast the 1-day ahead conditional correlations. The 

paper presents evidence of volatility spillovers and asymmetric effects on the conditional 

variances for most pairs of series. In addition, the forecast conditional correlations between 

pairs of crude oil returns have both positive and negative trends. Moreover, the optimal hedge 

ratios and optimal portfolio weights of crude oil across different assets and market portfolios 

are evaluated in order to provide important policy implications for risk management in crude 

oil markets. 

 

 

Keywords: Volatility spillovers, multivariate GARCH, conditional correlation, crude oil 
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1.  Introduction 

 

  Over the past 20-30 years, oil has become the biggest traded commodity in the world. 

In the crude oil market, oil is sold under a variety of contract arrangements and in spot 

transactions, and is also traded in futures markets which set the spot, forward and futures 

prices. Crude oil is usually sold close to the point of production, and is transferred as the oil 

flows from the loading terminal to the ship FOB (free on board). Thus, spot prices are quoted 

for immediate delivery of crude oil as FOB prices. Forward prices are the agreed upon price 

of crude oil in forward contracts. Futures price are prices quoted for delivering in a specified 

quantity of crude oil at a specified time and place in the future in a particular trading centre. 

  The four major benchmarks in the world of international trading today are: 1) West 

Texas Intermediate (WTI), the reference crude for USA, (2) Brent, the reference crude oil for 

the North Sea, (3) Dubai, the benchmark crude oil for the Middle East and Far East, and (4) 

Tapis, the benchmark crude oil for the Asia-Pacific region. Volatility (or risk) is important in 

finance and is typically unobservable, and volatility spillovers appear to be widespread in 

financial markets (Milunovich and Thorp, 2006), including energy futures markets (Lin and 

Tamvakis, 2001). These results hold even when markets do not necessarily trade at the same 

time. Consequently, a volatility spillover occurs when changes in volatility in one market 

produce a lagged impact on volatility in other markets, over and above local effects. 

Volatility spillovers and asymmetries among those four major benchmarks are likely to be 

important for constructing hedge ratios and optimal portfolios. As research has typically 

focused on oil spot and futures prices to the neglect of forward prices, this paper analyses all 

three oil prices. 

  Accurate modelling of volatility is crucial in finance and for commodity. Shocks to 

returns can be divided into predictable and unpredictable components. The most frequently 

analyzed predictable component in shocks to returns is the volatility in the time-varying 

conditional variance. The success of the Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) model of Engle (1982) and Bollerslev (1986) has subsequently 

led to a family of univariate and multivariate GARCH models which can capture different 

behavior in financial returns, including time-varying volatility, persistence and clustering of 

volatility, and the asymmetric effects of positive and negative shocks of equal magnitude. In 

modelling multivariate returns, such as spot, forward and futures returns, shocks to returns 

not only have dynamic interdependence in risks, but also in the conditional correlations 

which are key elements in portfolio construction and the testing of unbiasedness and the 
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efficient market hypothesis. The hypothesis of efficient markets is essential for understanding 

optimal decision making, especially for hedging and speculation. 

  Substantial research has been conducted on spillover effects in energy futures 

markets. Lin and Tamvakis (2001) investigated volatility spillover effects between NYMEX 

and IPE crude oil contracts in both non-overlapping and simultaneous trading hours. They 

found that substantial spillover effects exist when both markets are trading simultaneously, 

although IPE morning prices seem to be affected considerably by the close of the previous 

day on NYMEX. Ewing et al (2002) examined the transmission of volatility between the oil 

and natural gas markets using daily returns data, and found that changes in volatility in one 

market may have spillovers to the other market. Sola et al (2002) analyzed volatility links 

between different markets based on a bivariate Markov switching model, and discovered that 

it enables identification of the probabilistic structure, timing and the duration of the volatility 

transmission mechanism from one country to another.  

  Hammoudeh et al. (2003) examined the time series properties of daily spot and 

futures prices for three petroleum types traded at five commodity centres within and outside 

the USA by using multivariate vector error-correction models, causality models and GARCH 

models. They found that WTI crude oil NYMEX 1-month futures prices involves causality 

and volatility spillovers, NYMEX gasoline has bi-directional causality relationships among 

all the gasoline spot and futures prices, spot prices produce the greatest spillovers, and 

NYMEX heating oil for 1- and 3-month futures are particularly strong and significant. Chang 

et al. (2009) examined multivariate conditional volatility and conditional correlation models 

of spot, forward, and futures returns from three crude oil markets, namely Brent, WTI and 

Dubai, and provided evidence of significant volatility spillovers and asymmetric effects in the 

conditional volatilities across returns for each market.  

  Of the four major crude oil markets, only the most well known oil markets, namely 

WTI and Brent, the light sweet grade category, have spot, forward and futures prices, while 

the Dubai and Tapis markets, the heavier and less sweet grade category, have only spot and 

forward prices. It would seem that no research has yet tested the spillover effects for each of 

the spot, forward and futures crude oil prices in and across all markets, or estimated the 

optimal portfolio weights and optimal hedge ratios for purposes of risk diversification. 

  Several multivariate GARCH models specify risk for one asset as depending 

dynamically on its own past and on the past of other assets (see McAleer, 2005). da Veiga, 

Chan and McAleer (2008) analyzed the multivariate vector ARMA-GARCH (VARMA- 

GARCH) model of Ling and McAleer (2003) and vector ARMA-asymmetric GARCH 
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(VARMA-AGARCH) model of McAleer, Hoti and Chan (2009), and found that they were 

superior to the GARCH model of Bollerslev (1986) and the GJR model of Glosten, 

Jagannathan and Runkle (1992).  

  This paper has two main objectives, as follows: (1) We investigate the importance of 

volatility spillovers and asymmetric effects of negative and positive shocks of equal 

magnitude on the conditional variance for modelling crude oil volatility in the returns of spot, 

forward and futures prices within and across the Brent, WTI, Dubai and Tapis markets, using 

multivariate conditional volatility models. The spillover effects between returns in and across 

markets are also estimated. A rolling window is used to forecast 1-day ahead conditional 

correlations, and to explain the conditional correlations movements, which are important for 

portfolio construction and hedging. (2) We apply the estimated results to compute the optimal 

hedge ratios and optimal portfolio weights of the crude oil portfolio, which provides 

important policy implications for risk management in crude oil markets. 

  The plan of the paper is as follows. Section 2 discusses the univariate and multivariate 

GARCH models to be estimated. Section 3 explains the data, descriptive statistics and unit 

root tests. Section 4 describes the empirical estimates and some diagnostic tests of the 

univariate and multivariate models, and forecasts of 1-day ahead conditional correlations. 

Section 5 presents the economic implications for optimal hedge ratios and optimal portfolio 

weights. Section 6 provides some concluding remarks. 

 

2. Econometric Models 

 

  This section presents the constant conditional correlation (CCC) model of Bollerslev 

(1990), the VARMA-GARCH model of Ling and McAleer (2003) and VARMA-AGARCH 

model of McAleer, Hoti and Chan (2009). These models assume constant conditional 

correlations, and do not suffer from the problem of dimensionality, as compared with the 

VECH and BEKK models, and also possess regularity and statistical properties, unlike the 

DCC model (see McAleer et al. (2008) and Carporin and McAleer (2009, 2010) for detailed 

explanations of these issues).  

 In explaining a vector of oil prices, Y, the VARMA-GARCH model of Ling and McAleer 

(2003), assumes symmetry in the effects of positive and negative shocks of equal magnitude 

on the conditional volatility, and is given by 
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 1t t t tY E Y F                                                           (1) 

    t tL Y L                                                       (2) 

t t tD                                                                 (3) 

,

1 1

r s

t t l t l l i t j

l l

H W A B H  

 

                                                 (4) 

 

where (1) denotes the decomposition of Y into its predictable (conditional mean) and random 

components,   1 2

,diagt i tD h ,  1 ,...,t t mtH h h  ,  1 ,...,t t mtW    ,  1 ,...,t t mt   
 
is a 

sequence of independently and identically (iid) random vectors,  2 2,...,t it mt   
 , tA  and lB  

are m m  matrices with typical elements ij  and ij , respectively, for , 1,...,i j m , 

    t itI diag I   is an m m  matrix.   1 ...mL I L     p

pL  and 

  1 ... q

m qL I L L      are polynomials in L, the lag operator, and tF  is the past 

information available to time t. l  represents the ARCH effect, and l  represents the 

GARCH effect.  

  Spillover effects, or the dependence of conditional variances across crude oil returns, 

are given in the conditional volatility for each asset in the portfolio. Based on equation (3), 

the VARMA-GARCH model also assumes that the matrix of conditional correlations is given 

by  t tE    . If 1m  , equation (4) reduces to the univariate GARCH model of Bollerslev 

(1986): 

 

2 2

1 1

p q

t i t i i t i

i i

h h    

 

                                                     (5)  

 

  The VARMA-GARCH model assumes that negative and positive shocks of equal 

magnitude have identical impacts on the conditional variance. An extension of the VARMA-

GARCH model to accommodate asymmetric impacts of positive and negative shocks is the 

VARMA-AGARCH model of McAleer, Hoti and Chan (2009), which captures asymmetric 

spillover effects from other crude oil returns. An extension of (4) to accommodate 

asymmetries with respect to it  is given by 
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1 1 1

r r s

t l t l l t l t l l t l

l l l

H W A C I B H    

  

                                          (6) 

 

in which ititit h   for all i and t, lC
 
are m m  matrices, and  itI   is an indicator 

variable distinguishing between the effects of positive and negative shocks of equal 

magnitude on conditional volatility, such that 

 

 
0, 0

1, 0

it

it

it

I






 


                                                       (7) 

 

  When 1m  , equation (4) reduces to the asymmetric univariate GARCH, or GJR, 

model of Glosten et al. (1992): 

 

   2

1 1

r s

t j j t j t j j t j

j j

h I h       

 

                                          (8) 

 

For the underlying asymptotic theory, see McAleer et al. (2007) and, for an alternative 

asymmetric GARCH model, namely EGARCH, see Nelson (1991). 

  If 0lC  , with lA  and lB  being diagonal matrices for all l, then VARMA-AGARCH 

reduces to: 

 

, ,

1 1

r s

it i l i t l l i t l

l l

h h    

 

                                                  (9) 

 

which is the CCC model of Bollerslev (1990). As given in equation (7), the CCC model does 

not have volatility spillover effects across different financial assets, and hence is intrinsically 

univariate in nature. In addition, CCC also does not capture the asymmetric effects of positive 

and negative shocks on conditional volatility. 

  The parameters in model (1), (4), (6) and (9) can be obtained by maximum likelihood 

estimation (MLE) using a joint normal density, namely 

 

 1

1

1ˆ arg min log
2

n

t t t t

t

Q Q


  



                               (10) 
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where   denotes the vector of parameters to be estimated on the conditional log-likelihood 

function, and 
tQ  denotes the determinant of tQ , the conditional covariance matrix. When t  

does not follow a joint multivariate normal distribution, the appropriate estimators are 

defined as the Quasi-MLE (QMLE). 

  In order to forecast 1-day ahead conditional correlation, we use rolling windows 

technique and examine the time-varying nature of the conditional correlations using 

VARMA-GARCH and VARMA-AGARCH. Rolling windows are a recursive estimation 

procedure whereby the model is estimated for a restricted sample, then re-estimated by 

adding one observation at the end of the sample and deleting one observation from the 

beginning of the sample. The process is repeated until the end of the sample. In order to strike 

a balance between efficiency in estimation and a viable number of rolling regressions, the 

rolling window size is set at 2008 for all data sets. 

 

3. Data 

 

  The univariate and multivariate GARCH models are estimated using 3,009 

observations of daily data on crude oil spot, forward and futures prices in the Brent, WTI, 

Dubai and Tapis markets for the period 30 April 1997 to 10 November 2008. All prices are 

expressed in US dollars. In the WTI market, prices are crude oil-WTI spot cushing price 

($/BBL), crude oil-WTI one-month forward price ($/BBL), and NYMEX one-month futures 

prices. The prices in the Brent market are crude oil-Brent spot price FOB ($/BBL), crude oil-

Brent one-month forward price ($/BBL), and one-month futures prices. In the Dubai market, 

the prices are crude oil-Arab Gulf Dubai spot price FOB ($/BBL) and crude oil-Dubai one-

month forward price ($/BBL). In the Tapis market, the prices are crude oil-Malaysia Tapis 

spot price FOB ($/BBL) and crude oil-Tapis one-month forward price ($/BBL). Three series 

are obtained from DataStream database service, while the series for Tapis are collected from 

Reuters. 

  The synchronous price returns i for each market j are computed on a continuous 

compounding basis as the logarithm of closing price at the end of the period minus the 

logarithm of the closing price at the beginning of the period, which is defined as 

 

 , , , 1logij t ij t ij tr P P  . 
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[Insert Figure 1 here] 

[Insert Tables 1-2 here] 

 

  Table 1 presents the descriptive statistics for the returns series of crude oil prices. The 

average return of spot, forward and futures in Brent, WTI and Dubai are similar, while Tapis 

has the lowest average returns. The normal distribution has a skewness statistic equal to zero 

and a kurtosis statistic of 3, but these crude oil returns series have high kurtosis, suggesting 

the presence of fat tails, and negative skewness statistics, signifying the series has a longer 

left tail (extreme losses) than right tail (extreme gain). The Jarque-Bera Lagrange multiplier 

statistics of the crude oil returns in each market are statistically significant, thereby signifying 

that the distributions of these prices are not normal, which may be due to the presence of  

extreme observations. Brent and WTI returns are more volatile than those of Dubai/Oman 

and Tapis, as shown by the estimates of their respective standard errors. This may be 

explained by the fact that light sweet crude oil is less plentiful and in greater demand than the 

more sour and heavier grades, or due to the presence of different regulatory restrictions in 

these markets. It also seems that the forward returns are less volatile than those of spot and 

futures (if they exist) prices, with the exception of Tapis. This has to do with the nature and 

characteristics of the forward contracts relative to those of the spot and futures contracts  

  Figure 1 presents the plot of synchronous crude oil price returns. These indicate 

volatility clustering or period of high volatility followed by periods of tranquility, such that 

crude oil returns oscillate in a range smaller than the normal distribution. However, there are 

some circumstances where crude oil returns fluctuate in a much wider scale than is permitted 

under normality. 

  The unit root tests for all crude oil returns in each market are summarized in Table 2. 

The Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests are used to test the null 

hypothesis of a unit root against the alternative hypothesis of stationarity.  The tests yield 

large negative values in all cases for levels, such that the individual returns series reject the 

null hypothesis at the 1% significance level, so that all returns series are stationary. 

  Since the univariate ARMA-GARCH is nested in the VARMA-GARCH model, and 

ARMA-GJR is nested in VARMA-AGARCH, with conditional variance specified in (5) and 

(8), the univariate ARMA-GARCH and ARMA-GJR models are estimated. It is sensible to 

extend univariate models to their multivariate counterparts if the regularity conditions of 
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univariate models are satisfied, so that the QMLE will be consistent and asymptotically 

normal. All estimation is conducted using the EViews 6 econometric software package. 

 

4. Empirical Results 

 

  From Tables 3 and 4, the univariate ARMA(1,1)-GARCH(1,1) and ARMA (1,1)-

GJR(1,1) models are estimated to check whether the conditional variance follows the 

GARCH process. In Table 3, not all the coefficients in mean equations of ARMA(1,1)-

GARCH(1,1) are significant, whereas all the coefficients in the conditional variance equation 

are statistically significant. Table 4 shows that the long-run coefficients are all statistically 

significant in the variance equation, but rbrefu (brent futures return), rwtisp (WTI spot 

return), rwtifor (WTI forward return), rtapsp (Tapis spot return), and rtapfor (Tapis forward 

return) are only significant in the short run. In addition, the asymmetric effects of negative 

and positive shocks on the conditional variance are generally statistically significant. 

 

[Insert Tables 3-5 here] 

 

  In order to check the sufficient condition for consistency and asymptotic normality of 

the QMLE for GARCH and GJR model, the second moment conditions are 1 1 1    and 

 1 12 1     , respectively. Table 5 shows that all of the estimated second moment 

conditions are less than one. In order to derive the statistical properties of the QMLE, Lee and 

Hausen (1997) derived the log-moment condition for GARCH(1,1) as 

  2

1 1log 0tE    , while McAleer et al. (2007) established the log-moment condition for 

GJR(1,1) as    2

1 1 1log 0t tE I       . Table 5 shows that the estimated log-moment 

condition for both models is satisfied for all returns. The high persistence of volatility shown 

in Table 5 can be explained be the reinforcing mechanism between oil inventories and the oil 

basis = (futures – spot).  

  For the spot, forward and futures returns in the four crude oil markets, there are ten 

series of returns to be analyzed. Consequently, 45 bivariate models need to be estimated. The 

calculated constant conditional correlations between the volatility of two returns within and 

across markets using the CCC model and the Bollerslev and Wooldridge (1992) robust t-

ratios are presented in Table 6. The highest estimated constant conditional correlation is 
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0.935, namely between the standardized shocks in Brent spot returns (rbresp) and Brent 

forward returns (rbrefor). 

 

[Insert Tables 6 here] 

 

  Corresponding multivariate estimates of the conditional variances from the 

VARMA(1,1)-GARCH(1,1) and VARMA(1,1)-AGARCH(1,1) models are also estimated. 

The estimates of volatility and asymmetric spillovers are presented in Table 7, which shows 

that volatility spillovers for VARMA-GARCH and VARMA-AGARCH are evident in 32 and 

31 of 45 cases, respectively. The significant interdependences in the conditional volatility 

among returns hold for 3 of 45 cases for both VARMA-GARCH and VARMA-AGARCH. In 

addition, asymmetric effects are evident in 27 of 45 cases. Consequently, the evidence of 

volatility spillovers and asymmetric effects of negative and positive shocks on the conditional 

variance suggest that VARMA-AGARCH is superior to the VARMA-GARCH and CCC 

models. 

 

[Insert Tables 7 here] 

 

  The estimates of the conditional variances based on the VARMA-GARCH and 

VARMA-AGARCH models reported in Table 7 suggest the presence of volatility spillovers 

between Brent and WTI returns, namely volatility spillovers from Brent futures returns to 

Brent spot and forward returns, from Brent spot returns to WTI spot returns, and from WTI 

futures returns to Brent spot returns. In addition, the results show that most of the Dubai and 

Tapis returns have volatility spillover effects from Brent and WTI returns. This evidence is in 

agreement with the knowledge that the Brent and WTI markets are two “marker” crudes that 

set crude oil prices and influence the other crude oil markets. 

 

[Insert Figure 2 here] 

 

  The conditional correlation forecasts are obtained from a rolling window technique. 

Figure 2 plots the dynamic paths of the conditional correlations derived from VARMA-

GARCH and VARMA-AGARCH. All the conditional correlations display significant 

variability, which suggests that the assumption of constant conditional correlation is not 

valid. It is interesting to note that the correlations are positive for all pairs of crude oil returns, 
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and rtapsp_rtapfor has the highest correlation, at 0.98. In addition, the conditional correlation 

forecasts of some pairs of crude oil returns exhibit an upward trend in 22 of 45 cases, and a 

downward trend in 20 of 45 cases. This evidence should also be considered in diversifying a 

portfolio containing these assets. 

 

5. Implications for Portfolio Design and Hedging Strategies 

 

  This section presents optimal hedge ratios and optimal portfolio weights among crude 

oil returns and across markets. Theoretically, hedging involves the determination of the 

optimal hedge ratio. One of the most widely used hedging strategies is based on the 

minimization of the variance of the portfolio, the so-called minimum variance hedge ratio 

(see, for example, Kroner and Sultan (1993), Lien and Tse (2002), and Chen et al. (2003)). In 

order to minimize risk, the dynamic hedge ratio, based on conditional information available 

at t, is given by:  

 

12,

12,

22,

t

t

t

h

h
                                                              (11) 

   

where 12,t  is the risk-minimizing hedge ratio for two crude oil assets, 12,th  is the conditional 

covariance between crude oil assets 1 and 2, and 22,th  is  the conditional variance of crude oil 

asset 2. In order to minimize risk, a long position of one dollar taken in one crude oil asset 

should be hedged by a short position of $ t  in another crude oil asset at time t (Hammoudeh 

et al. (2009)).  

  The average values of the optimal hedge ratio ( t ) using estimates from the 

VARMA-GARCH model are presented in the first column of Table 8. By following the 

estimated hedge strategy, the highest average optimal hedge ratio is 0.956 (rwtisp/rwtifu), 

meaning one dollar long in WTI spot should be shorted by 95 cents in WTI futures. The 

lowest average optimal hedge ratio is 0.125 (rtapfor/rwtifor), meaning one dollar long in 

Tapis forward should be shorted by 12 cents in WTI forward. Interestingly, we find that the 

average optimal hedge ratio across markets, namely Dubai and WTI, Tapis and Brent, and 

Tapis and WTI, are very low, signifying one dollar long in the first market should be shorted 

by only a few cents in the second market. 
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  In the case of optimal portfolio weights, the estimated covariance matrices from the 

VARMA-GARCH model are used to compute the optimal portfolio holdings that minimize 

portfolio risk, assuming the expected returns are zero. Applying the methods of Kroner and 

Ng (1998), the optimal portfolio weight of crude oil asset 1/2 holding ( 12,tw ) is given by:  

 

22, 12,

12,

11, 12, 22,2

t t

t

t t t

h h
w

h h h




 
                                                 (12) 

and 

 

12,

12, 12, 12,

12,

0,               if   < 0       

,         if  0 <  0

1,               if   > 0       

t

t t t

t

w

w w w

w




 



                                         (13) 

 

where 12,tw , is the portfolio weight of the first asset relative to the second asset at time t. The 

average of the weights 12,tw  means the optimal portfolio holdings for the first asset should be 

12,tw  cents to a dollar. Obviously, the optimal portfolio holding for the second asset would be 

(1- 12,tw ) to a dollar. 

  The average values of 12, tw  based on the VARMA-GARCH estimates are presented 

in the second column of Table 8. For instance, the highest average optimal hedge ratio is 

0.968 (rbrefor/rbresp), suggesting that the optimal holding of Brent forward in one dollar of 

forward/spot for Brent market is 97 cents, compared with 3 cents for Brent spot. These 

optimal portfolio weights suggest that investors should have much more Brent forward than 

Brent spot in their portfolio. Surprisingly, the average optimal portfolio weights across 

markets, namely Dubai and Brent, Dubai and WTI, Tapis and Brent, and Tapis and WTI, 

suggest that investors should own WTI and Brent (the light sweet grade category) in greater 

proportions than Dubai and Tapis (the heavier and less sweet grade category). 

 

6.  Conclusion 

 

  The empirical analysis in the paper examined the spillover effects in the returns on 

spot, forward and futures prices of four major benchmarks in the international oil market, 

namely West Texas Intermediate (USA), Brent (North Sea), Dubai/Oman (Middle East) and 
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Tapis (Asia-Pacific), for the period 30 April 1997 to 10 November 2008. Alternative 

multivariate conditional volatility models were used, namely the CCC model of Bollerslev 

(1990), VARMA-GARCH model of Ling and McAleer (2003), and VARMA-AGARCH 

model of McAleer et al (2009). Both the ARCH and GARCH estimates were significant for 

all returns in the ARMA(1,1)-GARCH(1,1) models. However, in case of the ARMA(1,1)-

GJR(1,1) models, only the GARCH estimates were statistically significant, and most of the 

estimates of the asymmetric effects were significant. Based on the asymptotic standard errors, 

the VARMA-GARCH and VARMA-AGARCH models showed evidence of volatility 

spillovers and asymmetric effects of negative and positive shocks on the conditional 

variances, which suggested that VARMA-AGARCH was superior to both VARMA-GARCH 

and CCC. 

  The paper also presented some volatility spillover effects from Brent and WTI 

returns, and from the Brent and WTI crude oil markets to the Dubai and Tapis markets, which 

confirmed that the Brent and WTI crude oil markets are the world references for crude oil. 

The paper also compared 1-day ahead conditional correlation forecasts from the VARMA-

GARCH and VARMA-AGARCH models using the rolling window approach, and showed 

that the conditional correlation forecasts exhibited both upward trend and downward trends. 

In order to design optimal portfolio holdings across two crude oil grade categories, the 

optimal portfolio weights suggest holding the light sweet grade category (WTI and Brent) in 

a greater proportion than the heavier and less sweet grade category (Dubai and Tapis). In the 

case of minimizing risk by using a hedge, a long position of one dollar in the light sweet 

grade category (WTI) should be shorted by only a few cents in the heavier and less sweet 

grade category (Dubai and Tapis). 
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Table 1 

Descriptive Statistics for Crude Oil Price Returns 

Returns Mean Max Min S.D. Skewness Kurtosis Jarque-Bera 

rbresp 0.043 15.164 -12.601 2.347 -0.0007 5.341 686.6157 

rbrefor 0.043 12.044 -12.534 2.146 -0.141 4.939 480.941 

rbrefu 0.043 12.898 -10.946 2.212 -0.124 4.934 476.538 

rwtisp 0.043 15.873 -13.795 2.412 -0.129 6.479 1524.764 

rwtifor 0.042 13.958 -12.329 2.316 -0.182 5.204 625.414 

rwtifu 0.043 14.546 -12.939 2.349 -0.151 6.318 1390.425 

rdubsp 0.043 14.705 -12.943 2.199 -0.179 5.844 1029.861 

rdubfor 0.040 13.767 -12.801 2.115 -0.308 5.718 973.0103 

rtapsp 0.038 11.081 -10.483 2.000 -0.183 5.373 722.053 

rtapfor 0.038 12.071 -12.869 2.076 -0.289 5.567 867.187 

 

 

 

 

Table 2 

Unit Root Tests for Returns 

Returns 

ADF test  Phillips-Perron test 

None Constant 
Constant 

and Trend 
None Constant 

Constant 

and Trend 

rbresp -54.264* -54.274* -54.265* -54.301* -54.298* -54.291* 

rbrefor -57.076* -57.092* -57.083* -57.088* -57.100* -57.091* 

rbrefu -57.944* -57.958* -57.949* -57.901* -57.919* -57.909* 

rwtisp -41.065* -41.079* -41.073* -55.652* -55.677* -55.667* 

rwtifor -56.618* -56.626* -56.617* -56.697* -56.715* -56.705* 

rwtifu -55.872* -55.881* -55.872* -56.011* -56.030* -56.020* 

rdubsp -59.130* -59.145* -59.135* -59.090* -59.129* -59.119* 

rdubfor -59.664* -59.677* -59.667* -59.542* -59.573* -59.564* 

rtapsp -59.059* -59.072* -59.062* -58.955* -58.956* -58.947* 

rtapfor -59.949* -59.961* -59.951* -59.747* -59.775* -59.766* 

Note:  * denotes significance at the 1% level. 
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Table 3 

Univariate ARMA(1,1)-GARCH(1,1) 

 

Returns 

Mean equation Variance equation 

C AR(1) MA(1)   ̂  ̂  

rbresp  0.088 

2.179* 

-0.981 

-95.091* 

0.988 

119.046* 

0.069 

2.585* 

0.039 

4.292* 

0.949 

83.066* 

rbrefor 0.084 

2.407* 

0.236 

0.596 

-0.277 

-0.707 

0.084 

2.708* 

0.042 

4.281* 

0.940 

68.425* 

rbrefu 0.081 

2.281* 

0.092 

0.259 

-0.141 

-0.399 

0.062 

2.396* 

0.042 

4.451* 

0.946 

77.153* 

rwtisp 0.072 

1.698 

-0.949 

-18.055* 

0.955 

19.298* 

0.101 

2.502* 

0.046 

3.698* 

0.938 

58.264* 

rwtifor 0.078 

2.063 

0.350 

0.888 

-0.387 

-0.998 

0.144 

2.731* 

0.055 

4.448* 

0.919 

48.541* 

rwtifu 0.085 

2.142* 

-0.971 

-32.149* 

0.969 

30.750* 

0.189 

2.971* 

0.065 

3.633* 

0.902 

36.669* 

rdubsp 0.090 

2.771* 

0.019 

0.083 

-0.099 

-0.434 

0.048 

2.303* 

0.049 

5.355* 

0.942 

85.548* 

rdubfor 0.086 

2.696* 

0.052 

0.227 

-0.134 

-0.593 

0.061 

2.571* 

0.048 

4.331* 

0.939 

69.601* 

rtapsp 0.067 

2.217* 

0.153 

0.493 

-0.211 

-0.687 

0.076 

2.419* 

0.047 

3.818* 

0.935 

53.855* 

rtapfor 0.058 

1.856 

0.173 

0.742 

-0.246 

-1.072 

0.056 

2.618* 

0.041 

4.314* 

0.946 

80.476* 

Notes: (1) The two entries for each parameter are their respective parameter estimate and the Bollerslev and Wooldridge 

(1992) robust t- ratios.  

           (2)  * denotes significance at the 1% level. 
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Table 4 

Univariate ARMA(1,1)-GJR (1,1) 

Returns 
Mean equation Variance equation 

C AR(1) MA(1)   ̂  ̂  ̂  

rbresp  0.054 

1.367 

-0.981 

-91.730* 
0.988 

114.293* 

0.069 

2.5514* 

0.0116 

0.974 

0.042 

2.792* 

0.955 

85.638* 

rbrefor 0.063 

1.814 

0.178 

0.454 

-0.224 

-0.573 

0.086 

2.687* 

0.019 

1.498 

0.035 

2.419* 

0.944 

68.125* 

rbrefu 0.069 

1.942 

0.059 

0.169 

-0.111 

-0.318 

0.059 

2.349* 

0.029 

2.329* 

0.017 

1.252 

0.951 

79.661* 

rwtisp 0.059 

1.730 

0.954 

17.911* 

-0.963 

-19.727* 

0.597 

3.814* 

0.064 

2.104* 

0.059 

1.782 

0.802 

18.291* 

rwtifor 0.058 

1.560 

0.3439 

0.9369 

-0.385 

-1.068 

0.137 

2.772* 

0.029 

2.046* 

0.035 

2.069 

0.927 

53.349* 

rwtifu 0.060 

1.521 

-0.9709 

-30.237* 

0.969 

29.056* 

0.187 

3.054* 

0.039 

1.812 

0.042 

1.964* 

0.905 

37.680* 

rdubsp 0.064 

1.970* 

0.034 

0.154 

-0.117 

-0.539 

0.052 

2.579* 

0.022 

1.797 

0.036 

2.445* 

0.949 

89.095* 

rdubfor 0.065 

2.031* 

0.049 

0.221 

-0.135 

-0.616 

0.069 

2.699* 

0.023 

1.566 

0.034 

2.229* 

0.944 

63.537* 

rtapsp 0.052 

1.661 

0.1438 

0.445 

-0.199 

-0.628 

0.072 

2.886* 

0.019 

2.037* 

0.037 

2.665* 

0.944 

70.250* 

rtapfor 0.043 

1.372 

0.169 

0.724 

-0.242 

-1.053 

0.055 

3.132* 

0.017 

2.045* 

0.032 

2.457* 

0.953 

107.102* 

Notes: (1) The two entries for each parameter are their respective parameter estimates and Bollerslev and Wooldridge (1992) 

robust t- ratios.  

           (2)  * denotes significance at the 1% level. 
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Table 5 

Log-moment and Second Moment Conditions for the  

ARMA(1,1)-GARCH(1,1) and ARMA(1,1)-GJR(1,1) models 

Returns ARMA-GARCH ARMA-GJR 

Log-Moment Second moment Log-Moment Second moment 

rbresp  -0.0060 0.988 -0.0058 0.987 

rbrefor -0.0087 0.982 -0.0084 0.980 

rbrefu -0.0061 0.988 -0.0050 0.988 

rwtisp -0.0089 0.984 -0.0492 0.895 

rwtifor -0.0131 0.974 -0.0114 0.973 

rwtifu -0.0173 0.967 -0.0153 0.965 

rdubsp -0.0051 0.991 -0.0048 0.989 

rdubfor -0.0068 0.987 -0.0069 0.984 

rtapsp -0.0093 0.982 -0.0082 0.982 

rtapfor -0.0063 0.987 -0.0056 0.986 
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Table 6 

Constant Conditional Correlation for CCC-GARCH(1-1) Model 

Returns rbresp rbrefor rbrefu rwtisp rwtifor rwtifu rdubsp rdubfor rtapsp rtapfor 

rbresp 1.000 0.935 

(126.157) 

0.762 

(74.699) 

0.696 

(57.939) 

0.756 

(87.222) 

0.713 

(61.139) 

0.576 

(45.118) 

0.586 

(57.787) 

0.259 

(13.994) 

0.254 

(14.047) 

rbrefor  1.000 0.778 

(75.679) 

0.723 

(66.055) 

0.786 

(99.892) 

0.740 

(64.702) 

0.740 

(64.702) 

0.609 

(44.895) 

0.263 

(16.679) 

0.253 

(14.199) 

rbrefu   1.000 0.824 

(148.267) 

0.839 

(90.429) 

0.843 

(104.926) 

0.430 

(37.236) 

0.443 

(22.395) 

0.187 

(11.102) 

0.176 

(10.188) 

rwtisp    1.000 0.873 

(108.318) 

0.920 

(199.900) 

0.390 

(22.564) 

0.398 

(18.390) 

0.176 

(9.418) 

0.161 

(8.286) 

rwtifor     1.000 0.902 

(160.272) 

0.421 

(20.303) 

0.437 

(24.507) 

0.126 

(6.294) 

0.115 

(6.329) 

rwtifu      1.000 0.403 

(19.881) 

0.410 

(21.240) 

0.176 

(10.239) 

0.164 

(9.031) 

rdubsp       1.000 0.958 

(169.158) 

0.466 

(19.442) 

0.455 

(20.383) 

ubfor        1.000 0.468 

(22.445) 

0.457 

(16.468) 

rtapsp         1.000 0.930 

(139.082) 
rtapfor          1.000 

       Notes:    (1) The two entries for each parameter are their respective estimated conditional correlation and Bollerslev and Wooldridge  

                 (1992) robust t- ratios. 

                          (2) Bold denotes significance at the 5% level. 
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Table 7 

Summary of Volatility Spillovers and Asymmetric Effects of Negative and Positive Shocks 

No. Returns 
Number of volatility spillovers Number of 

Asymmetric effects VARMA-GARCH VARMA-GJR 

1 rbresp_rbrefor 0 0 1 

2 rbresp_rbrefu 1( ) 1( ) 0 

3 rbrefor_rbrefu 1( ) 1( ) 0 

4 rbresp_rwtisp 1( ) 1( ) 1 

5 rbrefor_rwtisp 0 0 1 

6 rbrefu_rwtisp 0 0 0 

7 rbresp_rwtifor 0 0 1 

8 rbrefor_rwtifor 0 0 1 

9 rbrefu_rwtifor 0 0 0 

10 rwtisp_rwtifor 0 0 0 

11 rbresp_rwtifu 1( ) 1( ) 1 

12 rbrefor_rwtifu 0 0 1 

13 rbrefu_rwtifu 0 0 0 

14 rwtisp_rwtifu 0 0 0 

15 rwtifor_rwtifu 1( ) 0 0 

16 rbresp_rdubsp 0 0 2 

17 rbrefor_rdubsp 1( ) 1( ) 1 

18 rbrefu_rdubsp 0 1( ) 0 

19 rwtisp_rdubsp 2 ( ) 2( ) 1 

20 rwtifor_rdubsp 1( ) 1( ) 1 

21 rwtifu_rdubsp 1( ) 1( ) 1 

22 rbresp_rdubfor 1( ) 1( ) 0 

23 rbrefor_rdubfor 1( ) 1( ) 0 

24 rbrefu_rdubfor 1( ) 1( ) 0 

25 rwtisp_rdubfor 1( ) 1( ) 1 

26 rwtifor_rdubfor 1( ) 1( ) 0 

27 rwtifu_rdubfor 1( ) 1( ) 0 

28 rdubsp_rdubfor 1( ) 0 1 

29 rbresp_rtapsp 1( ) 1( ) 2 

30 rbrefor_rtapsp 1( ) 1( ) 2 

31 rbrefu_rtapsp 1( ) 1( ) 1 

32 rwtisp_rtapsp 2 ( ) 2 ( ) 1 

33 rwtifor_rtapsp 1( ) 1( ) 1 

34 rwtifu_rtapsp 1( ) 1( ) 1 

35 rdubsp_rtapsp 1( ) 1( ) 2 

36 rdubfor_rtapsp 1( ) 1( ) 2 

37 rbresp_rtapfor 1( ) 1( ) 1 

38 rbrefor_rtapfor 1( ) 1( ) 1 

39 rbrefu_rtapfor 1( ) 1( ) 0 

40 rwtisp_rtapfor 2 ( ) 2 ( ) 0 

41 rwtifor_rtapfor 0 0 0 

42 rwtifu_rtapfor 1( ) 1( ) 0 

43 rdubsp_rtapfor 1( ) 1( ) 1 

44 rdubfor_rtapfor 1( ) 1( ) 1 

45 rtapsp_rtapfor 1( ) 1( ) 1 

 Notes: The symbols   ( ) indicate the direction of volatility spillovers from A returns to B returns (B returns  

to A returns),   means they are interdependent, and 0 means there are no volatility spillovers between pairs  

of returns. 
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Table 8 

Summary of Volatility Spillovers and Asymmetric Effects of Negative and Positive Shocks 

No. Portfolio 
Average Optimal Hedge Ratio 

(t) 

Optimal Portfolio Weights  

(w12,t) of first crude oil return  

in 1$ portfolio 

1 rbrefor/rbresp 0.870 0.968 

2 rbresp/rbrefu 0.864 0.342 

3 rbrefor/rbrefu 0.806 0.601 

4 rbresp/rwtisp 0.726 0.519 

5 rwtisp/rbrefor 0.859 0.299 

6 rwtisp/rbrefu 0.917 0.301 

7 rbresp/rwtifor 0.808 0.463 

8 rbrefor/rwtifor 0.769 0.714 

9 rbrefu/rwtifor 0.817 0.661 

10 rwtisp/rwtifor 0.917 0.409 

11 rbresp/rwtifu 0.761 0.476 

12 rbrefor/rwtifu 0.722 0.671 

13 rbrefu/rwtifu 0.818 0.662 

14 rwtisp/rwtifu 0.956 0.383 

15 rwtifor/rwtifu 0.920 0.514 

16 rdubsp/rbresp 0.537 0.725 

17 rdubsp/rbrefor 0.643 0.650 

18 rdubsp/rbrefu 0.436 0.676 

19 rdubsp/rwtisp 0.354 0.685 

20 rdubsp/rwtifor 0.387 0.705 

21 rdubsp/rwtifu 0.375 0.688 

22 rdubfor/rbresp 0.794 0.773 

23 rdubfor/rbrefor 0.633 0.698 

24 rdubfor/rbrefu 0.420 0.707 

25 rdubfor/rwtisp 0.341 0.715 

26 rdubfor/rwtifor 0.379 0.733 

27 rdubfor/rwtifu 0.356 0.713 

28 rdubsp/rdubfor 0.932 0.818 

29 rtapsp/rbresp 0.220 0.819 

30 rtapsp/rbrefor 0.266 0.812 

31 rtapsp/rbrefu 0.192 0.853 

32 rtapsp/rwtisp 0.152 0.828 

33 rtapsp/rwtifor 0.136 0.845 

34 rtapsp/rwtifu 0.157 0.836 

35 rtapsp/rdubsp 0.553 0.732 

36 rtapsp/rdubfor 0.572 0.714 

37 rtapfor/rbresp 0.462 0.737 

38 rtapfor/ rbrefor 0.272 0.712 

39 rtapfor/rbrefu 0.197 0.770 

40 rtapfor/rwtisp 0.151 0.755 

41 rtapfor/rwtifor 0.125 0.759 

42 rtapfor/rwtifu 0.155 0.762 

43 rdubsp/tapfor 0.487 0.640 

44 rtapfor/rdubfor 0.506 0.617 

45 rtapsp/rtapfor 0.746 0.689 

  Notes: Average (t) is the risk-minimizing hedge ratio for two crude oil assets. (w12,t) is the portfolio weight  

  of two assets at time t . 
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Figure 1 

Logarithm of daily spot, forward and futures of Brent, WTI, Dubai and Tapis 
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Figure 2 

Forecasts of the conditional correlations between pair of returns from the VARMA-GARCH and VARMA-AGARCH  
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Figure 2 (continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.46

.48

.50

.52

.54

.56

.58

.60

250 500 750 1000

VARMA-GARCH VARMA-AGARCH

rbresp_rdubsp

.52

.54

.56

.58

.60

.62

.64

.66

250 500 750 1000

VARMA-GARCH VARMA-AGARCH

rbrefor_rdubsp

.35

.40

.45

.50

.55

.60

250 500 750 1000

VARMA-GARCH VARMA-AGARCH

rbrefu_rdubsp

.25

.30

.35

.40

.45

.50

.55

250 500 750 1000

VARMA-GARCH VARMA-AGARCH

rwtisp_rdubsp

.25

.30

.35

.40

.45

.50

.55

.60

250 500 750 1000

VARMA-GARCH VARMA-AGARCH

rwtifor_rdubsp

.25

.30

.35

.40

.45

.50

.55

250 500 750 1000

VARMA-GARCH VARMA-AGARCH

rwtifu_rdubsp

.46

.48

.50

.52

.54

.56

.58

.60

.62

250 500 750 1000

VARMA-GARCH VARMA-AGARCH

rbresp_rdubfor

.48

.52

.56

.60

.64

.68

250 500 750 1000

VARMA-GARCH VARMA-AGARCH

rbrefor_rdubfor

.28

.32

.36

.40

.44

.48

.52

.56

.60

.64

250 500 750 1000

VARMA-GARCH VARMA-AGARCH

rbrefu_rdubfor

.25

.30

.35

.40

.45

.50

.55

250 500 750 1000

VARMA-GARCH VARMA-AGARCH

rwtisp_rdubfor

.25

.30

.35

.40

.45

.50

.55

.60

250 500 750 1000

VARMA-GARCH VARMA-AGARCH

rwtifor_rdubfor

.25

.30

.35

.40

.45

.50

.55

.60

250 500 750 1000

VARMA-GARCH VARMA-AGARCH

rwtifu_rdubfor

.80

.82

.84

.86

.88

.90

.92

.94

250 500 750 1000

VARMA-GARCH VARMA-AGARCH

rdubsp_rdubfor

.10

.15

.20

.25

.30

.35

.40

250 500 750 1000

VARMA-GARCH VARMA-AGARCH

rbresp_rtapsp

.20

.24

.28

.32

.36

.40

.44

250 500 750 1000

VARMA-GARCH VARMA-AGARCH

rbrefor_rtapsp



 

 

    27     

 

Figure 2 (continued) 
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