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Abstract
In this paper we introduce a class of information-based models for

the pricing of fixed-income securities. We consider a set of continuous-
time information processes that describe the flow of information about
market factors in a monetary economy. The nominal pricing kernel
is at any given time assumed to be given by a function of the values
of information processes at that time. By use of a change-of-measure
technique we derive explicit expressions for the price processes of nom-
inal discount bonds, and deduce the associated dynamics of the short
rate of interest and the market price of risk. The interest rate positiv-
ity condition is expressed as a differential inequality. We proceed to
the modelling of the price-level, which at any given time is also taken
to be a function of the values of the information processes at that time.
A simple model for a stochastic monetary economy is introduced in
which the prices of nominal discount bonds and inflation-linked notes
can be expressed in terms of aggregate consumption and the liquidity
benefit generated by the money supply.
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1 Introduction

The key idea of so-called information-based asset pricing (Macrina 2006,
Brody et al. 2007, 2008a,b, Hughston & Macrina 2008) is that the market
filtration should be modeled explicitly in such a way that it is generated by a
set of processes that carry information about the future cash flows generated
by tradable securities. In particular, one can regard each such cash flow as
being a random variable that is in turn given by a function of one or more
independent random variables called “market factors” or more succinctly
“X-factors”. The information processes that generate the market filtration
are associated with the various X-factors in such a way that the value of each
X-factor is revealed at some designated time by the associated information
process. The simplest examples of information processes are those based on
Brownian bridges (Brody et al. 2007, 2008a, Rutkowski & Yu 2007), and
gamma bridges (Brody et al. 2008b), which lead to highly tractable asset
pricing models; more general information processes can be constructed based
on Lévy random bridges (Hoyle et al. 2009).

The purpose of the present paper is to present a simple class of information-
based models for interest rates, foreign exchange, and inflation. The point of
view that we take is the following. We retain the premise that the X-factors
represent the fundamental factors, the values of which are revealed from time
to time, that determine the cash flows generated by primary securities. We
also accept the view that the market filtration is generated collectively by
the information processes associated with these factors. In a macroeconomic
setting with a dynamic equilibrium, it is appropriate to assume the existence
of a universal pricing kernel associated with the choice of a suitable base cur-
rency. We shall call this the nominal pricing kernel associated with the given
base currency. The pricing kernel is necessarily adapted to the market filtra-
tion, and therefore can be given in the present context as a functional of the
trajectories of the information processes up to the time at which the value of
the pricing kernel is to be determined. A similar property holds for the pricing
kernel associated with any other currency or unit of exchange. The models
for interest rates and foreign exchange that we develop in the material that
follows, are characterized by the following additional assumptions, namely:
(a) that the information processes collectively have the Markov property with
respect to the market filtration, and (b) that the pricing kernels associated
with each currency under consideration can at any given time be expressed
as a function of the values taken by the information processes at that time.
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In the case of models for inflation, we take a similar point of view, adapting
the so-called “foreign exchange analogy” (Hughston 1998, Jarrow & Yildirim
2003, Mercurio 2005, Brody et al. 2008, Hinnerich 2008). In this scheme the
price level is given by the ratio of the real and the nominal pricing kernels.
These in turn are given, in the models developed in the present paper, by
functions of the current levels of the relevant information processes.

2 Nominal discount bonds in a one-factor

model for interest rates

For simplicity we consider first the somewhat restrictive but nevertheless
instructive case of of an economy with a single X-factor and a single infor-
mation process. The resulting theory can be worked out rather explicitly, and
from this example one can then see how the general case can be approached
when there are several currencies and many X-factors. In the single-factor
case we proceed as follows.

The market will be modelled by a probability space (Ω,F ,P) equipped
with a filtration {Ft}t≥0. We assume that P is the “real” probability measure,
and that {Ft} is the market filtration. The filtration will be modelled in the
following manner. Let time 0 denote the present, and fix a time U > 0.
We introduce a continuous random variable XU taking values in R, with
probability density p(x). The restriction to a continuous random variable is
purely for convenience. With this “X-factor” we associate an information
process {ξtU} defined by

ξtU = σtXU + βtU . (2.1)

Here σ is an information flow-rate parameter, and the Brownian bridge
process {βtU}0≤t≤U is taken to be independent of the market factor XU . As
remarked in Brody et al. 2007 (see also Rutkowski & Yu 2007) it is a straight-
forward exercise making use of well-known properties of the Brownian bridge
to show that the process {ξtU}t≥0 has the Markov property with respect to its
own filtration. We shall assume that {ξtU} generates the market filtration,
and hence that {Ft} embodies all information available to market partici-
pants. Hence for each t ∈ [0, U ] the sigma-algebra Ft is defined by

Ft = σ ({ξsU}0≤s≤t) . (2.2)
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It should be evident in this model that U acts as a kind of “sunset” for
the economy, that there is only one piece of information to be revealed, and
once it has been revealed then that is, so to speak, the end of the story.
This is of course an artifact of the simplicity of our assumptions, and in a
more realistic model we can expect the revelation of X-factors proceeding
indefinitely into the future, the more distant ones being, generally speaking,
less important than the nearer ones.

The pricing kernel {πt} will be assumed to be given by a positive function
that depends on the time t and the value of the information process at time
t. Thus, we have

πt = F (t, ξtU). (2.3)

Given the pricing kernel, we can proceed to work out the price processes
of various assets. In the simple economy under consideration, the “primary”
assets are those that deliver a single cash flow at time U given by an itegrable
function H(XU) that depends on the outcome XU . The value of such a
security at time t ≤ U is given by

Ht =
1

πt

EP [πUH(XU) | Ft] , (2.4)

where Ft is the sigma-algebra generated by {ξsU}0≤s≤t. For each choice of
H(XU) we obtain a tradable security. We can also consider the discount-
bond system associated with the given pricing kernel. Let us write PtT for
the price at time t of a bond that pays one unit of currency at time T for
t ≤ T ≤ U . Then for each T ∈ [0, U ] we have:

PtT =
1

πt

EP [πT | Ft] . (2.5)

Finally, we can consider various “derivative” assets. These deliver prescribed
cash flows at one or more times in the interval (0, U) in such a way that these
cash flows are determined by the values of the basic assets and the discount
bonds at various times. More generally we can also consider “information
derivatives” for which the cash flows can depend in an essentially arbitrary
way on the information available up to the time of the cash flow. For example,
let the payoff of a security at time T be given by G(T, ξTU) where G(t, ξ) is
a function of two variables. Then the value of this security at t is given by

Gt =
1

πt

EP [πT G(T, ξTU) | Ft] . (2.6)
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For example the value at time t of a T -maturity option on a primary security
takes this form.

Let us consider now in more detail the properties of discount bonds.
Recalling that the information process has the Markov property, we see that
(2.5) reduces to the following expression:

PtT =
EP [F (T, ξTU) | ξtU ]

F (t, ξtU)
. (2.7)

We proceed to work out the conditional expectation. To this end we recall
one further property of the information process. This is the existence of the
so-called “bridge measure” B. Under the bridge measure (Brody et al. 2007)
the information process {ξtU} is a Brownian bridge over the interval [0, U).
The change-of-measure density martingale for the transformation from P to
B is given by the process {Mt}0≤t<U defined by

Mt =

(∫ ∞

−∞
p(x) exp

[
U

U − t

(
σx ξtU − 1

2
σ2x2t

)]
dx

)−1

. (2.8)

Applying Ito’s formula, one can show that

dMt

Mt

= − σU

U − t
EP [XU | ξtU ] dWt, (2.9)

where the process {Wt} defined by

Wt = ξtU +

∫ t

0

1

U − s
ξsU ds− σU

∫ t

0

1

U − s
EP [XU | ξsU ] ds. (2.10)

is an ({Ft},P) Brownian motion on [0, U). Thus, in the information-based
approach the Brownian motions that drive asset prices always arise as “sec-
ondary” objects—i.e. innovation processes—rather than as primary drivers.
For further details of the change-of-measure martingale {Mt} and the related
processes appearing in its definition, see Macrina 2006, Chapter 3. Bearing
in mind that the random variable Mt can be expressed as a function of t and
ξtU , as given by (2.8), we can without loss of generality introduce a function
f(t, ξtU) such that

πt = Mt f(t, ξtU), (2.11)

and as consequence we obtain

PtT =
EP [MT f(T, ξTU) | ξtU ]

Mt f(t, ξtU)
. (2.12)
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The appearance of the change of measure density in this formula enables us
to use the conditional version of Bayes formula to re-express {PtT} in terms
of an expectation with respect to the bridge measure B:

PtT =
EB [f(T, ξTU) | ξtU ]

f(t, ξtU)
. (2.13)

Since the information process is a B-Brownian bridge we know that for each
fixed time t the random variable ξtU is B-Gaussian. Armed with this fact,
we proceed as follows. We introduce the random variable YtT defined by

YtT = ξTU − U − T

U − t
ξtU . (2.14)

It is evident that YtT is B-Gaussian, and a short calculation making use of
properties of the Brownian bridge shows that YtT has mean zero and variance

VarB [YtT ] =
(T − t)(U − T )

U − t
. (2.15)

We observe that YtT is independent of ξtU under B. This can be checked by
calculating the relevant covariance under B. Next we express YtT in terms
of a “standard” normally-distributed variable Y , with mean zero and unit
variance. Thus we write

YtT = νtT Y, (2.16)

where

νtT =

√
(T − t)(U − T )

U − t
. (2.17)

Then we rewrite the expression for the bond price given by (2.13) in terms
of Y to obtain

PtT =
1

f(t, ξtU)
EB

[
f

(
T, νtT Y +

U − T

U − t
ξtU

) ∣∣∣∣ ξtU

]
. (2.18)

Since ξtU is Ft-measurable, and Y is independent of ξtU , the conditional
expectation in (2.18) reduces to a Gaussian integral over the range of Y .
Therefore, we obtain:

PtT =
1√

2π f(t, ξtU)

∫ ∞

−∞
f

(
T, νtT y +

U − T

U − t
ξtU

)
exp

(−1
2
y2

)
dy. (2.19)
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We can write the equation above in a more compact way by introducing a
function of three variables f̃(t, T, ξ) that depends on time t, T and ξ in the
following way:

f̃(t, T, ξ) =
1√
2π

∫ ∞

−∞
f

(
T, νtT y +

U − T

U − t
ξ

)
exp

(−1
2
y2

)
dy (2.20)

Then, the bond price process is given by

PtT =
f̃(t, T, ξtU)

f(t, ξtU)
. (2.21)

For any particular choice of f it is straightforward to simulate the dynamics
of the bond price since, conditional on the outcome of the underlying factor
XU , the information process is a Gaussian process under P.

3 Pricing kernel dynamics, nominal interest

rate, and market price of risk

Let us proceed to derive the dynamics of the pricing kernel πt = Mt f(t, ξtU).
We apply the Ito product rule to obtain

dπt = ft dMt + Mt dft + dMt dft, (3.1)

where ft = f(t, ξtU). The dynamical equation of the change-of-measure den-
sity martingale is given by (2.9). We shall assume that f(t, ξ) has a contin-
uous first derivative in t, denoted ḟ(t, ξ), and a continuous second derivative
in ξ, denoted f ′′(t, ξ). Hence

dft = ḟt dt + f ′t dξtU + 1
2
f ′′t (dξtU)2. (3.2)

In terms of the innovations process {Wt} defined by (2.10), the dynamical
equation for {ξtU} is given by

dξtU =
1

U − t
(σ U E [XU | ξtU ]− ξtU) dt + dWt. (3.3)

Thus (dξtU)2 = dt, and with expressions (2.8) and (3.3) at hand, a calculation
shows that

dπt =

Mt

(
ḟt − ξtU

U − t
f ′t + 1

2
f ′′t

)
dt + Mt

(
f ′t −

σU

U − t
E [XU | ξtU ] ft

)
dWt. (3.4)
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or equivalently,

dπt

πt

=
1

ft

(
ḟt − ξtU

U − t
f ′t + 1

2
f ′′t

)
dt

+
1

ft

(
f ′t −

σU

U − t
E [XU | ξtU ] ft

)
dWt. (3.5)

At time t, the drift of the pricing kernel is given by minus the short rate of
interest, and the volatility of the pricing kernel is given by minus the market
price of risk:

dπt

πt

= −rt dt− λt dWt. (3.6)

Comparing coefficients, we thus deduce that the short rate and the nominal
market price of risk are given respectively by

rt =
1

ft

(
ξtU

U − t
f ′t − 1

2
f ′′t − ḟt

)
, (3.7)

and

λt =
σU

U − t
E [XU | ξtU ]− f ′t

ft

. (3.8)

It is natural in the context of some applications to impose the condition that
the short rate should be positive. This condition is evidently given by

ξtU

U − t
f ′t − 1

2
f ′′t − ḟt > 0. (3.9)

It follows that the interest-rate positivity condition is equivalent to the in-
equality

x

U − t
f ′(t, x)− 1

2
f ′′(t, x)− ḟ(t, x) > 0. (3.10)

4 Pricing in a multi-factor setting

We introduce a set of X-factors {XT1 , . . . , XTn}, labeled by a series of dates
Tk (k = 1, . . . , n) such that 0 < T1 < . . . < Tn. With each X-factor we
associate an information process {ξtTk

} defined by

ξtTk
= σk tXTk

+ βtTk
. (4.1)
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We assume that the information processes associated with different X-factors
are independent. The market filtration {Ft} is assumed to be generated by
the entire collection of information processes:

Ft = σ
({ξsT1}0≤s≤t , . . . , {ξsTn}0≤s≤t

)
. (4.2)

Thus as a generalisation of the Markov model introduced in the previous
section, we consider the following multi-factor model for πt:

πt = M
(1)
t · · ·M (n)

t f(t, ξtT1 , . . . , ξsTn). (4.3)

Here f(t, ξ1, ξ2, . . . , ξn) is a function of n+1 variables. The processes {M (k)
t }k=1,...,n

are the (P, {Ft})-martingales defined by

dM
(k)
t

M
(k)
t

= − σk Tk

Tk − t
E [XTk

| ξtTk
] dW

(k)
t , (4.4)

where for each k the P-Brownian motion {W (k)
t } is defined by

W
(k)
t = ξtTk

+

∫ t

0

1

Tk − s
ξsTk

ds− σkTk

∫ t

0

1

Tk − s
E [XTk

| ξsTk
] ds. (4.5)

Since the information processes are independent, it follows that

dW (j)dW (k) = δjk dt. (4.6)

Let us focus on the pricing of a nominal discount bond with maturity T < T1.
The price of the bond is given by:

PtT =
EP

[
M

(1)
T · · ·M (n)

T f (T, ξTT1 , . . . , ξTTn)
∣∣ ξtT1 , . . . , ξtTn

]

M
(1)
t · · ·M (n)

t f (t, ξtT1 , . . . , ξtTn)
. (4.7)

Here we have used the fact that the information processes are Markovian.
Next we note that since the information processes are independent the prod-
uct of (P, {Ft})-martingales given by M

(1)
t · · ·M (n)

t for t in the time interval
[0, T1) is itself an (P, {Ft})-martingale, which induces a bridge measure that
has the effect of making all of the information processes Brownian bridges
distributionally. More precisely, under the bridge measure each information
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process has, over the interval [0, T1), the distribution of a standard Brown-
ian bridge on the interval from 0 to the termination time of the information
process. Thus we have

PtT =
EB

[
f (T, ξTT1 , . . . , ξTTn)

∣∣ ξtT1 , . . . , ξtTn

]

f (t, ξtT1 , . . . , ξtTn)
, (4.8)

where all of the relevant random variables are Gaussian. Next we introduce
a set of random variables Y

(1)
tT , Y

(2)
tT , . . . , Y

(n)
tT defined by

Y
(k)
tT = ξTTk

− Tk − T

Tk − t
ξtTk

. (4.9)

Since the process {ξtTk
} is a B-Brownian bridge, it follows that Y

(k)
tT is a

Gaussian random variable with mean zero and variance

Var Bk

[
Y

(k)
tT

]
=

(T − t)(Tk − T )

Tk − t
. (4.10)

We introduce an n-dimensional set of standard Gaussian variables (Y1, . . . , Yn).

The random variable Yk stands in relationship to Y
(k)
tT via

Y
(k)
tT = ν

(k)
tT Yk, (4.11)

where
ν

(k)
tT =

√
(T − t)(Tk − T )/(Tk − t). (4.12)

In terms of the standard Gaussian random variables, the bond price at
time t can thus be written in the form

PtT =

EB
[
f

(
T, ν

(1)
tT Y1 + T1−T

T1−t
ξtT1 , . . . , ν

(n)
tT Yn + Tn−T

Tn−t
ξtTn

)
| ξtT1 · · · ξtTn

]

f (t, ξtT1 , . . . , ξtTn)
. (4.13)

Finally we observe that under B the random variables Y
(k)
tT and ξtTk

are inde-
pendent. The expression for the bond price thus reduces to an n-dimensional
Gaussian integral:

PtT =

∫ ∞

−∞
· · ·

∫ ∞

−∞

f(T, ν
(1)
tT y1 + T1−T

T1−t
ξtT1 , . . . , ν

(n)
tT yn + Tn−T

Tn−t
ξtTn)

f(t, ξtT1 , . . . , ξtTn)

× 1(√
2π

)n exp
[−1

2

(
y2

n + . . . + y2
1

)]
dy1 · · · dyn.

(4.14)
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That is to say, we obtain an expression of the form

PtT =
f̃ (t, T, ξtT1 , . . . , ξtTn)

f (t, ξtT1 , . . . , ξtTn)
, (4.15)

where we introduce the transformed function

f̃(t, T, ξ1, ξ2, . . . , ξn)

=

∫ ∞

−∞
· · ·

∫ ∞

−∞
f

(
T, ν

(1)
tT y1 +

T1 − T

T − t
ξ1 , . . . , ν

(n)
tT yn +

Tn − T

T − t
ξn

)

× 1(√
2π

)n exp
[−1

2

(
y2

n + . . . + yn
1

)]
dyn · · · y1. (4.16)

Let us consider now the class of functions f(t, ξ1, . . . , ξn) for which the
pricing kernel is a supermartingale. We thus need to derive the dynamics of
the pricing kernel and in particular to work out the drift. Therefore we shall
assume that the function f(t, ξ1, . . . , ξn) belongs to class C1,2(R+×Rn), and
we let ḟ denote the first derivative with respect to t, ∂kf the first derivative
with respect to the k-th coordinate, and ∂kkf the second derivative with
respect to the k-th coordinate. Then in the multi-factor setting the dynamical
equation of the pricing kernel is given by:

dπt

πt

=
1

ft

[
ḟ +

n∑

k=1

(
1
2
∂kkft − ξtTk

Tk − t
∂kft

)]
dt

+
1

ft

n∑

k=1

(
∂kft − σkTk

Tk − t
XtTk

ft

)
dW k

t , (4.17)

where XtTk
= E[XTk

| ξtTk
]. The multi-factor short rate process is therefore

given by

rt =
1

ft

[
n∑

k=1

(
ξtTk

Tk − t
∂kft − 1

2
∂kkft

)
− ḟt

]
, (4.18)

and for the k-th component of the market price of risk vector we obtain

λk
t =

1

ft

(
σkTk

Tk − t
XtTk

ft − ∂kft

)
. (4.19)

Were one to impose the condition of a positive short rate process, then the
following condition would need to be satisfied:

n∑

k=1

(
ξtTk

Tk − t
∂kft − 1

2
∂kkft

)
− ḟt > 0. (4.20)
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A sufficient condition for (4.20) to hold is that the function f(t, ξ1, . . . , ξn)
satisfies

n∑

k=1

[
xk

Tk − t
∂kf(t, ξ1, . . . , ξn)− 1

2
∂kkf(t, ξ1, . . . ξn)

]
− ḟ(t, ξ1, . . . , ξn) > 0.

(4.21)
The case of a multiple-currency environment, with a system of interest

rates for each currency, can be handled similarly. We consider a set of N + 1
currencies, writing {πt} for the pricing kernel of the “domestic” or “base”
currency, and {πi

t}, i = 1, . . . , N , for the pricing kernels of the N foreign
currencies. We introduce a collection of n information processes, and we
assume that each of the pricing kernels is given by a function of the current
levels of the information processes. The prices associated with the N foreign
currencies, expressed in units of the domestic currency, are then given by the
ratios of the various foreign pricing kernels to the domestic pricing kernel.
Normally we would expect to have n ≥ 2N + 1 for a realistic model.

5 Inflation-linked products

The technique used for the pricing of nominal discount bonds can be adopted
to the pricing of inflation-linked assets. In particular we focus on the pric-
ing of inflation-linked discount bonds. We denote the price level (e.g. the
consumer price index) by {Ct}t≥0, and note the relationship between the
nominal pricing kernel {πt}, the real pricing kernel {πR

t }, and the price level
process. This is given by

Ct =
πR

t

πt

. (5.1)

We take the view that the dynamics of the price level should be derived
from the dynamics of the pricing kernels. We return to this point shortly,
when we introduce the elements of a stochastic monetary economy. We keep
in mind that once models for the nominal and the real pricing kernels have
been constructed, then the dynamics of the price level follows as a result of
(5.1).

It will be convenient for our purpose to define an inflation-linked discount
bond as a bond that at its maturity T generates a single cash flow equal to
the price level CT prevailing at that time. Thus, the price process {QtT}0≤t≤T
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of an inflation-linked discount bond is given by the relation

QtT =
EP [πT CT | Ft]

πt

. (5.2)

Using relationship (5.1) we can write this alternatively as

QtT =
EP

[
πR

T | Ft

]

πt

. (5.3)

We shall construct models for the nominal and real pricing kernels fol-
lowing the approach presented in the earlier sections. For simplicity let us
assume the existence of a pair of independent X-factors XT1 and XT2 , where
0 ≤ t ≤ T < T1 < T2. Then we introduce a pair of Brownian-bridge in-
formation processes {ξtT1} and {ξtT2}, and we assume that the filtration is
generated by these independent processes. We consider the following models
for the respective pricing kernels:

πt = M
(1)
t M

(2)
t f (t, ξtT1 , ξtT2) , (5.4)

πR
t = M

(1)
t M

(2)
t g (t, ξtT1 , ξtT2) , (5.5)

where {M (1)
t } and {M (2)

t } are the change-of-measure density martingales that
are used to transform from the real measure to the bridge measure. In terms
of the functions f and g, the price of the inflation-linked bond is given by

QtT =
EP

[
M

(1)
T M

(2)
T g(T, ξTT1 , ξTT2)

∣∣ ξtT2 , ξtT2

]

M
(1)
t M

(2)
t f (t, ξtT1 , ξtT2)

. (5.6)

Here we have made use of the Markov property of the information processes.
Then we change the measure from P to B to obtain

QtT =
EB

[
g(T, ξTT1 , ξTT2)

∣∣ ξtT2 , ξtT1

]

f(t, ξtT1 , ξtT2)
. (5.7)

Thus the conditional expectation reduces to a Gaussian integral and the price
process {QtT}0≤t≤T can be expressed as follows:

QtT =
1

2π

∫ ∞

−∞

∫ ∞

−∞

g(T, ν
(1)
tT y1 + T1−T

T1−t
ξtT1 , ν

(2)
tT y2 + T2−T

T2−t
ξtT2)

f(t, ξtT1 , ξtT2)

× exp
[−1

2

(
y2

1 + y2
2

)]
dy1dy2. (5.8)
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In such a setting the nominal discount bond has the following price:

PtT =
1

2π

∫ ∞

−∞

∫ ∞

−∞

f(T, ν
(1)
tT y1 + T1−T

T1−t
ξtT1 , ν

(2)
tT y2 + T2−T

T2−t
ξtT2)

f(t, ξtT1 , ξtT2)

× exp
[−1

2

(
y2

1 + y2
2

)]
dy1dy2. (5.9)

The dynamics of the real pricing kernel can be computed analogously to
that of the nominal pricing kernel. There is however an important difference.
Since the real interest rate may be positive or negative, there is no “super-
martingale condition” on g. By inserting the expressions for the nominal and
the real pricing kernels in (5.1) and applying Ito’s quotient rule, one obtains
the dynamics of the price level {Ct}. Next we give the dynamics for the
price level in a more general situation in which the pricing kernels are of the
following form:

πt = M
(1)
t · · ·M (n)

t f (t, ξtT1 , . . . , ξtTn) , (5.10)

πR
t = M

(1)
t · · ·M (n)

t g (t, ξtT1 , . . . , ξtTn) . (5.11)

In this case the price level {Ct} is given by

Ct =
g (t, ξtT1 , . . . , ξtTn)

f (t, ξtT1 , . . . , ξtTn)
. (5.12)

For the dynamics of {Ct} we obtain:

dCt

Ct

=

{
1

ft

[
n∑

k=1

ξtTk

Tk − t
∂kft − 1

2

n∑

k=1

∂k∂kft − ḟ

]

− 1

gt

[
n∑

k=1

ξtTk

Tk − t
∂kgt − 1

2

n∑

k=1

∂k∂kgt − ġ

]

+
n∑

k=1

σkTk

Tk − t
XtTk

(
1

gt

∂kgt − 1

ft

∂kft

)

− 1

gtft

n∑

k=1

∂kgt ∂kft +
1

f 2
t

n∑

k=1

(∂kft)
2

}
dt

+
n∑

k=1

(
1

gt

∂kgt − 1

ft

∂kft

)
dW

(k)
t , (5.13)

14



where XtTk
= E [XTk

| ξtTk
]. For this calculation we have used the relationship

dξtTk
=

1

Tk − t
(σk Tk XtTk

− ξtTk
) dt + dW

(k)
t . (5.14)

The relative drift of the price level is given by the instantaneous inflation
rate determined by the Fisher equation: It = rt − rR

t + λt

(
λt − λR

t

)
. The

relative volatility of the price level on the other hand is given by λt − λR
t .

Verification of these results is achieved by calculating the dynamics of the
nominal and the real pricing kernels. In particular, we have (3.6) and

dπR
t

πR
t

= −rR
t dt− λR

t dWt. (5.15)

A calculation then shows that

dπt

πt

=
1

ft

[
ḟt −

n∑

k=1

(
ξtTk

Tk − t
∂k ft − 1

2
∂k∂k ft

)]
dt

+
1

ft

n∑

k=1

(
∂kft − σkTk

Tk − t
XtTk

ft

)
dW

(k)
t (5.16)

and

dπR
t

πR
t

=
1

gt

[
ġt −

n∑

k=m

(
ξtTk

Tk − t
∂k gt − 1

2
∂k∂k gt

)]
dt

+
1

gt

n∑

k=m

(
∂kgt − σkTk

Tk − t
XtTk

gt

)
dW

(k)
t . (5.17)

Thus we form the difference between the k-th components of the nominal
and the real market prices of risk to obtain:

λ
(k)
t − λ

R (k)
t =

1

ft

(
σkTk

Tk − t
XtTk

ft − ∂kft

)
− 1

gt

(
σkTk

Tk − t
XtTk

gt − ∂kgt

)

=
1

gt

∂kgt − 1

ft

∂kft. (5.18)

This verifies that the volatility vector of the price level process is λt−λR
t . In

the case of the drift of the price level, one sees that the first two summands are
the nominal and the real interest rate processes thus forming the difference
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rt − rR
t . It can be shown that the remaining terms in the drift reduce to

λt(λt − λR
t ) by multiplying the expression for the nominal risk premium

process and the difference (5.18). This shows that, indeed, the dynamics
of the price level can be written in the form

dCt

Ct

=
[
rt − rR

t + λt(λt − λR
t )

]
dt + (λt − λR

t ) dWt, (5.19)

where {Wt} is an n-dimensional Brownian motion.

6 Stochastic monetary economy

So far we have indicated how the pricing of fixed income assets, in particular
the nominal and inflation-linked discount bond system, can be modelled in
an information-based framework. We have shown how the nominal and real
pricing kernels, and thus the price level, can be modelled in terms of the so-
called information processes. It is our goal now to consider the relationship
between the two pricing kernels, and to develop a simple macroeconomic
model for the pricing kernels based on (a) the liquidity benefit of the money
supply, and (b) the rate of consumption of goods and services. This will be
carried out in the context of the information-based pricing theory developed
in the previous sections. A macroeconomic asset pricing model that suits
the present investigation is one presented in Hughston & Macrina (2008) in
which expected utility, derived from the consumption of goods and services
and from the liquidity benefit of money supply, is maximised over a finite
period of time. Let us briefly summarise this model for a stochastic monetary
economy and, by doing so, translate the discrete-time results in Hughston &
Macrina (2008) to a continuous-time formulation.

There are three exogenously-specified stochastic processes that form the
ingredients of such an economy: (1) the real per capita rate of consumption
of goods and services {kt}, (2) the per capita money supply {mt}, and (3)
the rate of liquidity benefit {ηt} provided per unit of money supply. The
product ηtmt is the instantaneous benefit rate in units of cash derived from
the presence of the money supply level at time t. The goal of a representative
agent in such an economy is to find the optimal strategy over a certain period
of time in, on the one hand, consuming goods and services at a certain rate
and, on the other hand, in maintaining a certain level of benefit derived
from the availability of money. Since the liquidity benefit {ηt} is measured
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in nominal units, we use the price level {Ct} to convert its units to units of
good and services. The “real” liquidity benefit (in units of good and services)
of money supply {lt} is thus

lt =
ηtmt

Ct

. (6.1)

The agent’s rate of utility derived from real consumption and real liquidity
benefit is modelled by a bivariate utility function U(x, y) : R+ × R+ → R
of the Sidrauski (1967) type satisfying Ux > 0, Uxx < 0, Uy > 0, Uyy < 0
and UxxUyy > (Uxy)

2. The consumption strategy that delivers the agent
the highest level of total expected utility over the period [0, T ] is found by
maximising

J = E
[∫ T

0

e−γtU(kt, lt)dt

]
, (6.2)

where the agent possesses a limited budget defined by

H = E
[∫ T

0

πt (ktCt + ηtmt) dt

]
. (6.3)

Here the parameter γ is a psychological discount factor which for simplicity
we take to be constant. Summarizing the representative agent’s maximiza-
tion problem, one could say that in equilibrium, the price level {Ct} and
the real rate of consumption {kt} will be adjusted to each other in order to
maximise the total expected utility derivable by the economy as a whole.

A closed-form solution for this maximization problem can be found in
the case for which the utility function is of a separable bivariate logarithmic
type:

U(x, y) = a ln(x) + b ln(y), (6.4)

where a and b are constant. In this case we obtain the following expressions
for the real and the nominal pricing kernels:

πR
t =

at

kt

and πt =
bt

ηt mt

, (6.5)

where at = exp(−γt) a/λ and bt = exp(−γt) b/λ. The price level is then
given by

Ct =
b

a

ηtmt

kt

. (6.6)

Next we establish a link between this specific model for a stochastic mon-
etary economy with the information-based approach to the modelling of the
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pricing kernel presented in the previous sections. At this stage we revert for
simplicity to a “low-dimensional” example in which the economy is driven
by two factors. In the language of information-based pricing this means
that we introduce a pair of information processes {ξtTk

}k=1,2 associated with
macroeconomic X-factors XT1 and XT2 . The results that follow generalise to
a higher-dimensional setting with n information processes. We focus on the
case where the nominal and the real pricing kernels are of the form

πt = M
(1)
t M

(2)
t f(t, ξtT1 , ξtT2) and πR

t = M
(1)
t M

(2)
t g(t, ξtT1 , ξtT2), (6.7)

where {M (1)
t } and {M (2)

t } are the P-martingales defined by (4.4). We assume
that the real rate of consumption {kt}, the money supply {mt} and the
nominal rate of specific liquidity benefit {ηt} are given by functions of the
form

kt = k(t, ξtT1 , ξtT2), mt = m(t, ξtT1 , ξtT2), ηt = η(t, ξtT1 , ξtT2). (6.8)

By comparison with the models for the nominal and the real pricing kernels
(6.5) we thus obtain the following relationships:

f(t, ξtT1 , ξtT2) =
bt

M
(1)
t M

(2)
t η(t, ξtT1 , ξtT2) m(t, ξtT1 , ξtT2)

. (6.9)

and
g(t, ξtT1 , ξtT2) =

at

M
(1)
t M

(2)
t k(t, ξtT1 , ξtT2)

(6.10)

By applying the results (5.8) and (5.9) we are then able to work out the
bond prices that result in a stochastic monetary economy in which infla-
tion is regarded a purely monetary phenomenon and asset prices fluctuate
according to emerging information about macroeconomic factors influencing
the economy. The two-factor price process of an inflation-linked bond is given
by:

QtT =
M

(1)
t M

(2)
t η(t, ξtT1 , ξtT2) m(t, ξtT1 , ξtT2)

bt

× 1

2π

∫ ∞

−∞

∫ ∞

−∞

aT exp
[−1

2
(y2

1 + y2
2)

]
dy1 dy2

M
(1)
T (z(y1)) M

(2)
T (z(y2)) k (T, z(y1), z(y2))

, (6.11)

where

z(yk) = ν
(k)
tT yk +

Tk − T

Tk − t
ξtTk

, k = 1, 2. (6.12)
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The corresponding nominal discount bond system is given by

PtT =
M

(1)
t M

(2)
t η(t, ξtT1 , ξtT2) m(t, ξtT1 , ξtT2)

bt

× 1

2π

∫ ∞

−∞

∫ ∞

−∞

aT exp
[−1

2
(y2

1 + y2
2)

]
dy1 dy2

M
(1)
T (z(y1)) M

(2)
T (z(y2)) η (T, z(y1), z(y2)) m(T, z(y1), z(y2))

.

(6.13)

Similar formulae can be derived for a separable power-utility function. In
such a situation, the nominal pricing kernel {πt} will also depend explicitly
on the rate of consumption {kt}.
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