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Abstract

Following LeRoy and Werner (2001), we propose a definition of effectively complete
asset markets in a model with multiple goods and multiple periods, and establish the first
and second welfare theorems in such markets. As applications of the first welfare theorem,
we derive the sunspot irrelevance theorem of Mas-Colell (1992), and extend the no-retrade
theorem of Judd, Kubler, and Schmedders (2003) and Kubler and Schmedders (2003) to
the case where the asset prices need not be time-invariant Markov processes.

JEL Classification Codes: D51, D52, D53, D61, D91, G11, G12.

Keywords: Complete markets; effectively complete markets; welfare theorems; sunspot;
Markov environment.

1 Introduction

Asset markets are said to be complete if any pattern of transfers of purchasing power across
time and states can be attained by trading assets. In the case of two consumption periods,
with no uncertainty on the first period and S possible states of the world on the second, asset
markets are complete if and only if there are S non-redundant assets. The consequence of
market completeness is that the equilibrium allocations are Pareto-efficient.

In complete asset markets, consumers are guaranteed to be able to attain their optimal
patterns of transfers of purchasing power across time and states, regardless of their utility
function and initial endowments. If we impose some restrictions utility functions and initial
endowments, then we may narrow down a class of candidates for equilibrium asset prices
and hence that for optimal patterns of transfers. It might even be the case that for some
appropriately chosen collection of fewer than S assets, all consumers can attain the patterns

∗I also received helpful comments from seminar participants at Hosei University, especially Midori Hi-
rokawa, Atsushi Kajii, and Nobusumi Sagara. The financial assistance from the Grant in Aid for Specially
Promoted Research from Japan Society for the Promotion of Sciences for “Economic Analysis on Intergenera-
tional Problems”, and from Inamori Foundation on “Efficient Risk-Sharing: An Application of Finance Theory
to Development Economics”. My email address is hara@kier.kyoto-u.ac.jp.
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of transfers that we would find optimal should the markets be complete. The equilibrium
allocations would then be Pareto-efficient, as in the case of complete markets.

LeRoy and Werner (2001, Section 16.3) made this observation precise by giving a def-
inition of effectively complete asset markets in a model of a single consumption good and
two consumption periods. They defined asset markets as being effectively complete if every
Pareto-efficient allocation can be attained through some trades of assets, and proved (Theo-
rem 16.4.1) that the equilibrium allocations are Pareto-efficient in effectively complete asset
markets. They then provided three examples, including one of the so-called two-fund sepa-
ration, for which asset markets are effectively complete, and the equilibrium allocations are
Pareto-efficient and can be easily characterized. These examples shows that the notion of ef-
fectively complete asset market, restrictive as it may seem, deserves special attention thanks
to its applicability to many important economic issues.

In this paper, we extend LeRoy and Werner’s definition of effectively complete asset mar-
kets to the case of multiple goods and over multiple periods. Although the extension is
straightforward and the class of economies with effectively complete asset markets is small,
it admits a couple of important applications. We then prove that, as in the case of the orig-
inal definition of LeRoy and Werner (2001), if asset markets are effectively complete, then
every equilibrium allocation is Pareto-efficient. This is the first welfare theorem in effectively
complete asset markets. We also establish the second welfare theorem in effectively complete
asset markets.

The first application of the first welfare theorem in effectively complete asset markets
is the sunspot irrelevance theorem in sunspot economies by Mas-Colell (1992). The second
application is the no-retrade theorem in Markov economies of Judd, Kubler, and Schmedders
(2003) and Kubler and Schmedders (2003). In fact, we extend their theorem to the case where
the asset prices need not be time-invariant Markov processes. Since the first welfare theorem
in effectively complete asset markets is the driving force behind these results, and since it owes
much to Mas-Colell (1992) and LeRoy and Werner (2001), the contribution of this paper lies
in showing that the technique by Mas-Colell (1992) and LeRoy and Werner (2001) can used to
extend the no-retrade theorem to the case where the asset prices need not be time-invariant
Markov processes.

This paper is organized as follows. Section 2 describes the setup for our analysis. Section
3 gives the definition of effectively complete asset markets and establishes the first and second
welfare theorems. Section 4 provides the first application of effectively complete asset markets
and proves the sunspot irrelevance theorem. Section 5 provides the second application of
effectively complete asset markets and proves the no-retrade theorem. Section 6 sums up our
analysis and suggests a direction of future research.
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2 Setup

There are 1+T periods, t = 0, 1, . . . , T . There are S possible states of the world, s = 1, 2, . . . , S

over the entire time span {0, 1, . . . , T}. The gradual information revelation concerning the
true state of the world is given by the filtration (F0,F1, . . . ,FT ). We assume that F0 =
{∅, {1, 2, . . . , S}} and FT coincides with the power set of {1, 2, . . . , S}. Denote by Gt the
partition of {1, 2, . . . , S} that generates Ft. For each positive integer n, we denote by Xn the
set of all processes of n dimensional vectors over the time span {0, 1, . . . , T} that are adapted
to the filtration {F0, F1, . . . , FT }. This is a vector space of dimension n

∑T
t=0 |Gt|.

There are L types of physically distinguished perishable goods, ℓ = 1, 2, . . . , L on each
period and state. The number of (types of) contingent commodities is equal to L

∑T
t=0 |Gt|.

There are I consumers, i = 1, 2, . . . , I. Their consumption sets are the non-negative
orthant XL

+ of XL, utility functions are Ui : XL
+ → R, and initial endowment vectors are

ei = (ei
0, e

i
t, . . . , e

i
T ) ∈ XL. We assume that the Ui are continuous and strongly monotone.

We say that an allocation (x1, x2, . . . , xI) of contingent commodities is feasible if xi ∈ XL
+ for

every i and
∑

i x
i =

∑
i e

i.

Definition 1 A feasible contingent-commodity allocation (x1
∗, x

2
∗, . . . , x

I
∗) is Pareto-efficient

if there is no other feasible allocation (x1, x2, . . . , xI) such that Ui(xi) ≥ Ui(xi
∗) for every i

and Ui(xi) > Ui(xi
∗) for some i.

There are J assets, j = 1, 2, . . . , J . Each asset j is characterized by its dividend process
dj = (di

0, d
i
t, . . . , d

i
T ) ∈ XL. An asset price process is an element of XJ that represents the

transition, expected by all consumers, of asset prices under uncertainty and over time. A spot
price process is an element of XL that represents the transition, expected by all consumers,
of prices for the L goods, for immediate consumption, under uncertainty and over time. A
trading plan is an element of XJ that represents the transition of portfolios of the J assets
under uncertainty and over time.

Suppose consumer i employs a trading plan yi under the asset price process q and a spot
price process p. Define dyi

= (dyi

0 , dyi

1 , . . . , dyi

T ) ∈ X1 by

dyi

0 = −
∑

j

qj
0y

ji
0 ,

dyi

t =
∑

j

yji
t−1(pt · dj

t ) −
∑

j

qj
t (y

ji
t − yji

t−1) for every t ≥ 1,

where q = (q0, q1, . . . , qT ) with qt = (q1
t , q

2
t , . . . , q

J
t ) for each t, p = (p0, p1, . . . , pT ), and yi =

(yi
0, y

i
1, . . . , y

i
T ) with yi

t = (y1i
t , y2i

t , . . . , yJi
t ) for each t. Then he can finance any consumption

process xi ∈ XL
+ that satisfies

pt ·
(
xi

t − ei
t

)
≤ dyi

t (1)

for every t ≥ 0, where xi = (xi
0, x

i
1, . . . , x

i
T ).

An allocation (y1, y2, . . . , yI) of trading plans is feasible if
∑

i y
i = 0.
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Definition 2 The collection of a feasible contingent-commodity allocation (x1
∗, x

2
∗, . . . , x

I
∗), a

feasible allocation (y1
∗, y

2
∗, . . . , y

I
∗) of trading plans, an asset price process q, and a spot price

process p is an asset market equilibrium if for every i, (xi, yi) = (xi
∗, y

i
∗) maximizes Ui(xi)

under the budget constraint (1) for every t ≥ 0.

Since the Ui are strongly monotone, pt is always a strictly positive vector and the weak
inequality in (1) holds as an equality. If L = 1, then, by replacing qt by (1/pt)qt, we can
assume that pt = 1 for every t. This convention will be used throughout Section 5.

Definition 3 Asset markets are complete under the equilibrium asset price process q and
spot price process p if for every zi = (zi

0, z
i
1, . . . z

i
T ) ∈ X1, there exists a trading plan yi such

that zi
t = dyi

t for every t ≥ 1.

Consider the special case of T = 1. We can identify the payoff dj
1 of asset j in period 1

with a collection (d1j
1 , d2j

1 , . . . , dSj
1 ) of S L-dimensional vectors. Similarly, we can identify the

spot price p1 in period 1 with a collection (p1
1, p

2
1, . . . , p

S
1 ) of S L-dimensional vectors. Then

asset markets are complete if and only if for every column vector a = (a1, a2, . . . , aS) ∈ RS ,
there exists a column vector b = (b1, b2, . . . , bJ) ∈ RS such that a = Db, where

D =


p1
1 · d11

1 · · · p1
1 · d1J

1
...

. . .
...

pS
1 · dS1

1 · · · pS
1 · dSJ

1

 ∈ RS×J . (2)

This is equivalent to saying that rankD = S. It means that if asset markets are complete,
then J ≥ S, that is, there are at least as many assets as states. In the general case of T ≥ 2,
for each t ≤ T − 1 and Gt−1 ∈ Gt−1, let N(t, Gt−1) = |{Gt ∈ Gt | Gt ⊇ Gt−1}|. That is,
N(t, Gt−1) is the number of the elements of partition Gt that include Gt−1. If asset markets
are complete, then J ≥ N(t, Gt−1) for every t and Gt−1. That is, a necessary condition for
market completeness is that

J ≥ max
(t,Gt−1)

N(t, Gt−1),

where the maximum is taken over all t ≤ T − 1 and Gt−1 ∈ Gt−1.
The following theorem is the well known first welfare theorem for the case of complete

asset markets.

Theorem 1 If the collection of a contingent-commodity allocation (x1
∗, x

2
∗, . . . , x

I
∗), an alloca-

tion (y1
∗, y

2
∗, . . . , y

I
∗) of trading plans, an asset price process q, and a spot price process p is an

asset market equilibrium, and if asset markets are complete under q and p, then (x1
∗, x

2
∗, . . . , x

I
∗)

is Pareto-efficient.

3 Effective completeness and welfare theorems

We now give the definition of effectively complete asset markets.
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Definition 4 Asset markets are effectively complete if for every Pareto-efficient allocation
(x1, x2, . . . , xI) of contingent commodities, there exists a feasible allocation (y1, y2, . . . , yI) of
trading plans such that xi

t − ei
t =

∑
j yji

t−1d
j
t for every t ≥ 1 and yi

0 = yi
1 = · · · = yi

T−1 for
every i.

According to this definition, asset markets are effectively complete if every Pareto-efficient
allocation can be attained by trading goods and assets on period 0 but not trading on asset
or spot markets from period 1 onwards. Unlike the notion of completeness, the notion of
effective completeness is independent of asset and spot price processes. As in LeRoy and
Werner (2001, Chapter 16), if T = L = 1, and if asset markets are complete, then they are
effectively complete. For, if asset markets are complete, then

rank


d11

1 · · · d1J
1

...
. . .

...
dS1

1 · · · dSJ
1

 = rankD = S

and, hence, every feasible allocation of contingent commodities, Pareto-efficient or not, can
be attained by some feasible allocation of assets. Otherwise, then neither completeness nor
effective completeness implies the other.

Elul (1999) took up a problem related to effectively complete asset markets. He clarified
when a contingent-commodity allocation at equilibrium in incomplete markets that happens
to be Pareto-efficient can be attained at equilibrium in complete markets. His analysis is
different from ours in that he first assumed that the contingent-commodity allocation of an
incomplete-market equilibrium is Pareto-efficient and then asked whether it can be attained
at some complete-market equilibrium, while we ask under what conditions the contingent-
commodity allocation of an incomplete-market equilibrium is guaranteed to be Pareto-efficient.
His analysis is, therefore, applicable to every equilibrium in asset markets that are effectively
complete.

Below the first welfare theorem in effectively complete asset markets. It is because of the
validity of this theorem that we have defined the property stated in Definition 4 as effective
completeness.

Theorem 2 If the collection of a contingent-commodity allocation (x1
∗, x

2
∗, . . . , x

I
∗), an alloca-

tion (y1
∗, y

2
∗, . . . , y

I
∗) of trading plans, an asset price process q, and a spot price process p is an

asset market equilibrium, and if asset markets are effectively complete, then (x1
∗, x

2
∗, . . . , x

I
∗) is

Pareto-efficient.

Proof of Theorem 2 Suppose that the collection of a contingent-commodity allocation
(x1

∗, x
2
∗, . . . , x

I
∗), an allocation (y1

∗, y
2
∗, . . . , y

I
∗) of trading plans, an asset price process q, and a

spot price process p is an asset market equilibrium, and that a feasible contingent-commodity
allocation (x1, x2, . . . , xI) is Pareto-superior to (x1

∗, x
2
∗, . . . , x

I
∗).
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As shown in LeRoy and Werner (2001, Proposition 16.3.2), since the consumption sets
are closed and bounded from below and the utility functions are continuous, there is a
Pareto-efficient allocation that is Pareto-superior to (x1

∗, x
2
∗, . . . , x

I
∗). Without loss of gen-

erality, therefore, we can assume that (x1, x2, . . . , xI) is Pareto-efficient. By effective com-
pleteness, there exists a feasible allocation (y1, y2, . . . , yI) of trading plans such that for every
i, yi

0 = yi
1 = · · · = yi

T−1 and xi
t − ei

t =
∑

j yji
t dj

t for every t ≥ 1. Since yi
t − yi

t−1 = 0 for
every t ≥ 1, this means that (1) is satisfied on each period t ≥ 1. Thus, for every i with
Ui(xi) > Ui(xi

∗), (1) fails to hold on period 0, that is,

p0 ·
(
xi

0 − ei
0

)
> −

∑
j

qj
0y

ji
0 . (3)

For every i with Ui(xi) = Ui(xi
∗), since Ui is strongly monotone,

p0 ·
(
xi

0 − ei
0

)
≥ −

∑
j

qj
0y

ji
0 . (4)

Summing up (3) and (4) over i and using the feasibility constraints, we obtain

0 > −
∑

j

qj
0

(∑
i

yji
0

)
= 0,

which is a contradiction. Thus (x1
∗, x

2
∗, . . . , x

I
∗) is Pareto-efficient. ///

Although it will not be used in our applications, it is worth mentioning that the second
welfare theorem also holds in effectively complete markets.1

Theorem 3 Suppose that Ui is quasi-concave for every i and that asset markets are effec-
tively complete. Suppose also that a feasible contingent-commodity allocation (x1, x2, . . . , xI)
is Pareto-efficient. Then there exist a feasible contingent-commodity allocation (ê1, ê2, . . . , êI)
satisfying êi

t = ei
t for every t ≥ 1 and i, a feasible allocation (y1, y2, . . . , yI) of trading plans,

an asset price process q, and a spot price process p such that the collection of (x1, x2, . . . , xI),
(y1, y2, . . . , yI), q, and p is an asset market equilibrium when the initial endowment allocation
is (ê1, ê2, . . . , êI).

This theorem states that if asset markets are effectively complete, then every Pareto-efficient
allocation can be attained at equilibrium by some lump-sum transfers of the L contingent
commodities available on period 0, not involving any contingent commodity available from
period 1 onwards.2 Note, indeed, that is since (x1, x2, . . . , xI) is a feasible allocation of
(ê1, ê2, . . . , êI),

∑
i ê

i
0 =

∑
i x

i
0 =

∑
i e

i
0. To prove this theorem, it is convenient to use the

concept of a contingent-commodity market equilibrium. Before giving the formal definition of
1I am grateful to Midori Hirokawa and Atsushi Kajii for suggesting that I check the validity of the second

welfare theorem in effectively complete asset markets.
2In fact, it suffices to reallocate any one of the L contingent commodities available on period 0.
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the concept, note that because of adaptedness, each z = (z0, z1, . . . , zT ) ∈ Xn can be identified
with a mapping (t, Gt) 7→ zGt

t of
∪T

τ=0 ({τ} × Gτ ) to Rn, where zGt
t = zs

t for any s ∈ Gt.

Definition 5 The pair of a feasible contingent-commodity allocation (x1
∗, x

2
∗, . . . , x

I
∗) and a

contingent-commodity price process p is a contingent-commodity market equilibrium if for
every i, xi = xi

∗ maximizes Ui(xi) under the budget constraint∑
t≥0

∑
Gt∈Gt

pGt
t · xGti

t ≤
∑
t≥0

∑
Gt∈Gt

pGt
t · eGti

t ,

where xi =
(
xGti

t

)
(t,Gt)∈

∪T
τ=0({τ}×Gτ )

, and analogously for ei and p.

Proof of Theorem 3 Let (x1, x2, . . . , xI) be a Pareto-efficient allocation. Since the Ui

are continuous, strongly monotone, and quasi-concave, the standard second welfare theo-
rem implies that there exists a contingent-commodity price process p such that the pair of
(x1, x2, . . . , xI) and p is a contingent-commodity market equilibrium when the initial endow-
ment allocation is (x1, x2, . . . , xI).3 Define an asset price process q = (q1, q2, . . . , qJ) ∈ XJ ,
with qj =

(
qGtj
t

)
(t,Gt)

for each j, by letting

qGtj
t =

∑
τ≥t+1

∑
{Gτ∈Gτ |Gτ⊆Gt}

pGτ
τ · dGτ j

τ (5)

for every t ≥ 0 and j. By effective completeness, there exists a feasible allocation (y1, y2, . . . , yI)
of trading plans such that xi

t − ei
t =

∑
j yji

t−1d
j
t for every t ≥ 1 and i. Define a feasible

contingent-commodity allocation (ê1, ê2, . . . , êI) by letting, for every i, êi
t = ei

t for every t ≥ 1,
and

p0 · êi
0 = p0 · xi

0 +
∑

j

qj
0y

ji
0

and
∑

i ê
i =

∑
i e

i. In the following, we show that the collection of (x1, x2, . . . , xI), (y1, y2, . . . , yI),
q, and p is an asset market equilibrium when the initial endowment allocation is (ê1, ê2, . . . , êI).
Since the feasibility constraints and the budget constraints are clearly satisfied, it remains to
prove that the utility maximization condition is satisfied. For this, let (x̂i, ŷi) satisfy the
budget constraint for consumer i. Then∑

t≥0

∑
Gt∈Gt

pGt
t ·

(
x̂Gti

t − êGti
t

)
= p

{1,2,...,S}
0 ·

(
x̂
{1,2,...,S}i
0 − ê

{1,2,...,S}i
0

)
+
∑
t≥1

∑
Gt∈Gt

pGt
t ·

(
x̂Gti

t − eGti
t

)
= p

{1,2,...,S}
0 ·

(
x̂
{1,2,...,S}i
0 − ê

{1,2,...,S}i
0

)
+
∑
t≥1

∑
Gt∈Gt

dGtŷi

t , (6)

3The standard second welfare theorem only claims that the pair of (x1, x2, . . . , xI) and p is a quasi-
equilibrium. However, since the consumption set is the non-negative orthant XL

+ and the Ui are strongly
monotone, every quasi-equilibrium is an equilibrium.
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where dŷj
=
(
dGtŷj

t

)
(t,Gt)

. Applying the method explained in Duffie (2001, Section 2.C) to

(5), we can show that ∑
t≥1

∑
Gt∈Gt

dGtŷi

t =
∑

j

qj
0ŷ

ji
0 . (7)

Since p0·êi
0 ≥ p0·x̂i

0+
∑

j qj
0ŷ

ji
0 , (6) and (7) together imply that

∑
t≥0

∑
Gt∈Gt

pGt
t ·
(
x̂Gti

t − eGti
t

)
≤

0. Hence x̂i satisfies the budget constraint in the contingent-commodity market equilibrium.
Since xi is a solution to the utility maximization problem in the commodity market equilib-
rium, Ui(xi) ≥ Ui(x̂i). For every i, therefore, the utility maximization condition is satisfied
by (xi, yi) at the proposed asset market equilibrium. ///

4 Sunspot irrelevance

In this section, we give our first application of Theorem 2, the first welfare theorem in ef-
fectively complete markets. It is the sunspot-irrelevance theorem of Mas-Colell (1992). The
following analysis is really a recap of his own, as Theorem 2 owes much to Mas-Colell (1992)
(and also LeRoy and Werner (2001)).

Assume that T = 1 and that all consumers hold the same probability measure P . Assume
that P ({s}) > 0 for every s and all consumers have expected utility functions

Ui(xi) = E(ui(xi
0, x

i
1)) =

∑
s

P ({s})ui(xsi
0 , xsi

1 ),

where xi = (xi
0, x

i
1) with xi

t = (x1i
t , x2i

t , . . . , xSi
t ) for each t,4 and ui : RL

+ ×RL
+ → R is strictly

concave in the second coordinate. Note that consumption is possible on period 0, as well as
on period 1, unlike the model of Mas-Colell (1992). We also assume that ei

1 takes a constant
value, that is,

e1i
1 = e2i

1 = · · · = eSi
1 , (8)

for every i. Thus the states are irrelevant to utility functions and initial endowments, and
thus called sunspot states. Of course, under standard assumptions, there is an asset market
equilibrium of which the contingent-commodity allocation is sunspot-free. Mas-Colell (1992)
showed that if there are not sufficiently many assets available for trade, then there may be an
asset market equilibrium of which the contingent-commodity allocation depends on sunspots
and some of its realizations are different from any of the sunspot-free equilibrium allocations.

We start with characterizing the Pareto-efficient allocations in this economy. The following
lemma shows that they are sunspot-free.

Lemma 1 If a feasible contingent-commodity allocation (x1, x2, . . . , xI) is Pareto-efficient,
then xi

1 takes a constant value, that is, x1i
1 = x2i

1 = · · · = xSi
1 for every i.

4Since xi is adapted, x1i
0 = x2i

0 = · · · = xSi
0 .

8



Proof of Lemma 1 For any feasible allocation (x1, x2, . . . , xI), define another allocation
(x̂1, x̂2, . . . , x̂I) by x̂i

0 = xi
0 and x̂si

1 = x̄i, where x̄i
1 =

∑
s P ({s})xsi

1 ∈ RL
+, for every i and s.

Then (x̂1, x̂2, . . . , x̂I) is feasible because∑
i

x̂si
1 =

∑
i

∑
s′

P ({s′})xs′i
1 =

∑
s′

P ({s′})
∑

i

xs′i
1 =

∑
s′

P ({s′})
∑

i

es′i
1 =

∑
i

esi

by (8). Moreover, (x̂1, x̂2, . . . , x̂I) is Pareto-superior to (x1, x2, . . . , xI) unless xi = x̂i, that is,
x1i = x2i = · · · = xSi for every i, by the strict concavity of the ui in the second coordinate.
Therefore, if (x1, x2, . . . , xI) is Pareto efficient, then x1i = x2i = · · · = xSi for every i. ///

Next, we give a sufficient condition for asset markets to be effectively complete.

Lemma 2 Asset markets are effectively complete if for every good ℓ there is an asset j such
that for every s,

dsj = (0, . . . , 0, 1︸︷︷︸
ℓ−th

, 0, . . . , 0) = (ℓ-th unit vector) ∈ RL.

This lemma means that asset markets are effectively complete if it is possible to guarantee
receipt of any fixed amount of any good. Thus, asset markets may be effectively complete
with fewer than S assets if L < S.

Proof of Lemma 2 If (x1, x2, . . . , xI) is an efficient allocation, then, by Lemma 1, for each
i there exists a zi ∈ RL such that xsi

1 − esi
1 = zi for every s. By assumption, there is a

portfolio ȳi = (ȳ1i, ȳ2i, . . . , ȳJi) ∈ RJ such that zi =
∑

j ȳjidsj for every s. For each i ≥ 2,
define a trading plan yi = (yi

0, y
i
1) by letting yi

t = ȳi for each t. Define y1 = −
∑

i≥2 yi. Then
(y1, y2, . . . , yI) is a feasible allocation of trading plans. For every i ≥ 2 and s,∑

j

yji
0 dsj

1 =
∑

j

ȳjdsj
1 = zi = xsi

1 − esi
1 .

As for i = 1,

∑
j

yj1
0 dsj

1 =
∑

j

−
∑
i≥2

yji
0

 dsj
1 = −

∑
i≥2

∑
j

yji
0 dsj

1 = −
∑
i≥2

(
xsi

1 − esi
1

)
= xs1

1 − es1
1 .

///

Under the assumption of Lemma 1, asset markets are effectively complete and, by Theorem
2, the equilibrium contingent-commodity allocation are Pareto-efficient and, by Lemma 2,
sunspot-free. We have thereby proved the following theorem of Mas-Colell (1992) via effective
completeness.
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Theorem 4 (Sunspot Irrelevance Theorem of Mas-Colell (1992)) If for every good ℓ

there is an asset j such that dsj
1 is the ℓ-th unit vector for every s, then every equilibrium

allocation is Pareto-efficient and sunspot-free.

Mas-Colell’s theorem tells us that the equilibrium allocations may be Pareto-efficient even
when asset markets are incomplete. Indeed, if the number J of assets is less than the number
S of sunspot states, then asset markets must necessarily be incomplete but the equilibrium
allocations may be Pareto-efficient. It may even be the case that the J assets turn out to
be redundant under the equilibrium prices, rendering asset markets incomplete regardless of
whether J is larger or smaller than S, and yet the equilibrium allocations are Pareto-efficient.

To see this point more formally, assume that for every j ≤ L, the j-th asset pays out
one unit of good j for sure (that is, for every j ≤ L and s, dsj

1 coincides with the j-th unit
vector), and that the collection of a feasible contingent-commodity allocation (x1, x2, . . . , xI),
a feasible allocation (y1, y2, . . . , yI) of trading plans, an asset price process q, and a spot
price process p is an asset market equilibrium. Then (x1, x2, . . . , xI) is Pareto-efficient and
sunspot-free. Define another spot price process p̂ = (p̂0, p̂1) by letting p̂0 = p0 and p̂1 coincide
with the first L coordinates of q0. Then p̂1 is sunspot-free. Define another feasible allocation
(ŷ1, ŷ2, . . . , ŷI) of trading plans by letting the first L coordinates of ŷi

0 coincide with xi
1 − ei

1

(which is sunspot-free) and the remaining J−L coordinates equal to zero. Then the collection
of (x1, x2, . . . , xI), (ŷ1, ŷ2, . . . , ŷI), q, and p̂ is an asset market equilibrium. This is because
every sunspot-free consumption plan that can be attained under (q, p) can also be attained
under (q, p̂), and vice versa. In this latter equilibrium, the contingent-commodity allocation is
the same as in the original equilibrium, but the rank of D ∈ RS×J defined by (2) with p1 = p̂1

is equal to one because the dj
1 and p̂1 are sunspot-free. This implies that asset markets are

incomplete as long as S ≥ 2 but the equilibrium allocation is Pareto-efficient.

5 No-retrade theorem

Our second application of effectively complete markets is the no-retrade theorem of Judd,
Kubler, and Schmedders (2003) and Kubler and Schmedders (2003).

We consider a Markov environment in which there are M states, m = 1, 2, . . . , M , on each
period and a single good in each state. Let m̄ ∈ {1, 2, . . . , M} be the state on period 0, then
the state space over the entire history is given by S = {m̄} × MT .5

Define χ : S × {0, 1, . . . , T} → M by χ(s, t) = st, where s = (s0, s1, . . . , sT ) ∈ S. Write χt

for χ(·, t) : S → M . Then χt maps each entire history to the state that arises on period t along
the history. The filtration (F1, F2, . . . , FT ) is defined in such a way that for every t, Ft is
generated by the mapping (χ0, χ1, . . . , χt) : S → M t. That is, for every s = (s0, s1, . . . , sT ) ∈
S and s′ = (s′0, s

′
1, . . . , s

′
T ) ∈ S, s and s′ belong to the same element of the partition Gt

corresponding to Ft if and only if st′ = s′t′ for every t′ ≤ t.

5There is a slight abuse of notation, as S is a set in this section, while it used to be a positive integer up to
the previous section. Little confusion will arise from this abuse of notation.
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Assume that L = 1, that is, there is only one good in each state and on each period. We
thus let pt = 1 for every t.

Assume that all consumers hold the same probability measure P and subjective discount
factor δ > 0, and have state-dependent expected utility functions

Ui(xi) = E

(
T∑

t=0

δtui(xi
t, χt)

)
=

∑
(s,t)∈S×{0,1,...,T}

δtP ({s})ui(xsi
t , st),

where ui : R+ × {1, 2, . . . , M} → R and xi = (xi
0, x

i
1, . . . , x

i
T ). Assume that P ({s}) > 0

for every s. This is equivalent to saying that for every t and (s0, s1, . . . , st) ∈ {m̄} × M t,
P
(
{s′ ∈ S | s′t′ = st′ for every t′ ≤ t} | {s′ ∈ S | s′t′ = st′ for every t′ ≤ t − 1}

)
> 0.

Assume that, for the initial endowment process ei = (ei
0, e

i
1, . . . , e

i
T ) of each consumer i,

each ei
t depends only on st (and not on t), that is, there is a gi : {1, 2, . . . , M} → R such that

ei = gi(χ). Assume also that, for the dividend process dj = (dj
0, d

j
1, . . . , d

j
T ) of each asset j,

each dj
t depends only on st (and not on t), that is, there is an hi : {1, 2, . . . , M} → R such

that ej = hj(χ).
This economy is in the Markov environment, as there are M states that recur over time

and the utility functions, initial endowments, and dividend payouts depend only on the state
on the period but not on the state on any earlier period. But, unlike the model of Judd,
Kubler, and Schmedders (2003) and Kubler and Schmedders (2003), the probability that
state m occurs on period t may depend not only on the state that occurred on period t − 1
but also on some earlier periods. Note also that we are assuming that there are only finitely
many periods, while they assumed that there are infinitely many periods. Finally, all assets in
our model are long lived (traded from period 0 onwards and dividends paid out until period
T ), while some assets in their model may be short-lived (traded just once and dividends paid
out only on the next period). We exclude short-lived assets from our model for the sake of
simplicity of exposition.

Just as in the previous section, we start the analysis of the model with characterizing the
Pareto-efficient allocations.

Lemma 3 If an allocation (x1, x2, . . . , xI) is Pareto-efficient, then for every i, there exists
an fi : {1, 2, . . . , M} → R such that xi − ei = fi(χ).

Proof of Lemma 3 Let (x1, x2, . . . , xI) be a feasible contingent-commodity allocation. For
each m, define rm =

∑
(s,t)∈χ−1(m) δtP ({s}). Then, for each m and i, define

x̄mi =
∑

(s,t)∈χ−1(m)

δtP ({s})
rm

xsi
t .

Then define x̂i =
(
x̂i

0, x̂
i
1, . . . , x̂

i
T

)
by letting x̂si

t = x̄χ(s,t)i for every s and t. Then the allocation
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(x̂1, x̂2, . . . , x̂I) is feasible because

I∑
i=1

x̂si
t =

I∑
i=1

x̄χ(s,t)i =
I∑

i=1

∑
(s′,t′)∈χ−1(χ(s,t))

δt′P ({s′})
rχ(s,t)

xs′i
t′

=
∑

(s′,t′)∈χ−1(χ(s,t))

δt′P ({s′})
rχ(s,t)

I∑
i=1

xs′i
t′

=
∑

(s′,t′)∈χ−1(χ(s,t))

δt′P ({s′})
rχ(s,t)

I∑
i=1

es′i
t′

=
∑

(s′,t′)∈χ−1(χ(s,t))

δt′P ({s′})
rχ(s,t)

I∑
i=1

gi(χ(s, t))

=
I∑

i=1

gi(χ(s, t)) =
I∑

i=1

esi
t .

Since ui(·,m) is strictly concave,

Ui(xi) =
M∑

m=1

rm
∑

(s,t)∈χ−1(m)

δtP ({s})
rm

ui

(
xsi

t ,m
)
≥

M∑
m=1

rm
∑

(s,t)∈χ−1(m)

ui

(
x̂si

t ,m
)

= Ui(xi),

where the weak inequality holds as a strict inequality unless xi = x̂i, that is, xsi
t = xs′i

t′ when-
ever χ(s, t) = χ(s′, t′) for every i. Thus (x̂1, x̂2, . . . , x̂I) is Pareto-superior to (x1, x2, . . . , xI)
unless xsi

t = xs′i
t′ whenever χ(s, t) = χ(s′, t′) for every i. Therefore, if (x1, x2, . . . , xI) is Pareto-

efficient, then xsi
t = xs′i

t′ whenever χ(s, t) = χ(s′, t′) for every i. This means that for every
i, there is a f̂i : {1, 2, . . . , M} → R such that xi = ki(χ). The proof is completed by taking
fi = f̂i − gi. ///

To state a sufficient condition for effectively complete asset markets, write

H =


h1(1) · · · hJ(1)

...
. . .

...
h1(M) · · · hJ(M)

 ∈ RM×J .

Lemma 4 If rank H = M , then asset markets are effectively complete .

Proof of Lemma 4 Suppose that (x1, x2, . . . , xI) is a Pareto-efficient contingent-commodity
allocation. By Lemma 3, for every i, there exists an fi : {1, 2, . . . , M} → R such that
xi − ei = fi(χ). Write

vi =


fi(1)

...
fi(M)

 ∈ RM ,

Since rankH = M , there exists a bi ∈ RJ such that vi = Hbi. For each i ≥ 2, define a trading
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plan yi by letting yi
t = bi for every t. For i = 1, let y1 =

∑
i≥2 yi. Then (y1, y2, . . . , yI) is a

feasible allocation of trading plans and yi
0 = yi

1 = · · · = yi
T−1 for every i. For every i ≥ 2,

t ≥ 1, and s,
xi

t − ei
t = fi(χt) = Hbi =

∑
j

yji
t−1d

j
t .

As for i = 1,

∑
j

yj1
t−1d

j
t =

∑
j

−
∑
i≥2

yji
t−1

 dj
t = −

∑
i≥2

∑
j

yji
t−1d

j
t = −

∑
i≥2

(xi
t − ei

t) = x1
t − e1

t .

///

To state the no-retrade theorem, we need the following notation. Let q be an equilibrium
asset price process. Since it is adapted to the filtration (F0, F1, . . . ,FT ), qsj

t = qs′j
t whenever

st′ = s′t′ for every t′ ≤ t. Thus there exists a kj :
∪T

τ=0({m̄} × M τ ) → R such that qsj
t =

kj(χ0(s), χ1(s), . . . , χt(s)). For each t and each (s0, s1, . . . , st−1), define K(s0, s1, . . . , st−1) ∈
RM×J as

h1(1) + k1(s0, s1, . . . , st−1, 1) · · · hJ(1) + kJ(s0, s1, . . . , st−1, 1)
...

. . .
...

h1(M) + k1(s0, s1, . . . , st−1, M) · · · hJ(M) + kJ(s0, s1, . . . , st−1, M)

 .

While the matrix H represents the dividends of the J assets on the next period, the matrix
K(s0, s1, . . . , st−1) represents the total returns to the J assets, inclusive of their prices on the
next period. Asset markets are complete if and only if rankK(s0, s1, . . . , st−1) = M for every
t and (s0, s1, . . . , st−1). In the model of Judd, Kubler, and Schmedders (2003) and Kubler and
Schmedders (2003), since there are infinitely many periods and the transition probabilities
between two states are time-invariant, the asset prices are also time-invariant functions of the
M states, and rank K(s0, s1, . . . , st−1) = rank H = M for every t and (s0, s1, . . . , st−1). That
is, if rankH = M , then asset markets are complete. In contrast, since asset prices need not
be time-invariant functions of the M states in our model, the condition that rankH = M

does not imply that asset markets are complete. It is for this reason that we need to assume
that rankK(s0, s1, . . . , st−1) = M for every t and (s0, s1, . . . , st−1) in the second part of our
no-retrade theorem.

Theorem 5 (No-Retrade Theorem) Assume that rankH = M . If the collection of a
feasible contingent-commodity allocation (x1, x2, . . . , xI), a feasible allocation (y1, y2, . . . , yI)
of trading plans, and an asset price process q is an asset market equilibrium, then there exists
a feasible allocation (ŷ1, ŷ2, . . . , ŷI) of trading plans such that ŷi

0 = ŷi
1 = · · · = ŷi

T−1 for every i,
and the collection of (x1, x2, . . . , xI), (ŷ1, ŷ2, . . . , ŷI), and q is an asset market equilibrium. If,
in addition, J = M and rank K(s0, s1, . . . , st−1) = M for every t and every (s0, s1, . . . , st−1),
then yi = ŷi and hence yi

0 = yi
1 = · · · = yi

T−1 for every i.
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This theorem states that if asset markets are effectively complete, then any equilibrium
contingent-commodity allocation can be attained by letting all consumers trade assets once
and for all on period 0, and that if, in addition, markets are complete and the J assets are
not redundant, then all consumers do in fact trade assets once and for all on period 0 at
equilibrium. Since the equilibrium asset price processes need not be time-invariant, the proof
of Theorem 5, which relies on effective completeness, is different from that of Judd, Kubler,
and Schmedders (2003) and Kubler and Schmedders (2003), which relies on the stationary
dynamic programming technique.

Proof of Theorem 5 Let the collection of a feasible contingent-commodity allocation
(x1, x2, . . . , xI), a feasible allocation (y1, y2, . . . , yI) of trading plans, and an asset price process
q be an asset market equilibrium. By Lemma 4 and Theorem 2, (x1, x2, . . . , xI) is Pareto-
efficient. Thus, there exists a feasible allocation (ŷ1, ŷ2, . . . , ŷI) of trading plans such that
xi

t − ei
t =

∑
j ŷji

t−1d
j
t for every t ≥ 1 and ŷi

0 = ŷi
1 = · · · = ŷi

T−1 for every i. To show that the
collection of (x1, x2, . . . , xI), (ŷ1, ŷ2, . . . , ŷI),and q is an asset market equilibrium, it suffices to
prove that xi

0 − ei
0 ≤ −

∑
j qj

0ŷ
ji
0 for every i. This is a consequence of the absence of arbitrage

opportunities at equilibrium. Indeed, as explained in Duffie (2001, Section 2.C), there exists
a process, called a state-price deflator, π = (π0, π1, . . . , πT ) ∈ L1 such that

qj
t =

1
πt

E

(
T∑

τ=t+1

πτd
j
τ | Ft

)

for every t and j. Hence,

∑
j

qj
t y

ji
t =

1
πt

E

(
T∑

τ=t+1

πτd
yi

τ | Ft

)
,

∑
j

qj
t ŷ

ji
t =

1
πt

E

(
T∑

τ=t+1

πτd
ŷi

τ | Ft

)
.

Since dyi

t = xi
t − ei

t = dŷi

t for every t ≥ 1,
∑

j qj
0y

ji
0 =

∑
j qj

0ŷ
ji
0 . Since xi

0 − ei
0 ≤ −

∑
j qj

0y
ji
0 ,

xi
0 − ei

0 ≤ −
∑

j qj
0ŷ

ji
0 . This completes the proof of the first part.

As for the second part, suppose, in addition, that J = M and rankK(s0, s1, . . . , st−1) = M

for every t and every (s0, s1, . . . , st−1). We prove that yi = ŷi by a backward induction
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argument. For each t and s = (s0, s1, . . . , sT ), write

q(s0, s1, . . . , st) =


qs1
t
...

qsJ
t

 ∈ RJ ,

yi(s0, s1, . . . , st) =


ys1i

t
...

ysJi
t

 ∈ RJ ,

ri(s0, s1, . . . , st−1) =


q(s0, s1, . . . , st−1, 1) · yi(s0, s1, . . . , st−1, 1)

...
q(s0, s1, . . . , st−1, M) · yi(s0, s1, . . . , st−1,M)

 ∈ RM .

We define ŷi(s0, s1, . . . , st) and r̂i(s0, s1, . . . , st) analogously for ŷi.
Since pt = 1 for every t and qj

T = 0 for every j (because, otherwise, there would be
an arbitrage opportunity and the maximization problem would have no solution), (1) with
t = T can be rewritten as vi = Hyi

T−1 = Hŷi
T−1. Since rankH = M = J , this means that

yi
T−1 = ŷi

T−1. As an induction hypothesis, let t ≤ T − 2 and suppose that yi
t+1 = ŷi

t+1. Then
(1) can be written as

vi =K(s0, s1, . . . , st−1)yi(s0, s1, . . . , st−1) − ri(s0, s1, . . . , st),

vi =K(s0, s1, . . . , st−1)ŷi(s0, s1, . . . , st−1) − r̂i(s0, s1, . . . , st),

which is equivalent to

K(s0, s1, . . . , st−1)yi(s0, s1, . . . , st−1) = vi + ri(s0, s1, . . . , st),

K(s0, s1, . . . , st−1)ŷi(s0, s1, . . . , st−1) = vi + r̂i(s0, s1, . . . , st).

Since K(s0, s1, . . . , st−1) is an invertible M×M matrix and ri(s0, s1, . . . , st) = r̂i(s0, s1, . . . , st)
by the induction hypothesis, yi(s0, s1, . . . , st−1) = ŷi(s0, s1, . . . , st−1). Thus yi

t = ŷi
t. ///

Since the theorem holds even when rankK(s0, s1, . . . , st−1) < M as long as rank H = M ,
the theorem shows that effective complete asset markets may not be complete.

6 Conclusion

We have proposed a definition of effectively complete asset markets in a model with multiple
goods and multiple periods, and established the first and second welfare theorems in such
markets. We have then given two applications of the first welfare theorem, the sunspot
irrelevance theorem and the no-retrade theorem. The lesson to be learned from this exercise is
that the equilibrium allocations may well be Pareto-efficient even in incomplete asset markets,
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and effective completeness serves as a sufficient condition for this to occur.
The usefulness of the concept of effective completeness hinges on to what extent it is

applicable. We now know five distinct examples of effectively complete asset markets, of which
three are presented in LeRoy and Werner (2001, Chapter 16) and two in this paper. But the
applicability is severely limited by the fact that it requires every Pareto-efficient allocation to
be attained after the first round of asset trades, without using asset or spot markets from the
second round onwards. We should, therefore, find a weaker notion of effective completeness
with respect to which the first (and, preferably, the second) welfare theorem retains its validity.
This seems to be an important direction of future research.
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