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Abstract

Dating from the seminal work of Ellison and Glaeser [17] in 1997, a wealth of evidence
for the ubiquity of industrial agglomerations has been published. However, most of these
results are based on analyses of single (scalar) indices of agglomeration. Hence it is not
surprising that industries deemed to be similar by such indices can often exhibit very different
patterns of agglomeration – with respect to the number, size, and spatial extent of individual
agglomerations. The purpose of this paper is thus to propose a more detailed spatial analysis
of agglomeration in terms of multiple-cluster patterns, where each cluster represents a
(roughly) convex set of contiguous regions within which the density of establishments
is relatively uniform. The key idea is to develop a simple probability model of multiple
clusters, called cluster schemes, and then to seek a “best” cluster scheme for each industry
by employing a standard model-selection criterion. Our ultimate objective is to provide a
richer characterization of spatial agglomeration patterns that will allow more meaningful
comparisons of these patterns across industries.
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1 Introduction

Economic agglomeration is the single most dominant feature of industrial location patterns
throughout the modern world. In Japan, with a population density more than ten times that
of the US, land is generally considered to be extremely scarce. Yet, 65% of the total population
and 86% of total employment are concentrated in so-called densely inhabited districts accounting
for only 10% of total economic area (3% of total area).1 Essentially similar observations can
be made for any other developed country.2 The extent of this concentration phenomenon
explains why economic agglomeration is now a major area of research in urban and regional
economics. This is underscored by the fact that the majority of material in the latest Handbook
of Regional and Urban Economics [31] is devoted to this topic. This handbook also indicates
that economic agglomeration plays a key role in a broader range of fields including economic
growth, international trade and economic development. Industrial agglomeration has also
gained increasing interest in the management literature, dating from the seminal work of Porter
[51] on “industrial cluster theory.”

In terms of empirical work, a substantial number of industrial agglomeration studies have
been published during the last decade. Some of these studies have provided indices of industrial
agglomeration that allow testable comparisons of the degree of agglomeration among industries
(Duranton and Overman [15], Brülhart and Traeger [6], and Mori, Nishikimi and Smith [47]).
The results of these works suggest that industrial agglomeration is far more ubiquitous than
previously believed, and extends well beyond the traditional types of industrial agglomeration
(such as information technology industries in Silicon Valley3 and automobile manufacturing in
Detroit). Moreover, the degree of such agglomeration has been shown to vary widely across
industries.

But while these studies provide ample evidence for the ubiquity of industrial agglomerations,
they tell us very little about the actual spatial structure of agglomerations. In particular (to our
knowledge), there have been no systematic efforts to determine the number, location and
spatial extent of agglomerations within individual industries. Most indices of agglomeration
currently in use measure the discrepancy between industry-specific regional distributions
of establishments/employment and some hypothetical reference distribution representing
“complete dispersion.”4 But even if industries are judged to be similar with respect to these
indices, their spatial patterns of agglomeration may appear to be quite different. Such patterns
are basically multidimensional in nature, and are not easily compared by any single index.

Historically, these scalar indices have been largely motivated by simple two-region models
1Data source: Population Census of Japan [35] for employment and population data, and Statistical Information

Institute for Consulting and Analysis [60, 61] for economic area data. For a definition of economic area see Section
7.1.2 below.

2In France, the Île-de-France (metropolitan area of Paris), produces 30% of total GDP while accounting for only
2.2% of the area of France and 18.9% of its population. Even within the Île-de-France, only 12% of the available land
is used for urban purposes, and the remaining area is devoted to agriculture, or is undeveloped (Fujita [19]). In the
US, 75% of the population is concentrated in 2% of the land area (Rosenthal and Strange[54]).

3See for example the well-known study by Saxenian [55].
4Examples of such reference distributions are (1) the regional distribution of all-industry employment, used by

Ellison and Glaeser [17], (2) the regional distribution all-industry establishments, used by Duranton and Overman
[15], and (3) the regional distribution of economic area used by Mori et al. [47].
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of industrial location, where “agglomeration” is typically the extreme case of complete con-
centration in one of the two regions, and “dispersion” is the other extreme involving uniform
spread across both regions. However, this simple dichotomy has been called into question by the
results of the “new economic geography”5 where industrial location is modeled in continuous
space.6 Here it has been shown that the spatial structure of agglomeration and dispersion can
change at different scales of analysis. In particular, such variations in spatial structure arise from
specific types of interactions among plant-level increasing returns, product differentiation and
transport costs. But within a two-region world, the relative spatial scales of agglomeration and
dispersion cannot be distinguished. Hence it is difficult to extend the results of these highly
aggregated models to more complex disaggregated regional systems.7

However, it is shown in the present paper that this diversity of patterns can in fact be
identified empirically. This can be illustrated by a brief preview of our results for Japanese
manufacturing industries (developed in more detail in Section 7 below). First, there are indus-
tries which clearly exhibit strong spatial concentration, such as the “plastic compounds and
reclaimed plastics” industry shown in Figure 7.13(b) [For now, the area marked in grey can
be considered as industrial agglomerations.] While some establishments of this industry are
attracted to port cities along the northern coast, the main industrial concentration lies along the
inland Industrial Belt extending westward from Tokyo to Hiroshima. Moreover, the individual
clusters of establishments within this belt are seen to be densely packed from end to end. We
describe this type of agglomeration pattern as “globally confined” and “locally dense” (here
with respect to the Industrial Belt). But, even much more dispersed industries often form small
agglomerations at local scales. For example, the “livestock products” industry shown in Figure
7.6(b) is spread throughout the nation, but exhibits a large number of local agglomerations. We
describe this type of spatial pattern as “globally dispersed” and “locally sparse.” In addition to
these extremes, a variety of other patterns can be identified, as discussed more fully in Sections
6 and 7.3 below. Finally, it is important to emphasize that the range of patterns identified here
actually bears a close relation to those identified in the new economic geography.8

However, it should also be stressed that the continuous-space models of the new economic
geography have thus far been limited to one-dimensional worlds, or at best, very stylized
two-dimensional worlds that can be modelled in tractable ways. Hence the strategy of the
present paper is to start from the empirical side, and to develop statistical cluster models of
industrial location patterns that are sufficiently rich to allow a broader range of comparisons
between different industries. The immediate goal of this research is to apply these statistical
tools to identify such patterns. But the longer range goal is to identify structural properties of
location patterns that may contribute to our theoretical understanding of location behavior in
more general spatial settings.

It should also be noted that there have been other attempts to develop statistical measures

5See, e.g., Fujita, Krugman and Venables [22] and Combes, Mayer and Thisse [10] for an overview of the literature.
6See Fujita and Mori [24, 25] for a survey.
7See again the discussion in Fujita and Mori [24, 25].
8See Fujita and Mori [23] and Fujita, Krugman and Mori [21] for the case of “globally dispersed”and “locally

sparse”agglomeration patterns, and Mori [46] for the case of “globally confined”and “locally dense”agglomeration
patterns.
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that are more multidimensional in nature. Most notably, the K-density approach of Duranton
and Overman [15] utilizes pairwise distances between individual establishments, and is capable
of indicating the spatial extent of an agglomeration. In a similar vein, Mori et al. [47] proposed a
spatially decomposable index of regional localization that yields some information about the
most relevant geographic scales of agglomeration within individual industries. However, neither
of these approaches is designed to identify specific (map) locations of industrial agglomerations,
from which spatial patterns of agglomerations can be characterized.

Methodologically, our approach is closely related to cluster-identification methods proposed
by Besag and Newell [4], Kulldorff and Nagarwalla [43], and Kulldorff [42], that have been
used for the detection of disease clusters in epidemiology.9 As with the agglomeration indices
mentioned above, these methods start by postulating a null hypothesis of “no clustering” (in
terms of a uniform distribution of industrial locations across regions), and then seek to test this
hypothesis by finding a single “most significant” cluster of regions with respect to this hypothesis.
Candidate clusters are typically defined to be approximately circular areas containing all regions
with centroids within some specified distance from a reference point (which may be the centroid
of a “central” region). While this approach is in principle extendable to multiple clusters by
recursion (i.e., by removing the cluster found, and repeating the procedure) such extensions are
piecemeal at best.10

Hence our central objective is to generalize their approach by finding the single most
significant “cluster scheme” rather than “cluster.” We do so by formalizing these schemes as
probability models to which appropriate statistical model-selection criteria can be applied for
finding a “best cluster scheme.” Here a cluster scheme is simply a partition of space in which
it is postulated that firms are more likely to locate in “cluster” partitions than elsewhere.11

Our probability model then amounts to a multinomial sampling model on this partition.12

9While “agglomeration” can in principle be viewed as a special type of “clustering,” we shall use these two term
interchangeably throughout the analysis to follow. (However, see the discussion in Section 8.1 of the Concluding
Remarks.)

10In particular, the recursive application of such procedures gives rise to the notorius “multiple testing” problem
that these procedures were originally designed to overcome. In essence, multiple applications of this procedure will
tend to identify too many clusters as being significant. For a recent discussion of this “false discovery”problem in the
context of spatial clustering, see Castro and Singer [7] together with the references cited therein.

11An alternative approach might be to characterize spatial distributions of establishments by smooth surfaces,
utilizing recent advances in density estimation methods (e.g., Silverman [59]). However, our present discrete
characterization of agglomerations in terms of spatially disjoint clusters was motivated by the following two
considerations. First, an examination of the data shows that spatial distributions of industrial establishments are
typically spiky, i.e., concentrations take place in a small set of municipalities. Indeed, there are usually a large number
of municipalities with no establishments whatsoever. In our present study of the 163 3-digit manufacturing industries
in Japan (Section 7 below), the average percent of all 3207 municipalities in Japan having any establishments in a
given industry was only 22.6%. Moreover, 89.5% of these 163 industries have establishments in fewer than one half of
all municipalities. Our second motivation for the present discrete approach is the observation that a certain percent
of the land area in most regions is unsuitable for industrial location (such as woods, lakes, and marshes). While such
constraints are difficult to capture with continuous densities, they can be easily handled within the present discrete
framework. For example, to construct uniform distributions for testing null hypotheses of “no clusters,” it is a simple
matter to replace the total area of each region by its total feasible area, designated here as its “economic” area.

12It should be noted that other probability models of multiple clusters have been proposed in the literature. The
most well-known of these is the model-based formulation of Dasgupta and Raferty [11] in which multiple clusters
are modeled as Bayesian mixture distributions. An alternative Bayesian model which is closer in spirit to the present
approach is that of Gangnon and Clayton [26, 27]. Here multiple clusters are modeled as a hierachical Poisson
process with gamma priors on cluster intensities. However the present approach is much simpler, and in our view, is
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These candidate cluster schemes can then be compared by means of standard model-selection
criteria such as Akaike’s [1] Information Criterion (AIC), Normalized Maximum Likelihood (NML) by
Konkatnen and Myllymäki [38], and Schwarz’s [56] Bayesian Information Criterion (BIC).

To find a best model (cluster scheme) with respect to these criteria, it would of course be ideal
to compare all possible cluster schemes constructible from the given system of regions. But even
for modest numbers of regions this is a practical impossibility. Hence a second major objective
of this paper is to develop a reasonable algorithm for searching the space of possible cluster
schemes. Our approach here is essentially an elaboration of the basic ideas proposed by Besag
and Newell [4] in which one starts with an individual region and then adds contiguous regions
within a given distance from this initial region to identify the single most significant cluster.
Here we find it useful to extend the Besag-Newell concept of clusters by introducing a more
flexible class of spatially coherent sets which we designate as convex solids. The relevant notion
of “convexity” for our purposes is based on minimal travel distances between regional centers
(rather than straight-line distances) and hence is somewhat more meaningful economically. This
particular cluster definition is useful for growing larger clusters, since arbitrary sets can be
“convexly solidified” in a natural way.

In this context, cluster schemes are grown by (i) adding new disjoint clusters, or by (ii)
either expanding or combining existing clusters until no further improvement in the given
model-selection criterion is possible. The final result is thus a “locally best cluster scheme” with
respect to this criterion. While the criteria listed above are conceptually quite different, it turns
out that the locally best cluster schemes found are in high agreement across different criteria.
Thus, in the present paper, we will focus on BIC, which turns out to be the most parsimonious
criterion in terms of the number of clusters found.13

The paper is organized as follows. We begin in Section 2 by defining a probabilistic location
model for an establishment, where location probabilities are assumed to be industry-specific,
and independent for each establishment within a given industry as well as across industries. In
Section 3, we briefly develop the three standard model-selection criteria mentioned above. In
Section 4, we introduce the notion of convex solids, and then in Section 5, present a practical
procedure for cluster detection which searches for the best cluster scheme consisting of a set of
distinct “convex” clusters. In the context of this cluster detection framework, we also introduce
in Section 6 the notion of “global extent” and “local density” of clusters in order to quantify the
spatial scale of industrial agglomeration and dispersion. This procedure is applied in Section 7 to
the case of Japanese manufacturing industries and, as previewed above, is illustrated by typical
cluster patterns corresponding to theoretical patterns derived in the new economic geography.
Finally in Section 8, we briefly discuss a number of directions for further research.

more appropriate for the analysis of industrial agglomeration.
13A more detailed theoretical comparison of all these criteria will be given in Smith and Mori [62].
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2 A Probability Model of Agglomeration Patterns

We start by assuming that the location behavior of individual establishments in a given industry
can be treated as independent random samples from an unknown industry-specific locational
probability distribution, P, over a continuous location space, Ω (which represents, for example, a
national location space). Hence for any (measurable) subregion, S ⊆ Ω, the probability that a
randomly sampled establishment locates in S is denoted by P(S). In this context, the class of all
possible location models corresponds to the set of probability measures on Ω.

However, observable location data is here assumed to be only in terms of establishment
counts for each of a set of disjoint basic regions, Ωr ⊆ Ω, indexed by R = {1, . . . , kR}.14 These
regions are assumed to partition Ω, so that

⋃kR

r=1
Ωr = Ω (1)

Hence the only relevant features of the location probability distribution, P, for our purposes are
the location probabilities for each basic region:

P = [P(r) ≡ P(Ωr) : r ∈ R] (2)

We now consider an approximation of P by probability models, PC, that postulate areas
of relatively intense locational activity. Each model is characterized by a “cluster scheme,” C,
consisting of disjoint clusters of basic regions, Cj ⊂ R, j = 1, . . . , kC, within which locational
activity is postulated to be more intense. For the present, such clusters are left unspecified. A
more detailed model of individual clusters is developed in Section 4 below.15

If the full extent of cluster Cj in Ω is denoted by

ΩCj =
⋃

r∈Cj Ωr , j = 1, .., kC (3)

then the corresponding location probabilities

pC(j) ≡ PC

(
ΩCj

)
, j = 1, .., kC (4)

are implicitly taken to define areas of concentration. To complete these probability models, let
the set of residual regions be denoted by

R0 = R−
⋃kC

j=1
Cj , ΩR0 = Ω−

⋃kC

j=1
ΩCj (5)

with corresponding location probability

pC(0) = PC (ΩR0) = 1−∑kC
j=1 pC(j) (6)

14In our application in Section 7 below, basic regions are municipalities.
15In particular, it is implicitly assumed here that the regions {Ωr : r ∈ Cj} in each cluster are contiguous, so that

ΩCj [defined in (3) below] is a connected set. This assumption is not crucial for the present section, but will play a
central role in the construction of clusters below.
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Each cluster scheme, C = (R0, C1, .., CkC), then constitutes a partition of the regional index set,
R, and the location probabilities [pC(j) : j = 0, 1, .., kC] yield a probability distribution on C.16

Finally, to specify location probabilities for basic regions, it is assumed that within each cluster,
Cj, the location behavior of individual establishments is completely random.17 To define “complete
randomness” in the present setting, it is important to focus on those locations within each basic
region where establishments could potentially locate (excluding bodies of water, etc.) Such
locations are here taken to correspond to the economic area of each region (as discussed further in
Section 7.1.2 below). Hence, if for each basic region r ∈ R, we let ar denote the (economic) area
of Ωr, so that the total area of cluster Cj is given by

aCj = ∑r∈Cj
ar (7)

then for each establishment locating in Cj, it is postulated that the conditional probability of
locating in basic region, r ∈ Cj, is proportional to the area of region r,18 i.e., that

PC(Ωr | ΩCj) =
ar

aCj

, r ∈ Cj , j = 0, 1, .., kC (8)

But since Ωr ⊆ ΩCj implies that

PC(Ωr|ΩCj) =
PC(Ωr)
PC(ΩCj)

=
PC(r)
pC(j)

(9)

it then follows that for all r ∈ R

PC(r) = pC(j)
ar

aCj

, r ∈ Cj (10)

Hence for each cluster scheme, C, expression (10) yields a well-defined cluster probability model,

PC = [PC(r) : r ∈ R] (11)

which is comparable with the unknown true model (2). Note moreover that since all area values
are known, it follows that for each given cluster scheme, C = (R0, C1, .., CkC), the only unknown
parameters are given by the kC-dimensional vector of cluster probabilities, pC = [pC(j) : j =
1, .., kC].19

Within this modeling framework, we now consider a sequence of n independent location
decisions by individual establishments. For each establishment, i = 1, .., n, let the location
choice of establishment i be modeled by a random (indicator) vector, X(i) =

(
X(i)

r : r ∈ R
)

, with

16A more complete definition of cluster schemes is given in Definition 5.1 below.
17This implicitly assumes that the regions within a given cluster not only have high densities of establishments

but also that these densities are similar. Moreover, since we require (in Section 5 below) that clusters be disjoint, the
low-density peripheries of clusters will in many cases be ignored.

18In the theory of spatial point processes, this hypothesis is referred to as complete spatial randomness (see for
example Diggle [12]). See also Section 5.3 below.

19Note that pC(0) is constructable from pC in terms of (6).
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X(i)
r = 1 if establishment i locates in region r, and X(i)

r = 0, otherwise. This set of location
decisions is then representable by a random matrix of indicators, X = (X(i) : i = 1, . . . , n), with
the following finite set of possible realizations (location patterns):

∆R(n) =
{

x = (x(i)
r : r ∈ R, i = 1, .., n) ∈ {0, 1}n×kR : ∑r∈R x(i)

r = 1, i = 1, .., n
}

(12)

By independence, the probability distribution of X under the unknown true distribution in (2) is
given for each location pattern, x ∈ ∆R(n), by

P(x) = ∏n
i=1 ∏r∈R P(r)x(i)

r = ∏r∈R P(r)nr (13)

where
nr = ∑n

i=1 x(i)
r (14)

denotes the total number of estabishments locating in region r [see expression (12)]. Similarly,
for each cluster probability model, PC, the postulated distribution of X is given for each pattern,
x ∈ ∆R(n), by:

PC(x|pC) = ∏r∈R PC(r)nr = ∏kC
j=0 ∏r∈Cj

(
pC(j)

ar

aCj

)nr

(15)

where the relevant parameter vector, pC, for each such model has been made explicit. In most
contexts, it will turn out that the locational frequencies

nj(x) = ∑
r∈Cj

nr , j = 0, 1, .., kC (16)

are sufficient statistics since by definition

PC(x|pC) = ∏kC
j=0

[
pC(j)∑r∈Cj

nr ∏r∈Cj

(
ar

aCj

)nr]
= aC(x) ∏kC

j=0 pC(j)nj(x) (17)

where the factor

aC(x) = ∏kC
j=0 ∏r∈Cj

(
ar

aCj

)nr

(18)

is completely independent of parameter vector, pC.

3 Model Selection Criteria

Within this general framework, there are at least three standard approaches to evaluating the
relative adequacy of alternative cluster probability models, designated respectively as the Akaike
Information Criterion (AIC), the Bayes Information Criterion (BIC), and the Normalized Maximum
Likelihood (NML) criterion. The AIC and BIC measures were introduced, respectively, by Akaike
[1] and Schwarz [56]. The NML criterion was first introduced by Shtarkov [58], but was given
its strongest optimality characterization by Rissanen [53].
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Each of these three criteria essentially involves a trade-off between “model fit” and “model
complexity.” Here the measure of model fit is the same in all cases, namely log likelihood. So to
state these criteria explicitly, it is natural to begin with log likelihood. By (17) above, it follows
that for any given cluster scheme, C, the log likelihood of parameter vector, pC, given an observed
location pattern, x, is of the form

L(pC|x) = ∑kC
j=0 nj(x) ln pC(j) + ln aC(x) (19)

But since the second term is independent of pC, it follows at once (by differentiation) that the
maximum-likelihood estimate, p̂C = [ p̂C(j) : j = 1, .., kC], of pC is given for each j = 1, . . . , kC by

p̂C(j) =
nj(x)

n
(20)

Hence, by substituting (20) into (19) we obtain a corresponding estimate of the maximum log-
likelihood value for model PC,

LC(x) = L( p̂C|x) = ∑kC
j=0 nj(x) ln

(nj(x)
n

)
+ ln aC(x) (21)

It is this value that constitutes the common measure of model fit in most model-selection criteria.
The main difficultly with this concept is that (like the R-squared measure of model fit in re-

gression) maximum log-likelihood must by definition increase as more clusters (i.e., parameters)
are introduced.20 Hence the “best” cluster scheme with respect to model fit alone is the com-
pletely disaggregated scheme in which every basic region constitutes its own cluster. To avoid
this obvious “over fitting” problem, each of the model selection criteria above (AIC,BIC,NML)
subtracts a penalty term from (21) which effectively penalizes models with larger numbers of
clusters. Hence each criterion involves a trade-off between model fit and model complexity, and is
of the general form

CritC(x) = LC(x)− PenC(kC, n) (22)

where Pen(kC, n) is a penalty function that increases with kC and possibly with n as well. So in
all cases those models, C, with higher values of the criterion measure, CritC(·), are taken to be
“better” models.21 In terms of (22), AIC is the simplest criterion, and is defined by:

AICC(x) = LC(x)− kC (23)

But in spite of its simplicity, the actual derivation of this measure is quite complex. Akaike
[1] derived this measure as an asymptotic approximation to the Kullback-Leibler [41] distance

20To be more precise, maximum log-likelihood can never decrease as more clusters are added, and will almost
always increase.

21Note that since these criterion values will almost always be negative, it is also very common to reverse signs,
and seek models with mimumum (nonnegative) values of −Crit, rather than maximum values of Crit. In this form,
the negative log-likelihood, −LC(x), is often referred to a lack-of-fit measure. Note also for the AIC and BIC criteria
defined below, we have (for simplicity) dropped the factor 2 which is often present in these measures.
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from PC in (15) to the true distribution P in (13).22 In contrast to AIC, the BIC measure depends
explicitly on sample size, n, and is given by

BICC(x) = LC(x)− kC

2
ln(n) (24)

Again, the derivation is complex and, as the name suggests, is Bayesian in origin. In particular,
Schwarz [56] derived this measure as an asymptotic approximation to Bayes factors, which
constitute the most fundamental Bayesian criterion for model selection.23 It should also be
noted that unlike AIC, this measure focuses directly on comparisons between candidate models
(cluster schemes) rather than comparisons with the “true” model (which need not even exist in
this framework).

The final measure, NML, offers a more intuitive model selection criteria in that it involves
no asymptotic approximations whatsoever. Rather it penalizes models directly in terms of
relative likelihoods. Recall that for any observed location pattern, x, and candidate cluster
schemes, C and C′, the likelihood ratio, P(x| p̂C(x))/P(x| p̂C′(x)), can be viewed as the reflecting
the evidence in favor of C versus C′ given data x. In a similar manner, for any possible location
patterns x and y of size n, one can view the likelihood ratio, P(x| p̂C(x))/P(y| p̂C(y)), as reflecting
the relative evidence for scheme C in pattern x versus pattern y. Hence if one considers all
possible pattern realizations, y ∈ )R(n), of size n [as in expression (12) above], then it is natural
to regard the ratio,

P(x| p̂C(x))
∑y∈)R(n) P(y| p̂C(y))

(25)

as reflecting the relative evidence in pattern x for cluster scheme C compared to all other
possible patterns of size n. To gain further insight into (25), observe that schemes C with
large numbers of clusters will tend to fit any location pattern reasonably well, and hence will
assign high likelihoods, P(y| p̂C(y)), to a large set of patterns, y. So even if pattern x has a
high likelihood, this need not provide strong evidence unless it is high relative to other pattern
likelihoods for scheme C. This is precisely the normalized likelihood approach to model selection.
To put this criterion in the form of expression (22), simply take logs and use the identity,
LC(x) = ln P(x| p̂C(x)) to rewrite (25) as

NMLC(x) = LC(x)− ln
[
∑y∈)R(n) P(y| p̂C(y))

]
(26)

where the penalty term in this case is given by

PenC(kC, n) = ln
[
∑y∈)R(n) P(y| p̂C(y))

]
(27)

and is seen to depend explicitly on the structure of cluster scheme, C, as well as parameters kC

and n.
22The clearest derivation of this results is given in Burnham and Anderson [5, Section 7.2].
23Again, a simple derivation can be found in Burnham and Anderson [5, Section 6.4.1]. It is also worth noting that

in spite of its Bayesian origins, this asymptotic approximation is entirely independent of the prior distributions used
in Bayes models.
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To compare these criteria it is convenient to start with AIC and BIC, which are by far the
most popular for model selection – due in large part to their simplicity and ease of calculation.
While there is no general consensus as to which is better,24 it is clear from (26) and (27) that even
for moderate sample sizes (n ≥ 8) BIC always penalizes larger cluster schemes more heavily
than does AIC. Hence BIC is more parsimonious than AIC in that it tends to favor smaller cluster
schemes. This is especially evident when there are many establishments, n. Since the penalty
term in AIC is independent of sample size, it follows that log likelihood, LC(x), will be the
dominant term for large n, and hence that AIC will suffer from the same “over-fitting” problem
as likelihood itself.

Turning next to NML, it should be clear that while this measure is conceptually the simplest
of the three, its penalty term is by far the most complex. Indeed, the exact calculation of this
penalty term remains largely an open problem.25 Hence the asymptotic approximation of NML
established by Rissanen [52] is used in almost all applications. In our case, this approximation
takes the form

ln
[
∑y∈)R(n) P(y| p̂C(y))

]
=

kC

2
ln(n) +

[
ln

(
π(kC+1)/2

Γ[(kC + 1)/2]

)
− kC

2
ln(2π)

]
+ o(1) (28)

where the first term on the right hand side is precisely the BIC penalty term. Equally important
is the fact that even for small numbers of clusters (kC ≥ 2) the second term is negative, and that
for large n this term is completely dominated in size by the first term (since the second term is
independent of n). Hence it follows from (24) and (26) that for kC ≥ 2, BIC is more parsimonious
than NML (i.e., penalizes large clusters more heavily), but is eventually indistinguishable from
NML as n becomes large.26 Hence from a practical viewpoint it is natural to regard BIC as a
simple and easily computable approximation to the more intuitive NML criteria.

For these reasons, we shall focus entirely on BIC in the applications given here. More
systematic comparisons of these criteria in terms of simulated firm location patterns will be
given in Smith and Mori [62].27

4 A Model of Clusters as Convex Solids

Given the set of basic regions, R, it would in principle seem desirable to treat cluster schemes, C,
as arbitrary partitions of R, and then to identify the best cluster scheme from this class, i.e.,

C∗ = arg max
C

BICC (29)

24However, from a consistency viewpoint, it has been shown by Haughton [30] that for a fixed model size (kC in our
case) BIC will eventually choose the correct model with probability one as n becomes large. But in the present setting,
it is not clear that the assumption of fixed model size is viable: As the number of firms, n, increases it is reasonable to
expect that larger numbers of clusters, kC, will become more likely. Under these conditions, the results of Shibata
[57] for regression variable selection suggest that AIC may actually have better consistency properties than BIC.

25Fortunately for our present multinomial model, a very efficient algorithm for calculating (27) has been developed
by Kontkanen and Myllymäki [38] (see also Kontkanen et al. [39]).

26A sharper comparison will be given in Smith and Mori [62].
27In addition to the three criteria above, the comparison in Smith and Mori [62] will also include standard

likelihood-ratio tests, which constitute meaningful model selection criteria within the present nested-model framework.
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But from a practical viewpoint, the number of possible partitions can be enormous for even
modest numbers of basic regions.28 Moreover, without further restrictions, the components
of such partitions can be quite bizarre, and difficult to interpret as “clusters.” This has long
been recognized by cluster analysts, who have typically proposed that clusters be roughly
circular in shape (as in Besag and Newell [4], Kulldorff and Nagarwalla [43], and Kulldorff [42]).
Hence our first objective is to develop a more flexible class of candidate clusters, designated as
convex solids, which requires approximate convexity on cluster shape. To this end, we begin by
representing our regional system in terms of a discrete network over the set of basic regions on
which these convex solids are defined.

4.1 A Discrete Network Representation of the Regional System

Recall in Section 2 that the relevant location space, Ω, is partitioned into a set of basic regions,
Ωr ⊆ Ω, indexed by R = {1, .., kR}. For our present purposes it is convenient to consider a
larger world region, W, in which Ω resides, so that W −Ω denotes the “rest of the world,” as
shown schematically in Figure 4.1 below. As in Section 2 we identify Ω with the set of regional
labels for R. In this framework, the boundary of the given location space consists of the subset of
basic regions, R, that share boundary points with W −Ω (where “boundary points” correspond
to the edges of each basic region cell in the figure29). This distinguished set of boundary regions
(shown in gray) will play an important role in Section 4.3 below.

Figure 4.1 here

Within this basic continuous geographical framework, we next develop a discrete network
representation of the regional system that contains all relevant information needed for our
cluster model. The nodes of this network, are represented by the set R of basic regions, and
the links are taken to represent pairs of regional “neighbors” in terms of the underlying road
network. Here it is assumed that data is available on minimal travel distances, t(r, s), between
each pair of regions, r, s ∈ R, say between their designated administrative centers.30 These
neighbors should of course include regional pairs (r, s) for which the shortest route from r
to s passes through no regions other than r and s. But for computational convenience, we
choose to approximate this relation by the standard “contiguity” relation that takes each pair
of basic regions sharing some common boundary to be neighbors.31 While this approximation
is reasonable in most cases, there are exceptions. Consider for example the coastal regions, r
and s, joined by a bridge, as shown in Figure 4.2 below. Here it is clear that the shortest route

28In our Japanese data, the number of basic regions is over 3000.
29More generally, a boundary point of Ω is any point ω ∈ Ω for which there exist points outside of Ω that are

arbitrarily close to ω (in Euclidean distance). We suppress topological details here in order to avoid confusion with
similar graph-theoretic topological concepts to be developed below.

30In the application below (Section 7) for the case of Japan, we use road-network distances as travel distances
between municipality offices.

31In the terminology introduced by Cliff and Ord [9] these are known as “queen” contiguities, rather than “rook”
contiguities, where only regions sharing a full boundary face are considered neighbors. Such contiguity relations are
easily calculated in most standard Geographical Information System (GIS) software.
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(path) between regions r and s passes through no other regions, even though r and s share no
common boundary. Hence to maintain a reasonable notion of “closeness” among neighbors, it is
appropriate to include such regional pairs as neighbors. Finally, it is mathematically convenient
to include r as a neighbor of itself (since r is always “closer” to itself than to any other region).

Figure 4.2 here

If this set of neighbors for region r ∈ R is denoted by N(r), then for the region r shown in the
schematic regional system of Figure 4.1, N(r) is seen to consist of eight neighbors other than
r itself. Our only formal requirement is that neighbors be symmetric, i.e., that r ∈ N(s) if and
only if s ∈ N(r). If we now denote the full set of neighbor pairs by

L =
⋃

r∈R

⋃
s∈N(r)

(r, s) ⊆ R2 (30)

then this defines the relevant set of links for our discrete network representation, (R, L), of the
regional system.32 A simple example of such a regional network, (R, L), is shown in Figure
4.3 below. Here R consists of twenty five square regions shown on the left. These regions are
connected by the road network shown by dotted lines on the left, with travel distances on each
of the forty links (to be discussed later) displayed on the right. Hence L in this case consists of
the forty distinct regional pairs associated with each of these links, together with the twenty five
identity pairs (r, r).

Figure 4.3 here

Next we employ travel distances between neighbors to approximate the entire road network
by a shortest-path metric on network (R, L). To do so, we note that minimum travel distances
naturally satisfy the metric conditions (i) t(r, r) = 0, and (ii) t(r, s) = t(s, r), for all neighbor
pairs (r, s). In addition, for every triad of mutual neighbors, r, v, s ∈ R [i.e., with r ∈ N(s) and
v ∈ N(r) ∪ N(s)] these distances must also satisfy the metric triangle-inequality condition (iii)
t(r, s) ≤ t(r, v) + t(v, s).33 Given these metric conditions, one can extend t to a shortest-path
metric on (R, L) in the following way. Let each sequence, ρ = (r1, r2, .., rn), of linked neighbors
[i.e., with (ri, ri+1) ∈ L for i = 1, .., n− 1] be designated as a path in (R, L), and let the set of all
paths in (R, L) be denoted by

P = {ρ = (r1, .., rn) : n > 1, (ri, ri+1) ∈ L, i = 1, .., n− 1} (31)

32Equivalently, the network (R, L) can be viewed as a graph with vertices, R, and edges, L. Note also that both L
and the individual neighborhoods, N(r), depend on travel distance, t. But for notational simplicity we leave this
dependency implicit.

33Since travel from r to s can always be accomplished by taking shortest routes from r to v, and then for v to s, it
must be true that the minimum travel distance, t(r, s) cannot exceed the combined distance, t(r, v) + t(v, s), of these
two trips.
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If for each pair of regions, r, s ∈ R, we denote the subset of all paths from r to s in P by

P(r, s) = {ρ = (r1, .., rn) ∈ P : r1 = r, rn = s} (32)

then to ensure that shortest paths between all pairs of regions are meaningful, we henceforth
assume that that P(r, s) -= ∅ for all r, s ∈ R, i.e., that the given regional network (R, L) is
connected.34 In this context, if the length, l(ρ), of path, ρ = (r1, r2, .., rn), is now taken to be the
sum of travel distances on each of its links, i.e.,

l(ρ) = ∑n−1
i=1 t(ri, ri+1) (33)

then for any pair of regions, r, s ∈ R, the shortest-path distance, d(r, s), from r to s is taken to be
the length of the (possibly nonunique) shortest path from r to s:

d(r, s) = min{l(ρ) : ρ ∈ P(r, s)} (34)

The set of all shortest paths in P(r, s) (also called “geodesics” from r to s ) is then denoted by

Pd(r, s) = {ρ ∈ P(r, s) : l(ρ) = d(r, s)} (35)

The shortest-path distances in (34) are then easily seen to define a metric on R, i.e., to satisfy (i)
d(r, r) = 0, (ii) d(r, s) = d(s, r), and (iii) d(r, s) ≤ d(r, v) + d(v, s) for all r, s, v ∈ R.35 Moreover,
these distances always agree with travel distances between neighbors [i.e., d(r, s) = t(r, s) for
all (r, s) ∈ L], but for non-neighbors, (r, s) /∈ L, it will generally be true that d(r, s) > t(r, s)
(since the shortest route from r to s on the actual road network may not pass through any
intermediate regional centers). Hence these shortest-path distances are only an approximation
to shortest-route distances. The advantage of this approximation for our present purposes is
that for any r and s, the number of paths in P(r, s) is generally much smaller than the number
of routes from r to s on the road network, so that shortest paths in Pd(r, s) are more easily
identified.

4.2 Convexity in Networks

Within this network framework we now return to the question of defining candidate clusters
as spatially coherent groups of basic regions. As mentioned in the Introduction, the standard
approach to this problem is to require that clusters be as close to “circular” as possible. To
broaden this class, we begin by observing that a key property of circular sets in the plane is their
convexity. More generally, a set, S, in the plane is convex if and only if for every pair of points,
s, v ∈ S, the set S also contains the line segment joining s and v. But since lines are shortest paths
with respect to Euclidean distance, an equivalent definition of convexity would be to say that S
contains all shortest paths between points in S. Since shortest paths are equally well defined for

34See however the discussion in Section 7.1.1 regarding major off-shore islands.
35As in footnote 33 above, the triangle inequality follows directly from the additivity of path lengths together with

the fact that any path from r to v to s is necessarily a path from r to s.

13



the network model above, it then follows that we can identify convex sets in the same way.
In particular, a set of basic regions, S, is now said to be d-convex if and only if for every

pair of regions r and s in S, the set of regions on every shortest path from r to s is also in S.36

More formally, if for any path, ρ = (r1, .., rn) ∈ P , we now denote the set of distinct points
in ρ by 〈ρ〉 = {r1, .., rn} ⊆ R, and if the family of all nonempty subsets of R is denoted by
R = {S ⊆ R : S -= ∅}, then

Definition 4.1 (d-Convexity) (i) A subset of basic regions, S ⊆ R, is said to be d-convex iff for all
s, r ∈ S,

ρ ∈ Pd(r, s) ⇒ 〈ρ〉 ⊆ S (36)

(ii) The family of all d-convex sets in R is denoted by Rd.

For example, suppose that in the schematic regional system of Figure 4.4 below it is assumed
that regional squares sharing boundary points (faces or corners) are always neighbors, and that
travel distance, t, between neighbors is simply the Euclidean distance between their centers.
Then with respect to the induced shortest-path distance, d, it is clear that the set, S, on the left
consisting of four black squares is not d-convex, since the gray squares in the middle figure
belong to shortest paths between the black squares. But even if these gray squares are added to
S, the resulting set is still not d-convex because the four white squares remaining in the middle
belong to shortest paths between the gray squares. However, if these four squares are added,
then the resulting set on the right is seen to be d-convex since all squares on every shortest path
between squares in the set are already included.

Figure 4.4 here

This process of adding shortest paths actually yields a well-defined constructive procedure
for “convexifying” a given set, which can be formalized as follows. Define the (r, s)-interval,
I(r, s), to be the set of all points on shortest paths from r to s, i.e.,

I(r, s) =
⋃

ρ∈Pd(r,s)
〈ρ〉 (37)

and let the mapping, I : R→ R, defined for all S ∈ R by

I(S) =
⋃

r,s∈S
I(r, s) (38)

be designated as the interval function generated by d. For notational convenience, we set
I0(S) = S, I1(S) = I(S), and construct the mth-iterate of I recursively by Im(S) = I(Im−1(S)) for

36Our present notion of d-convexity is an instance of the more general notion of geodesic convexity applied
to graphs, and appears to have first been introduced by Soltan [63]. For more explicit minimal-path (geodesic)
treatments of d-convexity, see for example Farber and Jamison [18] and Duchet [14] .
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all m > 1 and S ∈ R. Since {r, s} ⊆ I(r, s) for all r, s ∈ R, it follows from (38) that for each set,
S ∈ R,

S ⊆ I(S) (39)

By the same argument, it follows that for any S ∈ R and r ∈ Im(S) with m > 0, we must have
r ∈ I[Im(S)] = Im+1(S). Hence these interval iterates satisfy the following nesting property for
all S ∈ R,

Im(S) ⊆ Im+1(S), m ≥ 0 (40)

and thus constitute a monotone nondecreasing sequence of sets. It then follows that for any subset,
S ⊆ R, of nodes in the finite network, (R, L), there must be an integer, m (≤ |R− S|),37 such that
Im(S) = Im+1(S).38 The smallest such integer:

m(S) = min{m : Im(S) = Im+1(S)} (41)

is called the geodesic iteration number of set, S.39 With these definitions, it is well known that the
unique smallest d-convex set containing a given set S ∈ R is given by the d-convex hull,40

cd(S) = Im(S)(S) (42)

The mapping, cd : R→ R, defined by (42) is designated as the d-convexification function. With
this definition, it is shown in Proposition A.3 of the Appendix that d-convex sets are equivalently
characterized as the fixed points of this mapping, i.e, a set S ∈ R is d-convex if and only if
cd(S) = S. So the family of all d-convex sets can be equivalently defined as

Rd = {S ∈ R : cd(S) = S} (43)

However, for purposes of constructing d-convex sets, it is more useful to note that they are
equivalently characterized as the fixed points of the interval function, I : R→ R (as shown in
the Corollary to Proposition A.3). Hence Rd can also be written as

Rd = {S ∈ R : I(S) = S} (44)

This in turn implies that a simple constructive algorithm for obtaining cd(S) is to iterate I until
the iteration number, m(S), is found. This procedure is in fact illustrated by Figure 4.4 above,
where m(S) = 2.

But while this particular set, I2(S), does indeed look reasonably compact (and close to
circular), this is not always the case. One simple counterexample is shown in Figure 4.5 below.

37Throughout this paper we denote cardinality of a set A by |A|.
38Since Im(S) -= Im+1(S) implies from (40) that |Im+1(S)− Im(S)| ≥ 1, and since Im(S) ⊆ R for all m, it follows

that this expansion process can involve at most |R− S| steps.
39This concept was first introduced by Harary and Neiminen [29], who showed that without further assumptions,

the bound m(S) ≤ |R− S| cannot be significantly reduced. However, in our present application this iteration number
is typically small.

40For a proof of this assertion, see Proposition A.2 in the Appendix. For further properties of interval functions
and d-convex hulls, see for example Duchet [14].
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Given the regional network, (R, L), in Figure 4.3 above, suppose that S consists of the four
regions shown in black on the left in Figure 4.5. These regions are assumed to be connected by
major highways as shown by the heavy lines on the right in Figure 4.3, with travel distances,
t = 1, on each link. All other road links are assumed to be circuitous secondary roads, as
represented by a travel distance of t = 3 on each link. Here it is clear that the d-convexification,
cd(S), of S is obtained by adding all other regions connected by the ring of major highways (as
shown in gray on the right in Figure 4.5), since shortest paths between such regions are always
on these highways. But since the central region shown in white is not on any of these paths, we
see that cd(S) is a d-convex set with a “hole” in the middle.

Figure 4.5 here

This is very different from convex sets in the plane, which are always “solid.” But in more
general metric spaces this need not be true. Indeed, for the present case of a network (or graph)
structure, the notion of a “hole” itself is not even meaningful. For example, if the central node in
Figure 4.5 were pulled “outside” the coastal regions (leaving all links in tact) then the network,
(R, L), would remain the same. So it is clear that the above notion of a “hole” depends on
additional spatial structure, including the positions of regions relative to one another.

4.3 Convex Solids in Networks

These observations motivate the spatial structure that we now impose in order to characterize
“solid” subsets of R in (R, L). The key idea here is to recall from Figure 4.1 that relative to the
rest of the world, there is a distinguished collection of boundary regions, R, that are essentially
“external” to all subsets of R. If for any subset, S ⊆ R, and boundary region, r ∈ R, it is true
that r /∈ S, then it is reasonable to assert that r is outside of S.41 This set of boundary regions,
R, thus define a natural reference set for distinguishing regions in complement, R − S, of S
that are “inside” or “outside” of S. In particular, we now say that a complementary region,
r ∈ R− S, is inside S if and only if every path joining r to a boundary region in R must pass
through at least one region of S. For example, given the set, S, of black squares in Figure 4.6,
the complementary region r is seen to be inside of S since every path to the boundary, R, must
intersect S. Similarly, the complementary region s is not inside S, since there is a path from s to
R that does not intersect S. To formalize this concept, we now let the set of all paths from any
region, r ∈ R, to R be denoted by

P(r, R) =
⋃

r∈R
P(r, r) (45)

Then for any nonempty set, S ∈ R, the set of all complementary regions inside S is given by,

S0 = {r ∈ R− S : ρ ∈ P(r, R) ⇒ 〈ρ〉 ∩ S -= ∅} (46)

41Even if r is an element of S, it must always be part of the boundary of S. Hence it is still reasonable to assert that
r is “on the outside” of S.
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and is designated as the interior complement of S.

Figure 4.6 here

With this concept, we now say that a set, S ∈ R, is solid if and only if its interior complement
is empty. In addition, we can now solidify a set S by simply adjoining its interior complement.
More formally, we now say that:

Definition 4.2 (Solidity) For any nonempty subset, S ∈ R,
(i) S is said to be solid iff S0 = ∅.
(ii) The set formed by adding S0 to S,

σ(S) = S ∪ S0 (47)

is designated as the solidification of S.
(iii) The family of all solid sets in R is denoted by Rσ.

The justification for the terminology in (ii) is given by Lemma A.1 in the Appendix, where
it is shown that for any set, S ∈ R, the set, σ(S), is solid in the sense of (i) above. The
mapping, σ : R→ R, induced by (47) is designated as the solidification function. As with the
d-convexification function above, it also follows that solid sets are precisely the fixed points of
the solidification function.42

With these definitions, the two properties of d-convexity and solidity are taken to constitute
our desired model of clusters in R. Hence we now combine these properties as follows:

Definition 4.3 (d-Convex Solids) For any nonempty subset, S ∈ R,
(i) If S is both d-convex and solid, then S is designated as a d-convex solid in R.
(ii) The composite image set,

σcd(S) = σ[cd(S)] (48)

is designated as the d-convex solidification of S.

If we now let Rσd denote the family of all d-convex solids in R, then it follows at once from
Definitions 4.1 through 4.3 that

Rσd = Rσ ∩Rd (49)
42See Lemma A.2 in the Appendix.
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4.4 Convex Solidification of Sets

As with (46) and (47) above, expression (48) induces a composite mapping, σcd : R→ R,
designated as the d-convex solidification function. We now examine this function in more detail. To
do so, it is instructive to begin by observing that the order in which these two maps are composed
is critical. In particular it is not true that the d-convexification of a solid set is necessarily a
d-convex solid. This can be illustrated by the example in Figures 4.3 and 4.5 above. If the exterior
squares are taken to define the relevant boundary set, R, in Figure 4.3, then it is clear that the
original set, S , of four black squares is solid, since there are paths from every complementary
region to R that do not intersect S.43 But, the d-convexification, cd(S), of S is precisely the
non-solid set that was used to motivate solidification. So in this case, the composite image,
cd[σ(S)] = cd(S) is not solid (and hence not a d-convex solid).

With this in mind, the key result of this section, established in Theorem A.1 of the Appendix,
is to show that the terminology in Definition 4.3 is justified, i.e., that:

Property 4.4 (d-Convex Solidification) For any set, S ∈ R, the image set, σcd(S), is a d-convex
solid.

Hence if one is enlarging a given cluster, C, by adding a set, S, of new regions, i.e., C → C∪ S,
then to construct a new cluster containing C ∪ S, one need only d-convexify this set by the
algorithm

C ∪ S → I(C ∪ S)

→ I2(C ∪ S)
...

→ cd(C ∪ S) (50)

and then solidify the resulting set by identifying all regions in the interior complement [cd(C ∪
S)]0 of cd(C ∪ S) and forming

σcd(C ∪ S) = cd(C ∪ S) ∪ [cd(C ∪ S)]0 (51)

This algorithm has already been illustrated by the simple case in Figure 4.4, where no solidifica-
tion was required. A somewhat more detailed illustration is given in Figures 4.7 and 4.8 below.
Figure 4.7 exhibits a subsystem of nineteen (hexagonal) basic regions in R, along with the major
road network (solid and dashed lines) connecting the centers of these regions. As in Figure 4.4,
it is assumed that there are primary roads (freeways) and secondary roads. Some regions lie
along freeway corridors, as denoted by solid network links with travel distance (or time) values
of t = 1. Other regions are connected by secondary roads denoted by dashed network links
with higher values of t = 3.

43Note also from this example that the notion of “solidity” by itself is rather weak. However, when applied to
d-convex sets, this turns out to be exaclty what is needed for “filling holes.”
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Figure 4.7 here

A possible sequence of steps in the formation of a composite cluster in this subsystem is
depicted in Figure 4.8. Stage 1 begins at the point where it has been determined that an existing
cluster (d-convex solid), C1, of three regions (shown in black) should be expanded to include
a secondary set, S1, of two regions (also shown in black). Given the shortest-path distances,
d, generated by the t-values in Figure 4.7, it is clear that the d-convexification, cd(C1 ∪ S1), of
this composite set, C1 ∪ S1, is given by adding the gray regions shown in Stage 2. This larger
ring of regions lies entirely on freeway corridors, and thus includes all shortest paths joining its
members (in a manner similar to the ring of regions in Figure 4.5). Hence the two regions in the
center of this ring lie in the internal complement of cd(C1 ∪ S1), and are thus added in Stage 3
to form an new cluster (d-convex solid), C2 = σcd(C1 ∪ S1), containing C1 ∪ S1. In Stage 4 it is
determined that one additional singleton set, S2, should also be added to the existing composite
cluster, C2. Again, Stage 5 shows that all regions on the freeway corridors from S2 to C2 should
be added to form a new d-convexification, cd(C2 ∪ S2). Finally, this d-convex set is again seen to
have two regions in its interior complement, which are thus added to achieve the final d-convex
solid cluster, C3 = σcd(C2 ∪ S2).

Figure 4.8 here

Before proceeding, it is appropriate to note several additional features of this d-convex
solidification procedure that parallel the basic procedure of d-convexification itself. First, as a
parallel to d-convex hulls in (42), it is shown in Theorem A.3 of the Appendix that for any given
set of regions, S, the d-convex solidification, σcd(S), yields a “best d-convex solid approximation”
to S in the sense that:

Property 4.5 (Minimality of d-Convex Solidifications) For any set, S ∈ R, the d-convex solidifi-
cation, σcd(S), of S is the smallest d-convex solid containing S.

Hence this process of cluster formation can be regarded as a smoothing procedure that approxi-
mates each candidate set of high-density regions by a more spatially coherent version of this
set.

Next, as a parallel to the fixed-point property of d-convexifications, it is shown in Theorem
A.4 of the Appendix that the procedure in (50) and (51) always yields a fixed point of the
composite mapping, σcd : R→ R:

Property 4.6 (d-Convex Solid Fixed Points) A set, S ∈ R, is a d-convex solid if and only if σcd(S) =
S.
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Hence the family, Rσd, of all d-convex solids in (49) can equivalently be written as

Rσd = {S ∈ R : σcd(S) = S} (52)

In this form, each new cluster is seen to be a natural “stopping point” of the combined d-
convexification and solidification procedure above.

Finally, it should be noted that while this process of d-convex solidification tends to produce
reasonably cohesive clusters in many cases, there are exceptions. For example, as with many
spatial constructions, this procedure is prone to “edge effects.” In the present case of Japan,
where the coastline is often highly irregular, the d-convex solidification of regional groups near
the coast can in some cases require the annexation of large vacant regions. More generally, when
the entire regional network, (R, L), is itself highly irregular in space, the basic notion of d-convex
solids in (R, L) can become somewhat problematic.

5 A Cluster-Detection Procedure

Given the cluster model developed above, the set of relevant cluster schemes for regional
network (R, L) can now be formalized as follows:

Definition 5.1 (Cluster Schemes) A finite partition, C = (R0, C1, . . . , CkC), of R is designated as a
cluster scheme for (R, L) iff

(i) [d-convex solidity] Ci ∈ Rσd for all i = 1, .., kC ,
(ii) [disjointness] Ci ∩ Cj = ∅ for all i, j with 1 ≤ i < j.

Let C(R, L) denote the class of admissible cluster schemes for (R, L).

Below, we develop our search procedure to identify the best cluster scheme. Before develop-
ing the details of this procedure, however, it is useful to begin with an overview.

For any given industry, we start with the single best cluster consisting of a single basic region.
Then at each subsequent step, we decide whether we should (i) stay with the current cluster
scheme; (ii) expand one of the existing clusters; or (iii) start a new cluster. In alternative (ii), we
compare potential expansions of all the existing clusters. Such expansions involve annexations
of nearby regions which are then further enlarged to maintain d-convex solidity. A new cluster
in alternative (iii) consists of the best basic region in the current set of residual regions, R0. At
each step, the best option among these three is selected, and the system of clusters continues
growing until option (i) is evaluated as the best among the three.

Before completing the description of this procedure (in Section 5.2), we specify the details of
option (ii) above in the next section.

5.1 Operational Rules for Cluster Expansion

At each step of the search procedure outlined above, option (ii) involves the expansion of an
existing cluster by first annexing certain nearby regions and then further enlarging this set to
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maintain “spatial cohesiveness.” In view of the above definition of a cluster scheme, this requires
that such annexations be enlarged so as to maintain both d-convex solidity and disjointness with
respect to other existing clusters. This procedure can sometimes require the annexation of other
existing clusters, as illustrated by Figure 5.1 below. Given the subsystem of a regional network
shown in Figure 4.7 above, suppose that the current cluster scheme includes the clusters C1 and
C2 shown in Stage 1 of Figure 5.1. Suppose also that it has been determined that the next step of
the search procedure should be an expansion of cluster C1 to include the set Q shown in Stage 1.
The composite cluster, σcd(C1 ∪Q), resulting from d-convex solidification of C1 ∪Q, includes
C1 ∪Q together with the gray region shown in Stage 2. But since cluster C2 is seen to overlap
this composite cluster, it is clear that disjointness between clusters can only be maintained by
annexing cluster C2 as well. This results in the larger composite cluster, σcd[σcd(C1 ∪Q) ∪ C2],
shown by the combined black and gray region of Stage 3 in Figure 5.1.

Figure 5.1 here

More generally, if some current cluster, Cj ∈ C = (R0, C1, . . . , CkC), is to be expanded by
annexing a set Q ⊆ R0, then the d-convex solidification, σCd(Cj ∪Q), must be further enlarged
to include all clusters, Ci ∈ C, intersecting σCd(Cj ∪Q). For any given current cluster scheme
C = (R0, C1, . . . , CkC), this procedure can be formalized in terms of the following operator,
UC : R → R, defined for all S ∈ R by

UC(S) = σcd(S) ∪ {Ci ∈ C : Ci ∩ σcd(S) -= ∅} (53)

where the relevant sets, S, of interest will be of the form, S = Cj ∪Q, with Cj ∈ C and Q ⊆ R0.
Observe next this single operation is not sufficient, since the resulting image sets, UC(S), may
fail to be d-convex solids. Moreover, the d-convex solidification, σcd[UC(S)], may again fail to
be disjoint from other existing clusters in C. So it should be clear that what is needed here is an
iteration of this operator until both conditions are met. To formalize such iterations, we proceed
as in Section 4.2 above by letting the iterates of UC be defined for each S ∈ R by

U0
C(S) = S, U1

C(S) = UC(S), and Um
C (S) = UC[Um−1

C (S)] for all m > 1 (54)

Since it is clear by definition that

Um
C (S) ⊆ Um+1

C (S), m ≥ 0 (55)

this yields a monotone nondecreasing sequence of sets in R. Hence by the same arguments
leading to (41) above, it again follows that there must be an integer, m (≤ |R− S|), such that
Um

C (S) = Um+1
C (S). As a parallel to (41) we may thus designate the smallest integer,

m(S|C) = min{m : Um
C (S) = Um+1

C (S)} (56)
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satisfying this condition as the expansion iteration number of S given C. Finally, if (as a parallel to
d-convex hulls) we now designate the resulting fixed point of UC,

uC(S) = Um(S|C)
C (S) (57)

as the C-compatible expansion of S, then it is this set that satisfies the expansion properties we
need. First observe that the fixed point property, UC[uC(S)] = uC(S), of this expanded set
implies at once from (53) that for all clusters Ci ∈ C,

Ci ∩ uC(S) -= ∅ ⇒ Ci ⊆ uC(S) (58)

and hence that uC(S) is always disjoint with any clusters, Ci ∈ C, that have not already been
absorbed into uC(S). Moreover, this in turn implies from (53) that uC(S) = σcd[uC(S)], and
hence that uC(S) must be a d-convex solid.

5.2 Cluster-Detection Procedure

In terms of Definition 5.1, the objective of this procedure, which we now designate as the
cluster-detection procedure, is to find a cluster scheme, C∗ ∈ C(R, L), satisfying,

C∗ = arg max
C∈C(R,L)

BICC (59)

From a practical viewpoint, it should be stressed that the following search procedure will only
guarantee that the cluster scheme found is a “local maximum” of (59) with respect to the class of
admissible “perturbations” in C(R, L) defined by the procedure itself.

To specify these perturbations in more detail, we begin with the following notational con-
ventions. At each stage, t = 0, 1, 2, ..., of this procedure, let Ct = (Rt,0, Ct,1, . . . , Ct,kCt

), denote the
current cluster scheme in C(R, L). The procedure then starts at stage t = 0 with the null cluster
scheme

C0 = {R0,0} = {R} (60)

which contains no clusters. By expressions (7), (21) and (24), it then follows that the correspond-
ing initial value of the objective function in (59) must be

BICC0 = L0 ≡ ln ∑r∈R ar (61)

Given data, [Ct , BICCt ], at stage t, we then seek the modification (perturbation), Ct+1, of Ct in
C(R, L) which yields the highest value of BICCt+1 . As outlined above, these modifications are of
two types: (i) the formation of a new cluster in scheme Ct, or (ii) the expansion of an existing
cluster in scheme Ct. We now develop each of these steps in turn.

22



5.2.1 New Cluster Formation

Given the current cluster scheme, Ct = (Rt,0, Ct,1, . . . , Ct,kCt
), at stage t, one can start a new

cluster, {r}, by choosing some residual region, r ∈ Rt,0, which is disjoint with all existing
clusters. Hence the set of feasible choices for r is given by

R0(Ct) = Rt,0 (62)

For each r ∈ R0(Ct), the corresponding expanded cluster scheme is then given by

C0
t (r) =

(
R0

t,0(r), C0
t,1(r), C0

t,2 , . . . , C0
t,kC0

t (r)

)
(63)

where

kC0
t (r) = kCt + 1 (64)

C0
t,1(r) = {r} (65)

C0
t,i = Ct,i−1 for i = 2, . . . , kC0

t (r), (66)

and
R0

t,0(r) = Rt,0 − {r} (67)

The superscript “0” in cluster scheme, C0
t (r), indicates that a change is made to the residual

region, Rt,0, rather than to one of the clusters in Ct. Note that since {r} is automatically a
d-convex solid, and since r ∈ R0(Ct) guarantees that disjointness of all clusters is maintained, it
follows that C0

t (r) ∈ C(R, L), and hence that C0
t (r) is an admissible modification of Ct.

The best candidate for new cluster formation is of course the region, r∗0 ∈ R0(Ct), that yields
the highest value of the objective function, i.e., for which

r∗0 = arg max
r∈R0(Ct)

BICC0
t (r) (68)

For purposes of comparison with other possible modifications of Ct, we now set

C0
t ≡ C0

t (r∗0) (69)

5.2.2 Expansion of an Existing Cluster

Next, we consider a potential expansion of each cluster, Ct,j ∈ Ct, by annexing a set Q of nearby
regions in Rt,0. While the basic mechanics of this expansion procedure were developed in Section
5.1 above, the specific choice of Q was not. Recall that such annexations can potentially result
in large expansions of Ct,j, given the need to preserve both d-convex solidity and disjointness.
Hence to maintain reasonably “small increments” in our search process, it is appropriate to
restrict initial annexations to single regions whenever possible. Of course, when such regions
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are already part of another cluster, it will be necessary to annex the whole cluster in order to
preserve disjointness. But to motivate our basic approach, it is convenient to start by considering
the annexation of a single region not in any other cluster, i.e., to set Q = {r} for some r ∈ Rt,0.
Here it would seem natural to consider only regions in the immediate neighborhood of Ct,j.
However, this often turns out to be too restrictive, since there may exist much better choices that
are not direct neighbors of Ct,j.

In fact, it might seem more reasonable to consider all possible regions in R− Ct,j, and simply
let our model-selection criterion determine the best choice. But if one allows choices of r “far
away” from Ct,j, then our d-convex solidity and disjointness criteria can lead to the formation of
very large clusters that violate any notion of spatial cohesiveness.44 So it is convenient at this
point to introduce a new set of neighborhoods which strike a compromise between these two
extremes. To do so, we first extend shortest-path distances, d, between points to corresponding
distances between points and sets by letting

d(r, Q) = min {d(r, s) : s ∈ Q} (70)

for r ∈ R and Q ∈ R. Since d is a metric on R, it is well known that for each set, Q ∈ R, (70)
yields a well-defined distance function that preserves the usual continuity properties of d on
R.45 Hence one can define well-behaved neighborhoods of Q in terms of this distance function
as follows. For each Q ∈ R, the δ-neighborhood of Q in R is defined to be

δ(Q) = {r ∈ R : d(r, Q) < δ} (71)

Hence the appropriate choices for expansions of Ct,j are taken to be regions in δ(Ct,j) for some
pre-specified choice of parameter δ.46

As mentioned above, there are two cases that need to be distinguished here. First suppose
that for some given cluster Ct,j we consider the annexation of a region not in any other cluster,
i.e., a region r ∈ Rt,0 ∩ δ(Ct,j). Then follows from expression (57) that the corresponding
Ct-compatible expansion of Ct,j ∪ {r} is given by

Cj
t,1(r) = uCt(Ct,j ∪ {r}). (72)

44This is particularly evident in our application below, where an unconstrained choice of regions can in some
cases lead to the inclusion of regions r separated from Ct,j by undeveloped mountain regions, or even the inland
sea of Japan. More generally, the inclusion of large less developed regions of the nation can lead to an exaggerated
depiction of agglomeration involving areas that are mostly devoid of establishments. It should be noted that this is
in part due to our use of economic area (rather than total area), which effectively ignores such undeveloped land
when expanding clusters.

45See for example in Berge [3, Chapter 5].
46In the application below, the value used was δ = 36.0 km, which was chosen so that any single expansion of a

cluster cannot include large sections without economic area (e.g., inland sea and lakes). This particular neighborhood
size covers about 90% of the shortest-path distances between neighboring jurisdictional offices. It is also worth
noting from a practical viewpoint that this use of uniform δ-neighborhoods has the added advantage of controlling
(at least in part) for size differences among basic regions.
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Thus the cluster scheme, Cj
t(r), resulting from this expansion has the form

Cj
t(r) =

(
Rj

t,0(r), Cj
t,1(r), Cj

t,2(r) , . . . , Cj
t,k

Cj
t(r)

(r)

)
(73)

where, by expression (53), the set of all other clusters in Cj
t(r) is given by

{
Cj

t,2(r), . . . , Cj
t,k

Cj
t(r)

(r)

}
=

{
Ct,i ∈ Ct : Ct,i ∩ Cj

t,1(r) = ∅
}

(74)

and where the corresponding residual region has the form:

Rj
t,0(r) = R−

⋃k
Cj

t(r)

i=1 Cj
t,i(r) (75)

As above, if r∗j now denotes the region in Rt,0 ∩ δ(Ct,j) that yields the highest value of the
objective function, i.e., for which

r∗j = arg max
r∈Rt,0∩δ(Ct,j)

BICCj
t(r) (76)

then the best cluster expansion for Ct,j in Ct starting with regions in Rt,0 ∩ δ(Ct,j) is given by
Cj

t(r∗j ).

Next recall that it is possible that another cluster, Ct,i in Ct, intersects δ(Ct,j) so that the
annexation of Ct,i is a possible expansion of Ct,j. For this case it is necessary to annex the entire
cluster Ct,i in order to preserve disjointness. So if we now define the index set,

Ij(Ct) = {i -= j : Ct,i ∩ δ(Ct,j) -= ∅} (77)

[not to be confused with interval sets I(·) in Section 4.2 above] and for each i ∈ Ij(Cj) replace
(72) with the Ct-compatible expansion

Cj
t,1(i) = uCt(Ct,j ∪ Ct,i). (78)

then as a parallel to (73) through (75), the cluster scheme, Cj
t(i), resulting from this expansion

now has the form

Cj
t(i) =

(
Rj

t,0(i), Cj
t,1(i), Cj

t,2(i) , . . . , Cj
t,k

Cj
t(i)

(i)

)
(79)

with the set of all other clusters in Cj
t(i) given by

{
Cj

t,2(i), . . . , Cj
t,k

Cj
t(i)

(i)

}
=

{
Ct,i ∈ Ct : Ct,i ∩ Cj

t,1(i) = ∅
}

(80)
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and with corresponding residual region:

Rj
t,0(i) = R−

⋃k
Cj

t(i)

k=1 Cj
t,k(i) (81)

If i∗j now denotes the cluster in Ij(Ct) that yields the highest value of the objective function, i.e.,
for which

i∗j = arg max
i∈Ij(Ct)

BICCj
t(i) (82)

then the best cluster expansion for Ct,j in Ct is given by Cj
t(i∗j ). Hence the best cluster expansion,

Cj
t, of Ct starting with cluster Ct,j is given by

Cj
t ≡ arg max

C∈{Cj
t(r∗j ),Cj

t(i∗j )}
BICC , j = 1, .., kCt (83)

5.2.3 Revision of the Cluster Scheme

Finally, given these candidate modifications, C0
t , C1

t , . . . , CkCt
t , of Ct in C(R, L) [as defined by (69)

together with (83)], let C∗t be the best candidate, as defined by

C∗t = arg max
C∈{Cj

t :j=0,1,..,kCt}
BICC (84)

There are then two possibilities left to consider: If BICC∗t > BICCt , then set

[Ct+1, BICCt+1 ] = [C∗t , BICC∗t ] (85)

and proceed to stage t + 1. On the other hand, if BICC∗t ≤ BICCt , then no (local) improvement
can be made, and the cluster-detection procedure terminates with the (locally) optimal cluster
scheme:

C∗ = C∗t (86)

Finally, it is of interest to note that this cluster-detection procedure is roughly analogous to
“mixed forward search” procedure in stepwise regression, where in the present case we add new
clusters or merge existing ones until some locally optimal stopping point is found. With this
analogy in mind, it is in principle possible to consider “mixed backward search” procedures as
well. For example, one could start with a maximal number of singleton clusters, and proceed by
either eliminating or merging clusters until a stopping point is reached. Some experiments with
this approach in our application below produced results similar to the present search procedure,
but proved to be far more computationally demanding.

5.3 A Test of Spurious Clustering

While the cluster-detection procedure developed above will always find a (locally) best cluster
scheme, C∗, with respect to the BIC criterion used, there is still a statistical question of whether
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such clustering could simply have occurred by chance. Hence one can ask how the optimal
criterion value, BICC∗ , obtained compares with typical values obtainable by applying the same
cluster-detection procedure to randomly generated spatial data. This can be formalized in terms
of the hypothesis of complete spatial randomness (see footnote 18), which in this present context
asserts that the probability, pr, that any given establishment will locate in region, r ∈ R, is
proportional to the areal size, ar, of that region, i.e., that

pr =
ar

∑r∈R aj
(87)

While the sampling distribution of BICC under this hypothesis is complex, it can easily be
estimated by Monte Carlo simulation. More precisely, for any given industrial location pattern
of n establishments, one can use (87) to generate, say, 1000 random location patterns of n
establishments, and apply the cluster-detection procedure to each pattern. This will yield 1000
values of BICC, say BIC1, . . . , BIC1000. If the value for the actual cluster scheme, BIC0 = BICC∗ ,
is say bigger than all but five of these in the ordering of values, {BIC1, . . . , BIC1000}, then the
chance, p, of getting a value as large as this (under the hypothesis that BIC0 is coming from the
same population of random patterns) is, p = (5 + 1)/(1000 + 1) ∼ 0.005. This would indicate
very “significant clustering.” On the other hand, if BIC0 were only bigger than say 800 of these
values, then the p-value, p = (200 + 1)/(1000 + 1) ∼ 0.20, would suggest that the observed
cluster scheme, C∗, is not sufficiently significant to warrant further investigation (as discussed
further in Section 7.2 below).

6 Measures for Classifying Agglomeration Patterns

As emphasized in the Introduction, the main strength of our cluster detection approach is to
indentify cluster schemes in a manner that preserves the two-dimensional spatial aspects of
agglomerations. By so doing, it is possible to consider the spatial patterns of industrial agglom-
erations themselves. As we will see for the case of Japanese manufacturing industries in Section
7 below, agglomerations of given industries often tend to concentrate within specific subregions
of the nation, i.e., are themselves “spatially contained.” Hence our first task below is to con-
struct an operational definition of such containments, designated as the essential containment
(e-containment) for each industry. Our next task is to construct a meaure of the relative size
of these e-containments, designated as the global extent of the industry. Industries with small
global extents can be regarded as relatively “confined,” and those with large global extents
can be regarded as relatively “dispersed.” Finally, industries can also differ with respect to
their patterns of agglomeration within these e-containments. Some patterns may be “dense”
and others “sparse.” To compare such patterns, we construct a second measure of the local
density of agglomerations within each e-containment. This will yield a useful classification of ag-
glomeration patterns ranging from maximally concentrated patterns with agglomerations densely
distributed in confined e-containments to minimally concentrated patterns with agglomerations
sparsely distributed in dispersed e-containments.
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6.1 Essential Containment

To make these ideas precise, we start by defining the essential containment for a given industry,
where it is assumed that an optimal cluster scheme, C, has been indentified for the industry. The
main idea is to identify an appropriate subset of “most significant” clusters in C, and then take
essential containment to be the convex solidification of this set of basic regions in R. To identify a
set of “most significant” clusters, we proceed recursively by successively adding those clusters
in C with maximum incremental contributions to BIC.47 This recursion starts with the “empty”
cluster scheme represented by C0 ≡ {R0,0} where R0,0 denotes the full set of regions, R. If the set
of (non-residual) clusters in C is denoted by C+ ≡ C− {R0}, then we next consider each possible
“one-cluster” scheme created by choosing a cluster, C ∈ C+, and forming C0(C) = {R0,0(C), C},
with R0,0(C) = R0,0 − C. The “most significant” of these, denoted by C1 = {R1,0(C), C1,1}, is
then taken to be the cluster scheme with the maximum BIC value (defined below). If this is called
stage t = 1, and if the most significant cluster scheme found at each stage t ≥ 1 is denoted by

Ct ≡ {Rt,0, Ct,1, . . . , Ct,t} (88)

then the recursive construction of these schemes can be defined more precisely as follows.
For each t ≥ 1 let C+

t−1 denote the (non-residual) clusters in Ct−1 (so that for t = 1 we have
C+

t−1 = C+
0 = ∅), and for each cluster not yet included in Ct−1 , i.e., each C ∈ C+ − C+

t−1, let
Ct−1(C) be defined by,

Ct−1(C) = (Rt−1,0(C), Ct−1,1, . . . , Ct−1,t−1, C) (89)

where
Rt−1,0(C) = Rt−1,0 − C (90)

Then the most significant additional cluster, Ct(≡ Ct,t) (∈ C+ −C+
t−1) , at stage t ≥ 1 is defined by

Ct ≡ arg max
C∈C+−C+

t−1

L
(

p̂Ct−1(C)|Ct−1

)
(91)

where L
(

p̂Ct−1(C)|Ct−1

)
is the estimated maximum log-likelihood value for model pCt−1(C) given [in

a manner paralleling expressions (18) through (21)] by

L
(

p̂Ct−1(C)|Ct−1

)
= ∑

C′∈Ct−1(C)
nC′ ln

(nC′

n

)
+ ∑

C′∈Ct−1(C)
∑

r∈C′
nr ln

(
ar

aC′

)
(92)

47At this point it should be emphasized that the following procedure for identifying “significant clusters” in C is
different from the recursive scheme used to indentify C in Section 5.2 above. In particular, the only candidate clusters
now being considered are those in C itself.
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with

nC′ ≡ ∑
r∈C′

nr (93)

n ≡ ∑
r∈R

nr (94)

Thus, at each stage t ≥ 1 the likelihood-maximizing cluster, Ct, is removed from the residual
region, Rt−1,0, and added to the set of significant clusters in Ct−1. The resulting BIC value at
each stage t is then given by

BICCt = LCt −
t
2

ln(n) (95)

where [as a parallel to (92)] we now have

LCt = ∑
C∈Ct

nC ln
(nC

n

)
+ ∑

C∈Ct

∑
r∈C

nr ln
(

ar

aC

)
(96)

Finally, the incremental contribution of each new cluster, Ct, to BIC is given by the increment for
its associated cluster scheme, Ct, as follows:

)BICt ≡ BICCt − BICCt−1 (97)

To identify the relevant set of “significant clusters” in C, it would thus seem most natural to
simply add clusters as long as the increments are positive. But from the original construction
of C it should be clear that these increments may often be positive for all t = 1, .., kC. Hence
our first requirement for significance of cluster Ct is that it yield a “substantial” increment
to BIC. One hypothetical illustration with kC = 7 is given in Figure 6.1(a) below, where each
successive increment to BIC is seen to be positive [and where the values on the horizontal axis
can be ignored for the moment]. By the nature of our recursive procedure, it can be expected
that the first increment (t = 1) will be the largest, and that successive increments will continue
to diminish in size.48 In the example shown, it appears that the increments for t = 2, 3 are
comparable to t = 1, but that there is a noticeable decrease at t = 4 and beyond. Hence
one simple criteria for a “substantial increment,” )BICt, would be to require that it be at
least some specified fraction, µ, of )BIC1.49 In terms of this criterion, the procedure would
stop at the first stage, te, where additional increments fail to satisfy this condition, i.e., where
)BICte+1 < µ) BIC1.

Figure 6.1 here

But while this substantial-increment condition provides a reasonable criterion for identifying
the set of most significant clusters with respect to BIC, such clusters may in some cases represent

48This situation is somewhat analogous to successive increments in adjusted R-square resulting from a foward
stepwise regression procedure.

49The values µ = .03 and µ = .05 were selected for our application in Section 7.3 below..
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only a small subset of all clusters in C. More importantly, they may represent only a small portion
of all establishments in such clusters. Hence, if the “essential containment” for the industry is to
include a substantial portion of these agglomeration establishments, then it is desirable to impose
an additional condition on the stopping rule above. In particular, if the share of agglomeration
establishments in each cluster scheme, Ct, of expression (88) is denoted by

s (Ct) =
∑C∈C+

t
nC

∑C∈C+ nC
(98)

then it is reasonable to require that the above recursive procedure continue until this share
has reached some specified fraction, ζ, of all agglomeration establishments.50 If the desired
stopping point is again denoted by te ∈ {1, ..,kC}, then this modified stopping rule can be
formalized as follows: (i) if kC = 1, set te = 1; (ii) if kC ≥ 2, and if for the given pair of threshold
fractions, µ, ζ ∈ (0, 1), there is at least one stage, t ∈{2, 3, . . . , kC − 1} satisfying the following
two conditions,

)BICt+1 < µ) BIC1 [substantial-increment condition] (99)

s (Ct) ≥ ζ [substantial-establishments condition] (100)

then choose te to be the smallest of these; and otherwise, (iii) set te = kC. This stopping rule is
again illustrated by Figure 6.1 above where hypothetical shares of agglomeration establishments,
s (Ct), are shown at each stage, t = 1, .., kC(= 7), on the horizontal axis. Hence if ζ = .80 and if
)BICt/) BIC1 first falls below the specified value of µ at t = 4 in Figure 6.1(a), then te = 3.
However, if the shares if agglomeration establishments are as shown in Figure 6.1(b) [which
uses the same BIC increments as Figure 6.1(a)], then the procedure will not terminate until stage
te = 5.

If the set of essential clusters in C is now defined to be Ce = C+
te , then the desired essential

containment (e-containment) for an industry with cluster scheme C is taken to be the smallest
solid d-convex set in R containing Ce, i.e., the d-convex solidification of Ce:

ec(C) = σcd (Ce) (101)

These concepts can be illustrated by the stylized location patterns in Figure 6.2 below. For
example, if the relevant cluster scheme, C, for a given industry corresponds to the five clusters
(shown in black) in Figure 6.2(a), and if the subset of essential clusters, Ce, consists of the three
largest clusters on the left, then the essential containment, ec(C), for this industry is given by
the filled square containing these three clusters. Similar interpretations can be given to the filled
rectangles of Figures 6.2(b,c,d).

Figure 6.2 here

50Note that this condition could also be formulated in terms of agglomeration employment.
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6.2 Global Extent and Local Density

With these definitions we next seek to compare e-containments for different industries in terms of
their relative sizes. To do so, it is convenient to employ total geographic area rather than economic
area (used for modeling the potential locations of individual establishments as discussed in
Sections 2 and 7.1.2 above).51 Hence if we now let A to denote geographic area, then the economic
areas for basic regions (ar), clusters (aC), and the entire nation (a), are here replaced by Ar, AC,
and A, respectively. With these conventions, the global extent (GE) of an industry is now taken
to be simply the total area of its e-containment, ec(C), relative to that of the entire nation, i.e.,

GE(C) =
∑r∈ec(C) Ar

A
∈ (0, 1] (102)

Industries with small global extents (say, GE < 0.50) might be classified as “globally confined”
industries [illustrated by the industries in Figures 6.2(a,c)]. Similarly, industries with large global
extents (say, GE > 0.50) might be classified as “globally dispersed” industries [illustrated by
those in Figures 6.2(b,d)].

Finally, we consider the relative denseness of essential clusters within the e-containment
for each industry. As a parallel to global extent, we now define the local density (LD) of a
given industry to be simply the total area of its essential clusters, Ce, relative to that of its
e-containment, ec(C), i.e.,

LD(C) = ∑r∈Ce Ar

∑r∈ec(C) Ar
∈ (0, 1] (103)

Industries with a high density of agglomerations in their e-containments (say, LD > 0.50)
might be classified as “locally dense” industries [illustrated by the industries in Figures 6.2(a,b)].
Similarly, industries with a low density of agglomerations in their e-containments (say, LD <

0.50) might be classified as “locally sparse” industries [illustrated by those in Figures 6.2(c,d)].
More generally, Figure 6.2 is intended to summarize the main features of this classification

system. First, the concept of essential containment is designed to capture the region of most signif-
icant agglomeration for an industry, while at the same time including most of its establishments.
This is illustrated in each of the figures by filled regions containing the largest agglomerations
for the cluster schemes shown. In each case, the “outlier” agglomerations excluded from this
region are implicitly assumed to be less significant, both in terms of their contributions to BIC
and their overall share of establishments for the industry.

In addition, Figure 6.2 illustrates the four possible extreme cases in this classification system.
As already mentioned, maximal spatial concentration in this system corresponds to the case of
globally confined and locally dense agglomeration patterns, such as Figure 6.2(a). The opposite
extreme of minimal spatial concentration is characterized most naturally by globally dispersed and
locally sparse agglomeration patterns, such as Figure 6.2(d).52 The two “intermediate” extremes

51The main motivation for geographic area in the present context is that it tends to be a more accurate reflection of
“spatial extent” than the more limited notion of economic area.

52However, it should be borne in mind that “minimal spatial concentration” in our present framework is not the
same as “complete spatial randomness.” In particular, since all spatial patterns are assumed to have passed the
“spurious cluster” test developed above, even globally dispersed and locally sparse patterns must contain some
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are somewhat more difficult to interpret, but do indeed occur (as will be seen in Section 7.3
below). Here it should be noted that these intermediate extremes do have implications for the
overall size of the industries involved. In particular, only industries with many establishments
can exhibit dense patterns of significant agglomerations over large areas [such as Figure 6.2(b)],
and only industries with small numbers of establishments can exhibit sparse patterns of ag-
glomerations in confined areas [such as Figure 6.2(c)]. Additional features and examples of this
classification system will be developed in Section 7.3 below.

6.3 Comparison with A Scalar Measure

As stressed in the Introduction, it is not possible to characterize spatial patterns by any single
numerical index. So while the above classification scheme in terms of paired measures (GE
and LD) is still necessarily limited, it does provide a richer picture than any single summary
measures of the “degree of aggomeration.” This can be illustrated by comparing the present
classification scheme with one such measure, namely the D-index developed in Mori, Nishikimi
and Smith [47].53 The D-index for a given industry i is defined as the Kullback-Leibler [41]
divergence of its establishment location probability distribution, Pi ≡ [Pi(r) : r ∈ R], [as in
espression (2)] from purely random establishment locations. Here the latter is characterized
by the uniform probability distribution, P0 ≡ [P0(r) : r ∈ R], with P0(r) = ar/ ∑r∈R aj [as
in expression (87)]. By using the sample estimate of Pi, namely, P̂i = [P̂i(r) : r ∈ R] with
P̂i(r) ≡ nr/n [as in expression (14)], a corresponding estimate of this D-index is given by

D(P̂i|P0) = ∑
r∈R

P̂i(r) ln

(
P̂i(r)
P0(r)

)
. (104)

The intuition behind this particular index is simply that Kullback-Leibler divergence provides
a natural measure of distance between probability distributions. So by taking uniformity to
represent the complete absence of clustering, it is reasonable to assume that those distributions
“more distant” from the uniform distribution should involve more clustering.

But the difficulty with this measure (or in fact any continuous measure of distance between
distributions) is that many distributions must necessarily be equidistant from any given distri-
bution. So with respect to the uniform distribution particular, there are a multitude of different
distributions with identical D values. As one illustration, consider the simple variant of Figure
4.5 above, involving two clustering patterns for two different industries depicted in Figure
6.3 below (say industry i on the left and industry j on the right) within the same (square-grid)
system, R, of 144 basic regions.

Figure 6.3 here

significant degree of local clustering.
53Other scalar indices could be used here, such as the well known index of Ellison and Glaeser [17]. But in fact,

such indices tend to be highly correlated with D (refer to Mori et al. [47, Sec.D]). So, the arguments in this section
would remain essentially the same.
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Here it also assumed for simplicity that within each industry, the number of establishments
(or workers), nr, is a positive constant for all black regions, r , and is zero for all other regions.
Under these assumptions it should be clear that both of these industrial agglomeration patterns
must necessarily exhibit the same D value. In particular, each involves 16 black regions, r, with
P̂i(r) ≡ P̂j(r) ≡ 1/16, so that the distributions, P̂i and P̂j, differ only by the labeling of regions.
Hence in terms of the D-index it must be concluded that the “degrees of agglomeration” within
industries i and j are identical.

But it should be clear by inspection that these two agglomeration patterns are in fact quite
different. In particular, industry i is seen to be highly concentrated in one large cluster involving
the 16 central regions of R. Here it is possible that i may enjoy large scale economies in
production, and hence may serve world markets as well as the local market in R. Moreover, since
the e-containment for industry i is seen to be identical with this single large cluster, the spatial
concentration of i is readily captured by our paired classification scheme as a “globally confined”
and “locally dense” pattern of agglomeration (with GE = 16/144 4 .5 and LD = 16/16 5 .5).

Alternatively, industry j is seen to be much more dispersed, with four separate clusters
apparently each serving a local market within R. Hence, noting that the e-containment for j
now includes the entire gray area in the figure, we see that this agglomeration pattern for j
is distinguished from that of i as being “globally dispersed” and “locally sparse” (with GE =
100/144 5 .5 and LD = 16/100 4 .5).

Finally it should be noted that while the above illustration is rather extreme by design,
such failures of single measures to distinguish substantially different pattern types do occur
in practice. For example in the application below, this D-index fails to distinguish between
many different concentration/dispersion patterns. One example is provided by the “soft drinks
and carbonated water” industry and “plastic compounds and reclaimed plastics” industry
discussed in Sections 7.4.1 and 7.4.4, respectively. These two industries have respective D-values
of 1.95 and 2.06, and thus are very close in terms of this summary measure of “degree of
agglomeration.”54 However, their actual spatial patterns of clusters are quite different, as shown
in Figures 7.5 and 7.13, respectively.

7 Application

In this section, we present some preliminary results from the application of our cluster-detection
approach to Japanese manufacturing industries. We begin with a description of the data in
Section 7.1, and then present the results of spurious-cluster tests for this application in Section
7.2 (all subsequent analyses focus on industries with non-spurious clusters). The classification
scheme developed in Section 7.3 is then given an operational form for the present application.
Finally, this classification scheme is illustrated by means of a number of selected examples in
Section 7.4.

54The term “close” is here interpreted relative to the range of the sampling distribution of D values which, for the
Japanese industries studied in Section 7, is from 0.471 to 5.984.
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7.1 Data

The data required for this application includes both quantitative descriptions of the relevant
system of regions and the class of industries to be studied. We consider each of these data types
in turn.

7.1.1 Basic Regions

The relevant notion of a “basic region” for this analysis is taken to be the shi-ku-cho-son (SKCS),
which is a municipality category equivalent to a city-ward-town-village. The specific SKCS
boundaries are taken to be those of October 1, 2001.55 While there are a total of 3363 SKCS’s
in Japan, we only consider 3207 of these (as shown in Figure 7.1), namely those that are geo-
graphically connected to the major islands of Japan (Honshu, Hokkaido, Kyushu and Shikoku) via a road
network. This avoids the need for ad-hoc assumptions regarding the effective distance between
non-connected regions. The only exception here is Hokkaido, which is one of the four major
islands (refer to Figure 7.1), but is disconnected from the road network covering the other three.
But given its size (217 SKCS’s), as seen Figure 7.1, we still include Hokkaido as a potential
location for establishments. Hence for this exceptional case, we adopt the following conventions.
First, while we allow establishments to locate freely within the 3207 municipalities, we do not
allow the formation of any clusters including basic regions in both Hokkaido and other major
islands. In terms of our δ-neighborhood definition in expression (71) [and footnote 46], the
distances between Hokkaido regions and those of the major islands are implicitly assumed
to exceed δ. Second, e-containments for each industry are obtained as the union of the two
d-convex solidified subsets of essential clusters within and without Hokkaido [see, for example,
the cases of “soft drinks, and carbonated water,” “livestock products,” and “sliding doors and
screens,” shown in Figures 7.5(c), 7.6(c) and 7.7(c), respectively, in Section 7.4 below].

Figure 7.1 here

7.1.2 Economic Area of Regions

To represent the areal extent of each basic region we adopt the notion of “economic area,”
obtained by subtracting forests, lakes, marshes and undeveloped area from the total area of the
region (available from the Statistical Information Institute for Consulting and Analysis[60, 61]).56

The economic area of Japan as a whole (120,205km2) amounts to only 31.8% of total area in Japan.

55The data source for these SKCS boundaries is the Statistical Information Institute for Consulting and Analysis
[60, 61].

56There is of course a certain degree of interdependence between the size of economic areas and the presence
of industries in those areas. In particular, industrial growth in a region may well lead to a gradual increase in the
economic area of that region (say by land fills or deforestation). But to capture agglomeration patterns at a given
point in time, we believe that it is more reasonable to adopt economic area than total area as the potential location
space for establishments. In Japan, for example, it is doubtful that mountainous forested regions (which account for
98% of non-economic areas) can be easily be made available for industrial location in the short run.
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Among individual SKCS’s this percentage ranges from 2.1% to 100%, with a mean of 48.5%. Not
surprisingly, those SKCS’s with highest proportions of economic area are concentrated in urban
regions. In this respect, our present approach is relatively more sensitive to clustering in rural
areas.57

7.1.3 Interregional Distances

The shortest-route distance between each pair of neighboring SKCS’s is computed as the distance
between their municipality offices along the road network [using ArcGIS version 9.1 (ESRI
Inc.) based on Dijkstra’s [13] shortest-path algorithm]. This road network data is taken from
Hokkaido-chizu Co. Lit. [32], and includes both prefectural and municipal roads. However,
if a given municipality office is not on one of these roads, then minor roads are also included.
From the computed shortest-route distances between neighboring SKCS’s, the corresponding
shortest-path distances and shortest-path sequences of SKCS’s between each pair of SKCS’s
are then obtained as in (34) and (35) [again using Dijkstra’s algorithm].58 While there is of
course some degree of interdependency between industrial locations and the road network, the
spatial structure of this network is mainly determined by topographical factors. With respect to
topography, it should also be noted that since Japan is quite mountainous with very irregular
coastlines (along which the majority of industrial sites are found), shortest-route distances are
generally much longer than straight-line distances. Hence the use of shortest-route distances is
particularly important for countries like Japan.

7.1.4 Industry and Establishments Data

Finally, the industry and establishments data used for this analysis is based on the Japanese
Standard Industry Classification (JSIC) in 2001. Here we focus on three-digit manufacturing
industries, of which 163 industrial types are present in the set of basic regions chosen for
this analysis.59 The establishment counts (n) across these 163 industries is taken from the
Establishment and Enterprise Census of Japan [36] in 2001, and the frequency distribution of
these counts is shown in Figure 7.2. The mean and median establishment counts per industry
are respectively 3958 and 1825. In addition, 147 (90%) of these industries have more than 100
establishments, and 125 (77%) have more than 500 establishments.

Figure 7.2 here

57In other words, for any given number of firms, nr, in a basic region r, our clustering algorithm implicitly regards
nr as a more significant concentration in regions with smaller economic areas (other things being equal).

58As noted in Section 4.1, shortest-path distances are always at least as large as shortest-route distances. But in the
present case, shortest-path distance appears to approximate shortest-route distance quite well. For the distribution
of ratios of short-path over shortest-route distances (d/t) across all 4,491,991 relevant pairs of municipalities, the
median and mean are both equal to 1.14. In fact, the 99.5 percentile point of this distribution is only 1.28.

59More precisely, out of the 164 industrial types in Japan, all but one have establishments in at least one of our
basic regions.
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7.2 Tests of Spuriousness of Cluster Schemes

Using the cluster-detection procedure developed in Section 5.2 above, optimal cluster schemes,
C∗i , were identified for each industry, i = 1, .., 163.60 Each cluster scheme, C∗i , was then tested for
spuriousness using the testing procedure developed in Section 5.3.61 Among the 163 industries
studied, the null hypothesis of complete spatial randomness (Section 5.3 above) was strongly
rejected for 154 (95%) of these industries, with p-values virtually zero. For the remaining
nine industries, this null hypothesis could not be rejected at the .05 level. The main reason
for non-rejection in these cases [which include seven arms-related industries (JSIC331-337),
together with tobacco manufacturing (JSIC135) and coke (JSIC213)], appears to be the small size
of these industries, with n < 40 in all cases.62 In view of these findings, we chose to drop the
nine industries in question and focus our subsequent analyses on the 154 industries exhibiting
significant clustering.

For these 154 industries, Figure 7.3 shows the frequency distribution of the share of estab-
lishments for each industry i that are included in the clusters of it cluster scheme, C∗i . These
shares range from 39.1% to 100% with a median [resp., mean] share of 95.2% [resp., 93.6%]. The
industries with the smallest shares of establishments in clusters are typically those which exhibit
the weakest tendency for clustering. For instance, “paving materials” industry (JSIC215) and
“sawing, planning mills and wood products” industry (JSIC161) have 39.1% and 54.0% of their
establishments in the clusters, respectively. Since both of these industries are typically sensitive
to transport costs, their establishment locations tend to reflect population density.

Figure 7.3 here

7.3 On the Classification of Cluster Patterns

Figure 7.4 plots LD versus GE for each of 154 industries (with non-spurious clusters) under four
different sets of threshold levels, µ and ζ [refer to (99) and (100), respectively]. The patterns are
essentially the same for a reasonable range of µ and ζ values, although the range of (GE, LD)
pairs tends to become more diverse for smaller values of ζ. In particular, there is seen to be wide

60The computation time required to identify the best cluster scheme for a given industry varies depends on the
number and the spatial distribution of establishments of this industry, and of course, computational environment.
Other things being equal, an industry with a smaller number of establishments requires a smaller amount of time.
Computation takes more time for an industry with spatially larger clusters, e.g., in the case of industrial belt (refer to
Section 6.4.3). In our computational environment (Intel C++ version 9.1 on a computer with quadratic core Xeon
2.8GHz with 32GB random access memory), the computational time for detecting the best cluster scheme ranges
from less than a minute to about a week. However, it should be noted that computational time depends strongly on
the implementation of the algorithms. Since the computational efficiency is not the main theme of the present paper,
there should be a large room for improvement on the actual implementation of the algorithms.

61These tests of spuriousness were based on the BIC values for a sample of 100 completely random location
patterns for each industry.

62These industries are also rather special in other ways. Tobacco manufacturing and arms-related industries are
highly regulated industries, so that their location patterns are not determined by market forces. Finally, Coke is
a typical declining industry in Japan (steel industries have gradually replaced coke production by less expensive
powder coal after 1970s).
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variation in both measures, i.e., in both the global extent and local density of cluster schemes
across industries. Note also that their is no clear relationship between them, indicating that
all four extremes in Figure 6.2 do in fact occur.63 However, the overall dispersion of (GE, LD)
pairs appears to be relatively more sensitive to values of ζ than µ. For example, under ζ = 0.8
[Diagrams (a) and (c)], there are a few industries in the northwest section of the diagram, but
not under the larger value, ζ = 0.9 [Diagrams (b) and (d)]. Because these industries exhibit
a high degree of spatial concentration (i.e., limited global extent and high local density), they
tend to have only a few significant clusters. Thus the inclusion of an only single additional
cluster can dramatically affect the size of their e-containment, and hence their global extent.
For example, in Section 7.4.4 below, Figures 7.9(c) and 7.10 show the essential containment of
“leather gloves and mittens” (JSIC245) under ζ = 0.8 and ζ = 0.9 (with µ = 0.03), respectively.
In the latter case, the essential containment contains a large vacant area since it includes a
remote cluster in Tokyo, while the former captures a more compact and highly specialized
region around Hikita-Ohuchi-Shiratori. Note also that a visual comparison of JSIC245 in Figure
7.9(c) with “motor vehicle, parts and accessories” (JSIC311) in Figure 7.12(c) suggests that the
former is more “spatially concentrated,” even though the latter appears to be “closer” to the
maximally-concentrated northwest corner of Figure 7.4(a). Hence it should also be clear that
even these two measures, GE and LD, taken together can be expected to provide only a rough
classification of spatial-concentration types.

Figure 7.4 here

7.4 Examples of Cluster Schemes of Individual Industries

In this section we present a more detailed discussion of representative industries with cluster
schemes exhibiting a variety of (GE, LD) combinations. Here we focus mainly on the case of
Figure 7.4(a) [µ = 0.03 and ζ = 0.8] which is seen to exhibit the widest variation of GE and
LD values. Figures 7.5 through 7.13 each focus on a different industry. For each industry i, the
associated figure displays its density of establishments in each basic region (Diagram, a), the
spatial pattern of clusters in its cluster scheme, C∗i (Diagram, b), and the essential containment,
ec(C∗i ), of this cluster scheme (Diagram, c). In Diagram (a), basic regions with higher densities
of establishments are shown as darker. In Diagram (b), the individual clusters in scheme C∗i are
represented by enclosed gray areas. The portion of each cluster in lighter gray shows those basic
regions which contain no establishments (but are included in C∗i by the process of d-convex
solidification). Finally, the hatched area in Diagram (c) depicts the e-containment, ec(C∗i ), of this
cluster scheme.

63The relative positions of Diagrams (a) through (d) in Figure 6.2 are arranged to match the relative positions in
each diagram of Figure 7.4. In particular, globally confined patterns in Figures 6.2(a,c) [resp., locally dense patterns
in Figures 6.2(a,b)] are found in western [resp., northern] part of each diagram in Figure 7.4.

37



7.4.1 Globally Dispersed and Locally Sparse Patterns

Industries with relatively high values of GE and low values of LD [near the southeast cor-
ner of Figure 7.4(a)] can be described as exhibiting patterns of agglomeration that are both
“globally dispersed and locally sparse.” A clear example is provided by the “soft drinks and
carbonated water” industry (JSIC131) shown in Figure 7.5 [with GE = 0.589 and LD = 0.133].
Bottled/packed soft drinks are weight/bulk-gaining products. Thus to minimize transport costs,
establishments in this industry are naturally attracted to individual market locations, resulting
in a pattern of global dispersion. In addition, the individual clusters shown in Figure 7.5(b)
appear to be locally concentrated, perhaps due to scale economies of production combined with
only modest needs for land. Thus in terms of total area occupied, this pattern of clusters is
relatively sparse.

Figure 7.5 here

A second example is provided by the “livestock products” industry (JSIC121) depicted in
Figure 7.6 [with GE = 0.771 and LD = 0.281]. Here the perishable nature of livestock products
again leads to market-oriented location behavior, and hence to global dispersion. But in this
case, the extensive land requirements for livestock production produce higher local densities in
terms of area occupied, and thus result in larger clusters than JSIC131 [as seen in Figure 7.6(b)].

Figure 7.6 here

7.4.2 Globally Dispersed and Locally Dense Patterns

Industries with both high values of GE and LD [near the northeast corner of Figure 7.4(a)] can
be described as exhibiting patterns of agglomeration that are “globally dispersed and locally
dense.” Such industries are by definition present almost everywhere, and can equivalently be
described as ubiquitous industries. While there are no extreme examples in Figure 7.4(a), one
relatively ubiquitous example is provided by the “sliding doors and screens” (JSIC173) [with
GE = 0.777, LD = 0.473]. As seen in Figure 7.7(a), the establishments of this industry are indeed
found almost everywhere, with clusters densely distributed throughout the nation [Figure
7.7(b)]. Such products are often custom made and require face-to-face contact with customers.
Hence there are strong market-attraction forces that contribute to the ubiquity of this industry.
In such cases, the local density of clusters tends to correspond roughly to that of population.

Figure 7.7 here
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It is also of interest to note (as mentioned at the end of Section 6) that such ubiquitous
industries are by their very nature quite large in terms of establishment numbers. In the present
case, industry JSIC173 has 15,363 establishments, which is well above the mean of 4189 for all
industries (with no spurious clusters, i.e., exhibiting significant agglomeration). In terms of
establishments in clusters, JSIC173 has 13,565 establishments relative to a mean of only 3896 for
all industries.

7.4.3 Globally Confined and Locally Sparse Patterns

The opposite extreme of “globally confined and locally sparse” agglomeration patterns [in
the southwest corner of Figure 7.4(a)] is well illustrated by the “ophthalmic goods” (JSIC326)
[with GE = 0.166 and LD = 0.139]. As seen in Figure 7.8(a) this industry has only a small
number of establishments (located mainly between Tokyo and Osaka), with a disproportionate
concentration in the small town of Sabae (population 65,000). In fact, this single remote town
accounts for more than 90% of the national market share in ophthalmic goods. As with many
specialized industries, the location pattern of this industry is governed more by historical
circumstances than economic factors. In terms of establishment numbers, such industries are
necessarily small in size. In the present case, JSIC326 has only 1139 establishments, which is
well below the mean of 4188 for all industries (as above). Even given the fact that all 1139
establishments are in clusters, this number is still well below the mean of 3896 for all industries
(as above).

Figure 7.8 here

A similar example of this pattern is the “leather gloves and mittens” industry (JSIC245)
depicted in Figure 7.9 [with GE = 0.019 and LD = 0.418]. Like JSIC326, this industry is not
concentrated in large cities. Rather, its major concentration (accounting for 90% of the leather
glove market in Japan) is confined to a cluster of three small towns, Hikita-Ohuchi-Shiratori,
shown in Figure 7.9(b).

Figure 7.9 here

Here it is of interest to note that while the value of LD for JSIC245 seems relatively large
compared to JSIC326 above, this is mostly due to its small e-containment, as reflected by its low
level of GE relative to JSIC326 [compare Figures 7.8(c) and 7.9(c)]. When GE is very small for an
industry, its value of LD is necessarily sensitive to the number of clusters in its e-containment.

In addition, it is also important to note that for globally confined industries with few clusters
(such as JSIC245 and JSIC326), the values of GE and LD are both quite sensitive to the cut-off
criteria, µ and ζ, in (99) and (100), respectively. As one illustration, Figure 7.10 shows the
essential containment of JSIC245 obtained with ζ = 0.9 rather than ζ = 0.8 as in Figure 7.9(c).

39



While this higher value of ζ allows the inclusion of only one additional cluster, the location of
this cluster in Tokyo leads to the inclusion of a large vacant area between Osaka and Tokyo in
the resulting d-convex solidification of these clusters.

Figure 7.10 here

A final example is provided by the larger “publishing industry” (JSIC192) depicted in Figure
7.11 [with GE = 0.342 and LD = 0.232 ]. Unlike JSIC326 and JSIC245, publishing is a typical
“urban-oriented” industry with a location pattern generally reflecting urban density. As seen in
Figure 7.11(b) this pattern is more concentrated toward the Pacific coast area between Tokyo and
Osaka, with a narrow band stretching beyond Osaka to include the major metro areas further
west (Kobe, Okayama, Hiroshima, and Fukuoka).

Figure 7.11 here

7.4.4 Globally Confined and Locally Dense Patterns

Finally, as mentioned in Section 6 above, those industries with agglomeration patterns that
are both “globally confined and locally dense” [i.e., in the northwest corner of Figure 7.4(a)]
constitute the single most spatially concentrated class of industries. Such industries are well
illustrated by the “motor vehicles, parts and accessories” (JSIC311) in Figure 7.12 [with GE =
0.221 and LD = 0.751]. A comparison of the e-containment for this industry in Figure 7.12(c) with
that of the urban-oriented publishing industry in Figure 7.11(c) shows that JSIC311 again follows
the chain of large metro areas extending westward from Tokyo through Osaka to Hiroshima.
But here the containment is even more concentrated along this chain, and coincides with the
so-called Industrial Belt that constitutes the manufacturing core of Japan. This manufacturing
core is in fact dominated by the major auto assembly plants in this industry, which by definition
produce weight/bulk-gaining products requiring proximity to consumers in the metro centers.
Moroever, the chain of contiguous clusters seen in Figure 7.12(b) essentially fills in the gaps
between these metro centers, creating the effect of a single “megalopolis.” The outputs of
JSIC311 provide an important clue to the nature of this “filling-in” process. In particular, “parts
and accessories” are basically factor inputs to the auto assembly process (“motor vehicles”).
Moreover, since parts suppliers tend to sell to more than one car assembler,64 the intermediate
locations between these assemblers provide natural market economies for such suppliers.65

Figure 7.12 here

64In 1999, parts suppliers on average sold to 3.05 of the 9 auto assemblers in Japan, while auto assemblers on
average bought the same parts from 2.46 different suppliers (Kinnou [37]).

65For a theoretical development of this “filling-in” process in the context of the new economic geography model
see Mori [46].
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As mentioned in Section 6.3, a second example is provided by the “plastic compounds and
reclaimed plastics” industry (JSIC225) [with GE = 0.298 and LD = 0.465]. From Figure 7.13(b)
it is clear that most clusters for this industry also follow the Industrial Belt.66 Moreover, the
outputs of this industry are again primarily intermediate inputs for a variety of manufactured
goods, and in particular for motor vehicles (such as the molded plastic parts for seats, fenders,
and instrument panels). Thus the intermediate locations between these manufacturers again
constitute natural market-oriented locations for this industry. Hence the filling-in process that
created this industrial belt is largely a consequence of the fact that typical automobiles consist of
as many as 20,000 to 30,000 separate parts.

Figure 7.13 here

8 Concluding Remarks

In this paper we have developed a simple cluster-scheme model of agglomeration patterns and
have constructed an information-based algorithm for identifying such patterns. In addition, we
have proposed a simple classification of pattern types based on measures of global extent and
local density derived from cluster schemes. But the ultimate utility of this approach will of course
depend on how it can be applied in practical situations.

Here it should be noted that the distinction between local and global properties of agglom-
eration patterns implicit in our classification scheme has already served to sharpen certain
concepts in the literature. For example it was pointed out in Section 7.4.4 of our application that
the Japanese Industrial Belt is an instance of the more general notion of a “megalopolis,” first
proposed by Gottman [28] to describe the continuum of cities along the US Atlantic seaboard
(stretching from Boston to Washington, DC, via New York). But to date, no formal methods
have been developed for identifying such agglomeration structures statistically. In this light,
the analysis of Section 7.4.4 shows that such structures can be regarded as natural instances of
“globally confined and local dense” agglomeration patterns.

More generally, there appear to be a number of questions raised in the literature which
can potentially be addressed by our present approach. Hence it is appropriate to mention
two possible research directions involving, respectively, the spacing of agglomertions within
industries and the coordination of agglomerations between industries. But before doing so,
it is useful to begin by observing that certain consequences of simple cluster-scheme model
proposed here need to be made more explict.

8.1 Refinements of Cluster Schemes

Recall that each cluster within a given cluster scheme implicitly defines a set of basic regions with
similar (and unusually high) establishment density. But the relations between these individual

66The lower density for this industry is due mainly to the fact that the e-containment in Figure 7.13(c) also includes
clusters on the Sea of Japan coast around Toyama (refer to Figure 7.13(b)).
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clusters is left unspecified. In this regard it is important to observe that in many of the cluster
schemes we have identified for industries in Japan, there are notable groupings of contiguous
clusters. As one example, consider “publishing industry ” (JSIC192) in Figure 7.11. For this
urban oriented industry there seem to be significant contiguous clusters around Tokyo, Nagoya
and Osaka.

Here is it natural to ask why such clusters were not “joined” at some stage during the cluster-
detection procedure. The reason is that our basic cluster probability model assumes that location
probabilities are essentially uniform within each cluster [as in expression (8)]. Hence with respect
to the BIC measure underlying this procedure, contiguous clusters with very different uniform
densities often yield a better fit to establishment data than does their union with its associated
uniform density. This is well illustrated by the contiguous clusters for the publishing industry
in the Tokyo area, as shown in the enlargement in Figure 8.1(a) below.

Figure 8.1 here

This example shows not only that the establishment densities in these contiguous clusters
are quite different, but also that such variations exhibit clear spatial structure. In particular, the
single darkest (most dense) cluster corresponds precisely to the heart of downtown Tokyo, with
adjacent clusters gradually diminishing in density. Hence this density pattern might be well
described as a hill structure with “peak” in downtown Tokyo and “foot” consisting of the ring
of outer-most contiguous clusters. As seen in Figure 8.1(b), a similar structure can be obtained
by plotting the BIC increments associated with the essential-cluster construction in Section 6.1
above.

More generally, this example shows that there is often more spatial structure in given cluster
schemes than is captured by a simple listing of their clusters. In particular it seems clear that
groupings of contiguous clusters are best treated a single agglomerations for an industry. So while
we have implicitly used the terms “clusters” and “agglomerations” interchangeably in this paper,
it would seem that latter term is best reserved for maximal contiguous sets of clusters. Under
this definition, each cluster scheme, C = (R0, C1, .., CkC), then generates a unique agglomeration
scheme, A = (R0,A1, ..,AkA) [which is identical with C if there are no contiguous clusters]. Such
refinements of our basic cluster-scheme model will be considered more explicitly in subsequent
work. But for the present, it is convenient to use this broader definition of agglomerations in
discussing the additional extensions below.

8.2 Agglomeration Spacing within Industries

Within the new economic geography, a class of models have been developed to explain the
spacing between individual agglomerations for a given industry (e.g., Krugman [40], Fujita and
Krugman [20], Fujita and Mori [23], Fujita et al. [22, Ch.6]). From the view point of general
equilibrium theory, these models predict whether an agglomeration of industrial firms will
be viable at a given location, depending on how other agglomerations of the same industry
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(as well as population) are distributed over the location space. In these models, industrial
agglomeration is typically induced by demand externalities arising from the interactions between
product differentiation, plant-level scale economies and transport costs. In particular, Fujita
and Krugman [20] have shown that each agglomeration casts a so-called agglomeration shadow
in which firms have no incentive to relocate from the existing agglomerations. For within this
“shadow” firms are too close to existing agglomerations (i.e., competitors) to realize sufficient
local monopoly advantages. Hence the presence of such shadows serves to limit the number of
viable agglomerations within each industry. Note also that since the level of internal competition
differs between industries (depending on their degree of product differentiation and transport
costs), the size of agglomeration shadows should also be industry specific. Hence the presence
of such shadows has a number of observable spatial consequences.

But while there has been empirical work to study the spacing between urban centers (as for
example in Chapter 7 of Marshall [45] and in Ioannides and Overman [34]), there have to our
knowledge been no systematic efforts to study the spacing between industrial agglomerations –
and in particular, no efforts to identify the presence of actual agglomeration shadows. However,
it should be clear that our present approach to cluster identification offers a promising method for
doing so. In particular, since our cluster-detection procedure enables one to identify individual
agglomerations for each industry, it is a simple matter to construct explicit measures of the
spacing between them. In the present setting, the most natural measure of spacing between
any pair of agglomerations, Ai and Aj, is the road-network distance between their closest basic
regions, which [as an extension of expression (70)] is given by

d(Ai,Aj) = min{d(r, s) : r ∈ Ai, s ∈ Aj} (105)

Moreover, for any agglomeration scheme, A = (R0,A1, ..,AkA), the size of the shadow around
each agglomeration i is best reflected by the distance from i to its nearest neighbor in A:

di(A) = min
j -=i

d(Ai,Aj) (106)

The average of these nearest-neighbor distances thus yields a natural mean-spacing measure

d(A) =
1

kA
∑kA

i=1 di(A) (107)

for A. This summary measure can then be employed for testing purposes. In particular, one can
test for the presence of significant agglomeration-shadow effects by asking whether the mean
spacing, d(A), for an observed agglomeration scheme, A, is significantly larger than would be
expected if such agglomerations were randomly located.

Given the spatially extensive nature of agglomerations, this task is more complex than for
random relocations of points. But one simple approach to constructing random versions, A′, of
A is to reorder the individual agglomerations, A1, ..,AkA , in A by size and regenerate them
sequentially from largest to smallest. For the largest agglomeration, A1, one can choose a
random starting region, r ∈ R, and “spiral out” until a set of contiguous regions, A′

1 ⊂ R, is
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achieved that approximates the size of A1. By removing this set of regions from R, the same
procedure can then be repeated for constructing a random version, A′

2 ⊂ R−A′
1, of the second

largest agglomeration, A2, and so on. In this way, many random versions, A′ = (R′0,A′
1, ..,A′

kA
),

of A can be constructed for testing purposes. The appropriate null hypothesis of “random
spacing” for this test is then that d(A) is a typical realization from the sampling distribution
of mean spacings, d(A′), generated by many random versions A′ of A. Applications of this
procedure will be reported in subsequent work.67

8.3 Agglomeration Coordination between Industries

Within the context of Christaller’s [8] celebrated theory of Central Places, a topic of major interest
has long been the spatial coordination of locations across industries. In particular, the “Hierarchy
Principle” underlying this theory asserts that the set of industries found in smaller metro areas
is always a subset of those found in larger metro areas.68 Theoretical efforts to explain this
phenomenon have focused mainly on the role of demand externalities in determining industrial
locations (see Fujita, Krugman and Mori [21], Tabuchi and Thisse [64] and Hsu [33]).69 In
particular, the types of demand externalities which induce industrial agglomerations are often
shared by many different industries, so that their spatial markets overlap. In such cases, it is
natural for these industries to co-locate. Moreover, in terms of market sizes, it is also natural for
agglomerations in more concentrated industries (with larger markets) to coincide with those of
less concentrated industries (with smaller markets), thus leading to the type of synchronization
predicted by the Hierarchy Principle.

But while these theoretical arguments are quite plausible, there has been surprisingly little
work done to actually test the empirical validity of the Hierarchy Principle itself. The results
of the present paper suggest one direct test of co-location using the randomization procedure
outlined above. In particular, if we associate larger market sizes with smaller numbers of
agglomerations,70 and consider any pair of industries, i and j, with different market sizes
(|Ai| < |Aj|), then one could test whether the agglomerations of industry i are closer to those of
industry j than would be expected in random configurations. If the observed agglomeration
patterns of these industries are denoted respectively by Ai = (Ri0,Ai1, ..,AikAi

) and Aj =
(Rj0,Aj1, ..,AjkAj

), then one could start by identifying the nearest-neighbor distance from each
agglomeration, Aih ∈ Ai, to those in Aj:

d(Aih, Aj) = min{d(Aih,Ajm) : Ajm ∈ Aj} (108)

67Here it is of interest to note that initial investigations of such spacing comparsions suggest that further restrictions
need to be imposed. In particular, for those industries with small e-containments, it is clear that random versions
located throughout all of Japan will necessarily tend to exhibit larger mean spacing for rather spurious reasons.
One possibility here is to preserve the e-containment of each industry, and to restrict random versions to these
e-containments. This should provide more meaingful tests of the presence of agglomeration shadows in which the
overall spatial scale of each industry is preserved.

68Obviously, this principle implicitly assumes certain level of industry aggregation, since it could not hold if
industries are fully disaggregated, i.e., each industry consists of one establishment.

69There were earlier attempts by, e.g., Christaller [8], Lösch[44], Beckmann [2] and Eaton and Lipsey [16]. But, all
lacked formal microeconomic foundations leading to the Hierarchy Principle.

70In fact this relationship underlies the results in the theoretical papers above.
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and then defining the mean distance between Ai and Aj to be the average of these:

d(Ai, Aj) =
1

kAi
∑kAi

h=1 d(Aih, Aj) (109)

To employ this summary measure as a test statistic, one could then use the procedure above
to generate many random versions, A′

i, of Ai, and test whether d(Ai, Aj) is significantly smaller
than would be expected from the sampling distribution of mean-distance values, d(A′

i, Aj).
Applications of this testing procedure will also be reported in subsequent work.

Finally, it should also be noted that the present cluster methodology has already been applied
by Mori and Smith [49] to test the Hierarchy Principle in a different way. This test was originally
developed in Mori, Nishikimi and Smith [48] using the criteria that an industry is present in
a city if at least one of its establishments is located in that city. But later work revealed that
such a definition was too broad in that a single establishment may locate in a given city by
chance alone. To develop a stronger definition, the present cluster-dectection procedure was
employed to identify those cities containing establishments that are actually part of a cluster
for the industry. Such cities are designated as cluster-based choice cities for that industry. By
extending the testing procedures of Mori et al. [48] to cluster-based choice cities, it was found
that even stronger evidence for the Hierarchy Principle could be demonstrated. The specifics of
this testing procedure will be detailed more fully in a forthcoming paper, Mori and Smith [50].
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9 APPENDIX. Formal Analysis of d-Convex Solids

To develop formal properties of d-convex solids, we require a few additional definitions. First,
for any path, ρ = (r1, r2,.., rn−1, rn) ∈ P(r1, rn), let ρ̃ = (rn, rn−1, .., r2, r1) ∈ P(rn, r1) denote the
reverse path in P . Next, for any two paths, ρ = (r1, .., rn), ρ′ = (r′1, .., r′m) ∈ P , with rn = r′1, the
combined path, ρ ◦ ρ′ = (r1, .., rn, r′2, .., r′m) ∈ P is designated as the concatenation of ρ and ρ′. It
then follows by definition that the length of any concatenated path, ρ ◦ ρ′, is simply the sum of
the lengths of ρ and ρ′, i.e., that

l(ρ ◦ ρ′) = ∑n−1
i=1 d(ri, ri+1) + d(rn, r′2) + ∑m−1

i=2 d(r′i , r′i+1)

= ∑n−1
i=1 d(ri, ri+1) + ∑m−1

i=1 d(r′i , r′i+1)

= l(ρ) + l(ρ′) (110)

Using (110), as well as (39) through (42), it is convenient to establish the following well-known
properties of d-convex sets, as in Definition 4.1 of the text. First, we show that for the d-
convexification function, cd : R→ R, in (42), the naming of this function is justified by the fact
that:

Proposition A.1 (d-Convexification) For all S ∈ R, the image set, cd(S), is d-convex.

Proof: For any r1, r2 ∈ cd(S) and shortest path, ρ ∈ Pd(r1, r2), it must be shown that 〈ρ〉 ⊆ cd(S).
But by definition, ri ∈ cd(S) ⇒ ri ∈ Iki(S) for some ki, i = 1, 2. Hence by (40) it follows that
{r1, r2} ⊆ Ik1+k2(S), and thus that 〈ρ〉 ⊆ I(Ik1+k2(S)) = Ik1+k2+1(S) ⊆ cd(S).!

Next we show that the d-convex hull, cd(S), can be characterized as the unique smallest
d-convex superset of S. More precisely, if Rd denotes the family of all d-convex sets in R, then
we have:

Proposition A.2 (Minimality of d-Convexifications) For all S ∈ R,

cd(S) = ∩{C ∈ Rd : S ⊆ C} (111)

Proof: By Proposition A.1, cd(S) ∈ Rd, and by (39)

S ⊆ I(S) ⊆ cd(S) (112)

Hence it suffices to show that for all sets, C, with C ∈ Rd and S ⊆ C, we must have cd(S) ⊆ C.
By the definition of cd(S) this in turn is equivalent to showing that Ik(S) ⊆ C for all k ≥ 1. But
by (38),

S ⊆ C ⇒
⋃

r,s∈S
I(r, s) ⊆

⋃
r,s∈C

I(r, s) ⇒ I(S) ⊆ I(C) (113)

Moreover, by (37) and (38) together with the definition of d-convexity it follows that

C ∈ Rd ⇒ I(C) =
⋃

r,s∈C
I(r, s) ⊆ C (114)
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Hence we may conclude from (113) and (114) that I(S) ⊆ C. Finally, since the same argument
shows that Ik(S) ⊆ C ∈ Rd ⇒ Ik+1(S) = I[Ik(S)] ⊆ C, the result follows by induction on k.!

Finally, using these two results, we show that d-convex sets can be equivalently characterized
as the fixed points of the d-convexification mapping, cd : R→ R:

Proposition A.3 (d-Convex Fixed Points) For all S ∈ R,

S ∈ Rd ⇔ cd(S) = S (115)

Proof: If cd(S) = S then by Proposition A.1 above, S ∈ Rd. Conversely, if S ∈ Rd then by (112),
S ⊆ cd(S), and by Proposition A.2, cd(S) ⊆ S. Thus cd(S) = S, and the result is established.!

This in turn implies that the family, Rd, of d-convex sets can be equivalently defined as in
expression (43) of the text. But while this definition provides a natural parallel to the case of
d-convex solids developed below, the more useful interval characterization of Rd in expression
(44) of the text, can easily be obtained from Proposition A.3 as follows:

Corollary (Interval Fixed Points) For all S ∈ R,

S ∈ Rd ⇔ I(S) = S (116)

Proof: Since S ∈ Rd ⇒ I(S) ⊆ S by (114) [with C = S], and since S ⊆ I(S) holds for all
S [by (39)], it follows on the one hand that S ∈ Rd ⇒ I(S) = S. Conversely, since I(S) =
S ⇒ Ik(S) = S for all k ≥ 1[by recursion on k], it follows from (42) and Proposition A.3 that
I(S) = S ⇒ cd(S) = S ⇒ S ∈ Rd. !

Given these properties of d-convex sets, one objective of this Appendix is to show that each
of these properties is inherited by d-convex solids. To do so, we begin with an analysis of solid
sets as in Definition 4.2 of the text. First, in a manner paralleling Proposition A.1 above, we
show for the solidification function, σ : R→ R, defined by (47), the naming of this function is
justified by the fact that:

Lemma A.1 (Solidification) For all S ∈ R, the image set, σ(S), is solid.

Proof: If V = σ(S) = S ∪ S0, then it must be shown that for all r ∈ R − V there is some
path, ρ ∈ P(r, R) with 〈ρ〉 ∩ V = ∅. But for any r ∈ R − V = R − (S ∪ S0), it follows that
r ∈ R − S and r /∈ S0, so that by the definition of S0 in (46) it must be true that there is
some boundary region, r ∈ R, and path, ρ ∈ P(r, r) with 〈ρ〉 ∩ S = ∅. Next we show that
〈ρ〉 ∩ S0 = ∅ as well. To do so, suppose to the contrary that 〈ρ〉 ∩ S0 -= ∅, so that for some
r0 ∈ S0, ρ = (r, .., r0, .., r) = ρ1 ◦ ρ2 with ρ1 ∈ P(r, r0) and ρ2 ∈ P(r0, r). Then again by the
definition of S0 it must be true that 〈ρ2〉 ∩ S -= ∅, which contracts the fact that 〈ρ2〉 ⊆ 〈ρ〉 and
〈ρ〉 ∩ S = ∅. Hence ∅ = (〈ρ〉 ∩ S) ∪ (〈ρ〉 ∩ S0) = ρ ∩ (S ∪ S0) = 〈ρ〉 ∩ V, and the result is
established.!
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If the family of all solid sets in R is denoted by Rσ = {S ∈ R : S0 = ∅}, then we next show
that these sets are precisely the fixed points of the solidification function:

Lemma A.2 (Solid Fixed Points) For all S ∈ R,

S ∈ Rσ ⇔ σ(S) = S (117)

Proof: If S ∈ Rσ then S0 = ∅, so that σ(S) = S by (47). Conversely, if σ(S) = S, then by Lemma
A.1, S ∈ Rσ.!

As a parallel to (116), this in turn implies that the family of solid sets in R can be equivalently
defined as follows:

Rσ = {S ∈ R : σ(S) = S} (118)

Finally, solid sets also exhibit the following nesting property:

Lemma A.3 (Solid Nesting) For all S, V ∈ R,

S ⊆ V ⇒ σ(S) ⊆ σ(V) (119)

Proof: Since S ⊆ V ⊆ V ∪V0 = σ(V), it suffices to show that S0 ⊆ σ(V). Hence consider any
r ∈ S0, and observe from the above that r ∈ V ⇒ r ∈ σ(V). Hence it remains to consider
r ∈ S0 −V. Here we show that r must be in V0. To do so, observe first that r /∈ V ⇒ r ∈ R−V.
Moreover, r ∈ S0 implies that for any path, ρ ∈ P(r, R) we must have 〈ρ〉 ∩ S -= ∅. But S ⊆ V
then implies 〈ρ〉 ∩V -= ∅. Hence r ∈ V0 ⊆ σ(V), and the result is established.!

With these properties of solid sets, we are now ready to analyze d-convex solids in R. As
asserted in the text, our key result is to show that d-convexity is preserved under solidifications:

Theorem A.1 (Solidification Invariance of d-Convexity) For all d-convex sets, S ∈ R, the image
set, σ(S), is also d-convex.

Proof: Suppose to the contrary that for some d-convex set, S, the image set σ(S) is not d-convex.
Then there must exist some pair of elements, r1, r2 ∈ σ(S) = S ∪ S0, and some shortest path,
ρ ∈ Pd(r1, r2), with 〈ρ〉 ∩ [R− σ(S)] -= ∅. But if {r1, r2} ⊆ S then by the d-convexity of S we
would have 〈ρ〉 ⊆ S ⊆ σ(S). So at least one of these elements must be in S0. Without loss
of generality, we may suppose that r1 ∈ S0 and that r is some element of 〈ρ〉 ∩ [R− σ(S)], so
that ρ = (r1, .., r, .., r2) = ρ1 ◦ ρ2 with ρ1 ∈ P(r1, r) and ρ2 ∈ P(r, r2). But then we must have
S ∩ 〈ρ1〉 -= ∅. For if not then we obtain a contradiction as follows. Since r /∈ σ(S) ⇒ [r ∈ R− S
and r /∈ S0], there must be some path, ρ3 ∈ P(r, R) with 〈ρ3〉 ∩ S = ∅. Hence the combined
path, ρ1 ◦ ρ3 ∈ P(r1, R), then satisfies 〈ρ1 ◦ ρ3〉 ∩ S = ∅, which contradicts the hypothesis that
r1 ∈ S0. Thus we may assume that there is some s1 ∈ S ∩ 〈ρ1〉, and consider the following two
cases:

(i) Suppose first that r2 is also an element of S0. We then show that this contradicts the hypoth-
esized shortest-path property of ρ as follows. Observe first that if ρ̃2 ∈ P(r2, r) denotes the
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reverse path for ρ2 ∈ P(r, r2) above, then the same argument used for ρ1 ∈ P(r1, r) above now
shows that there must be some s2 ∈ S ∩ 〈ρ̃2〉 = S ∩ 〈ρ2〉, so that ρ = (r1, .., s1, .., r, .., s2, .., r2) =
ρ′1 ◦ ρ′2 ◦ ρ′3◦ ρ′4 with ρ′1 ∈ P(r1, s1), ρ′2 ∈ P(s1, r), ρ′3 ∈ P(r, s2),and ρ′4 ∈ P(s2, r2). These paths
are shown in Figure A.1below.

Figure A.1 here

But if we choose any shortest path, ρ′5 ∈ Pd(s1, s2) [as in Figure A.1], then it follows from the
d-convexity of S, together with s1, s2 ∈ S and r /∈ S that l(ρ′5) < l(ρ′2 ◦ ρ′3) [since every shortest
path in Pd(s1, s2) lies in S, and 〈ρ′2 ◦ ρ′3〉 " S]. Hence for the path, ρ′ = ρ′1 ◦ ρ′5 ◦ ρ′4 ∈ P(r1, r2),
we must have

l(ρ′) = l(ρ′1) + l(ρ′5) + l(ρ′4)

< l(ρ′1) + [l(ρ′2) + l(ρ′3)] + l(ρ′4)

= l(ρ′1 ◦ ρ′2 ◦ ρ′3 ◦ ρ′4)

= l(ρ) (120)

which contradicts the shortest-path property of ρ.

(ii) Finally, suppose that r2 ∈ S, and for the point s1 ∈ S∩ 〈ρ1〉 above, consider the representation
of ρ as ρ = (r1, .., s1, .., r, .., r2) = ρ′1 ◦ ρ′2 ◦ ρ2 with ρ′1 ∈ P(r1, s1), ρ′2 ∈ P(s1, r), and ρ2 ∈ P(r, r2),
as shown in Figure A.2 below.

Figure A.2 here

Then we again show that this contradicts the shortest-path property of ρ as follows. For any
shortest path, ρ′6 ∈ Pd(s1, r2) [as in Figure A.2], the d-convexity of S, together with s1, r2 ∈ S and
r /∈ S, now implies that l(ρ′6) < l(ρ′2 ◦ ρ2). Thus for the path, ρ′′ = ρ′1 ◦ ρ′6 ∈ P(r1, r2), we must
have

l(ρ′′) = l(ρ′1) + l(ρ′6)

< l(ρ′1) + [l(ρ′2) + l(ρ2)]

= l(ρ′1 ◦ ρ′2 ◦ ρ2)

= l(ρ) (121)

which again contradicts the shortest-path property of ρ. Hence for each pair of elements, r1, r2 ∈
σ(S) = S ∪ S0, there can be no shortest path, ρ ∈ Pd(r1, r2), with 〈ρ〉 ∩ [R− σ(S)] -= ∅, so that
σ(S) is d-convex.!

With this result, we can now establish parallels to Propositions A.1, A.2, and A.3 above for
d-convex solids, as in Definition 4.3. First, we show that for the d-convex solidification function,
σcd : R→ R, in (48), the naming of this function is justified by the fact that:

49



Theorem A.2 (d-Convex Solidification) For each set, S ∈ R, the image set, σcd(S), is a d-convex
solid.

Proof: First observe from Definition 4.3 that we may use expressions (116) and (117) to define
the family of all d-convex solids in equivalent terms as

Rσd = Rσ ∩Rd (122)

Hence it suffices to show that σcd(S) ∈ Rd ∩ Rσ. But by Proposition A.1, it follows that
cd(S) ∈ Rd, and hence as a direct consequence of Theorem A.1 that σcd(S) = σ[cd(S)] ∈ Rd.
Moreover, since cd(S) ∈ R also implies from Lemma A.1 that σ[cd(S)] ∈ Rσ, it then follows that
σcd(S) ∈ Rσd.!

Next, as a parallel to Proposition A.2 we now have:

Theorem A.3 (Minimality of d-Convex Solidifications) For each set, S ∈ R,

σcd(S) = ∩{C ∈ Rσd : S ⊆ C} (123)

Proof: First observe from Theorem A.2 that σcd(S) ∈ Rσd and from expression (112) that
S ⊆ cd(S) ⊆ σ[cd(S)] = σcd(S) [since by definition, V ∈ σ(V) for all V]. Hence, it suffices to
show that σcd(S) ⊆ C whenever S ⊆ C ∈ Rσd. But by Proposition A.2, C ∈ Rσd ⊆ Rd and
S ⊆ C imply that cd(S) ⊆ C. Moreover, since C ∈ Rσd ⊆ Rσ, we may then conclude from
Lemma A.3 together with Lemma A.2 that

cd(S) ⊆ C ⇒ σ[cd(S)] ⊆ σ(C) = C (124)

⇒ σcd(S) ⊆ C

and the result is established.!

Finally, we may use these results to show that d-convex sets are equivalently characterized as
fixed points of the d-convex solidification function, cσd : R→ R:

Theorem A.4 (d-Convex Solid Fixed Points) For all S ∈ R,

S ∈ Rσd ⇔ cσd(S) = S (125)

Proof: If cσd(S) = S then by Theorem A.2, S ∈ Rσd. Conversely, if S ∈ Rσd then since
S ∈ Rσd ⊆ Rd implies from Proposition A.3 that cd(S) = S, we may conclude from Lemma A.2
that

cσd(S) = σ[cd(S)] = σ(S) = S (126)

and the result is established.!
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Figure 7.2. Frequency distribution of establishment counts 
                  in Japanese three-digit manufacturing industries



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

(a) μ = 0.03; ζ = 0.8 (b) μ = 0.03; ζ = 0.9

(c) μ = 0.05; ζ = 0.8 (d) μ = 0.05; ζ = 0.9

LD

GE GE

GEGE

LD

LD LD

JSIC121

JSIC173

JSIC131

JSIC192
JSIC326

JSIC245

JSIC225

JSIC311

Figure 7.4. Global extent and local dispersion of clusters

JSIC121

JSIC131

JSIC192

JSIC173
JSIC225

JSIC245

JSIC311

JSIC326



(b) Clusters

(c) Essential containment
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Figure 7.6. Global dispersed and local sparse pattern: livestock products (JSIC121)
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Figure 7.7. Globally dispersed and locally sparse pattern: sliding doors and screens (JSIC173)

3.079-8.325
1.599-3.079
0.974-1.599
0.616-0.974
0.421-0.616

0.292-0.421
0.203-0.292
0.137-0.203
0.080-0.137
0.000-0.796



(b) Clusters

(c) Essential containment

Sabae

TokyoOsaka
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Figure 7.9. Globally confined and locally sparse pattern: leather gloves and mittens (JSIC245)
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Figure 7.10. Essential containment of leather gloves and mittens (JSIC245) with δ = 0.03 and ζ = 0.9
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Figure 7.11. Globally confined and locally sparse pattern: publishing industries (JSIC192)
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Figure 7.12. Globally confined and locally dense pattern: motor vehicle, parts and accessories (JSIC311)
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Figure 7.13. Globally confined and local dispersed pattern: compounding plastic materials, 
including reclaimed plastics (JSIC225)
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