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Abstract

This paper examines the long-run impact of inflation tax in the

context of a generalized Ak growth model in which the rate of cap-

ital depreciation is endogenously determined. We assume that the

rate of capital depreciation positively depends on capital utilization

rate and negatively depends on maintenance expenditures. Money is

introduced via a cash-in-advance constraint that may apply to the

maintenance expenditures as well as to consumption and investment

spendings. We find that the long-run effects of inflation tax are more

complex than those obtained in the monetary Ak growth model with

a fixed capital depreciation rate. In particular, the relation between

inflation and growth is highly sensitive to the specification of the cap-

ital depreciation technology as well as to the forms of cash-in-advance

constraints.
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1 Introduction

It has been claimed that the activity of maintaining and repairing equip-

ment and structures is large relative to investment and it would be a sub-

stantial substitute with new investment.1 Considering this fact, several au-

thors introduce maintenance costs and endogenous capital depreciation into

the standard models of growth and business cycles: see Aznar-Màrquez and

Ruiz-Tamarit (2004), Guo and Lansing (2007), Licandro and Puch (2000),

Licandro, Puch and Ruiz-Tamarit (2001) and McGrattan and Schmitz Jr.

(1999). These studies show that introducing maintenance expenditures may

alter both dynamic behavior and the stationary-state characterization of the

model economy in a substantial manner.

The purpose of this paper is to explore the long-run impacts of infla-

tion tax in the context of a generalized Ak growth model in which the rate

of capital depreciation is endogenously determined. Following the existing

literature mentioned above, we assume that the capital depreciation rate

positively depends on the rate of capital utilization and negatively depends

on maintenance expenditures. Money is introduced via a cash-in-advance

constraint that may apply to the maintenance spendings as well as to con-

sumption and investment expenditures. We find that the long-run effects

of inflation tax are more complex than those obtained in the monetary Ak

growth model with a fixed capital depreciation rate.2 In particular, the re-

lation between inflation and growth is highly sensitive to the specification of

the capital depreciation technology as well as to the forms of cash-in-advance

constraints.

2 Model

We assume that the rate of capital depreciation, δ, depends positively on the

rate of capital utilization, u, and negatively on maintenance expenditures per

capital stock, z/k :

δ = δ
³
u,
z

k

´
, δ1 > 0, δ2 < 0, (1)

where z denotes maintenance expenditures and k is capital stock. To ensure

the second-order conditions for the optimization problem shown below, we

1See McGrattan and Schmitz Jr. (1999) and Mullen and Williams (2004).
2The standard Ak growth model with cash-in-advance constraints are studied by Chen

and Guo (2008a, b), Jha, Yip and Wang (2002), Li and Yip (2004) and Suen and Yip

(2005).
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assume that function δ (u, z/k) is strictly convex in u and z/k. The produc-

tion technology is given by an Ak production function such that

y = Auk, A > 0, (2)

where y denotes aggregate output. Namely, the ratio of output and the

utilized capital is fixed.

We consider a competitive, representative-agent economy. The optimiza-

tion problem for the representative household is given by the following:

max

Z ∞

0

e−ρt
c1−σ − 1
1− σ

dt, ρ > 0, σ > 0

subject to

ṁ = y − c− v − z − πm+ τ , (3)

k̇ = v − δk, (4)

c+ φ1v + φ2z ≤ m, 0 ≤ φ1, φ2 ≤ 1, (5)

together with the initial holdings of m and k. Here, c denotes consumption,

m real money balances, v investment spending, π rate of inflation, and τ is

a lump-sum transfer (lump-sum tax if it is negative) from the government.

In addition, the household’s income y and the capital depreciation rate δ are

given by (1) and (2), respectively. In this problem, (3) is the flow budget

constraint for the household, (4) describes capital formation and (5) specifies

the cash-in-advance constraint. We assume that the cash constraint is applied

to the entire consumption expenditure as well as to parts of maintenance and

investment spendings.

The current-value Hamiltonian function for the household’s optimization

problem is given by

H =
c1−σ − 1
1− σ

+ q (Auk − c− v − z − πm+ τ) + λ
h
v − δ

³
u,
z

k

´
k
i

+θ (m− c− φ1v − φ2z) ,

where q and λ respectively denote the implicit prices of m and k, and θ is

a Lagrangian multiplier. The control variables in this problem are c, u, v

and z, while the state variables are m and k. The necessary conditions for

an optimum are the following:

c−σ − q − θ = 0, (6)

−q + λ− θφ1 = 0, (7)
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qA− λδ1

³
u,
z

k

´
= 0, (8)

−q − λδ2

³
u,
z

k

´
− θφ2 = 0, (9)

q̇ = q (ρ+ π)− θ, (10)

λ̇ = λ
h
ρ+ δ

³
u,
z

k

´
− δ2

³
u,
z

k

´ z
k

i
− qAu, (11)

θ (m− c− φ1v − φ2z) = 0, θ ≥ 0, (m− c− φ1v − φ2z) ≥ 0, (12)

along with (3) , (4) , the initial conditions and the transversality conditions:

lim
t→∞

qme−ρt = 0; lim
t→∞

λke−ρt = 0.

Note that (12) displays the Kuhn-Tucker conditions for the cash-in-advance

constraint.

The market equilibrium condition for the final goods is

y = c+ v + z (13)

and the real money balances change according to

ṁ = m (μ− π) , (14)

where μ denotes a given growth rate of nominal money stock. We assume

that there is neither public debt nor the government’s spending, so that a

newly created money is distributed to the household as a lump-sum transfer.

Hence, the government’s flow budget constraint is given by μm = τ .

3 Balanced-Growth Characterization

Given our specification of the model economy, it is easy to see that the

balanced-growth equilibrium are characterized by the following conditions:

ċ

c
=
k̇

k
=
ẏ

y
=
v̇

v
=
ż

z
=
ṁ

m
= g,

q̇

q
=

λ̇

λ
=

θ̇

θ
= γ,

where g and γ are common growth rates that are constant over time on the

balanced-growth path. As a result, the balanced-growth equilibrium requires

that the capital utilization rate, u, and the maintenance expenditures per

capital, z/k, are also constant.
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First, note that the balanced-growth conditions mean the following:

γ = −σg, (15)

π = μ− g. (16)

Equation (15) comes from (6) , and (16) is given by (14). Condition (7) yields

θ

λ
=
1

φ1

³
1− q

λ

´
. (17)

Using (17) and (9) , we obtain

q

λ
=

φ1δ2 (u, x) + φ2
φ2 − φ1

, (18)

where x = z/k. Consequently, (8) and (18) give

δ1 (u, x) = A
φ1δ2 (u, x) + φ2

φ2 − φ1
(19)

This equation represents the relationship between the optimal levels of capital

utilization rate, u, and the maintenance spending rate, x (= z/k) .Notice that

since we have not used the balanced-growth conditions to derive (19) , this

relation also holds out of the balanced growth path.

From (10), (17) and (18) , we obtain

q̇

q
= ρ+ π − 1

φ1

µ
λ

q
− 1
¶

= ρ+ π − 1

φ1

∙
φ2 − φ1

φ1δ2 (u, x) + φ2
− 1
¸
.

Using (15), (16) and (19) , we see that the above equation is rewritten as

g =
1

1− σ

½
ρ+ μ− 1

φ1

∙
A

δ1 (u, x)
− 1
¸¾
. (20)

Similarly, (11) and (18) yield:

λ̇

λ
= ρ+ δ (u, x)− δ2 (u, x)x−

∙
φ1δ2 (u, x) + φ2

φ2 − φ1

¸
Au.

In view of (15) and (19) , the above is expressed as

g =
1

σ
{δ1 (u, x)u− ρ− δ (u, x) + δ2 (u, x)x} . (21)

To sum up, (19) , (20) and (21) may determine the steady-state levels of

x, u and g.
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4 Long-Run Impacts of Inflation Tax

To clarify our analysis, we now specify the depreciation function as

δ (u, x) =
δ0u

ε

1 + βx
, ε > 1, β > 0, δ0 > 0.

In the above, the capital depreciation rate is fixed at δ0 when ε = β = 0.

Our specification is a slightly modified version of the depreciation function

used by Licandro and Puch (2000) and Guo and Lansing (2008). Given the

above functional form, the steady-state conditions (19) , (20) and (21) are

respectively expressed by the following:

εδ0u
ε−1

1 + βx
=

A

φ2 − φ1

∙
φ2 − φ1

βδ0u
ε

(1 + βx)2

¸
, (22)

g =
1

σ − 1
½
1

φ1

∙
A (1 + βx)

εδ0uε−1
− 1
¸
− ρ− μ

¾
, (23)

g =
1

σ

∙µ
ε− 1− β

1 + βx

¶
δ0u

ε

1 + βx
− ρ

¸
. (24)

We examine the effects of a change in the money growth rate, μ, on the bal-

anced growth path under alternative forms of the cash-in-advance constraint.

Before analyzing the above conditions, it is worth remembering the main

findings in the standard Ak growth model with a constant capital depre-

cation rate. In the models with fixed depreciation, it is shown that the

balanced-growth path is uniquely determined and a rise in the growth rate

of money supply depresses the balanced-growth rate, as long as the elastic-

ity of intertemporal substitutability in consumption, 1/σ, is less than one.3

In contrast, if 1/σ > 1, then there may exist dual balanced-growth paths

and a higher money growth rate raises the growth rate of income on the

balanced-growth path with a higher growth rate.

We find that when 1/σ > 1, multiple balanced-growth paths may emerge

in our model as well. To emphasize the effects of endogenizing capital depre-

ciation, in what follows, we focus on the case where 1/σ < 1.

Case (i): φ1 = φ2 = 0

First, we assume that the cash-in-advance constraint binds consumption

expenditures alone. In this case q = λ for all t ≥ 0, and thus (8) and (9)
respectively become εδ0u

ε−1 = A (1 + βx) and βδ0u
ε = (1 + βx)

2
. These

equations give

u =
ε

βA
(1 + βx) , (25)

3See, for example, Chen and Guo (2008b), Li and Yip (2004) and Suen and Yip (2005).
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implying that the optimal level of capital utilization rate is proportional to

the optimal rate of maintenance spending. Using (8) and (25) , we see that

the optimal levels of x and u are given by

u∗ = (βδ0)
1

2−ε

µ
ε

βA

¶ 2
2−ε
, x∗ =

1

β

"µ
βδ0

µ
ε

βA

¶ε¶ 1
2−ε
− 1
#
. (26)

Hence, the capital utilization and maintenance spending rates (so the capital

depreciation rate) stay constant even out of the balanced-growth equilibrium.

The balanced-growth rate is determined as

g =
1

σ

∙µ
ε− 1− β

1 + βx∗

¶
δ0u

∗ε

1 + βx∗
− ρ

¸
,

where u∗ and x∗ are given by (26) . As well as in the standard Ak growth
model with the cash-in-advance constraint, our model shows that money

is superneutral as to the balanced growth rate when the cash-in-advance

constraint applies to consumption alone.

Case (ii): φ1 > 0 and φ2 = 0

Suppose that the maintenance expenditures are free from the cash-in-

advance constraint. As in Case (i), if φ2 = 0, equation (25) always holds.

Note that from (7) q generally diverges from λ. Hence, plugging (25) into

(23) and (24) , we obtain the following:

g =
1

σ − 1

(
1

φ1

"
A

εδ0

µ
ε

βA

¶1−ε
(1 + βx)

2−ε − 1
#
− ρ− μ

)
, (27)

g =
1

σ

∙µ
ε− 1− β

1 + βx

¶
δ0

µ
ε

βA

¶ε

(1 + βx)
ε−1 − ρ

¸
. (28)

Remember that we have assumed that σ > 1 and ε > 1. Under these

restrictions, we see that if ε > 2, then the graph of (27) has a negative

slope and that of (28) has a positive slope. Therefore, there exists a unique

balanced-growth path. It is also easy to see that a rise in money growth rate,

μ, shifts down the graph of (27) , so that a rise in μ lowers g and u. As a

result, from (25) both x and δ decrease as well. In contrast, if 1 < ε < 2,

then both graphs have positive slopes. This means that these graphs may

have multiple intersections. Furthermore, if the graph of (27) is steeper than

that of (28) , then a downward shift of the locus of (27) yields simultaneous

increases in u, x and g. In this case, we obtain a positive long-run relation

between money growth and the growth rate of real income.
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Case (iii): φ1 = 0 and φ2 > 0

In this case, the cash-in-advance constraint does not apply to investment

but it binds the maintenance expenditures. Condition φ1 = 0 means that

q = λ for all t ≥ 0. Thus (8) becomes εδ0uε−1 = A(1 + βx), which yields the

relation between x and u in such a way that

u =

µ
A

εδ0

¶ 1
ε−1
(1 + βx)

1
ε−1 . (29)

It is assumed that φ2 > 0 and thus (29) presents

θ

q
=
1

φ2

∙
βδ0u

ε

(1 + βx)
2
− 1
¸
. (30)

From (10) , (16) and (30) , the balanced-growth relation (23) in the general

case is replaced with

g =
1

σ − 1

(
1

φ2

"
βδ0

µ
A

εδ0

¶ ε
ε−1
(1 + βx)

2−ε
ε−1 − 1

#
− ρ− μ

)
. (31)

Additionally, by use of (29) , we write (24) as

g =
1

σ

"µ
ε− 1 + β

1 + βx

¶
δ0

µ
A

εδ0

¶ ε
ε−1
(1 + βx)

1
ε−1 − ρ

#
. (32)

Equations (31) and (32) demonstrate that the comparative statics results

are similar to those in Case (ii): again, if ε > 2, then the balanced-growth

path is uniquely determined and a rise in μ depresses x, u and g. If 1 < ε < 2,

a higher μ may increase x, u and g. on the balanced growth path.

Case (iv): 0 < φ1 ≤ 1 and 0 < φ2 ≤ 1
As the special cases mentioned above suggest, if neither φ1 nor φ2 is zero,

we may have a variety of comparative statics results on the balanced growth

path. Notice that (22) is written asµ
1− φ1

φ2

¶
εδ0u

ε−1

1 + βx
+

φ1
φ2

βδ0u
ε

(1 + βx)2
= A.

Hence, if φ2 > φ1, then x and u satisfying the above equation change in the

same direction, implying that the above gives x = x (u) , x0 > 0. Substituting
this into (23) and (24) , we obtain the relations between g and u that are

similar to (24) and (27) (or (31) and (32)). Thus the effects of a change in

μ will be the same as those in Cases (ii) and (iii). If φ2 < φ1, it is possible

that (22) yields a negative relation between u and x. If this is the case, the

comparative statics exercises become more complex than in Cases (ii) and

(iii), even if assume that 1/σ < 1.

8



5 Conclusion

This paper examines the role of endogenous capital depreciation in the con-

text of an Ak growth model with a cash-in-advance constraint. We assume

that the rate of capital depreciation is determined by the rate of capital

utilization and maintenance expenditures. We also assume that the cash-

in-advance constraint may apply to the maintenance spendings in addition

to consumption and investment expenditures. Our analysis reveals that the

long-run impacts of inflation tax would be more complex than those obtained

in the standard Ak growth model with a fixed rate of capital depreciation.

In particular, the long-term relation between inflation and growth is highly

sensitive to the specification of the capital depreciation function as well as

to forms of the cash-in-advance constraint.4

4This paper has assumed a simple model of Ak technology. The monetary endogenous

growth models have been studied in more general settings such as models with endogenous

labor supply, multiple capital goods as well as with endogenous money supply rules: see,

for example, Fujisaki and Mino (2007 and 2009) and Itaya and Mino (2007). It would be

useful to consider the topic of this paper in these more general environments.
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