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Abstract

This paper considers second-price, sealed-bid auctions with a buy price where bid-
ders’ types are discretely distributed. We characterize all equilibria, restricting our
attention to equilibria where bidders whose types are less than a buy price bid their
own valuations. Budish and Takeyama (2001) analyzed the two-bidder, two-type frame-
work, and showed that if bidders are risk-averse, a seller can obtain a higher expected
revenue from the auction with a certain buy price than from the auction without a buy
price. We extend their revenue improvement result to the n-bidder, two-type frame-
work. However, in case of three or more types, bidders’ risk aversion is not a sufficient
condition for the revenue improvement. Our example illustrates that even if bidders are
risk-averse, a seller cannot always obtain a higher expected revenue from the auction
with a buy price.

JEL classification: C72; D44

Key words: Auction; Buy price; Risk aversion

1 Introduction

We commonly observe that sellers set buy prices in Internet auctions. Since the winning
bid is not above a buy price, it seems that the seller loses by determining an upper bound
of the winning bid. Several papers, however, show that it may be reasonable for a seller to
set a buy price. If a bidder wins by bidding a buy price, he certainly obtains some surplus.
In contrast, if he wins by bidding the amount except a buy price, his surplus is random and
depends on other bidders’ reservation values. That is, a buy price plays a role of insurance
for a risk-averse bidder. Therefore, by introducing a buy price, a seller can extract a risk
premium from risk-averse bidders and then obtain a higher expected revenue.1

Budish and Takeyama (2001) first considered a second-price, sealed-bid auction with a
buy price. They analyzed a simple model—the two-bidder, two-type framework. Their main
result is that if bidders are risk-averse, a seller can obtain a higher expected revenue from
the auction with a certain buy price. Hidvégi, Wang and Whinston (2006) and Reynolds
and Wooders (2008) extended the analysis in two directions. One is that bidders’ types are
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supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Grant-in-Aid
for 21st Century COE Program “Interfaces for Advanced Economic Analysis.”
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1For a similar reason, a seller can obtain a higher expected revenue from a first-price, sealed-bid auction

than from a second-price, sealed-bid auction. See Maskin and Riley (1984) or Matthews (1987) for details.



continuously distributed. The other is that the auction is an open format. These two papers
showed that if risk-averse bidders exhibit constant absolute risk aversion (CARA), a seller
can obtain a higher expected revenue by properly setting a buy price. The above results
indicate that bidders’ risk-aversion is a sufficient condition for a revenue improvement.

This paper extends the analysis in a different direction. We consider a second-price,
sealed-bid auction with a buy price where bidders’ types are discretely distributed. Specifi-
cally, we analyze a general model—the n-bidder, m-type framework. In general, there are a
lot of equilibria. To limit our attention to equilibria by reasonable strategies, we introduce
the notion of partial truth-telling : a bidder whose type is less than a buy price bids his own
valuation. Under this reasonable restriction, we characterize all equilibria. We show that
there are only two kinds of equilibria where all bidders play partially truth-telling strate-
gies. One is the symmetric equilibrium in which all bidders whose types are not less than
a buy price actually bid it. The other is the asymmetric equilibrium where n − 1 bidders
play the strategy that any types above the buy price bid it and only one bidder plays a
different strategy. For each class of equilibrium, we derive a necessary and sufficient con-
dition for existence. By using this condition, we show that there always exists a buy price
between the lowest valuation and the second lowest valuation under which we have a sym-
metric equilibrium. We also show that there is no asymmetric equilibrium in the two-bidder
framework.

We analyze whether a seller can improve her payoffs by introducing a buy price. We
consider also the case in which a seller is risk-averse. We show that if we can find a buy
price under which the symmetric equilibrium exists between the highest valuation and the
second highest valuation, then a seller can obtain a higher expected utility at the highest
buy price under which we have the symmetric equilibrium unless both the seller and the
bidders are risk-neutral. In any two-type framework, this condition always holds because of
the above result on existence. Thus, we can obtain a generalization of the result of Budish
and Takeyama (2001) in the two-type framework with any numbers of bidders. Our utility
improvement results allow a seller’s risk-aversion and do not depend on a CARA utility
function unlike Hidvégi et al. (2006) and Reynolds and Wooders (2008).

It is not clear whether a seller obtains the highest expected utility from the symmetric
equilibrium. We then consider the possibility that some asymmetric equilibrium gives a
higher expected utility to the seller than the symmetric equilibrium does. However, we
show that a seller cannot obtain a higher expected utility from any asymmetric equilibria
than from the symmetric equilibrium.

If the condition for utility improvements does not hold, then we need to consider the
auction with a buy price that is not greater than the second highest valuation. We show
two examples. In the first example, the seller cannot improve her expected revenue by
introducing such a buy price. In the second example, on the contrary, she can improve her
expected revenue. The former concludes that even if bidders are risk-averse, a seller cannot
always obtain a higher expected revenue from the auction with a buy price. In case of three
or more types, bidders’ risk aversion is not a sufficient condition for revenue improvements.

We introduce other results in related literature. Budish and Takeyama (2001) showed
that if bidders are risk-averse, then a seller can obtain a higher expected revenue by properly
setting a buy price from the second-price, sealed-bid auction with a buy price than from the
first-price, sealed-bid auction without a buy price. In general, it is complicated to analyze
the first-price, sealed-bid auction with three (or more) bidders where bidders’ types are
discretely distributed. Thus, we only make a comparison between the second-price, sealed-
bid auctions with and without a buy price. In Internet auctions, two kinds of buy out prices
are practically used. One is a buy price on Yahoo!. The other is a Buy It Now price on
eBay.2 Reynolds and Wooders (2008) compared English auctions with these two buy out

2In the case of Yahoo!, bidders can always bid a buy price throughout the auction. In the case of eBay,
bidders can bid a Buy It Now price only before the bidding process starts.
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prices. They showed that a seller can obtain a higher expected revenue from the auction
with a certain buy price than from the auction with the same Buy It Now price if risk-averse
bidders have CARA utility functions. Since we consider a static model, we cannot compare
a buy price with a Buy It Now price. Some papers analyze auctions with a buy out price
from a seller’s point of view. Hidvégi et al. (2006) showed that a risk-averse seller can obtain
a higher expected utility from the auction with a buy price. Mathews and Katzman (2006)
obtained a similar utility improvement result in the auction with a Buy It Now price. We
also show that a risk-averse seller can obtain a higher expected utility from the second-price,
sealed-bid auction with a buy price.

The remainder of this paper is organized as follows. Section 2 describes the model. In
Section 3, we characterize all equilibria. Section 4 examines whether a seller can improve
her expected utility by introducing a buy price. And in Section 5, we conclude.

2 The model

We consider a second-price, sealed-bid auction with a buy price. Bidders’ types are discretely
distributed, and are drawn independently from an identical distribution. Bidders’ valuations
of an item depend only on their types. This auction consists of two stages: (i) a seller sets
a buy price B ∈ [0,+∞), and (ii) an item is up for auction. We analyze mainly this auction
given a buy price B and then argue which buy price B a seller should choose.

Let N = {1, . . . , n} denote the set of bidders. The set of types for each bidder i is
Ti = {v1, . . . , vm} with v1 < · · · < vm. We denote by fµ the probability that a bidder’s type
is vµ. We assume that for all µ, fµ > 0, and define Fµ = f1 + · · ·+fµ. Note that Fm = 1. In
addition, let F0 = 0. We assume that each bidder has a von-Neumann-Morgenstern utility
function U : R → R with U(0) = 0, and that U(·) is strictly increasing and concave (possibly
linear).

We suppose that bidders cannot bid above a buy price B. Thus, the set of actions for
each bidder i is Ai = [0, B]. Bidder i’s payoff function is ui : A×Ti → R, where A = ×n

i=1Ai.
Given ti ∈ Ti and a ∈ A, bidder i’s utility is:

ui(a; ti) =


U(ti − maxj ̸=i aj) if ai ̸= B and ai > maxj ̸=i aj ,

U(ti − B) if ai = B and ai > maxj ̸=i aj ,
1
M U(ti − ai) if ai = maxj ̸=i aj and M = card{j|aj = ai}, and

0 if ai < maxj ̸=i aj .

If no one bids a buy price B, then this auction is an ordinary second-price, sealed-bid
auction. Thus, the highest bidder obtains the item and pays the second highest bid. If only
one bidder bids a buy price B, then he immediately obtains the item but must pay it to the
seller. If there are two or more bidders who submit the highest bid ( it might be a buy price
B.), then we adopt a tie-breaking rule that a winner is determined with equal probability.

A bidder i’s strategy is σi : Ti → ∆(Ai), where ∆(Ai) is the set of probability dis-
tributions over Ai.3 A solution concept is Bayesian Nash equilibrium: a strategy profile
σ = (σi)n

n=1 is a Bayesian Nash equilibrium if for all i, all ti ∈ Ti, and all a′
i ∈ Ai,

E[ui(a; ti)|σi, σ−i, ρ(t−i)] ≥ E[ui(a′
i, a−i; ti)|σ−i, ρ(t−i)],

where σ−i is the vector of the other n − 1 bidders’ strategies, and ρ(·) is the probability
distribution of the other n − 1 bidders’ types.

3When σi(·) is a pure strategy, we often regard the range of σi(·) as Ai.
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3 Characterization of equilibria

We consider the auction with a buy price B ∈ (vk, vk+1] (k = 1, . . . , m− 1). In the auction,
we have a lot of equilibria. To restrict our attention to equilibria by reasonable strategies,
we propose the notion of partial truth-telling.

Definition 1. A strategy σi(·) is partially truth-telling if σi(ti) = ti for all ti < B.

When a bidder plays a partially truth-telling strategy, his type that is less than a buy
price B bids his own valuation, which is a weakly dominant action. In this paper, we only
consider equilibria where all bidders play partially truth-telling strategies.4 Among partially
truth-telling strategies, in particular, we pay much attention to the following one:

σ∗
i (ti) =

{
B if ti ≥ vk+1,
ti otherwise.

The strategy σ∗
i (·) is reasonable, because it is weakly dominated for the bidder whose type

is not less than a buy price B to bid an amount b ̸= B.
The strategy σ∗

i (·) plays an important role. In fact, at least n − 1 bidders play the
strategy σ∗

i (·) in any equilibria by partially truth-telling strategies.

Proposition 1. Any strategy profiles where at least two bidders play strategies except the
strategy σ∗

i (·) do not become an equilibrium by partially truth-telling strategies.

Proof. See Appendix.

By Proposition 1, it suffices to consider only two kinds of strategy profiles. One is the
symmetric strategy profile where all bidders play the strategy σ∗

i (·). The other is asymmetric
strategy profiles where only one bidder does not play the strategy σ∗

i (·), while all other
bidders play it.

3.1 Symmetric equilibrium

In this subsection, we consider symmetric equilibrium. By Proposition 1, it suffices to
consider the symmetric strategy profile σ∗ = (σ∗

i )n
i=1. The symmetric strategy profile σ∗ is

a Bayesian Nash equilibrium if and only if{ n−1∑
ν=0

1
n − ν

(
n − 1

ν

)
(1 − Fk)n−1−ν(Fk)ν

}
U(vκ − B)

≥
k∑

µ=1

{
(Fµ)n−1 − (Fµ−1)n−1

}
U(vκ − vµ)

(1)

for all κ = k+1, . . . ,m. The LHS of (1) is the expected payoff that a bidder’s vκ-type obtains
by bidding a buy price B. n−1Cν (1−Fk)n−1−ν(Fk)ν is the probability that there are ν other
bidders whose types are not greater than vk. The winning probability is 1/{n− ν} because
the winner is determined among the bidders who bid a buy price B with equal probability.
The RHS of (1) is the expected payoff that a bidder’s vκ-type obtains by bidding b ∈ (vk, B).

4If we analyze all equilibria, as Inami (2008) shows, we cannot accurately compare seller’s expected
revenues. Indeed, a seller can obtain both a higher expected revenue and a lower expected revenue from the
equilibrium by weakly dominated strategies than from the equilibrium by partially truth-telling strategies.
Similarly, in the auction without a buy price, a seller can obtain both a higher expected revenue and a
lower expected revenue from the equilibrium by weakly dominated strategies than from the equilibrium by
weakly dominant strategies. Thus, it would be reasonable to restrict our attention to equilibria by partially
truth-telling strategies.
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(Fµ)n−1−(Fµ−1)n−1 is the probability that the second highest bid among n − 1 other bidders
is vµ. In this case, since this auction is a usual second-price, sealed-bid auction, the type
wins and pays vµ. If the type bid b′ ≤ vk, then the type could not (surely) win against
opponents’ vk-type because they bid vk. In other words, the type cannot maximize the
winning probability by bidding b′. Thus, the RHS of (1) is the maximum expected payoff
by bidding the amount except a buy price B.

In fact, we do not need to consider all those inequalities.

Proposition 2. The strategy profile σ∗ is a Bayesian Nash equilibrium if and only if (1)
holds for κ = k + 1.

Proof. The necessity part is straightforward. We only prove the sufficiency part.
Fix κ ≥ k + 1. For all µ ∈ {1, . . . , k},

U(vκ − B) − U(vk+1 − B) ≥ U(vκ − vµ) − U(vk+1 − vµ),

where the inequality follows because U(·) is concave. In addition,

n−1∑
ν=0

1
n − ν

(
n − 1

ν

)
(1 − Fk)n−1−ν(Fk)ν =

1 − (Fk)n

n(1 − Fk)

=
1 + Fk + · · · + (Fk)n−2 + (Fk)n−1

n

> (Fk)n−1

=
k∑

µ=1

{
(Fµ)n−1 − (Fµ−1)n−1

}
.

Thus, we have{ n−1∑
ν=0

1
n − ν

(
n − 1

ν

)
(1 − Fk)n−1−ν(Fk)ν

}{
U(vκ − B) − U(vk+1 − B)

}
≥

k∑
µ=1

{
(Fµ)n−1 − (Fµ−1)n−1

}{
U(vκ − vµ) − U(vk+1 − vµ)

}
.

Hence, if (1) holds for κ = k + 1, then (1) also holds for κ ≥ k + 2. Q.E.D.

We consider when there exists a buy price B ∈ (vk, vk+1] such that (1) for κ = k + 1
holds. The following condition ensures the existence of such a buy price B:

U(vk+1 − vk) >

∑k
µ=1

{
(Fµ)n−1 − (Fµ−1)n−1

}
U(vk+1 − vµ)∑n−1

ν=0
1

n−ν

(
n − 1

ν

)
(1 − Fk)n−1−ν(Fk)ν

(2)

=
n(1 − Fk)

∑k
µ=1

{
(Fµ)n−1 − (Fµ−1)n−1

}
U(vk+1 − vµ)

1 − (Fk)n
.

(2) can be interpreted from the view point of certainty equivalent. The RHS of (2) is the
conditional expected utility given that a bidder’s vk+1-type wins in a usual second-price,
sealed-bid auction without a buy price. Hence, (2) states that the certainty equivalent of
the lottery corresponding to the RHS of (2) must be less than vk+1 − vk.

If (2) holds, then we can also find the highest buy price B under which the symmetric
strategy profile σ∗ is a Bayesian Nash equilibrium. Consider (1) for κ = k + 1:

U(vk+1 − B) ≥
n(1 − Fk)

∑k
µ=1

{
(Fµ)n−1 − (Fµ−1)n−1

}
U(vk+1 − vµ)

1 − (Fk)n
. (3)
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Arranging (3), we have

B ≤ vk+1 − U−1

(
n(1 − Fk)

∑k
µ=1

{
(Fµ)n−1 − (Fµ−1)n−1

}
U(vk+1 − vµ)

1 − (Fk)n

)
.

Here let

B∗
k+1 := vk+1 − U−1

(
n(1 − Fk)

∑k
µ=1

{
(Fµ)n−1 − (Fµ−1)n−1

}
U(vk+1 − vµ)

1 − (Fk)n

)
.

Thus, when we consider the auction with a buy price B ∈ (vk, B∗
k+1], the symmetric strategy

profile σ∗ is a Bayesian Nash equilibrium. When we consider the auction with a buy price
B ∈ (B∗

k+1, v
k+1], the symmetric strategy profile σ∗ is not an equilibrium. Thus, by Propo-

sition 1, there is no symmetric equilibrium in the auction with a buy price B ∈ (B∗
k+1, v

k+1].

Proposition 3. Suppose that (2) holds. Then,
(i) when we consider the auction with a buy price B ∈ (vk, B∗

k+1], the strategy profile σ∗ is
a unique symmetric equilibrium, and
(ii) when we consider the auction with a buy price B ∈ (B∗

k+1, v
k+1], there is no symmetric

equilibrium.

If (2) does not hold, then B∗
k+1 is not greater than vk. Thus, we cannot find a buy price

B ∈ (vk, vk+1] under which a symmetric equilibrium exists.
In fact, we can always find a buy price B under which a symmetric equilibrium exists

between the lowest valuation and the second lowest valuation.

Proposition 4. (2) for k = 1 always holds.

Proof. We show that

U(v2 − v1) >
n(1 − F1)(F1)n−1U(v2 − v1)

1 − (F1)n
.

Since

1 >
n(F1)n−1

1 + F1 + · · · + (F1)n−2 + (F1)n−1
=

n(1 − F1)(F1)n−1

1 − (F1)n
,

we immediately have the result. Q.E.D.

From the view point of certainty equivalent, the result in Proposition 4 is obvious. Since
bidders obtain either the surplus v2 − v1 or the surplus 0 in the auction, the certainty
equivalent of the lottery is clearly less than v2 − v1. By Proposition 4, we always have a
symmetric equilibrium in the m-bidder, n-type framework.

There is no general relation between the intervals satisfying (2) and the intervals not
satisfying (2). We show an example.

Example 1. Consider a three-bidder, four-type framework. Let U(x) =
√

x, f1 = 3
10 ,

f2 = 1
10 , f3 = 1

10 , v1 = 10, v2 = 35.5, v3 = 36 and v4 = 40.

In this example, both (2) for k = 1 and (2) for k = 3 hold. On the contrary, (2) for k = 2
does not hold. (See Figure 1.) Thus, there is no monotonicity as to whether (2) holds.5

We consider the auction with a buy price B between other valuations, (vk, vk+1] (k ̸= 1).
In general, (2) does not always hold. However, fixing all parameters except the number of
bidders, it depends on the number of bidders whether (2) for k ̸= 1 holds.

5Strictly speaking, we have a problem that bidders’ utility function U(·) =
√

x is not defined on (−∞, 0).
To resolve this problem, we can modify the utility function U(·) as follows: at some point x̃ close to 0,
U(·) =

√
x if x ≥ x̃ and U(·) = x/

√
x̃ if x < x̃. We can make the same modification in Example 3.
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Figure 1: Example 1

(vk, vk+1] The LHS of (2) for k The RHS of (2) for k
(v3, v4] (k = 3) 2.00 1.31
(v2, v3] (k = 2) 0.71 0.77
(v1, v2] (k = 1) 5.05 0.98

Proposition 5. Fix U(·), fµ, and vµ for all µ = 1, · · · , k + 1. There exists n0 such that
for all n ≥ n0,

U(vk+1 − vk) >
n(1 − Fk)

∑k
µ=1{(Fµ)n−1 − (Fµ−1)n−1}U(vk+1 − vµ)

1 − (Fk)n
.

Proof. Let

Gµ(n) :=
n(Fµ)n−1

1 − (Fk)n

for all µ = 1, . . . , k. We have

U(vk+1 − vk) −
n(1 − Fk)

∑k
µ=1{(Fµ)n−1 − (Fµ−1)n−1}U(vk+1 − vµ)

1 − (Fk)n

= U(vk+1 − vk) − (1 − Fk)
k∑

µ=1

Gµ(n){U(vk+1 − vµ) − U(vk+1 − vµ+1)}. (4)

For all µ, (1 − Fk)Gµ(n) → 0 as n → 0. Thus, there exists n0 such that (4) > 0. Hence, we
have the result. Q.E.D.

(2) for k ̸= 1 holds with a large number of bidders. It is because if many bidders
participate the auction, the second highest bid possibly decreases and then the certainty
equivalent of the lottery corresponding to the RHS of (2) decreases. By Proposition 5, we
also find that there exists n∗ such that all intervals, (vk, vk+1], satisfies (2). Furthermore,
Proposition 5 has an important feature. In the Internet auctions, a seller usually faces many
bidders and therefore (2) is more likely to hold.

3.2 Asymmetric equilibrium

In this subsection, we consider asymmetric equilibrium. By Proposition 1, it suffices to
consider asymmetric strategy profiles where only one bidder, say, bidder 1, does not play
the strategy σ∗

i (·) and all other bidders play it.
Consider the incentive of bidder 1. Since bidder 1 does not play the strategy σ∗

1(·), there
exists κ ≥ k + 1 such that

k∑
µ=1

{
(Fµ)n−1 − (Fµ−1)n−1

}
U(vκ − vµ)

≥
{ n−1∑

ν=0

1
n − ν

(
n − 1

ν

)
(1 − Fk)n−1−ν(Fk)ν

}
U(vκ − B).

(5)

The LHS of (5) is the maximum expected payoff that bidder 1’s vκ-type obtains by bidding
the amount except a buy price B. The RHS of (5) is the expected payoff that he obtains by
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bidding a buy price B. If (5) does not hold, bidder 1’s vκ-type obtains a higher expected
payoff by bidding a buy price B.

Suppose that such κ exists. By a similar argument to that of Proposition 2, we can find
k∗ such that (5) holds if κ ≤ k∗ and (5) does not hold if κ ≥ k∗ +1. Here, we fix b ∈ (vk, B)
and then define the following strategy:

σ1(t1; b) =

 B if t1 ≥ vk∗+1,

b if vk+1 ≤ t1 ≤ vk∗
,

t1 otherwise.

We examine whether the asymmetric strategy profile σ = (σ1(·; b), σ∗
−1) is an equilibrium.

First, consider the incentive of bidder 1. By the definition of k∗, for any b, bidder 1’s
strategy σ1(·; b) is a best response to other bidders’ strategies σ∗

−1 = (σ∗
j )j ̸=1. Thus, it

remains to consider the incentive of bidder j (j = 2, . . . , n). To be an equilibrium, for all
κ ∈ {k + 1, . . . , m},{ n−2∑

ν=0

(
n − 2

ν

)(
1 − Fk∗

n − ν
+

Fk∗

n − 1 − ν

)
(1 − Fk)n−2−ν(Fk)ν

}
U(vκ − B)

≥
k∑

µ=1

{
(Fµ)n−1 − (Fµ−1)n−1

}
U(vκ − vµ) + (Fk∗ − Fk)(Fk)n−2U(vκ − b)

(6)

must hold. The LHS of (6) is the expected payoff that bidder j’s vκ-type obtains by bidding
a buy price B. The RHS of (6) is the maximum expected payoff that bidder j’s vκ-type
obtains by bidding the amount except a buy price B. In this case, bidder j always wins
against bidder 1 whose type is not greater than vk. Furthermore, he wins against bidder 1
whose type is greater than vk, but less than vk∗+1.

From the same argument as that of Subsection 3.1, it suffices to consider (6) for κ =
k + 1.6 Also, if (5) for κ = k + 1 holds, then we can find k∗. Thus, it suffices to consider (5)
for κ = k + 1. Hence, both inequalities are also necessary conditions for equilibrium.

Proposition 6. An asymmetric strategy profile σ = (σ1(·; b), σ∗
−1) is a Bayesian Nash

equilibrium if and only if both (5) and (6) holds for κ = k + 1.

By Proposition 6, there is no asymmetric equilibrium by partially truth-telling strategies
in the auction with a buy price B ∈ (vk, B∗

k+1).
In general, given a buy price B, it is unclear whether there exists b ∈ (vk, B) such that the

strategy profile σ = (σ1(·; b), σ∗
−1) is an equilibrium. The following inequality is a necessary

and sufficient condition for the existence of such b:{ n−2∑
ν=0

(
n − 2

ν

)(
1 − Fk∗

n − ν
+

Fk∗

n − 1 − ν

)
(1 − Fk)n−2−ν(Fk)ν

}
U(vk+1 − B)

>
k∑

µ=1

{
(Fµ)n−1 − (Fµ−1)n−1

}
U(vk+1 − vµ) + (Fk∗ − Fk)(Fk)n−2U(vk+1 − B).

(7)

6Let

I(x) :=

{ n−2∑
ν=0

(n − 2

ν

)(1 − Fk∗

n − ν
+

Fk∗

n − 1 − ν

)
(1 − Fk)n−2−ν(Fk)ν

}
U(x − B)

−
k∑

µ=1

{
(Fµ)n−1 − (Fµ−1)n−1

}
U(x − vµ) − (Fk∗ − Fk)(Fk)n−2U(x − b).

Since we can show that I(·) is monotone increasing, it suffices to consider (6) for κ = k + 1.
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Since (7) holds with strict inequality, then we can find b ∈ (vk, B) such that (6) holds.
We have considered a specific asymmetric strategy profile. When we consider the auction

with a buy price B under which (7) does not hold, other asymmetric strategy profiles
might be equilibria. However, it is not the case. That is, whenever some asymmetric
equilibrium exists, we can always find b ∈ (vk, B) such that the asymmetric strategy profile
σ = (σ1(·; b), σ∗

−1) is an equilibrium.

Proposition 7. Suppose that some asymmetric strategy profile σ = (σ1, σ
∗
−1) is an equi-

librium. Then, there exists b ∈ (vk, B) such that the asymmetric strategy profile σ =
(σ1(·; b), σ∗

−1) is also an equilibrium.

Proof. See Appendix.

By Proposition 6 and Proposition 7, (7) is also a necessary and sufficient condition for the
existence of asymmetric equilibrium.

However, we do not always have an asymmetric equilibrium by partially truth-telling
strategies.

Proposition 8. There is no asymmetric equilibrium by partially truth-telling strategies if
there are only two bidders.

Proof. See Appendix.

By Proposition 8, there is no asymmetric equilibrium by partially truth-telling strategies
in the two-bidder framework regardless of the number of bidders’ types. Thus, there is
no asymmetric equilibrium by partially truth-telling strategies in the two-bidder, two-type
framework of Budish and Takeyama (2001). Their restriction on a symmetric equilibrium
does not lose generality.

4 Auction comparisons from a seller’s point of view

In this section, we analyze whether a seller can improve her payoffs by introducing a buy
price B if bidders are risk-averse. We take into account both bidders’ risk attitude and a
seller’s risk attitude, and then compares the expected utilities. We assume that the seller
has a von-Neumann-Morgenstern utility function W : R+ → R+ with W (0) = 0, and assume
that W (·) is strictly increasing and concave (possibly linear).

4.1 The comparison with the auction without a buy price B

First, we compare between the auctions with and without a buy price B. We consider
the case in which a seller sets a buy price B between the highest valuation and the second
highest valuation. We assume that (2) holds for k = m−1. Thus, there exists the symmetric
equilibrium σ∗ in the auction with a buy price B ∈ (vm−1, B∗

m]. The seller’s expected utility
obtained from the symmetric equilibrium σ∗ is:

RB =
m−1∑
µ=1

[
nFm−1

{
(Fµ)n−1 − (Fµ−1)n−1

}
− (n − 1)

{
(Fµ)n − (Fµ−1)n

}]
W (vµ)

+
{
1 − (Fm−1)n

}
W (B).

(8)

Since RB is increasing with respect to B, we evaluate (8) at B = B∗
m. We denote the

expected utility by RB
m.

9



Since the auction without a buy price B is a usual second-price, sealed-bid auction, the
seller’s expected utility is:

RNB =
m∑

µ=1

[
n
{
(Fµ)n−1 − (Fµ−1)n−1

}
− (n − 1)

{
(Fµ)n − (Fµ−1)n

}]
W (vµ). (9)

If RB
m > RNB , then the seller can improve her utility by introducing a certain buy price B.

Theorem 1. Consider a n-bidder, m-type framework. Suppose that (2) holds for k = m−1.
Then,

RB
m ≥ RNB ,

where the equality holds if and only if both the seller and the bidders are risk-neutral.

Proof. See Appendix.

Even if bidders are risk-loving, we might have the symmetric equilibrium σ∗. However, by
the same argument as that of the proof of Theorem 1, a seller obtains a strictly lower
expected utility, with the result that she cannot improve her expected utility by introducing
a buy price B.

In the two-type framework, by Proposition 4, (2) always holds for k = 1. We immediately
have the following result.

Corollary 1. Consider a n-bidder, two-type framework. Then,

RB
m ≥ RNB ,

where the equality holds if and only if both the seller and the bidders are risk-neutral.

Corollary 1 generalizes the result of Budish and Takeyama (2001) in the two-bidder,
two-type framework with respect to the number of bidders and the seller’s risk attitude.

4.2 The comparison with the auction with asymmetric equilibria

In this subsection, we investigate the possibility of further improvements. As long as we
limit attention to a symmetric equilibrium, the expected utility RB

m is the highest of all
auctions with a buy price B ∈ (vm−1, vm]. We then take into account asymmetric equilibria
and compare the expected utilities. The next subsection considers another possibility that
a seller can obtain a higher expected utility from the auction with a buy price B that is not
greater than the second highest valuation.

We continue to assume that (2) holds for k = m − 1. Thus, by Proposition 6 , there
is no asymmetric equilibrium by partially truth-telling strategies in the auction with a buy
price B ∈ (vm−1, B∗

m). From the same argument as that of Subsection 3.2, there exists an
asymmetric equilibrium if and only if

n−2∑
ν=0

{
1

n − 1 − ν

(
n − 2

ν

)
(fm)n−2−ν(Fm−1)ν

}
U(vm − B)

>
m−1∑
µ=1

{
(Fµ)n−1 − (Fµ−1)n−1

}
U(vm − vµ) + fm(Fm−1)n−2U(vm − B).

(10)
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Arranging (10), we have 7

B < vm − U−1

( (n − 1)fm

∑m−1
µ=1

{
(Fµ)n−1 − (Fµ−1)n−1

}
U(vm − vµ)

1 − (Fm−1)n−1 − (n − 1)(fm)2(Fm−1)n−2

)
. (11)

Here let

B∗
m := vm − U−1

( (n − 1)fm

∑m−1
µ=1

{
(Fµ)n−1 − (Fµ−1)n−1

}
U(vm − vµ)

1 − (Fm−1)n−1 − (n − 1)(fm)2(Fm−1)n−2

)
.

Note that there is no asymmetric equilibrium in the auction with a buy price B ∈ [B∗
m, vm].

From the above argument, there exists an asymmetric equilibrium in the auction with a
buy price B ∈ [B∗

m, B∗
m). When we compare seller’s expected utilities, we need to consider

two cases. One is the case in which a seller sets a buy price B∗
m. The other is the case in

which she sets a buy price B ∈ (B∗
m, B∗

m).
First, we consider the auction with the buy price B∗

m where there exist both a symmetric
equilibrium and an asymmetric equilibrium. In this case, a seller can obtain a higher ex-
pected utility from the symmetric equilibrium. This is because in any asymmetric equilibria,
one bidder whose type is not less than a buy price B does not bid the buy price B∗

m with
probability 1.

Next, we consider the auction with a buy price B ∈ (B∗
m, B∗

m). Since by definition,
bidders cannot bid the buy price B∗

m, and one bidder’s vm-type does not bid the buy price
B with probability 1, we can derive an upper bound of the seller’s expected utility with
asymmetric equilibria:

RB =
m−1∑
µ=1

[
nFm−1

{
(Fµ)n−1 − (Fµ−1)n−1

}
− (n − 1)

{
(Fµ)n − (Fµ−1)n

}]
W (vµ)

+
m−1∑
µ=1

fm

{
(Fµ)n−1 − (Fµ−1)n−1

}
W (vµ) +

{
1 − (Fm−1)n−1

}
W (B∗

m).

(12)

If RB
m > RB , then a seller cannot improve her utility by taking account of asymmetric

equilibria.

Proposition 9. Consider a n-bidder, m-type framework. Suppose that (2) holds for k =
m − 1 and that (10) holds. Then,

RB
m > RB .

Proof. See Appendix.

If (10) does not hold, by Propositions 6 and 7, there is no asymmetric equilibrium by
partially truth-telling strategies. Thus, a seller can obtain the highest expected utility from
the auction with the buy price B∗

m.

4.3 Discussions

We have only analyzed the auction environment where a buy price B is set between the
highest valuation and the second highest valuation, (vm−1, vm]. In this subsection, we

7Note that

n−2∑
ν=0

1

n − 1 − ν

(n − 2

ν

)
(fm)n−2−ν(Fm−1)ν − fm(Fm−1)n−2 =

1 − (Fm−1)n−1 − (n − 1)(fm)2(Fm−1)n−2

(n − 1)fm
.
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examine other auction environment in which a buy price B is not greater than the second
highest valuation, vm−1. We assume that a seller is risk-neutral and that bidders are risk-
averse, and study the two-bidder, three-type framework. Since we consider the two-bidder
framework, by Proposition 8, we need not care about asymmetric equilibria by partially
truth-telling strategies.

First, we consider the auction with a buy price B ∈ (v2, v3]. The symmetric equilibrium
exists if and only if (2) for k = 2 holds:

U(v3 − v2) ≥ 2f1U(v3 − v1)
1 + f1 − f2

. (13)

If (13) does not hold, by Theorem 1, a seller cannot improve her revenue by introducing a
buy price B ∈ (v2, v3].

Next, we consider the auction with a buy price B ∈ (v1, v2]. Since, by Proposition 4, (2)
for k = 1 always holds, it suffices to compare seller’s expected revenues in the same way of
Subsection 4.1. To obtain a higher revenue from the auction with the buy price B∗

2 , which
is not greater than the second highest valuation v2, than from the auction without a buy
price,

U

(
−(f3)2v3 + {1 − 2f2 + 2f1f2 − (f1)2 + (f2)2}v2 − 2f1(1 − f1)v1

1 − (f1)2

)
>

2f1

1 + f1
U(v2 − v1)

(14)

must hold.

Example 2. Let U(x) = 1 − e−
1
2 x, f1 = 7

10 , f2 = 1
10 , v1 = 0.25, v2 = 0.50, and v3 = 0.55.

We have the followings:

the LHS of (13) ≃ 0.025 < 0.12 ≃ the RHS of (13), and
the LHS of (14) ≃ 0.0960 < 0.0968 ≃ the RHS of (14).

In Example 2, a seller cannot obtain a higher expected revenue from the auction with a buy
price B even if bidders are risk-averse. Thus, Theorem 1 does not extend to a general case.
In other words, bidders’ risk-aversion is not a sufficient condition for revenue improvements.

Example 3. Let U(x) =
√

x, f1 = 7
10 , f2 = 1

10 , v1 = 0.25, v2 = 0.50, and v3 = 0.75.

We have the followings:

the LHS of (13) = 0.50 < 0.62 ≃ the RHS of (13), and
the LHS of (14) ≃ 0.43 > 0.41 ≃ the RHS of (14).

In Example 3, there does not exist a symmetric equilibrium in the auction with a buy price
B ∈ (v2, v3]. In the auction with the buy price B∗

2 , the event that one bidder is a v2-type
and the other bidder is a v3-type occurs with positive probability. In this case, the v2-type
can win the auction with positive probability. And this results in an inefficient allocation.
That is, the item can be allocated to the bidder who does not have the highest valuation.
On the contrary, a seller can extract a risk premium from the v2-type. Thus, depending on
the parameter settings, a seller can obtain a higher expected revenue from the auction with
the buy price B∗

2 than from the auction without a buy price B as Example 3.
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5 Conclusion

We have considered a second-price, sealed-bid auction with a buy price. To restrict our
attention to equilibria by reasonable strategies, we have introduced the notion of partial
truth-telling, and then characterized all equilibria by partially truth-telling strategies. We
have shown that if there exists a buy price between the highest valuation and the second
highest valuation under which we have a symmetric equilibrium, and bidders are risk-averse,
a seller can obtain a higher expected revenue from the auction with a certain buy price. This
improvement result extends to the case in which a seller is risk-averse. Also, in the two-type
framework with any number of bidders, a seller can always improve her utility by introducing
a certain buy price. On the other hand, we have shown an example that a seller cannot
obtain a higher expected revenue from the auction with a buy price even if bidders are
risk-averse. In case of three or more types, bidders’ risk aversion is not a sufficient condition
for revenue improvements.

We do not derive an optimal buy price except the case in which the number of bidders’
types is two. In the three or more type framework, we must consider not only the auction
with a buy price between the highest valuation and the second highest valuation, but also
the auction with a buy price that is not greater than the second highest valuation. To find an
optimal auction, we need to compare seller’s expected revenues with a buy price on different
intervals. Additionally, in case of three or more bidders, we necessarily take account of a
seller’s expected revenue from an asymmetric equilibrium. It is left for future research.

Appendix

Proof of Proposition 1

We assume, by way of contradiction, that the strategy profile σ̂ where some two bidders,
say, bidder i and bidder j, do not play the strategy σ∗

i (·) is an equilibrium by partially
truth-telling strategies. For each bidder i and bidder j, there exist types ti ≥ B and tj ≥ B
such that σ̂i(ti) ̸= B and σ̂j(tj) ̸= B. Here, we denote the infimum of the support of σ̂i(ti)
and σ̂j(tj) by bi and bj , respectively. Without loss of generality, we assume that bi ≥ bj .

In the equilibrium, by the definition of bj , it is optimal for the tj-type to bid bj or
bj + ε for sufficiently small ε. When the highest bid is not a buy price B, this auction is
a usual second-price, sealed-bid auction. Thus, the winning probability of the tj-type must
be maximized among the bids except a buy price B.

Suppose that the tj-type bids bj ∈ (bi, B). Since the event that bidder i is a ti-type,
bidder j is a tj-type, and n − 2 other bidders are types less than a buy price B occurs with
positive probability, the tj-type can increase his winning probability by bidding bj rather
than bj or bj + ε for sufficiently small ε, which contradicts the assumption. This completes
the proof.

Proof of Proposition 7

Suppose that some asymmetric strategy profile σ = (σ1(·), σ∗
−1) is an equilibrium. Then,

there must exist k∗ and therefore

k∑
µ=1

{
(Fµ)n−1 − (Fµ−1)n−1

}
U(vk+1 − vµ)

≥
{ n−1∑

ν=0

1
n − ν

(
n − 1

ν

)
(1 − Fk)n−1−ν(Fk)ν

}
U(vk+1 − B).

(15)

must hold.
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Here let F̃ be the probability that bidder 1 does not bid a buy price B. Then, F̃ ∈
(Fk, Fk∗ ]. Since bidder j (j = 2, . . . , n) plays the equilibrium strategy σ∗

j (·), we have{ n−2∑
ν=0

(
n − 2

ν

)(
1 − F̃

n − ν
+

F̃

n − 1 − ν

)
(1 − Fk)n−2−ν(Fk)ν

}
U(vk+1 − B) ≥ πj(ε),

where πj(ε) is the expected payoff obtained by bidding the amount B − ε for ε > 0. Since

lim
ε→0

πj(ε) >
k∑

µ=1

{
(Fµ)n−1 − (Fµ−1)n−1

}
U(vk+1 − vµ) + (F̃ − Fk)(Fk)n−2U(vk+1 − B),

we have{ n−2∑
ν=0

(
n − 2

ν

)(
1 − F̃

n − ν
+

F̃

n − 1 − ν

)
(1 − Fk)n−2−ν(Fk)ν

}
U(vk+1 − B)

>
k∑

µ=1

{
(Fµ)n−1 − (Fµ−1)n−1

}
U(vk+1 − vµ) + (F̃ − Fk)(Fk)n−2U(vk+1 − B).

Here let

J(x) :=
{ n−2∑

ν=0

(
n − 2

ν

)(
1 − x

n − ν
+

x

n − 1 − ν

)
(1 − Fk)n−2−ν(Fk)ν

}
U(vk+1 − B)

−
k∑

µ=1

{
(Fµ)n−1 − (Fµ−1)n−1

}
U(vk+1 − vµ) − (x − Fk)(Fk)n−2U(vk+1 − B).

J(·) is linear with respect to x. By assumption, J(F̃ ) > 0. In addition, J(Fk) ≤ 0. This is
because if J(Fk) > 0, then (1) holds for κ = k +1, which contradicts the assumption. Thus,
J(·) is increasing. This implies that J(Fk∗) > 0. That is, we have{ n−2∑

ν=0

(
n − 2

ν

)(
1 − Fk∗

n − ν
+

Fk∗

n − 1 − ν

)
(1 − Fk)n−2−ν(Fk)ν

}
U(vk+1 − B)

>

k∑
µ=1

{
(Fµ)n−1 − (Fµ−1)n−1

}
U(vk+1 − vµ) + (Fk∗ − Fk)(Fk)n−2U(vk+1 − B).

(16)

Since both (15) and (16) hold, by Proposition 6, there exists b ∈ (vk, B) such that the
asymmetric strategy profile σ = (σ1(·; b), σ∗

−1) is an equilibrium. This completes the proof.

Proof of Proposition 8

Suppose, by way of contradiction, that an asymmetric equilibrium exists. Then, by Propo-
sitions 6 and 7,

k∑
µ=1

{
(Fµ) − (Fµ−1)

}
U(vk+1 − vµ)

≥ 1
2
(1 − Fk)U(vk+1 − B) + (Fk)U(vk+1 − B),

(17)

1
2
(1 − Fk∗)U(vk+1 − B) + (Fk∗)U(vk+1 − B)

>
k∑

µ=1

{
(Fµ) − (Fµ−1)

}
U(vk+1 − vµ) + (Fk∗ − Fk)U(vk+1 − B).

(18)
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Hence,

1
2
(1 − Fk∗)U(vk+1 − B) + (Fk∗)U(vk+1 − B)

>
k∑

µ=1

{
(Fµ) − (Fµ−1)

}
U(vk+1 − vµ) + (Fk∗ − Fk)U(vk+1 − B)

≥ 1
2
(1 − Fk)U(vk+1 − B) + (Fk∗)U(vk+1 − B).

(19)

Rearranging (19), we have
Fk > Fk∗ . (20)

However, (20) does not hold because k∗ > k and fµ > 0 for all µ. Thus, both (17) and (18)
do not hold simultaneously, which contradicts the assumption. This completes the proof.

Proof of Theorem 1

At first, we recall that

B∗
m = vm − U−1

(
nfm

∑m−1
µ=1

{
(Fµ)n−1 − (Fµ−1)n−1

}
U(vm − vµ)

1 − (Fm−1)n

)
.

If (8) > (9), then the seller can obtain a higher expected utility from the auction with the
buy price B∗

m.

RB
m − RNB =

m−1∑
µ=1

[
nFm−1

{
(Fµ)n−1 − (Fµ−1)n−1

}
− (n − 1)

{
(Fµ)n − (Fµ−1)n

}]
W (vµ)

+ {1 − (Fm−1)n}W (B∗
m)

−
m∑

µ=1

[
n
{
(Fµ)n−1 − (Fµ−1)n−1

}
− (n − 1)

{
(Fµ)n − (Fµ−1)n

}]
W (vµ)

= −nfm

m−1∑
µ=1

{
(Fµ)n−1 − (Fµ−1)n−1

}
W (vµ) −

{
1 − nfm(Fm−1)n−1 − (Fm−1)n

}
W (vm)

+
{
1 − (Fm−1)n

}
W (B∗

m)

=
{
1 − (Fm−1)n

}[
−

nfm

∑m−1
µ=1

{
(Fµ)n−1 − (Fµ−1)n−1

}
W (vµ)

1 − (Fm−1)n

−
{
1 − nfm(Fm−1)n−1 − (Fm−1)n

}
1 − (Fm−1)n

W (vm) + W (B∗
m)
]

≥
{
1 − (Fm−1)n

}[
−W

(
nfm

∑m−1
µ=1

{
(Fµ)n−1 − (Fµ−1)n−1

}
vµ

1 − (Fm−1)n

+

{
1 − nfm(Fm−1)n−1 − (Fm−1)n

}
vm

1 − (Fm−1)n

)
+ W (B∗

m)

]
(21)

≥ 0,
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where (21) follows because W (·) is concave and the last inequality follows because W (·) is
monotone. Indeed,

B∗
m −

nfm

∑m−1
µ=1

{
(Fµ)n−1 − (Fµ−1)n−1

}
vµ

1 − (Fm−1)n
−
{
1 − nfm(Fm−1)n−1 − (Fm−1)n

}
vm

1 − (Fm−1)n

=
nfm

∑m−1
µ=1

{
(Fµ)n−1 − (Fµ−1)n−1

}
(vm − vµ)

1 − (Fm−1)n

− U−1

(
nfm

∑m−1
µ=1

{
(Fµ)n−1 − (Fµ−1)n−1

}
U(vm − vµ)

1 − (Fm−1)n

)
≥ 0, (22)

where the inequality follows because for all µ (µ = 1, . . . , m − 1), 0 < nfm

{
(Fµ)n−1 −

(Fµ−1)n−1
}
/
{
1 − (Fm−1)n

}
< 1, nfm

∑m−1
µ=1

{
(Fµ)n−1 − (Fµ−1)n−1

}
/
{
1 − (Fm−1)n

}
< 1,

and U−1(·) is convex. Especially, (21) holds with equality if and only if a seller is risk-neutral.
And (22) holds with equality if and only if bidders are risk-neutral. Hence, RB

m ≥ RNB holds
with equality if and only if both the seller and the bidders are risk-neutral. This completes
the proof.

Proof of Proposition 9

At first, we recall that

B∗
m = vm − U−1

( (n − 1)fm

∑m−1
µ=1

{
(Fµ)n−1 − (Fµ−1)n−1

}
U(vm − vµ)

1 − (Fm−1)n−1 − (n − 1)(fm)2(Fm−1)n−2

)
.

For notational simplicity, we rewrite B∗
m and B∗

m as:

B∗
m = vm − U−1

(
C

C ′

)
and

B∗
m = vm − U−1

(
C

C ′′

)
,

where C =
∑m−1

µ=1

{
(Fµ)n−1 − (Fµ−1)n−1

}
U(vm − vµ), C ′ = {1 − (Fm−1)n}/{nfm}, and

C ′′ = {1 − (Fm−1)n−1 − (n − 1)(fm)2(Fm−1)n−2}/{(n − 1)fm}.
If (8) > (12), then the seller obtains a higher expected utility from the auction with the

buy price B∗
m. Thus, the seller cannot obtain further improvements from the auction with
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a buy price B ∈ (B∗
m, B∗

m).

RB
m − RB =

m−1∑
µ=1

[
nFm−1

{
(Fµ)n−1 − (Fµ−1)n−1

}
− (n − 1)

{
(Fµ)n − (Fµ−1)n

}]
W (vµ)

+
{
1 − (Fm−1)n

}
W (B∗

m)

−
m−1∑
µ=1

[
nFm−1

{
(Fµ)n−1 − (Fµ−1)n−1

}
− (n − 1)

{
(Fµ)n − (Fµ−1)n

}]
W (vµ)

− fm

m−1∑
µ=1

{
(Fµ)n−1 − (Fµ−1)n−1

}
W (vµ) −

{
1 − (Fm−1)n−1

}
W (B∗

m)

=
{
1 − (Fm−1)n

}
W (B∗

m) − fm

m−1∑
µ=1

{
(Fµ)n−1 − (Fµ−1)n−1

}
W (vµ)

−
{
1 − (Fm−1)n−1

}
W (B∗

m)

= W (B∗
m) −

[
(Fm−1)nW (B∗

m) + fm

m−1∑
µ=1

{
(Fµ)n−1 − (Fµ−1)n−1

}
W (vµ)

+
{
1 − (Fm−1)n−1

}
W (B∗

m)
]

≥ W (B∗
m) − W

(
(Fm−1)nB∗

m + fm

m−1∑
µ=1

{
(Fµ)n−1 − (Fµ−1)n−1

}
vµ

+
{
1 − (Fm−1)n−1

}
B∗

m

)
> 0,

where the first inequality follows because W (·) is concave and the second inequality follows
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because W (·) is monotone. Indeed,

B∗
m −

[
(Fm−1)nB∗

m + fm

m−1∑
µ=1

{
(Fµ)n−1 − (Fµ−1)n−1

}
vµ +

{
1 − (Fm−1)n−1

}
B∗

m

]

= −
{
1 − (Fm−1)n

}
U−1

(
C

C ′

)
+ fm

m−1∑
µ=1

{
(Fµ)n−1 − (Fµ−1)n−1

}
(vm − vµ)

+
{
1 − (Fm−1)n−1

}
U−1

(
C

C ′′

)
≥ −

{
1 − (Fm−1)n

}
U−1

(
C

C ′

)
+ fm(Fm−1)n−1U−1

(
C

(Fm−1)n−1

)
+
{
1 − (Fm−1)n−1

}
U−1

(
C

C ′′

)
=
{
1 − (Fm−1)n

}[
− U−1

(
C

C ′

)
+

fm(Fm−1)n−1{
1 − (Fm−1)n

}U−1

(
C

(Fm−1)n−1

)
+

{
1 − (Fm−1)n−1

}{
1 − (Fm−1)n

} U−1

(
C

C ′′

)]
≥
{
1 − (Fm−1)n

}[
− U−1

(
C

C ′

)
+ U−1

(
fmC{

1 − (Fm−1)n
} +

{
1 − (Fm−1)n−1

}
C{

1 − (Fm−1)n
}
C ′′

)]
> 0,

where the first two inequalities follow because U−1(·) is convex and the last inequality follows
because U−1(·) is monotone. Indeed,

fmC

{1 − (Fm−1)n}
+

{1 − (Fm−1)n−1}C
{1 − (Fm−1)n}C ′′ − C

C ′

=

{
1 − (Fm−1)n−1 − (n − 1)fmC ′′}C{

1 − (Fm−1)n
}
C ′′

=
(n − 1)(fm)2(Fm−1)n−2C{

1 − (Fm−1)n
}
C ′′

> 0.

This completes the proof.

References

Budish, E. B. and Takeyama, L. N., 2001. “Buy prices in online auctions: Irrationality on
the internet ?” Economics letters Vol.72 (3), pp. 325–333.
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