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Eichberger, Grant, and Kelsey (2007) characterize the full Bayesian update rule for
capacities. This paper shows that a conditional preference relation represented by the
Choquet expected utility with respect to the updated capacity through the rule does not
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provided and it is proved that a relaxation of the axiom maintains their results.
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1. INTRODUCTION

Recent work by Eichberger, Grant and Kelsey (2007) provides an axiomatic
foundation for an updating rule for capacities, which is called the full Bayesian
update rule. This rule itself is originally proposed by Dempster (1967) and called
the Dempster-Fagin-Halpern rule (Fagin and Halpern, 1991), or the generalized
Bayes rule (Walley, 1991). On the other hand, the full Bayesian update rule for a
set of priors is sometimes called the belief-by-belief updating, which is axiomatized
by Pires (2002).
The main axiom for a characterization of Eichberger et al. is called Conditional

Certainty Equivalent Consistency (CCEC), which assures the existence of a cer-
tainty equivalent outcome that connects conditional and unconditional preference
relations. The authors prove that the axiom of CCEC together with other axioms
are su¢ cient for conditional capacities to be updated by the DFH update rule.
This paper achieves a necessary improvement in their results. At �rst, it is

shown that, a conditional preference relation represented by the Choquet expected
utility with respect to the updated capacity through the DFH rule, does not satisfy
the axiom of CCEC. A counterexample is provided. Furthermore, after careful
consideration, it is con�rmed that they proved the su¢ cient part only by binary
acts (conditional on the realized event). Although the necessary part of the proof
was left to the readers, we examine whether the axiom is satis�ed or not, and
concludes that the relationship in CCEC cannot be satis�ed by all acts, but all
binary acts. The main result of this paper proposes a relaxation of the axiom of
CCEC to maintain their contributions.

1 I appreciate Jürgen Eichberger, Simon Grant, and David Kelsey for helpful comments and
suggestions, and Atsushi Kajii for many constructive discussions. This research is mainly con-
ducted under the 21th Century COE Research Program, which I thank for the support and
encouragement. Remaining errors in this paper are, of course, my own responsibility.
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2. BASICS AND AXIOMS

We basically follow the set up introduced by Eichberger, Grant and Kelsey
(2007). However, for convenience, we adopt slight simpli�cations in some de�ni-
tions.
Let S be a �nite set with jSj = n and E be the set of all subsets of S, that is

E = 2S . A nonempty set E 2 E is called an event. Ec indicates the complement of
E with respect to S. The set of outcomes is denoted by X = [x; x] with x < x. A
function f : S ! X is called an act. Let F be the set of all acts. Every x 2 X is
considered as a constant act, f (s) = x for all s 2 S. fEg is the act which generates
f (s) if s 2 E and g (s) if s 2 Ec.
Given an act f 2 F , let R (f) � Xn be the range of f . De�ne the set of binary

acts by F2 = ff 2 F j dimR (f) 5 2g. Any binary act in F2 can be expressed by
some b, w 2 X, b = w and A 2 E , denoted by bAw, which is also called a binary
gamble on A.
A �nite set function � : E ! [0; 1] is called a capacity on S if it satis�es (i)

� (?) = 0 and � (S) = 1, and (ii) for every A and B in E with A � B, � (A) 5 � (B).
A capacity � is said to be convex if for every A and B in E , � (A [B)+� (A \B) =
� (A) + � (B). On the other hand, a capacity � is additive if for every for every A
and B in E the previous inequality holds by equality. Let � be the set of all additive
capacities, that is probability distributions. For future reference, it will be useful
to de�ne the core of a capacity �, C (�) � fp 2 � j p (A) = � (A) for all A 2 �g.
Given an event E 2 E , a conditional or updated capacity �E is a capacity on E,

i.e. for all A in E with A\E = E, �E (A) = 1. Note that for any event E in E , �E
has domain E . When E = S, �S is interpreted as the unconditional capacity and
we simply write it as �. Let

R
f d� denote the Choquet integral of f with respect

to �.
Given each event E 2 E , let %E be a conditional preference relation on F

given E. As usual �E and �E represent the asymmetric and symmetric part of
%E respectively. When E = S, %S is considered as the unconditional preference
relation on F , simply denoted by %. Let h%EiE2E be a collection of conditional
preference relations.
Given an event E 2 E and a conditional preference %E , event A 2 E is called

%E-null if for all f and g in F , fAg �E g. Let NE be the set of %E-null events
and write NS as N . Given %E , an event A 2 E is said to be non-null i¤ A =2 NE .
Throughout this work, it is assumed that every %E of h%EiE2E has following

representation:

Definition 1. The set of conditional preference relations h%EiE2E is said to
constitute a collection of CEU preferences if for each %E , there exists a capacity
�E on E and a continuous non-constant real-valued function uE on X such that for
all f , g 2 F

f %E g ()
Z
uE � f d�E =

Z
uE � g d�E .

When %E is represented by a Choquet expected utility with respected to uE
and �E , we simply say %E is represented by (uE ; �E). Since uE is non-constant,
it is compatible to assume that for all E 2 E , x �E x. We normalize uE so that
uE (x) = 0 and uE (x) = 1 for all E 2 E because the Choquet expected utility is
unique up to positive linear transformations. We also write uS as u, that is, % is
represented by (u; �).
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In the main result, Eichberger, Grant and Kelsey (2007) prove that the following
three axioms are necessary and su¢ cient for each conditional preference %E given
a non-null event E 2 E represented by (u; �E) where

�E(A) =
�(A \ E)

�(A \ E) + 1� �(Ec [A) for every A 2 E . (1)

The result gives a characterization for an update rule for �, which is called the
full Bayesian update rule, or the Dempster-Fagin-Halpern update rule (Dempster,
1967, and Fagin and Halpern, 1991) for capacities.
Their three axioms are formally stated as below:

Axiom 1 (Consequentialism) Fix an event E 2 E . The event Ec is %E-null.
That is, fEg �E f for all f , g 2 F .

Axiom 2 (State Independence) For any pair of outcomes x, y in X, and any
event E 2 E , x � y if and only if x �E y.

Axiom 3 (Conditional Certainty Equivalent Consistency) For any uncon-
ditionally non-null event E, any outcome x in X, and any act f in F , f �E x
if and only if fEx � x.

Even if %E is represented by (u; �E) where �E is updated by (1), some acts
in F cannot ful�ll the requirement of Axiom 3. Let us �nd them in the following
counterexample.

Let S consist of six states S = fs1; s2; s3; s4; s5; s6g. The set of outcomes is
assumed to be X = [0; 1]. Suppose that % is represented by (u; �) such that:
� u (x) = x.

� � (A) = jAj2
36 for every A � S.

This � is a capacity on E : (i) � (?) = 0 and � (S) = 1 (ii) for every A, B 2 E
with A � B, � (A) 5 � (B), since jAj2 5 jBj2. In fact, � is convex, which is veri�ed
as follows. For any A, B 2 E , jA [Bj+ jA \Bj = jAj+ jBj. Then

(jA [Bj+ jA \Bj)2 � (jAj+ jBj)2

= jA [Bj2 + jA \Bj2 �
n
jAj2 + jBj2 + 2 (jAj � jA \Bj) (jBj � jA \Bj)

o
= jA [Bj2 + jA \Bj2 �

n
jAj2 + jBj2

o
= 0.
Suppose that an event E = fs1; s2; s3g is observed and %E is represented by

(u; �E) where �E is updated via (1). The updated capacity �E is computed as
follows: for every A � E

�E (A) =
� (A)

� (A) + 1� � (Ec [A)

=
jAj2

jAj2 + 36� (jAj+ 3)2

=

8<:
1
21 if jAj = 1
4
15 if jAj = 2
1 if A = E

.
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Now consider an act f = 1fs1g"fs2g0 where " > 0 is su¢ ciently small. Suppose
xf 2 X satis�es xf � fExf . Then we have

R
xf d� =

R
fEx

f d�, which is calculated
as

xf = � (fs1g) + [� (Ec [ fs1g)� � (fs1g)]xf

+ [� (Ec [ fs1; s2g)� � (Ec [ fs1g)] "
36xf = 1 + 15xf + 9"

xf = 1
21 +

135
15�21".

Since %E is represented by (u; �E) where �E is updated by (1), %E is expected to
satisfy Axiom 3. However, in this case, we have xf �E f , sinceZ

f d�E =
1
21 +

�
4
15 �

1
21

�
"

= 1
21 +

69
15�21".

One may question what the posterior set updated by the belief-by-belief up-
dating, say PE � �, is like in this example. Formally, the full Bayes rule (the
belief-by-belief update rule) is de�ned as follows. Given a set of priors P � � and
an event E such that p (E) > 0 for all p 2 P , the set of posteriors PE � � is

PE = fpE 2 � j p 2 Pg where pE (A) =
p (A \ E)
p (E)

for any A 2 E .

For comparison, let P = C (�). According to calculations above, C (�E) becomes
the convex hull of six vertices. Let us take one vertex, bpE = � 121 ; 23105 ; 1115 ; 0; 0; 0�. IfbpE 2 PE , then there exists a bp 2 P such that bpE is obtained by updating bp via the
Bayes�rule, where bp (E) = 21

36 and bp (Ec) = 15
36 , that isbp = � 136 ; 4:636 ; 15:436 ; bp (fs4g) ; bp (fs5g) ; bp (fs6g)� .

However, for bp to belong to C (�), it has to satisfy for every i; j = 4; 5; 6, i 6= jbp (fs1; s2; si; sjg) = 5:6
36 + bp (fsig) + bp (fsjg) = 16

36 ,

which requires that bp (Ec) = 15:6
36 . However, by assumption, bp (Ec) = 15

36 , hencebp =2 C (�). The same argument can be applied to every other vertex, and so PE
includes none of them. It is illustrated in Figure 1.

PE

C(vE)

(23/105, 1/21, 11/15)

(1/21, 23/105, 11/15)

(11/15, 23/105, 1/21)

(1/21, 11/15, 23/105)

(23/105, 11/15, 1/21)

(11/15, 23/105, 1/21)

Figure 1.
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3. ALTERNATIVE AXIOM AND RESULT

To conform to the fact in the previous section, we propose the following axiom
which allows the domain F in Axiom 3 to be relaxed to the set of binary act F2.

Axiom 4 (Conditional Certainty Equivalent Consistency for Binary Gambles)
For any unconditionally non-null event E, any outcome x in X, and any bi-
nary act f in F2, f �E x if and only if fEx � x.

The following theorem proves that the result of Eichberger, Grant and Kelsey
(2007) is preserved under Axiom 4.

Theorem 1. Suppose that h%EiE2E constitutes a collection of CEU preferences
represented by (uE ; �E) for each E 2 E. For any non-null event E =2 N , the
following two statements are equivalent:
(i) %E satis�es Axiom 1, 2 and 4.
(ii) %E is represented by (u; �E): for all f and g in F

f %E g ,
Z
u � f d�E =

Z
u � g d�E

where for every A 2 E, �E (A) is well-de�ned and

�E(A) =
�(A \ E)

�(A \ E) + 1� �(Ec [A) . (2)

Proof. (i))(ii) Take any non-null event E =2 N and assume (i). Since %E is
represented by (uE ; �E) and satis�es Axiom 1, �E is a capacity on E.

Step 1: (To show that for all A 2 E , �(A \ E) + 1� �(Ec [A) > 0.)

Since � is a capacity on S, both �(A \E) and 1� �(Ec [A) are non-negative.
Therefore, it is su¢ cient to show that for allA 2 E , �(A\E) > 0 or 1��(Ec[A) > 0.
To lead contradiction, assume that there exists an event A 2 E such that

�(A\E) = 0 and �(Ec[A) = 1. Consider an act xA\Ex. Then,
Z
u�xA\Ex d� =

� (A \ E) = 0 by assumption, hence xA\Ex � x. In addition, consider xA\ExAc\Ex.

We have
Z
u � xA\ExAc\Ex d� = � (E

c [A) = 1, hence xA\ExAc\Ex � x. How-

ever, by Axiom 4 and xA\Ex 2 F2, we have xA\Ex �E x and xA\Ex �E x, which
contradicts x �E x.
By Axiom 4, it is also veri�ed that �E (A \ E) = 0 if � (A \ E) = 0, and

�E (A \ E) = 1 if �(Ec [A) = 1.

Step 2: (To show that �E (A) is equal to (2).)

Take an arbitrary A 2 E and consider an act xA\Ex. We are interested in an
x 2 X satisfying x � xA\ExAc\Ex, which is expressed in the following equation:

uE (x) = � (A \ E) + uE (x) [� (Ec [A)� � (A \ E)] . (3)
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By the argument in Step 1, we have �(A \ E) + 1� �(Ec [ A) > 0, hence for any
A 2 E , (3) has a solution, say xA. On the other hand, by Axiom 4, we also have
xA �E xA\Ex, which comes to uE

�
xA
�
= �E (A \ E). Then

�E (A \ E) =
� (A \ E)

� (A \ E) + 1� � (Ec [A) for every A 2 E .

Furthermore, by Axiom 1, we have Ec 2 NE , xAx �E (xAx)E xA, hence �E (A) =
�E (A \ E).

Step 3: (To show that %E is represented by (u; �E).)
By Step 1, � (A \ E) + 1 � � (Ec [A) > 0 for every A 2 E . Any binary act in

F2 is expressed in the form of a binary gamble on A, bAw, where b, w 2 X with
b = w and A 2 E . By Axiom 4, we have

x � (bAw)Ex

,
Z
u � x d� �

Z
u � bA\EwAc\Ex d� = 0 (by CEU)

, [� (A \ E) + 1� � (Ec [A)]�n
u (x)� �(A\E)

�(A\E)+1��(Ec[A)u (b) +
1��(Ec[A)

�(A\E)+1��(Ec[A)u (w)
o
= 0.

On the other hand

x �E bAw

,
Z
uE � x d�E �

Z
uE � bAw d�E = 0 (by CEU)

,
n
uE (x)� �(A\E)

�(A\E)+1��(Ec[A)uE (b) +
1��(Ec[A)

�(A\E)+1��(Ec[A)uE (w)
o
= 0.

Therefore, due to Axiom 4, %E can be represented by (u; �E) where �E is de�ned
in (2).

(ii))(i) Assume (ii). If E 2 NE , then %E satis�es Axiom 1 and 2 directly by
de�nition. Thus assume E =2 NE .
Axiom 1 is straightforward from the fact that �E is a capacity on E.
When jEj = 1, �E (E) de�ned in (2) is equal to 1. Hence Axiom 2 is also

satis�ed.
As for Axiom 4, suppose that %E is represented by (u; �E). For any A 2 E with

� (A) + 1� � (A [ Ec) > 0 and any b, w 2 X with b = w
x � (bAw)Ex

,
Z
u � x d� �

Z
u � bA\EwAc\Ex d� = 0 (by CEU)

, [� (A \ E) + 1� � (Ec [A)]�n
u (x)� �(A\E)

�(A\E)+1��(Ec[A)u (b) +
1��(Ec[A)

�(A\E)+1��(Ec[A)u (w)
o
= 0

,
Z
u � x d�E �

Z
u � bAw d�E = 0 (by (2))

, x �E bAw. (by CEU)

It follows that we have x �E f , x � fEx for any f 2 F2, which completes
the proof.
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4. CONCLUDING REMARKS

The result presented here is consistently extended to the biseparable prefer-
ences (Ghirardato and Marinacci, 2001)2 , since Axiom 4 is imposed only on binary
gambles. Since the family of biseparable preferences includes the maxmin expected
utility by Gilboa and Schmeidler (1989) and Casadesus-Masanell, et al. (2000),
the extension of our result would also characterize the DFH rule and show another
way to derive the lower envelope of the posterior set updated by the belief-by-belief
update rule, but not the rule itself.
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