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Abstract 

This paper presents interactive multiobjective decision analysis support systems, 
called MIDASS, which is a newly developed interactive computer program for 
strategic use of expected utility theory. Decision analysis based on expected utility 
hypothesis is an established prescriptive approach for supporting business decisions 
under uncertainty, which embodies an effective procedure for seeking the best choice 
among alternatives. It is usually difficult, however, for the decision maker (DM) to 
apply it for the strategic use in the realistic business situations. MIDASS provides an 
integrated interactive computer system for supporting multiobjective decision analysis 
under uncertainty, which assists to derive an acceptable business solution for DM with 
the construction of his/her expected multiattribute utility function (EMUF).  

 
Keywords: expected multiobjective decision analysis, MIDASS, expected multiattribute 

utility function (EMUF), intelligent decision support systems (IDSS).  
 

1. Introduction 
 

This paper presents a newly developed interactive computer program for supporting 

multiobjective decision analysis under uncertainty along with the methodological discussions.  

The methodology is decision analysis, which is founded on the von Neumann-Morgenstern type 

expected utility hypothesis. The program is called MIDASS (Multiobjective Interactive Decision 

Analysis Support Systems), which intends to support the expected multiobjective decision analysis in 

practical use as an extension of multiobjective decision analysis to uncertain environments. In section 

2, methodological backgrounds of the expected utility hypothesis are discussed along with the 

criticisms against it. The characteristics of decision analysis as a practical tool and its multiobjective 

extensions are discussed. In Section3, the precedent development of computer programs for supporting 

decision analysis is examined. Section 4 concerns the development of a new computer program 

MIDASS for multiobjective interactive decision analysis under uncertainty. Necessity of construction 

of the intelligent decision support systems (IDSS) for executing decision analysis is discussed and the 

main characteristics of MIDASS as the computer program are discussed. In Section 5, the operations 

of MIDASS program are explained in some detail. This section can be used as the manual of MIDASS 

in practical use. Concluding remarks for a new era of decision analysis are presented in Section 6. 

   

2. Methodological discussions 
 
2.1 Expected utility hypothesis  
 
The main characteristic of von Neumann-Morgenstern type expected utility hypothesis (von Neumann 

and Morgenstern 1944, 1947) is to provide an integration of the evaluation of the decision maker 

(DM). Generally making decisions in business environments includes two phases: One is controllable 

and the other is uncontrollable to DM. Alternative actions chosen by DM in business management are 
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usually controllable. Uncertain events to occur in the decision environments are uncontrollable. 

Therefore the evaluations for decision results should be twofold: One is the evaluation assigned to a 

consequence of an action of DM and the other is the evaluation assigned to a chance of occurrence of 

an uncertain event. Expected utility hypothesis provides the twofold evaluation in mathematical 

functions. (i) The numerical assessment of preferences for the consequence of action, which is 

represented with the numerical utility function. (ii) The numerical assessment of the degrees of 

confidence for the occurrence of the uncertain event, which is represented with the probability 

function. Expected utility hypothesis presents a unified evaluation of both the elements in the expected 

utility function, where the utility and probability functions are evaluated both with the probability 

measure on a cardinal scale.    

The mathematical expectation with the expected value E is formulated as 

∑
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where jφ , j = 1, … , n, denotes an occurrence of an event, )( jx φ is a value of an outcome x when an 

event jφ occurs, and )( jp φ ))(( jxp φ= . 

The von Neumann-Morgenstern type expected utility function (EUF) is a generalization of the 

mathematical expectation for the subjective assessment of DM imposed on a decision result, which 

represents a conjoint measurement of both elements of (i) preference and (ii) probability in a 

mathematical form, 
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where ))(( jxu φ  is a value of the utility function. ,)( jxu )( jj xx φΔ , is assessed on a value of an 

outcome x when an event jφ occurs. Note that xj takes a scalar value. 

The von Neumann-Morgenstern type utility function u(x) is a numerical representation of human 

preferences, in which the numerical order of the utility function u(x) corresponds to the preference 

order of the outcome x (evaluation objects). The utility function is derived on several presumptions for 

the rationality of human behavior such as weak order (von Neumann-Morgenstern 1947, Savage 1954, 

Luce and Raiffa 1957). In this sense, the utility function  is a behavioral function defined in the 

axiomatic foundation. The concept of the von Neumann-Morgenstern type utility function makes the 

quantitative evaluation possible for any object in a common scale.  

)(xu

The von Neumann-Morgenstern expected utility theory presents the theoretical foundation of 

decision analysis.  
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2.2 Decision analysis 
 

Decision processes are composed generally of two phases: Judgemental and analytical (Seo and 

Sakawa 1988). Decision analysis presents an art for aiding decisions with an integration of the both 

phases. In particular, decision analysis provides a method for heuristic construction of the 

mathematical forms of the utility functions and the probability functions assessed by DM, which is 

used with the decision tree technique. (Schlaifer 1959, Raiffa and Schlaifer 1961, Raiffa 1968, 

Schlaifer 1969, Pratt et. al. 1965 & 1995). The heuristic construction of the mathematical functions is 

performed step by step with judgemental processes of DM for the evaluation. In these processes, the 

both phases of the decision processes are combined with a proper procedure. The solution of the 

choice problem is found by the human judgement of DM, which is not simply generated with the 

mathematical calculations automatically.  

 
2.3 Criticism to expected utility hypothesis 

 
Many criticisms to the expected utility hypothesis have been raised. The criticism comes from 

several directions. 

1. “Unrealistic” assumption of the rationality in human actions.  

This criticism mainly comes from psychological experiments in laboratories. It has been asserted 

that actual human behaviour is often irrational and contradicting to the rationality assumptions as in 

Neumann-Morgenstern type expected utility hypothesis. The criticisms have mainly been directed 

against the normative approach or descriptive approach to decision analysis. The normative approach 

insists that human behaviour always must be rational. The rational behaviour with the transitivity or 

weak order, however, presumes the endowment of supreme wisdom with perfect knowledge; it is 

unrealistic in human worlds. The empirical approach asserts that the human behaviour in laboratory 

experiments usually reveals the contradiction or the deviation from the rationality hypothesis. The 

developers of decision analysis, however, have pointed out since an early stage that decision analysis 

intends not to be normative and nor descriptive, but only to be prescriptive. The rationality hypothesis 

is used as a tool for aiding decisions to avoid from falling into decision traps and from straying in 

decision jam. (Raiffa 1968; Bell, Raiffa and Tversky 1988). In fact, DM in the corporate management 

usually does not play the experimental or hobby games as in the laboratories, but the serious games in 

the vulnerable business environments.  

2. “Single decision maker” assumption. 

Decision analysis presumes the existence of DM as a single decision maker. The criticism asserts 

that decisions usually are not made by a single decision maker. The corporation, however, has legal 

personality and usually behaves as an individual in the markets. Business decisions always are 

presented in the markets as if the decisions have been made by the single decision maker. Internal 
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decision processes such as group decision making, if any, are not revealed to the public with any 

corporate responsibility.  

3. “Expected utility function is an illusion,” because nobody knows the mathematical functions 

empirically. 

Decision analysis provides a sequential procedure for heuristic construction of the mathematical 

functions of DM, who does not use the mathematical functions as endowed a priori or arbitrarily. 

4. “Optimality principle” is unrealistic for the use in managerial decisions with incomplete 

information. 

Von Neumann-Morgenstern hypothesis does not presume the extremal principle, even though 

Eq.(2) can be used as an objective function in a mathematical maximization problem. DM will usually 

select a solution as the best-preferred solution when the EUF-value in Eq.(2) is in an acceptable range. 

The hypothesis uses EUF not in the optimality principle, but in the satisficing principle. 

 
2.4 Multiobjective decision analysis 
 

Multiobjective extensions of decision analysis have been intended since an early stage of the 

development. 

The multiple objectives in decision problems are not simply multivariate, but also embody specific 

characteristics.  

(1) Large-scaled objective systems. Multiobjective decision problems generally include many 

elements as the object of the evaluation, which constructs a large-scale decision problem. 

(2) Incompatibility. The multiple objectives are usually not compatible and in conflict with each 

other.  

(3) Incommensurability. The multiple objectives are not commensurable in a common scale, which 

should be scaled with different measures.  

Multiobjective utility analysis has been developed for coping with these characteristics properly, 

which is called Multiattribute Utility Theory (MAUT) (Raiffa 1968, Keeney 1974, Keeney and Raiffa 

1976). The variate that denotes a performance level of an objective in a quantitative term is called an 

attribute. Decision analysis assesses the attribute as the object of evaluation. 

MAUT constructs the multiattribute utility function on multiple attributes (x1, 

x2, … , xm). The construction is based on the decomposition principles with the preference and utility 

independence assumptions, which derive the utility function in the representation form such that 

.  

),...,,( 21 mxxxU

))(,...,)(),(( 2211 mm xuxuxuU

Characteristics of MAUT correspond to those of the multiobjective decision problems. 

(1) Construction of a hierarchical configuration of the multiple attributes in multiple levels. In 

treating the multiple attributes, the multiple objectives are decomposed according to the property of 
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the attributes and integrated in a structured hierarchical system at multiple levels (Mesarivic, Marko 

and Takahara 1970).  

(2) Value trade-off experiments. In reconciling the conflicting objectives among the attributes, the 

value trade-off experiments are executed between the attributes. Scaling constants for the attributes are 

assessed as the weighting parameter with this procedure. The utility function is constructed with the 

scaling constants in the form as . ),,...,,;)(,...,)(),(( 212211 KkkkxuxuxuU mmm

(3) Construction of multiattribute utility function (MUF). For coping with the incommensurability 

for the attributes, the utility function for the attribute is assessed on a common scale between 0 to 1. 

The multiattribute utility function (MUF) is constructed on the singleattribute utility functions (SUF, 

or UNIF) and the scaling constants as its components.  

The construction of MUF makes the numerical evaluation of the multiple objectives embodying the 

incommensurate and incompatible properties possible on a common scale. The mathematical forms of 

MUF are represented (Keeney 1974) as 
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where xi, i = 1,…, m, is an attribute, is a SUF for an attribute xi,, and )( ii xu ,1)(0 ≤≤ ii xu  

. The ki  and K are the scaling constants assessed on the attribute. K is obtained as a 

unique solution of   
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The uniqueness of the solution K has been proved by Keeney (1974). 

The numerical order of the scaling constants corresponds to the preference order of the attributes, 

such as  

rjsrjs kkkxxx >>>>⇔ ............ ffff ,.                      (6) 

Where  denotes the attribute regarded as most important in a subsystem. sx

Note that x in Eqs.(3) (4) is a vector. MAUT finally constructs MUF with a heuristic procedure.  

MAUT proceeds in the following processes. 

(1) Hierarchical structuring of multiple attributes. The multiple attributes are structured in multilevel 

according to their properties. The attributes are decomposed and integrated according to the objectives 
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hierarchy.  

(2) Assessment of the singleattribute utility function. The singleattribute utility function (SUF, or 

uniattribute utility function UNIF) ui (xi) for an attribute xi is assessed for each subsystem at the lowest 

level.  

(3) The indifference experiments for the value trade-offs. The value trade-off assessment between 

attributes in each subsystem is executed, with which the scaling constants ki on an attribute xi , i = 1, 2, 

… , m, and K are derived. The indifference experiments are performed between an attribute xs selected 

as the most important and the other attribute sx in the subsystem.   

(4) The calculation of MUF. MUF is calculated as in Eq.(3)(4) with SUF ui (xi) and the scaling 

constants ki .and K..  

(5) Nesting of MUF. In assessing the large-scale systems including a large number of attributes, 

MUF is constructed with a nesting structure in multiple levels, such as, say, MUF = [MUF {MUF 

(MUF, MUF, SUF), MUF, MUF, SUF}, MUF, SUF]. The construction procedure of MUF is executed 

repetitively through the hierarchical structure in the multiple levels. 

The value indifference experiments for assessment of the scaling constant kp , p = 1, … , q, in 

deriving MUF at the upper level are executed between the attribute xsp, selected as most important in 

each subsystem p at the lower level.  

The construction of MUF for an overall system is make the numerical comparison possible for 

alternative actions of DM, which leads to choice of the most preferred solution in the complex 

decision environments. 

(6) Sensitivity analysis. Sensitivity analysis can be performed on the attributes and SUFs, which 

makes the construction of alternative action plans with alternative criteria possible based on the utility 

analysis. 

Although MAUT has provided an integrated evaluation method for the alternative action plans in 

complex decision environments, MAUT does not treat uncertainty in its original representation forms. 

Decision analysis, however, has primarily intended to cope with the uncertainty as its prominent 

characteristic, in particular, in the application to the business environments. We extend MAUT by 

introducing the probability evaluation in multiobjective decision analysis in uncertain environments. 

 

2.5 Expected multiobjective decision analysis  
 
Expected multiobjective decision analysis is an extension of the von Neumann-Morgenstern type 

expected utility hypothesis to the multiobjective decision environments. The method concerns the 

numerical construction of the expected multiattribute utility function (EMUF) embodying the 

probability distribution of DM. Expected multiobjective decision analysis presents a heuristic 

procedure for constructing EMUF, with which the numerical comparison of alternative action plans 
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with the multiple attributes makes possible under uncertainty. 

 The representation forms of EMUF are as follows. 
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where  is a value for an attribute xi ,  i = 1, …, m , to take when an event , j = 1, … n, 

occurs. Note that x is a vector. 

)( jix φ jφ

In Eqs.(7)(8) of EMUF, Eu(x) in Eq.(2) is substituted for u(x) in Eqs.(3)(4). The value of the 

scaling constant is assessed on an attribute ,,...,1, mixi =  and used as the weighting parameter for 

Eu(x) as the component of EMUF. The scaling constants are assessed not as the random value but as 

the non-random value on the attributes x. The method for evaluating the scaling constants in EMUF is 

the same as in MUF, because the probability evaluation for the uncertain events is independent of the 

preference evaluation for the attributes and thus introducing the probability evaluation ))(( jij xp φ  

in EMUF as Eqs.(7)(8) has no effect on the evaluation of the scaling constants for the attributes. The 

construction of the mathematical forms of EMUF is not affected by the replacement of Eu(x) in the 

representation forms of EMUF for u(x) in the representation forms of MUF.  

 

3. Preceding development of computer assistance 

 
The practical use of decision analysis is generally hard work. In particular, its execution to 

expected multiobjective decision analysis is not easy to operate in practice. Computer assistance for 

the decision support is highly recommended.  

Since an early stage of the development in decision analysis, computer programs have been 

attracted much attentions for its effective manipulation. MANECON Collection (Schlaifer 1971) is the 

most excellent precedent in providing the interactive processes for aiding decisions in the preference 

and probability evaluations in expected utility analysis. The interactive assistance in MANECON does 

not only mean the man-machin interaction, but alsothe interactive assistance of logical thinking 

processed of DM. MANECON Collection, however, only concerns the single objective decision 

environments under uncertainty.  

MUFCAP (Multiattribute Utility Function Calculation and Assessment Program) (Sicherman 

1975) has been presented as a multiobjective extension of the computer program for decision analysis. 
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MUFCAP supports MAUT in (i) the hierarchical configuration of the multiobjective systems structure, 

(ii) assessment of additional types of SUF, (iii) the value trade-off experiments between attributes, (iv) 

calculation of MUF, and (v) sensitivity analysis for the evaluation results. This software, however, 

does not concern the uncertainty in the decision environments, which is an indispensable factor in 

decision analysis. In addition, MUFCAP does not concern the interactive processes for the evaluations. 

MANECON Collection and MUFCAP are operated both in the mainframe computer systems. 

We have already presented a computer programs ICOPSS (Interactive Computer Program for 

Subjective Systems) (Sakawa and Seo, 1980) as a successor of MUFCAP, which is written in PL/1 

language the same as MUFCAP and is operated with some graphical representation on the TSS (Time 

Sharing Systems). ICOPSS has been applied for the regional impact analysis of construction of the 

Hokuriku Shinkansen in Japan, where the regional objective systems include 269 attributes 

decomposed to 9 levels in a hierarchical system (Seo, et al. 1986). 

Recent progress of information technologies is promoting the development of computer programs 

to be operated in the downsizing environments with visual interface, which largely enhances the 

user-friendly property of computer programs. On this progress, we have presented new extensions of 

the existing computer programs. One is MAP (Multiattribute Utility Analysis Program), which is a 

visual extension of MUFCAP for multiobjective decision support. This program is written with the 

object-oriented language C++ and operated in the GUI environments in workstation systems. MAP has 

been applied to the posterior assessment of regional development in the southern part of Korea, which 

includes 247 attributes structured in 9 levels (Seo, Nisizaki and Park. 1999). The other is IDASS 

(Interactive Decision Analysis Support Systems) (Seo and Nishizaki 1997), which is a visual extension 

of MANECON Collection for decision support under uncertainty. IDASS is operated also in the 

workstation systems.  

Both programs MAP and IDASS, however, still succeed the main deficiency of the precedent 

programs. Although IDASS supports the interactive decision processes under uncertainty and MAP 

executes the multiobjective evaluation both with the visual interface, these programs inherit the 

shortages of the preceding programs, non-multiobjective or non-interactive respectively. An 

integration of the both programs is expected for the multiobjective decision support under uncertainty.  

 In the following sections, we present a newly developed computer program MIDASS 

(Multiattribute Interactive Decision Analysis Support Systems) for supporting interactive 

multiobjective decision analysis in uncertain decision environments. 

 

4. Development of MIDASS 

 
4.1 General characteristics of MIDASS 
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MIDASS, which is a computer program for decision support in operating expected multiobjective 

decision analysis, is developed on the concepts of the intelligent decision support system (IDSS) (Seo 

and Nishizaki 1993). IDSS is a decision support system constructed on an axiomatic or disciplinary 

foundation with computer assistance, where the phase for human judgement is included as its 

prominent component.  

IDSS is composed of three phases: Database Shell, Expert System Shell, and Decision Shell. 

Database Shell concerns to construct and manipulate a database as a data management system. Expert 

System Shell concerns to treat a specific knowledge base on an axiomatic or any other disciplinary 

foundation, where a knowledge-base management system is constructed with empirical and intuitive 

skills of experts as well as analytical or mathematical tools. Decision Shell concerns making decision 

of DM judgementally and subjectively, where a managerial decision system is constructed. These 

phases construct a decision loop on evolutional stages. The general conceptual framework of the IDSS 

is composed of the major shells and, as a particular computer-assisted system, a software program is 

constructed. MIDASS is developed on this concept as a computer-aided decision support system. 

The general characteristics of MIDASS are as follows. 

(1) MIDASS is founded on the von Neumann-Morgenstern expected utility hypoyhesis.  

(2) MIDASS supports the methodological operation of decision analysis, which includes the 

construction of mathematical functions. 

(3) MIDASS supports interactively the logical thinking processes for judgmental decisions with 

consistency.  

(4) MIDASS is an integrated program package composed of the separate parts, which can be 

independently used.  

(5) The programs and evaluation results in MIDASS are combined in integration on the common 

database that is constructed independently of the operations.  

 
4.2 Program properties of MIDASS 

MIDASS intends to construct EMUF (Eqs.(7)(8)) as a decision criterion under uncertainty.  

Program characteristics of MIDASS as a computer software are as follows.  

(1) Program parts decomposition.  

MIDASS is composed of several parts corresponding to the components in EMUF, which are 

independent of each other and can be operated separately for a specific job intended. 

(2) Supporting methodological transition in order.  

The operation in the evaluation processes of EMUF proceeds step by step. The user starts 

selectively from the main menu screen. The screen transition of MIDASS is structured in order 

corresponding to the method of expected multiobjective decision analysis.   
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(3) Interactive assistance with consistency checks. 

  MIDASS supports interactively the evaluation processes of DM, which include the consistency 

checks for the assessment. Instructions for the proper selection in the evaluation are provided on the 

screen and, if necessarily, a message appears to suggest a possible revision. The evaluation processes 

proceed step by step in the screen transitions, where the user can turn back to the previous screen for 

the re-examination of preceding evaluations. 

(4) Functional independence.  

The functions of MIDASS program are operated independently of each other, which can be used 

separately for partial use of the MIDASS programs.  

(5) Data independence. 

Database of MIDASS is constructed independently of the program operations. Due to the data 

independence property, the availability, consistency or integrity of the database are preserved. The data 

independence property raises the serviceability of the database in MIDASS.  A revision of data files 

for a special job makes no effect on the original database. The database can be managed independently 

of its use.  

(6) Preservation of all evaluation results. 

MIDASS preserves all results of evaluation once saved as long as they are not deleted. All 

evaluation results are ready to use for alternative assessment in a later job.  

(7) Sensitivity analysis. 

MIDASS includes sensitivity analysis of the preference evaluations，which can be used for 

efficient construction of alternative management plans. 

(8) “Fool proof” property. 

MIDASS generates a message for “fool-proof.” The message appears frequently in every stage of 

the operation for alarming and confirming user’s operations, which protects the user operation from 

the careless misses through the evaluation works.   

(9) Down-sizing with visual interface. 

MIDASS is operated on the visual interface of PC systems, Windows 98, 2000 and XP at present. This 

property largely enhances the user-friendly property of computer utilization. 

 
4.3 Composition of MIDASS 

 
MIDASS is an integrated computer program, which is composed of the major parts of decision 

analysis: database construction, preference evaluation, probability evaluation and gamble evaluation.   

(1) MIDASS embodies the data management system. The data management system is composed of 

two parts: the database management system and the job data management system. (i) The database 

management system constructs the data files of the attributes for general use, which is constructed 
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independently of a specific job. Database for MIDASS is constructed with the attributes and its 

prescribed values, which are the objects of the evaluation. (ii) The job data management system 

constructs a particular data set for a specific job, which is extracted from an indicated database file.  

(2) The preference evaluation concerns the heuristic construction of the singleattribute-and 

multiattribute utility functions, SUF (or UNIF) and MUF, of DM.  

(3) The probability evaluation concerns (i) the heuristic construction of the probability functions of 

DM and (ii) the calculation of posterior probability on Bayes’ formula.  

(4) The gamble evaluation concerns the evaluation of mathematical expectations: expected values 

(E), expected utility functions (EUF), and expected multiattribute utility functions (EMUF).  

In the next section, the operation of MIDASS is described in some detail with illustrations, which 

can be used as a manual for the program operations. The “user” is used as a proxy of DM. 

 

5. Operation of MIDASS 

 
MIDASS starts from the main menu screen. Subsequent work proceeds with the screen transition. 

In the main menu screen depicted in Fig.1, the major functions of MIDASS appear in the 

methodological order, from where the user proceeds selectively to the subsequent stages for executing 

the functions in the specific job. All functions of MIDASS are operated with buttons on the screen.  

All functions of MIDASS, which appear on the main menu screen, become effective after the data 

set file is constructed for a specified job. The data input must be done in the lateral direction. 

Back up of the input data and evaluation results is constructed with the <BackUp DB> button on 

the main menu screen. The file name is indicated with the extension “.mbs.” Microsoft Access is used 

for making the back up file.  

 
5.1 Database management 
 

After starting MIDASS by a click on the MIDASS icon, the first screen appears as in Fig.2. In the 

beginning of a job operation, the user must construct a database for possible jobs in advance. 

Click the <Attribute Database Management> button. The Attribute Database screen appears. 

MIDASS asks whether the database to be used is OLD or NEW. When the user constructs new data, 

the Attribute Management screen for the data input appears with a click on the <NEW> button. When 

the database already exists, the Select Attribute Database screen appears with the click on the <OLD> 

button. Then indicate the file name. Then the Attribute Management screen appears.  

In the construction of the database, the worst and best values for the attributes to possibly take are 

assigned. Alternative value sets for the attributes are constructed in the intermediate ranges of the 

attributes between their worst and best values with the specification of the alternative names such as 

ALTx, etc. The alternative values are taken from empirical data, forecasting or reference values, etc.  
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Fig. 1  Main menu screen 

 

          
 

Fig. 2 First screen in operation 
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Fig.3 Database Management screen 
 

          
 

Fig.4 Job Management screen 

 

The user proceeds to the <Job Management> screen as Fig.4 by a click of the <MIDASS Job 

Management> button on the main menu screen. MIDASS asks whether the job is <NEW> or <OLD>. 

The <Job Name> must be assigned. The job data set for a new job is constructed with the transfer of 

the attributes selectively from the <Attribute Data> window to <Job Data> on the <Job Management> 

screen. The <ADD> button is used for the transfer. The <ALT Name> is specified with the <Set ALT> 

button to evaluate a certain alternative in the subsequent works. 

All buttons for operating all the functions of MIDASS become available on the main menu screen 

after the construction of the job data file.  

The user can turn back to the main menu screen with the <QUIT> button on the screens. 
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5.2 Preference evaluation 
 
5.2.1 Singleattribute preference evaluation   
 

The preference evaluation of DM is executed in two ways: for the singleattribute and for the 

multiattribute. The utility functions of DM are constructed heuristically for the both as SUF and MUF. 

The singleattribute utility function embodies DM’s risk attitudes, which are represented 

numerically with the risk function. The risk function measures the local risk attitudes of DM’s 

preference (Pratt 1964). The local (absolute) risk function is defined by  

)('/)(")( xuxuxr −= ,                                    (9) 

where u(x) is the utility function for an attribute x.. When  for all x, the risk attitude of DM 

is risk-averse and, when , the risk attitude is risk-prone. The risk-neutral attitude is 

represented when 

0)( >xr

0)( <xr

0)( =xr . The local proportional risk aversion is defined by  

                             )()(* xrxxr = .                                    (10)  

The risk attitude of DM is represented in assessing the certainty equivalent (CE) to the gamble 

evaluation for a lottery with an n-chance fork, which is represented as mathematical expectation. 

Singleattribute preference evaluation starts with a click of the <Singleattribute Preference> button 

on the main menu screen (Fig.1). The Singleattribute Preference Evaluation screen appears as Fig.5.  

Click first the <Select Attribute Data> button and indicate an attribute name. Then the assessment 

for all types of the utility functions becomes available. The input data and evaluation results are saved 

by assigning the file name on the evaluation screen for a type of the utility function. The user can call 

them in by the <LOAD> button on the menu screen. The <UNIF Set> button on the evaluation screen 

calculates the parameters of the mathematical form of the utility function along with its graphical 

representation. With the <QUIT> button, the user goes back to the preceding screen. 

MIDASS supports seven types of the singleattribute utility functions, which embody the risk 

attitude of DM. 

A. Risk-neutral preference 

1. Linear utility function 

2. Piecewise linear utility function 

B. Constant risk preference 

3. Constant risk utility function 

4. Constant absolute risk-averse utility function 

5. Constant proportional risk-averse utility function 

C. Decreasing risk-averse preference 

6. Sumex-type utility function 

7. Piecex-average-type utility function 
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Fig.5 Menu screen for singleattribute preference evaluation 
 

 
A. Risk-neutral preference 

1. Linear utility function 

The representation form of the linear utility function is  

baxxu +=)( ,                                              (11) 

where x is an attribute and u(x) is a utility function. The evaluation screen is illustrated for the attribute 

Delivery in Fig.6, which is assessed the attribute values in a descending order. After the data input, the 

parameters of the utility function are calculated with a click of the <UNIF Set> button, where UNIF is 

used for SUF (singleattribute utility function). The <Cal U(x)> button calculates the UNIF value with 

an input value of x. The <Cal inv U(x)> button calculates a value of x with the input of a UNIF value. 

The operation is the same as in the evaluation screens for other UNIF types. 

2. Piecewise linear utility function 

The representation form of the piecewise linear utility function is 

jjj nnn bxaxu += )()( ,                                        (12) 

where nj , j = 1, …, k, denotes the number of a segmentation of the function. Fig.7 illustrates the 

evaluation of the piecewise linear utility function with five segmentations for the same attribute. 
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Fig.6 Assessment of linear utility function (Delivery) 

 

   
 

Fig.7. Assessment of piecewise linear utility function (Delivery) 
 

  

B. Constant risk preference 

3. Constant risk utility function 

The constant risk utility function is represented in the mathematical form  

)exp()( cxbaxu −+= .                                      (13) 

When c > 0, the utility function u(x) represents the risk-averse attitude of DM and, when c < 0, the 

utility function u(x) is risk-prone.  
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The evaluation of the constant risk utility functions proceeds in three steps on the screen. 

Step 1. Assign the file <Name> for the evaluation.  

Step 2. As input data, assess tentatively the reference lottery with the two-chance fork and its certainty 

equivalent (CE) , where the reference lottery is defined to get with a 50-50 chance the best or worst 

value of x, for which the utility value 1.0 or 0.0 is assigned respectively. The expected value of the 

reference lottery is 0.5 and the user assesses CE with 0.5-utility value. When the CE is not satisfactory 

for DM, another lottery is constructed with different probability for 1.0 or 0.0 utility value. The input 

value of u(x) on the screen is an expected utility value for the lottery and the x-value is its CE, which is 

represented in an ordinate and in an abscissa of the graphical representation on the screen. The 

indifference experiment between a lottery and its CE is executed repetitively until the result is 

satisfactory for DM. The user can check the evaluation result for the utility function on the screen 

graphically. 

x̂

Step 3. When the evaluation result is acceptable, the user preserves the mathematical form of the 

utility function with the <SAVE> button.  

Fig.8 illustrates the assessment of the constant risk utility function for the attribute Product Quality. 

 

 
 

Fig.8. Assessment of constant risk utility function (Product Quality) 
 

4. Constant absolute risk-averse utility function 

  The constant absolute risk-averse utility function represents the risk attitude of DM, in which a 

change in an attribute value X as a stock has no effect on the evaluation of the attribute value x as a 

flow with a chance fixed. The representation form of the utility function is  

u(x,r) = −
1
r

(e−rx −1),        − ∞ < x < ∞,   − ∞ < r < ∞.                              (14) 
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rxr =)( .  The local risk aversion function is  

The utility evaluation is executed with the four points input for the worse, better and CE values of 

 better attribute value. MISASS calculates with the 

<C

bability distributions for the gambles can be assigned in alternative ways: (i) gamble 

de

the attribute and a probability assignment for the

alculate> button the local risk aversion r as the parameter of the utility function. The utility 

function is derived with the parameter r, whose values are not normalized. By assigning an attribute 

value, the utility value is calculated with the <CALC> button.  

Fig.9 illustrates the evaluation screen for the attribute Productivity with the constant absolute 

risk-averse. 

Once the utility function is specified, any gamble is assessed with the parameter r for the risk 

aversion. Pro

scription by the user, (ii) call-in from a distribution file with the <Distribution in File> button, or 

(iii) the use of the Gaussian distribution with the assignment of mean and standard deviation SD as the 

input data. The gamble evaluiation is executed with the <Distribution in File> button.  

MIDASS calculates CE and the risk premium (RP), ,CExRP −=  for the described gambles or 

the specified probability distributions.  

Fig.10 illustrates the evaluation of CE and RP for the gam d by the user.  

 

ble describe

 
 

 
              

Fig.9 Evaluation of constant absolute risk-averse utility function (Productivity) 
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Fig.10 Illustration for constant absolute risk-averse utility function (Productivity) 

 

5. Constant proportional risk-averse utility functions 

ion represents the risk attitude of DM, in which a 

                (15) 

 

   The constant proportional risk-averse utility funct

change in an attribute value X as a stock has no effect on the evaluation for a fraction of the stock 

value with a chance fixed. The representation form of the utility function is 

            w (x, r) = u(log x , r)                                 

                   = −
1
r

(e−r log x −1),       0 ≤ x < ∞,   − ∞ < r < ∞.                 (16) 

  The local absolute risk aversion function is xrrxwrxwxr /)1(),('/),(")( +=−= , and the local 

proportional risk aversion is ()(* 1) +== xrxxr k aversion is 

represented as the average value x. 

  The evaluation method is the almost same as the constan

r . The value of the local ris

divided by the attribute 

t absolute risk-averse case. The probability 

  ductivity with the constant proportional 

distribution for the gamble evaluation can be constructed with (i) the description of distributions by 

the user, or the generation by the use of (ii) the <Distribution in File> button, or (iii) the <Gamma or 

Lognormal Distribution> button with the assignment of mean and SD values.  

In this case, the utility function values are not normalized. 

Fig.11 illustrates the utility evaluation screen for the Pro

risk-averse. Fig.12 illustrates the CE and RP calculations with the gamble description by the user. 
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Fig.11 Evaluation of constant proportional risk-averse utility function (Productivity) 

   

 

 
 

Fig.12 Illustration for constant proportional risk-averse utility function (Productivity) 

 

. Decreasing risk-averse preference 

 preferences are assessed with two-types of the utility function: 

th

C

The decreasing positive risk-averse

e sum of exponential (sumex) type and the piecewise exponential-average (piecex-average) type.  
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6. Sumex type utility functions (Schlaifer 1971)  

     The representation form of the basic (non-normalized) sumex-type utility functions is defined by 

)1()1()( −−−−= −− ecexv bxax

.0,0,1 >>++−−= −− cbaccee bxax
                   (17)    

The risk aversion function is  

            ,)(/)()(
22

bxax

bxax

ebcea

ebcea
xvxvxr

−−

−−

+

+
=′′′−=                        (18)    

where (i) r(x) > 0 everywhere, when b, c > 0, and (ii) r(x) > 0 to the left of the reflection point *x  

and r(x) < 0 to the right of the *x , when b, c < 0. The reflection point is defined by 

                   .))(/(log1* 22 cbax −=                         
ba −

        (19) 

     The normalized sumex utility function is defined by 

                     ,
)()(

()( )0xvxv −
)(

01 xvxv
xu

−
=                                   (20) 

where x0 and x1 denote respectively the worst and the best values of the attribute used as the input data. 

defined with a parameter 

   

7. Piecex-average type utility functions (Meyer and Pratt 1968)  

   The general representation form of the piecex-average utility functions is 

k by  

       .,10,)()1()()( 021 ∞<≤<<−+= xxkxukxukxkυ              (21) 

 and  are called the basis function. The local risk av

constant and decreas

                                      (22) 

                                  (24) 

where fi (x) is the initial function defined by 

                                 (25)  

    

   The (1u ersions of the basis )x

(1 xu

)(2 xu

 (2ufunctions )  and )x  are nonnegative and non-increasing, but the basic functions are 

piecewise ing in the steps.  

   The basis functions are defined by 

⎩
⎨ ≥

≤
=

34

3
1 )(

)(
yxxf
yx

xu  
⎧ 2 )(xf

⎪
⎪
⎩

⎪
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⎧
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The parameters a, b, and r in the initial functions have the values such that (i) fi  passes through 

the

 y3 a 3 < y4

reasing and positive 

 input points, 1−i , i, and i + 1 for i = 2, 3, 4 and (ii) fi passes through the input points 1−i , and 

i for i = 5.  The nd y4 are the junction points, and x0.25 < y3 < x0.75, x0.5 < y4 < x1 , y  . The 

subscript of x shows the utility value, with which the attribute value is assessed.  

   The piecex-average utility function is constructed when the risk aversion is dec

everywhere. The conditions for the proper fitting to the piecex-average preference function are to 

satisfy both (i) 0432 >>> rrr  and (ii) )()( 52 xfxf <  for all x in [x 0.5 , x 0.75 ]. 

   The evaluat k-averse utility function ision method for assessing the decreasing ris  two-fold. One is 

uentially and interactively in the following steps.   

ibute values V0 and 

 preliminary preference curve of DM 

rence curve for the attribute Market Scale on the screen.  

version r1 (=  

Ste ser can proceed the 

tion. Fig.16 shows the piecex 

typ

to specify the five points for deriving the preference curve of DM; it is called the five point input 

method, and the other is to assess three 50-50 gambles with their certainty equivalents. This method is 

called the three 50-50 gamble input method and used for the sumex type utility function only. These 

methods are selected on the menu screen for the singleattribute preference evaluation (Fig.5). 

1. Five points input method  

  The evaluation proceeds seq

 Step 1 (Preliminary input). On the evaluation screen first appeared, the basic attr

V1.0 assessed with the utility values 0 and 1 are assigned automatically for the selected attribute. The 

other three values V0.25, V0.5 and V0.75 of the attribute to be assessed with the utility values 0.25, 0.5 and 

0.75 respectively are indicated tentatively by DM on the screen. 

Step 2 (Preliminary preference curve fitting). MIDASS depicts a

with a piecewise straight line by connecting the 5 input points. The user should examine this curve 

carefully with necessary modifications.  

   Fig.13 illustrates the preliminary prefe

Step 3 (Consistency check). The user proceeds to the next screen for consistency check.  

   MIDASS calculates with the input for the V0.5*-value on the screen the local risk a

R1), r2 (= R2) and r3 (= R3), and checks the consistency with the proper mathematical function forms 

by testing if the conditions (a) R1 > R2 > R3 > 0 and (b) R1 > > R2 are satisfied. The user can 

modifies the V0.5*-value on the screen when the consistency check is not successful. 

When the consistency is satisfied, the message appears, as depicted in Fig.14. 

p 4 (Derivation of the utility functions). Once the consistency is held, the u

derivation of the prescribed type of the utility function, either the piecex-average, or sumex type utility 

function selectively with the <PIECEXFIT> or <SUMEXFIT> button. 

 Fig.15 depicts the evaluation result of the sumex type utility func

e utility function.  

 

 23



 
 

Fig.13 Preliminary evaluation screen of preference (Market Scale) (I)  

 

                       

 
 

onsistency check of the preference (Market Scale) (I) 

 

Fig.14 C
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Fig.15 Evaluation result for sumex type utility function (Market Scale) 

 
 

 
 

Fig.16 Evaluation result for piecex type utility function (Market Scale) 

 

If it is necessary, the user can open the <INSTRUCTION> screen and keep it through the 

evaluation work on the screen as in Fig.17. The text is in the Appendix A. 
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Fig.17 Assistance to user’s evaluation process (Market Scale) 

 

 
In the Step 4, when the user assesses the preliminary preference curve as in Fig.18 and the 

consistency check is not successful as shown in the <NEXT> screen as Fig.19, the user is suggested 

the modification of the assessment with the help messages, which appear automatically on the screen. 

For the modification of the preference, (i) input the certainty equivalent (CE) V0.5* for an 

additional gamble for V0.25 and V0.75 obtained with the 50-50 chance. Then examine if V0.5 = V0.5*. (ii) 

MIDASS checks the consistency again with a revised value of the risk function <R2*>, which is 

calculated for the modified CE V0.5*. When the conditions for the risk functions are not satisfied, the 

revisions should be repeated. Schlaifer (1969, 1971) suggests that DM has the inclination to reveal the 

excessively large risk aversion for the narrow ranged gamble, which results in V0.5 > V0.5* and 

sometimes expresses a local disguised risk prone attitude of DM. For avoiding this psychological bias 

of the assessors, (a) V0.5 should generally be decreased. (b) V0.5*, however, can occasionally be 

increased properly. 

The user finally obtains the proper result as in Figs.14. 
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Fig.18 Preliminary evaluation screen of preference (Market Scale) (II) 

 

         
 

Fig.19 Consistency check of the preference (Market Scale) (II). 

 

2. Three 50-50 gambles Input method 

In the case of the sumex type utility function, the three 50-50 gamble input method is available.  

 (i) Click the <Three 50-50 Gamble Input Method> button on the menu screen. Then the valuation 

screen appears. 

(ii) Specify the three 50-50 chance gambles and their CE on the screen. The three gambles should be 

constructed in an ascending order if they are not nested. If they are nested, the user can input the data 
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in any order. The average risk function <R> should take a positive value in a descending order. In 

this method, the consistency check is not supported interactively. Fig. 20 depicts the three 50-50 

gambles input method in the nested gambles case for the attribute Profitability. 

All results of the evaluation once saved appear with the <LORD> button on the screen as in Fig.21. 

 

 

 
 

  Fig. 20 Demonstration of the three 50-50 gambles input method for the sumex type (Profitability)                
 

 

               
 

                          Fig.21 Load screen for saved evaluation data 
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5.2.2 Multiattribute preference evaluation  
 

Multiattribute preference evaluation starts from the main menu screen as depicted in Fig.1. The 

screen for multiattribute preference evaluation is arranged according to the method of multiattribute 

utility analysis, which is shown in Fig.22.  

Multiattribute preference evaluation finally aims the evaluation of an over all multiattribute utility 

function for the prescribed job.  

 

             
 
               Fig.22 Menu screen for multiattribute preference evaluation 

 

The multiattribute utility analysis proceeds in order. 

Step 1. Structuring of the attributes.  

First, all the attributes selected for the present job are structured in a hierarchical system on 

multilevel, which represents an objectives hierarchy of DM.  

The <Structure> button is used on the menu screen. The <structure> screen appears with the job 

name at the top level as Fig.23, which is tentatively assigned for the MUF name. With a click of the 

right button of the mouse on the name, the pop-up menu appears with the <Add MUF>, <Add UNIF>, 

<Rename>, and <Delete> buttons. UNIF denotes the uni(=single)attribute utility function. The UNIF 

name to be included in MUF is selected from the list of Attribute Name as in Fig.24, which appears 

with a click on the <Add UNIF> button in the pop-up menu. Assign a UNIF name first and select an 

attribute name for it from the list of the attributes appearing on the screen. The Flag shows with a 

circle that the attribute has been selected for MUF. The MUF or UNIF name can be changed or deleted 
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with the < Rename> or <Delete> button respectively on the pop-up menu. 

The hierarchical configuration of the objective systems is constructed in order by the assignment of 

MUF and UNIF names with the <Add MUF> and <Add UNIF> buttons in the pop-up menu. 

Fig.25 illustrates the <Structure > screen for the hierarchical configuration. The large-scaled 

structure can be folded up in a compact diagram. 

 

 
 

          Fig.23 Structure screen first appeared 

 

 

 
 

        Fig.24 Unif Name input screen 
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Fig.25 Screen for MUF structure 

 

Step 2. Selection of UNIF type. 

Before proceeding to the MUF evaluation, the UNIF types for all the attributes to be used in the 

MUF must be selected. The screen for the selection appears with a click of the <Utility-Type 

Selection> button on the menu screen. Fig.26 illustrates this screen. 

Note that the UNIF types of Constant Absolute/Proportional Risk Averse are not available for 

MUF evaluation.   

             

        
 

Fig.26 Screen for selection of UNIF type  
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Step 3. Assignment of scaling constants. 

In MUF construction, the scaling constants are assessed for UNIF and MUF at the lower levels in 

the hierarchical structure. The evaluation of the scaling constants is executed as a result of the 

assessment of the value trade-off between attributes in each subsystem. The indifference experiment 

between the attributes is used for assessing the value trade-off numerically. MIDASS supports this 

experiment with drawing the indifference map on the screen, where the user can modify the input data 

for the assessment visually. 

The assignment of the scaling constants proceeds in the following steps. 

Step 3-1. Construction of the preference order among the attributes in each subsystem. 

Numerical order of the scaling constants corresponds to the preference order of the attributes. The 

construction of the preference order is used for the relative scaling in the assignment of the value 

indifference points between attributes, which should be consistent with the preference order of DM..  

Step 3-2. Assignment of the value of the basic scaling constant.  

The value of the scaling constant is assessed first for the most preferable, or regarded as most 

important, attribute in each subsystem, which is called the basic scaling constant. The assessment is 

executed with an indifference experiment between a lottery and its certainty equivalent. The lottery is 

constructed with two chance forks. One has all best values of the attributes with a probability p and the 

other has all worst values of the attributes with a probability p−1 . The certainty equivalent (CE) is set 

such that the most preferable attribute takes its best value and all other attributes take their worst 

values. The user assesses the probability p for deriving the indifference between the lottery and CE. 

The assignment starts with the <Basic Scaling Constant> button on the menu screen. Then the 

same screen as the Structure screen appears with the different screen name. Click a MUF name at a 

lower level with the right button. The Input Base No. screen appears as in Fig.27. The user specifies 

the number of the basic attribute on the screen, which is assessed with the basic scaling constant. With 

the <OK> button, proceed to the Set Basic k screen as in Fig.28, on which the indifference experiment 

for assessing the basic scaling constant is executed. The probability for deriving the indifference 

between the lottery and CE is assessed. Fig.29 shows the output screen for the evaluation, where the 

value of the basic scaling constant appears and from where the evaluation for other scaling constants 

proceeds with the <Indifference Map> button as explained in Step 3-3. 

Alternatively the user can go to the next screen with the <CANCEL> button in Fig.27. The same 

screen appears. The number of the basic attribute can be assigned with the <Set Base> button. Proceed 

to the next screen with the <Set k> button. Then the input screen for the assignment of the basic 

scaling constant appears as in Fig.28. 

All the results of the evaluation for the scaling constants in the subsystem Market are depicted in 

Fig.30. 
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Fig.27 Screen for basic attribute number input 
Fig.28 Indifference experiment screen for basic 

scaling constant  
  

 

 

 

 

Fig.29 Screen for the scaling constant evaluation 
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Fig.30 Evaluation results of the scaling constants 

 

 
Step 3-3 Assessment of all other scaling constants.  

Assessment of the scaling constants for all other attributes is executed with the <Indifference 

Map> button on the evaluation screen as Fig.29. The same screen as Fig.27 appears. The number of 

an attribute is assigned as the opponent in the indifference evaluation. Then, with the <OK> button, 

the Indifference Map Between Two Attributes screen appears for the value indifference experiment 

between the two attributes. The most preferable attribute name appears always on the horizontal axis. 

Assess the value indifference points for the two attributes as the input data. Then an indifference 

map is generated automatically with the <Indifference Eval> button. When the user specifies a value 

of one attribute, the indifferent point for the other attribute is calculated with the <Point Calc> button 

and drawn on the screen. 

Fig.31 and 32 depict the evaluation results for three attributes in the MUF named as Market. Note 

that the numerical order of the scaling constants,  

corresponds to the preference order of the attributes, . 

The relative scale of the basic attribute to the opponent should be carefully checked in finding the 

indifferent points on the screen, which should correspond to the preference order for the attributes. 

,ScaleMarketityProfitabilGrowthMarket kkk >>

ScaleMarketityProfitabilGrowthMarket xxx ff

All the evaluation results of the scaling constants appear as in Fig.30. Check again that the 

numerical order of the scaling constants corresponds to the preference order of the attributes. 

The <Indifference Experiments between Attributes> button on the menu screen also executes the 

same evaluation works thorough the similar screen transitions.  
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Fig. 31 Indifference experiment between Market Growth and Profitability 

           

 

 

 
 

Fig.32 Indifference experiment between Market Growth and Market Scale 
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   The hierarchical configuration of MUF structure includes the nesting of MUF at the lower level as 

ed 

Ne

es 

 with the <Calculation of Multiattribute Utility Function> button 

on 

out

sensitivity analysis for MUF and UNIF values, which calculates the 

diff

 of alternative management plans according to 

alte

sensitivity analysis for the objective system New Product. 

 

                 

shown in Fig.25. The assessment of the scaling constants for MUF at the upper level is executed in 

order between the basic attributes selected as most important in the subsystems at the lower level.  

Fig.33 illustrates the evaluation of the scaling constants at the highest level, where the MUF nam

w Product is constructed on three MUFs named Production, Market, and Customer. Fig.34 and 

Fig.35 depict the indifference experiment between Customer and Market and between Customer and 

Production respectively, where .ProductionMarketustomer xxx C ff    

Step 4. Calculation of MUF valu

Calculation of MUF is executed

the menu screen. All the results of the evaluation appear on the screen with the related information. 

Fig.36 depicts the final evaluation results for the MUF of the system named New Product. The 

put can be exported in the MS Excel form with the <Export to File> button.  

Step 5 Sensitivity analysis. 

MIDASS executes the 

erential values for the UNIF and attribute values. 

Sensitivity analysis is useful for the construction

rnative criteria, which is based on the utility assessment in the objectives configuration for the 

existing system New Product. 

Fig.37 shows the results of 

 

 
 

                   Fig.33 Evaluation of scaling constants for New Product  
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                 Fig.34 Indifference experiment between Customer and Market 

 

 

 
 

               Fig.35 Indifference experiment between Customer and Production  
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                      Fig.36 Evaluation results for MUF: New Product 

                      

 

  

 
Fig.37 Sensitivity analysis 
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.3 Probability valuation 
 
5.3.1 Evaluation of subjective distributions                                                   

MIDASS supports the evaluation of the probability distribution for the attribute. MIDASS can 

DM

uncertain 

qua

1. Continuous distributions 

. 0-1 attribute values 

l distribution 

te values 

C

istribution 

ribution 

4         

5

 

construct the statistical probability distributions with the data input that is subjectively assessed by 

. Input data for assessing the distributions are different according to the distribution types. 

MIDASS generates as output the evaluation results along with the graphical representation.  

MIDASS supports selectively alternative evaluations for the 11 types of distribution, which 

correspond to the numerical data characteristics of the attributes, which are treated as the 

ntities. Bayesian statistics are derived with sample data.  

 

 

A

 (1) Beta distribution 

 (2) Bounded lognorma

B. Nonnegative attribu

 (3) Lognormal distribution 

 (4) Logstudent distribution 

 (5) Gamma-q distribution  

 (6) Weibull distribution 

. Unrestricted attribute values 

 (7) Gaussian (or normal) d

 (8) Arcsinh-normal distribution 

 (9) Logistic distribution 

(10) Student distribution 

2. Piecewise quadratic dist

3. Discrete distribution 

. Bayesian statistics             
     

 
Fig.38 Menu screen for probability evaluation           

The user starts with the <Probability Evaluation> b

enu screen for the probability evaluation appears as in Fig.38. First an attribute name should be 

spe

   

 

utton on the main menu screen in Fig.1. The 

m

cified on the Select Attribute screen, which appears with the <Select Attribute Data> button as in 

Fig.39. Then all the functions for the evaluation become available on the menu screen. The user selects 

a proper distribution type in order according to the numerical characteristics of the attribute. 



 
 

Fig.39 Screen for selecting an attribute name 

 

The evaluation screen for per distribution button on 

e menu screen. Evaluation results are saved with the grouped approximation. The way of grouping 

the

ontinuous probability distributions 

 values  

ution types. 

  parameters B and C in the following form 

the distribution appears with a click on a pro

th

 data should be indicated on every evaluation screen assigning (i) whether by equal probability or 

by equal width and (ii) the number of brackets in the grouping. The graphical representation can be 

enlarged by a click on the screen. The user can turns back with the <QUIT> button on the screens. 

   In the following, <x x x> indicates the related button.  
  
5.3.2. Statistical Probability Distributions 
 
I. C

A. Distribution families with [0, 1]- attribute

Input data are different for the distrib

1. Beta distribution (<Beta>) 

The Beta cumulative function is represented with 

              ,)1(
)()(0∫ −ΓΓ BCB

)( 11 −−− −
Γ

=
p BCB dtttC                   (25) ),;( CBpk

where t ≤ p  is t 0 ≤ t ≤1, B > 0, C > B.  )(he uncertain quantity, and •Γ is the complete gamma 

function an defines the generalized factorial, d Γ(r ) = (r −1)!. 

  The in values are assessed on the scre .7 ctiles on the cumulative 

distribution, or alternatively for (ii) moments  =

put en for (i) the 0.25 and 0 5-fra

as (a) mean m  [0, 1] and (b) the standard deviation 

s ])1(,0[ mm −= . (iii) Direct input of parameters B and C is also possible. 

  Fig.40 illustrates the evaluation of the beta distribution on the screen. 
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Fig.40 Evaluation screen of Beta distribution (Synergy)  

2. Bounded lognormal distribution (<Bounded Lognormal>) 

e uncertain quantity t having parameters 

 

 

  The bounded lognormal distribution is the distribution of th

μ and σ, if x = log[t / (1 − t )] has a normal distribution with the parameters, the mean μ and 

the standard de ,1≤t  .0, >viation σ, and 0 ≤ ∞<<∞− σμ  

  The input data are (i) the parameters μ  (MU) and ο  (SIGMA), or (ii) the attribute values for 

 lognormal distributions are both flexible. They have wide applicability. 

B

ution of the uncertainty quantity t having parameters μ 

0.25 and 0.75-fractiles. 

  The Beta and bounded

Fig.41 depicts the evaluation screen for the bounded lognormal distribution. 

. Distribution families with nonnegative attribute values 

3. Lognormal distribution (<Lognormal>) 

  The lognormal distribution is the distrib

and σ, for which x = log t has a normal distribution with the parameters μ  and ο , where 

.0,,0 >∞<<∞−≥ σμx   

The distribution is skewed with a long tail to the right. 

rameters The input is (i) the 0.25 and 0.75-fractiles, or (ii) the pa μ  and σ . 

an 4 depicts the lognormal 

di

Fig.42 illustrates the evaluation of the lognormal distribution d Fig. 3 

stribution for the same attribute Synergy as in Fig.40 (Beta) and Fig.41 (Bounded lognormal).  
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Fig.41 Evaluation screen for bounded lognormal distribution (Synergy) 

 

 

 

 
 

Fig.42 Evaluation of lognormal distribution (Market Scale)  
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Fig.43 Evaluation of lognormal distribution (Synergy) 

 

. Logstudent distribution (<Logstudent>) 

tion of the uncertain quantity t having the parameters, μ, 

4

  The logstudent distribution is the distribu

and σ and ν (degree of freedom), for which x = log t has a student distribution with the parameters 

μ, σ and ν, where .,0,,0 ot >>∞<<∞−≥ νσμ  

  The standard student density function is defined by 

)1(
2
1

1 ν
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)(
)

2
1,

2
1(
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+−

+=
ν

ν
ν

νν x
B

xf                                (26) 

where B(p, q) is the complete beta function, and .0, >∞<<∞− νx

  

The general student 

distribution of an uncertain quantity y is defined when σμ /)( −= yx  has a standard student 

distribution with the argument −∞ < y < ∞, and parameters, ,∞<<∞− μ  ,0>σ  .0>ν  

The length of the tail of the tributions is controllable in only logstudent dis  one direction with the 

0.25 and 0.75-fractiles fixed, which can be longer, but not shorter, than in the lognormal distributions.  

 The input data is (i) the 0.25, 0.75, and 0.875-fractiles, or (ii) the parameters ,μ ,σ  and .ν  

Fig.44 illustrates the evaluation of the logstudent distribution.  
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Fig.44 Evaluation of logstudent distribution (Market Scale) 

5. Gamma-q distribution <Gamma-q>) (Raiffa and Schlaifer 1961, Schlaifer 1971) 

e parameters q, r, 

  The standardized gamma normalized density function is defined with the parameter r by  

              

 

 (

  The gamma-q distribution is the distribution of the uncertain quantity t having th

and s, for which qstx )/(=  has the standard gamma distribution with a parameter q, and 

,0≥t ,0,0 >≠ rq . 0and >s

0,0,
)!1(

);(
1−− xe rx

>≥
−

= rx
r

rxf ,                               (27) 

where )(!)1( rr ΓΔ− is the complete gamma function or generalized factorial. When x = yt has a 

d gamma distributio

ction is defined by 

            

standar n with the parameter r, the uncertain quantity t is said to have the gamma-1 

distribution with parameters r and y.  

The gamma-1 normalized density fun

 .0,,0,
!)1(

)( 1−− xye rxy
),;( >≥

−
= yrxy

r
yrxf                      (28) 

istics of the gamma-q distribution are that (i) one side  The character  of the tail is longer, and the 

other side is shorter, than in the lognormal distributions, (ii) when q > 0, the tail is longer to the left, 

and when q < 0, the reverse, and (iii) when q is approaching 0, the distribution form is approaching the 

lognormal type. 
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  The input data are (i) a direct assignment of the parameter q, and (ii) the specification of (a) the 

 distribution for q = 1. Fig.46 

 

0.25 and 0.75-fractiles, or (b) input of the other parameters r and s.  

   Fig.45 depicts the screen for the assessment of the gamma-q

illustrates the gamma-1.5 distribution for the same data. Fig.47 shows the case of .1−=q   

 

 
 

Fig.45 Evaluation of Gamma-1 distribution (Market Scale) 

 

 

 
               

ig.46 Evaluation of Gamma-1.5 distribution (Market Scale)                F
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Fig.47 Evaluation of Gamma- 1− Distribution (Market Scale) 

 

The selection method among the three types of distribution families suitable to the [0, 1]-uncertain 

qua

ibution by assessing the 0.25 and 0.75-fractiles. 

n is tried by assessing 

the

user wishes to extend one tail and to shorten the other, then use the gamma-q 

dis

   

  ded to the left. 

ht. 

ore to the left (right)-side. 

St

 of Weibull distributions, which is included independently as a 

se

s 

ntities has been presented (Schlaifer 1971). 

Step 1. Try to fit preliminarily a lognormal distr

Step 2. Then examine the tails of the distribution for its modifications. 

(1) When the both tails are desired to be extended, the logstudent distributio

 0.875-fractile. 

(2) When the 

tribution on the same 0.25 and 0.75-fractiles.  

The q values are changed in the following rules.

(i) Set q =1, when the user wants the tail to be exten

  (ii) Set q = – 1, when the user wants the tail to be extended to the rig

  (iii) Adjust the q values to DM’s opinion by doubling or halving it. 

According to the increase (decrease) of the q value, the tail extends m

ep 3. If it is OK, then save the result. 

6. Weibull distribution (<Weibull>) 

MIDASS supports the evaluation

rvice program for users’ convenience and used for the reliability studies in special engineering fields 

in the processes of making decisions. 

The density function is represented a
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).)(exp()( 1 ααα
β

αβ tttf −= −−                                     (29) 

The cumulative distribution function is 

              ))((exp1)( α
β
txF −−=                                           (30) 

where α and β are parameters and t is a variable. 

MIDASS calculates the distribution in the case .1=β  The user can assign any new file name for a 

special job on the screen. Input data are the parameter A ( = a ) or the 0.25-fractile value. 

Fig.48 illustrates the evaluation screen for the Weibull distribution.  

   

 

 

Fig.48 Evaluation of Weibull distribution 

 

C. Distribution families with unrestricted attribute values  

7. Gaussian (or normal) distribution (<Gaussian (Normal)>) 

 The Gaussian, or normal, distribution is the distribution of the uncertain quantity t having 

parameters μ and σ , and ,0,, >∞<<∞−∞<<∞− σμt  for which σμ /)( −= tx  has a 

standard normal distribution with parameters μ = 0, σ  = 1.  

The standard normal density function f (x) is defined as  

               .                             (31) ∞<<∞−= −− xexf x ,)2()( 2/2/1 2
π
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The Gaussian (Normal) density function for the uncertainty quantity t is represented by 

          ⎟
⎟
⎠

⎞
⎜
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2
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ο
μ

οπ

ttf ,                      (32) 

where 0>σ , and  is a variance.      2σ

The Gaussian distribution is a symmetric distribution, whose shape is inflexible. Although the 

normal distribution is not necessarily suitable for the heuristic derivation of DM’s distribution, it 

sometimes can be used as a good approximation to the unknown distributions with a wide variety.   

Input data are (i) the 0.25 and 0.75-fractiles, or (ii) the parameters m (mean) and s (standard 

deviation). 

Figure 49 depicts the evaluation screen for the Gaussian distribution of the attribute Market 

growth. 

 

 
 

          Fig.49 Evaluation of Gaussian distribution (Market Growth) 

 

8. Arcsinh-normal distribution (<Arcsinh-Normal>) (Schlaifer 1971) 

  The arcsinh-normal distribution is a distribution of the uncertain quantity t having parameters 

,, σμ m and s, and ,0,,0,, >∞<<∞−>∞<<∞−∞<<∞− smt σμ for which 

 ]/)([arcsinh σμ−t=x has a normal distribution with parameters μ  and σ . 

The arcsinh-normal distribution can be symmetric, or is skew with the very long tail either to the left 

or the right. 
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  The input data is (a) the parameters m,, σμ , and s, or (b) three quartiles including the median 

(i.e., the 0.25, 0.5 and 0.75-fractiles), and (ii) the octile for the longer tail (i.e., the 0.125 or 

0.875-fractile). If the distribution is symmetric, specify the 0.875-fractile. 

The distribution is difficult to evaluate directly. Try this family when the user is not satisfied with 

the evaluation for Gaussian distribution. 

The evaluation procedure proceeds sequentially in the following order.  

Step 1. Start first with a Gaussian distribution. If the distribution is not satisfied by the user, then 

try the arcsinh-normal distribution with reference of the original fractile values. 

Step 2. Fix a value of a fractile first such as the median, for example, generated in the Gaussian 

distribution. Then narrow the substantial range of the distribution. (i) Try to increase the values for the 

0.125 and 0.25-fractiles and decrease for the 0.75 and 0.875-fractiles. As the upper fractiles (0.75 and 

0.875) values decrease and/or the lower fractiles (0.125 and 0.25) values increase, the statistical range 

of the distribution is narrowed (i.e. the width of distribution shape is widened). (ii) Or alternatively, try 

the reverse. Then the substantial range is widened (i.e. the width of distribution shape is narrowed). 

(iii) When the distribution is symmetric, the tails must be at least as long as the tails of a Gaussian 

distribution with the same interquartile range.   

Step 3. If the distribution is still not appropriate for user’s opinion, then change the μ  and/or σ  

value.  

Note that, in the parameter input, (i) the σ -value should be set as a relatively very small and (ii) 

the octile values should not be too close to the adjacent quartile. This means that the tail should have 

appropriate length to this distribution type.   

Fig.50 demonstrates the evaluation screen for the attribute Market growth. 

 

 
 

Fig.50 Evaluation of arcsinh-normal distribution (Market Growth) 
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9. Logistic distribution (<Logistic>) 

The logistic distribution is known as “law of growth.” The distribution function form is represented 

as 

                 βα −−+
= xe

xF
1

1)(  ,                                         (33) 

where .0>α  

Input data are parameters (ALPHA, BETA), moments (mean, standard deviation), or the 0.25 and 

0.75 fractiles. 

Fig.51 illustrates the evaluation of the logistic distribution for the attribute Market Growth. 

 
 

 
 
 

Fig.51 Evaluation of logistic distribution (Market Growth) 
 
 
 
10. Student t-distribution (<Student>) 

The Student t-distribution is used in user’ probability evaluation as an alternative to the normal 

distribution.  

So far, however, the Student t-distribution has been used for determining the statistical confidence 

interval of the population mean when the population distribution is assumed to be Gaussian but the 

population variance is unknown. This property is also useful for the pretreatment of data bases.    

The student t-distributions  is a distribution defined with the Student t-statistics, )(tf

                
ns

x
t

/
)(

)(
μ

μ
−

=  ,            ∞<<∞− t ,                 (34) 

and the density function is represented as 
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where x  is the sample mean, s is the sample standard variation and μ  is the population mean. The 

distribution has the parameter 0>ν , which is the degree of freedom, 1−= nν , and n is the 

number of a sample. The shape of the distribution is symmetric and the dispersion becomes smaller as 

the ν-value is larger and approach the normal distribution. 

Input data are .,)(SIGMA, νμ s=  

Fig.52 illustrates the evaluation of the Student t- distribution. 

 

 
 

Fig.52 Evaluation of Student t-distribution (Market Scale) 

 

The user proceeds in order with the evaluation of the distributions in each distribution family 

according to the numerical characteristics of the attribute values or the variates, until the proper 

distribution family has been found to coincide to user’s opinion. The instruction screen for the 

selection can be used with the <HELP> button on the menu screen for the probability evaluation. Keep 

it on the screen through the evaluation work as depicted in Fig.53. The text is put in Appendix B. 

All the evaluation results specified with a file NAME “xxxx” are preserved with the <save> button 

on the screen and call them in for later use. Tentative evaluation results for the attribute can be saved 

with the different file names as, say, “xxx1”, “xxx2”, etc. These preliminary results can be used as a 

reference for the modification of the evaluation or as an alternative for later use. 
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Fig.53 Evaluation screen with instruction 

 

As seen above, some distributions can be used independently in the processes of statistical analysis 

for the pretreatment of the original data as a primary material. In such a case, the programs can be 

initiated with a proper button on the menu screen by assigning a proper attribute name from the Select 

Attribute screen, for which the database can be constructed separately for this purpose. 

 
II. Piecewise quadratic distributions 
 
  MIDASS constructs the piecewise quadratic distribution heuristically with the <Piecewise 

Quadratic Distribution> button. Specify the 3-25 input points, or preferably 10-12 points, with equal 

width for cumulative distribution. The program checks if these input values are consistent with the 

piecewise quadratic functions and, if not, a message is generated for the corrections. Note that the 

assessor has an inclination to assess an excessively sharp mode and an excessively plain tail.      

  Input data are the cumulative distribution values in the specified points and the corresponding 

attribute values. Calculation is executed with the <OK> button. The mean (MEAN), variance (VAR) 

and standard deviation (STDEV) of the assessed distribution are calculated automatically and appear 

on the screen. 

Fig.54 depicts the evaluation screen of the piecewise quadratic distribution for the attribute 

Delivery. 
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Fig.54 Evaluation of piecewise quadratic distribution (Delivery) 

 

III Discrete distributions 

The user can construct with the <Discrete Distribution> button the discrete distribution for an 

empirical data. This distribution is used mainly for the elementary statistical processing in various 

fields. MIDASS includes this type of evaluation as a service program for pretreatment of database. 

The relative frequency distributions in the cumulative form are used widely, say, in industrial 

management fields, such as for constructing the Pareto map used in ABC analysis for the inventory 

control. This distribution, however, also can be used in the direct assessment of the distribution in 

decision analysis. 

Fig.55 illustrates the discrete distribution. 

   

  
  

   Fig.55 Screen for discrete distribution (Rate of Defect) 
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A list of all the evaluation results for the distributions once saved appear with the <LOAD> button 

on the menu screen, as shown in Fig.56. With a click on the file name (Probability Function Name), 

the evaluation screen is called out. The modification of the evaluation can be performed on the screen. 

 

            
 

                   Fig.56 Load screen for the evaluation results 

              
 

5.3.3 Posterior Probability Distributions  

1. Bayes’ theorem 

DM’s subjective probability can be modified as the posterior probability with sample information. 

Bayesian statistics support this modification with Bayes’ theorem.  

   Denote  s = 1, 2, … , p, as the sample event that is known with the sample information and ,sE

jθ , j = 1, 2, … , n, as the population event that is unknown in the natural world. The posterior 

probability of )|( sj Ep θ  is the probability of DM for possible occurrence of population event jθ  

after the sample information has been obtained. The Bayes formula constructs DM’s posterior 

probability with two components: (1) DM’s prior probability 

sE

)( jp θ  for the natural event and (2) 

the conditional probability )| js( Ep θ of the sample event that is conditioned to possible 

occurrence of the natural event 

sE

jθ  . The Bayes formula is represented as 

          

∑
=

=
n

j
jsj

jsj
sj

Epp

Epp
Ep

1
)|()(

)|()(
)|(

θθ

θθ
θ  ,    j = 1, 2, … , n,   s = 1, 2, … , p,      (36)   
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where the numerator represents the joint, or path, probability in the reversed probability diagram and 

the denominator defines the unconditional probability  for a sample event . When the 

conditional probability 

)( sEp sE

)|( jsEp θ  is assigned to the possible value  taken as given, the sample 

likelihood function for the possible 

sE

jθ -values is defined with Δ*)| sE( jL θ )( sEp |* jθ , j = 1, 2, 

… , n. Then the Bayes formula is expressed by )(()*|( sj LECEp () p*| jsj E)*s θθθ Δ , where 

)*(
1)*(

s
s Ep

EC Δ  is a normalizing factor and does not depend on the occurrence of the population 

event.  

   Although the Bayes formula is based on the subjective probability of DM )( jp θ , which is 

assessed prior to the acquisition of the sample information, the sample likelihood function 

)|*( θEf L , where E* denotes a value of E fixed, becomes more important as the number of the 

sample information (observation) is increasing. In result, the sample likelihood functions in the Bayes 

formula can be replaced with the mathematical functions under many realistic conditions; it leads to 

the use of statistical cumulative functions in the assessment of DM’s posterior distribution.      

 
2. Evaluation methods of the posterior distributions (Schlaifer 1969) 

A. Case of the two-valued populations 

Denote )( js θ  be an uncertainty quantity for the possible consequence as a population event jθ . 

The two-valued population is defined when the consequence of an event j takes one of two alternatives. 

For example, )j(s θ denotes a possible value of an alternative consequence, either “success” or 

“failure.” The two-valued population usually is defined for qualitative data and represented as a 

fraction, i.e. [0-1]-value. The population data for the uncertain quantity is s and the sample statistics 

are the number of the sample data n and the number of the sample information (or sample 

observation) , say, “success” r.     

Denote a sample event obtained with the sample information by rn → , which indicates that n 

sample data yields r successes. The evaluation of the Bayes formula proceeds in the following steps. 

Step 1. Assess DM’s prior probability p(s) for the possible value s of an uncertain natural event jθ . 

Step 2. Assess the conditional probability p(n → r | s) for the sample event n → r  when s is given. 

Step 3. Calculate the joint probability )|()()}|({ srnpspsrnsp →Δ→∩ . 

Step 4. Calculate the unconditional probability  for the sample event )( rnp → n → r .  

Step 5. Calculate the posterior probability of DM by the Bayes formula. 

                     
)(

)|()()|(
rnp

srnpsprnsp
→

→
=→                           (37) 
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The posterior probability in Eq.(37) can be used hereafter as the unconditional 

probability of DM when the sample event 

)|( rnsp →

rn →  is obtained. 

   Although the Bayesian formula uses the subjective probability of DM as its primal factor, it is 

known that the evaluation results are consistent with the use of the non-Bayesian statistical distribution 

under some conditions. 

   Assume the equiprobable sampling with replacements be executed. Then the following 

propositions has been presented.  

Proposition 1. (Use of the binomial mass function for the conditional probability) 

   When the sampling is equiprobable with replacement, DM’s conditional probability  

 is required by the logical consistency to be equal to the value of the binomial mass 

function b*(n, r, s), which is defined by 

)|( srnp →
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More important result is the use of the beta cumulative functions for the evaluation of DM’s 

posterior distributions. 

Proposition 2 (Use of the beta cumulative function for DM’s posterior distribution).  

Assume that, under the equiprobable sampling with replacement, (i) assignment of DM’s prior 

probability is uniform, and (ii) the number of the population members N is reasonably larger relative to 

the number of the sample information n, i.e. N > > n. Then the limiting form of the cumulative 

distribution function for DM’s posterior probability is identical to the beta cumulative distribution 

dttt
BCB

C
CBsk BCBs 11

0
)1(

)()(
)(

),;( −−− −
−ΓΓ

Γ
= ∫     ,st ≤        (39) 

with parameters,  B = r + 1  and  C = n + 2.  In addition, the mean is nearly equal to B / C, and the 

mode is approximately expressed by (B – 1) / (C – 2) = r / n. 

 The uniform distributions are defined when (i) DM assigns the equal probabilities to logically 

possible values of the uncertain quantity, and (ii) these values are equally spaced. Both the 

assumptions are not unrealistic in the incomplete knowledge environments. 

   The nearly uniform distributions are also defined. Define the interval I n,r of the sample likelihood 

function for the conditional probability , where the values of a cumulative distribution 

take between 0.001 and 0.999. Then the nearly uniform distribution is defined when the following 

conditions are satisfied: (i) DM does not assign extremely high values of the prior probability to any 

value s outside the interval I n,r , and (ii) DM assigns roughly equal prior probabilities to all values of s 

inside I n,r , where the roughly equal means the greatest one of the probabilities is no more than four 

)|( srnp →
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times the least. 

Proposition 3. 

When DM’s prior distributions are nearly uniform, the cumulative distributions of DM’s posterior 

probability are approximated very closely by the beta cumulative distributions. 

The similar device is used also in the many-valued population case.  

B. Case of the many-valued population 

   The many-valued population is defined when each member of the population takes one of many 

possible values, which is applied to any quantitative data. In the present discussion, the average A of 

possible values of the population data is used as the uncertain quantity. The sample statistics are the 

number of the sample data n, the average a of the sample values, and the sample variance ν. 

The Bayesian evaluation proceeds in the following steps. 

Step 1. Assess DM’s prior probability p (A) for the possible value of the population average A. 

Step 2. Assess DM’s conditional probability )|,( Aanp ν→  of the sample values ),( νa  obtained 

for the n sample data, where the possible value A for the population event is taken as given.  

Step 3. Calculate the joint probability of the sample event )|,()( AanpAp ν→ . 

Step 4. Calculate the unconditional probability p(n → a,ν) for the sample event. 

Step 5. Divide each joint probability with the unconditional probability. DM’s posterior probability 

),|( νanAp →  is obtained with the Bayes formula. 

The posterior probability can be used as DM’s unconditional probability hereafter when the sample 

event ),( νan → is obtained. 

In the equiprobable sampling with replacement for the many-valued population data, large-sample 

theory in the non-Bayesian statistics is applied. 

Proposition 4. (Applicability of large-sample theory)    

Assume the following conditions be satisfied in the equiprobable sampling with replacement: (i) 

The sample size n is enough large, at least more than 25 and preferably about 100, and (ii) DM’s prior 

information for the spread of the population values is negligible relative to the sample information for 

the spread of the sample values. Then large-sample theory is applicable and the values of DM’s 

conditional probability )|,( Aanp ν→

)( AL

for the sample event, which are represented with the sample 

likelihood function  of the uncertainty quantity A for the possible sample values of he sample 

event 

f

),( νan →  taken as given, can be evaluated by ,  )(* ugk

               )|,( Aanp ν→  ≈ )(* ugk ,                    (40) 

where  is the standard Gaussian density function,  )(* ug

               ,                                  (41) 2/2/1 2
)2()(* ueug −−= π
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ν/)( nAau −= .                                   (42) 

The k is the constant, whose value does not depend on A and is canceled out in the process of the 

calculation of the Bayes formula. 

The use of large-sample theory leads to the Gaussian approximation to DM’s posterior probability. 

Proposition 5. (Gaussian approximation to the posterior distribution) 

Assume the sample statistics n, a, and ν  obtained from the equiprobable sampling with 

replacement. Assume the following conditions be satisfied; (i) DM’s prior distribution for A is uniform, 

(ii) possible values of the uncertain quantity A are very close together, (iii) the sample likelihood 

function for DM’s conditional probability can be calculated with the use of large-sample theory. Then 

the cumulative distribution for DM’s posterior probability is almost identical to the standard Gaussian 

cumulative distribution, 

                         ∫ ∞−
−−=

u t dteuk ,)2()( 2/2/1 2
π ,ut ≤             (43) 

with parameters M (= mean) and S (= standard deviation), where  

                     ,aM = nS /ν= ,               (44) 

 and , and t is the uncertain quantity. ut ≤

The Gaussian approximation can be applied also to the case with the nearly uniform prior 

probability for A. 

Proposition 6.  

Assume that (i) DM does not assign the extremely high values of the probability to the uncertainty 

quantity A outside the interval extending from naA /3 ν−=  to naA /3 ν+= , and (ii) DM 

assigns roughly equal probabilities to all values of A inside this interval. Then DM’s posterior 

distribution is almost the same as that to be assigned in the case of the strictly uniform prior 

probability. DM’s posterior distribution can be very closely approximated by the standard Gaussian 

cumulative distribution with the parameters already defined. 

   These results suggest the appropriateness of the use of the sample means as in the point estimates. 

 The Gaussian approximation also is applicable to the case of the equiprobable sampling without 

replacement. 

Proposition 7.   

When large-sample theory is applicable, DM’s distribution posterior to equally probable sampling 

without replacement can be identical with the distribution for the equiprobable sampling with 

replacement, namely  

                )(*)|,( ugkAanp ≈→ ν .            (45) 

The argument u, however, should be changed to 
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               )(/)1(/)( nNNnAau −−−= ν ,            (46) 

where N denotes the size of the population. Consider that the sample size n is usually small relative to 

the population size. Then the factor )(/)1( nNN −−  in Eq.(46) can be presumed to be equal to 

1, which can be negligible. 

 
3. Evaluation of the Bayes formula with MIDASS 

MIDASS estimates the Bayes formula independently with a specified file name saved in advance 

in the following steps.  

Step 1. The operation starts with the <Bayesian Statistics> button on the menu screen for the 

Probability Evaluation in Fig.38.  

Step 2. Load Old Data screen appears. The list of the old data saved in the probability evaluations 

appears, say, as shown in Fig.57. The user specifies the distribution file name to be used for the Bayes 

estimation, which is usually constructed independently on the proper data base.  

  

            
 

                          Fig.57 Load screen for Bayesian estimation 

 

Step 3. The type of the population data, either the two-valued population or the many-valued 

population, is specified on the screen. When the uncertainty quantity takes a fraction, the two-valued 

population is used with the ＜UQ FRACTION＞ button. When the uncertain quantity takes any 

numerical value, the many-valued population is used with the <AVERAGE> button. The many-valued 

population data is constructed as an average of the original population data.  

Step 4. The evaluation screen appears.  
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The input data for the Bayes estimation is processed with the grouped approximation. The input 

data is different according to the property of the population data. 

A. Case of two-valued population. 

The sample statistics, n and r, are specified as the input data.  

All the evaluation results appear with a click of the <OK> button. All the related values are 

automatically calculated and appear on the screen. Fig.58 illustrates an example for the Bayes 

estimation. The existing file name is used here for the provisional experiment. 

 

        
 

                  Fig.58 Bayesian estimation for two-valued population  

 
B. Case of many-valued population 

The evaluation method is in two ways on the AVERAGE screen. 

(i) The sample statistics n, a, and ν are specified as input data. Click the <SUMMARY STAT> 

button. All the evaluation results appear as in Fig. 59. 

(ii) Alternatively the user can construct the input data for the Bayes evaluation. Input the sample 

size n and click the <SAMPLE VALUE> button. The input screen appears. The user constructs the 

input data with the <SAMMPLE VALUES＞button as shown in Fig.60.  

The evaluation is executed automatically and the results are shown as in Fig.61.  
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The evaluation of DM’s prior probability, which is assessed with the 0.5-0.5 uncertain value, is 

improved largely in the posterior probability after the Bayesian estimation.  

 

       
 

Fig.59 Bayesian estimation for many-valued population 

                         

  

                            

 

Fig.60 Input screen for sample data of many-valued population 
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Fig.61 Bayesian estimation for many-valued population (II) 

 

5.4 Gamble evaluation 

 
The evaluation of the mathematical expectations as the numerical results of decision analysis is 

presented as the gamble evaluation by DM. MIDASS executes the gamble evaluation on three ways: 

(i) the expected values for an attribute, (ii) the expected utility values for the single attribute utility 

function (EUF), and (iii) the expected multiattribute utility functions (EMUF). The evaluation starts on 

the main menu screen of MIDASS in Fig.1.  

 
5.4.1 Expected value evaluation 
 

The evaluation of the mathematical expectation for an attribute starts with the <Mathematical 

Expectation> button. The evaluation screen appears. The user should indicate first an attribute name. 

The Select Attribute screen appears with the <Attribute Name> button. Then user selects a distribution 

for the attribute with the <Prob Data> button on the evaluation screen. The Select Prob Name screen 

appears. Return to the Mathematical Expectation screen with the <OK> button. The evaluation results 

for the mathematical expectation appear with the <CALC> button on the screen. The expected value 

E(x) is calculated along with the pair (x, p(x)). 

Fig.62 depicts an example for the attribute Profitability. 

 62



             
 

Fig.62 Evaluation of mathematical expectation (Profitability) 

 

5.4.2 Expected utility evaluation 

 
The evaluation starts with the <Expected Utility Function> button on the main menu screen in 

Fig.1. The evaluation screen for Expected Utility Function appears. The Select Attribute screen 

appears with a Click of the <Attribute Name> button as shown in Fig.63. Select an attribute on the 

screen. Similarly the Select Unif Name and the Select Prob Name screens appear with the click of the 

<Unif Data> and the <Prob Data> buttons respectively as in Figs.64 and 65. Select the UNIF type and 

the distribution type for the attribute on these screens. 

 

 

  
 

                     Fig.63 Selection of an Attribute 

 63



              
 

                       Fig.64 Selection of UNIF Type 

 

             
 

                       Fig.65 Selection of Probability type 

 

The values for the components of the expected utility function assessed for an attribute x appear 

with a click on the <CALC> button, which are shown as the (x-u(x)-p(x) ) tripple. The value of the 

expected utility function EU(x) assessed with the specified utility function and distribution for the 

attribute x is calculated and appears along with the mathematical formula. 

Fig.66 illustrates the evaluation results for the expected utility function of the attribute Product 

Quality. 

 

 64



              
 

Fig.66 Evaluation Screen for expected utility value (Product Quality) 

 

5.4.3 Expected multiattribute utility evaluation 
 
The evaluation of the expected multiattribute utility function starts with the <Multiattribute 

Expected Utility Function> button on the main menu screen of MIDASS in Fig.1.  

With a click, the Probability-Type Selection screen appears. Note that the UNIF types to be 

selected for the attributes have already been specified and saved in the process of the MUF evaluation. 

The distribution types for all the attributes are selected on the screen as shown in Fig.67. The 

Probability-Type Selection screen generates a list of the set of Unif type, Prob name, and Prob type 

selected for the Attribute name shown in the screen, which is used in the evaluation of EMUF. The 

hidden item appears with a click on the arrow in the screen. 

The evaluation of EMUF is executed after the selection of the distribution types for all the 

attributes is completed. The evaluation results for EMUF appear with a click of the <save> button on 

the Probability-Type Selection screen. The Multiattribute Expected Utility Function screen appears. 

MIDASS generates all of the EMUF values at each level in the hierarchical structure along with the 

evaluation results for their components.  

Note that the evaluation results are based on the alternative values of the data set (say, “ALT x”), 

which has been selected for the specified job in advance with the <Set ALT> button on the Job 

Management screen as in Fig.4. 

Fig.68 illustrates the Multiattribute Expected Utility Function screen with the output of all the 

evaluation results for EMUF. 
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Fig.67 Screen for selection of the distribution types for attributes 

 

 

           
 

Fig.68 Demonstration of Evaluation Results for EMUF (New Product) 

 

 

 66



6. Concluding Remarks 

 
Decision analysis is a classical method, which has been well-established over a long period and still 

is attracting much attention to its importance for coping with the complex decision problems. In 

particular, the multiobjective extension of this method should be seen in a new light. In a new era of 

the management, for example, the concept of the value based management (VBM), or the enterprise 

value creative management, is pervading in the business worlds, which requires to manage the 

multiobjective point of view properly. The concept of the customer satisfaction (CS) management is 

also inspired along with the increasing recognition of the customer-perceived value concept (Kotler 

and Armstrong 2005). The corporate social responsibility (CSR) is increasing its importance in the 

making-money structure of enterprises. For example, ISO 9000:2000 presents the eight principles for 

the quality management system, in which the customer focus is regarded as the most basic one. 

ISO9001:2000 demands to be compatible with the requirements of ISO14001:2004 environmental 

management systems (EMS). The balanced score card (BSC) also is well known as one of the efficient 

tools for executing these principles in practice (Kaplan and Norton 1992, 2001; Tanner 2002). In 

SSME (Service Sciences, Management, and Engineering), which is also recently inspired, a cross 

disciplinary approach as “research at a crossroads” is stressed and “services is a people business,” and 

its “profitability” is raised as its characteristics (e.g Technology Review, special issue on Research in 

Development, may 2005, MIT).  

In addition, under the increasing versatility in the business environments, the valuation of corporate 

management is much concerned with the treatment of the uncertainty. Decision analysis has been 

presented an effective method in using decision tree analysis (Copeland et al. 1995, Copeland and 

Antikarov 2001, Goodwin and Wright 2004, Koller et. al. 2005). In this context, expected utility 

theory should be recaptured and its multiobjective extensions are expected. Although the foundations 

for those developments have already been presented, the operational use of the methods in an 

integrated form has not yet been developed. For effective operation of this approach, further 

development in the conceptual construction of an integrated methodology is required, which is an 

intelligent decision support system with the computer assistance.  

This paper has discussed the background of decision analysis and presents an integrated method for 

its strategic use of multiobjective decision analysis. A new computer program MIDASS has been 

presented with the method for heuristic construction of the expected multiattribute utility function 

(EMUF), which can be used as a unified criterion in the corporate management under the uncertainty. 

As an example, a decision problem for new product development has been presented with illustrations.  

There exist still some rooms to be considered in MIDASS.  

(1) Decision analysis usually starts with the construction of the decision tree diagram.  
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The expected multiobjective decision analysis presumes the construction of the decision tree with 

the n-chance forks, where consequences with the multiple attributes occur at each chance fork.  

MIDASS is used for evaluating EMUF at the nodes of the decision tree structure. EMUF must be 

embedded in the decision tree structure. Decision analysis, however, usually constructs the decision 

tree in multiple stages. MIDASS must be used repeatedly at every node in the multi-staged decision 

tree structure. In this situation, a device for more effective operation of MIDASS will be required, 

which needs further evolution of the MIDASS program.  

(2) In MIDASS, the assignment of DM’s evaluation is made with deterministic values. The 

evaluation in decision making, however, is ambiguous in twofold: One is the cognitive ambiguousness 

both in the utility assessment and the probability assessment by DM. Two is the incompleteness of 

information to be obtained by DM. The assessments for the ambiguity usually are performed with the 

ambiguous quantities such as fuzzy numbers (Seo 1992, 1997; Nishizaki and Seo 1994) or with the 

random values such as in the probabilistic utility functions (Luce and Suppes 1965; Seo 2000). The 

extension of MIDASS to these directions has much academic interest. Even so, however, the effort for 

these directions will introduce much complexity in the decision support systems, which may sacrifice 

seriously the user-friendly property in the decision support systems. 

 MIDASS supports at present the decision ambiguity in three ways.  

(i) The thinking processes of DM for the evaluations are constructed sequentially with the 

interactive assistance not only by the computer, but also by the internal self-examination of DM, in 

which the evaluation can go back to the preceding steps and revise it repetitively.  

(ii) MIDASS includes the Bayes theorem for coping with the ambiguity in the probability 

evaluation of DM. The use of sample information is included in the decision tree structure (Raiffa 

1968, etc.). The acquisition of the sample information, however, is sometimes not realistic for the 

business decisions environments, in particular, in such the case as the repeated experiments. 

(iii) For coping with the decision ambiguity, the construction of decision tree structure at multiple 

stages is recommended, where the phases for revising the evaluation results can be included. 

In further evolution of MIDASS, the development of the method to embed it more effectively and 

repeatedly in the decision tree structure should be expected. MIDASS presents a first but primal step 

for this work with the selective and manual operations.    

 

  

          MIDASS software disk is available from the first author on your reruest. 

          Mail, with your affiliation, to the e-mail address: fseo@kier.kyoto-u.ac.jp  
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Appendix 

 
A. Instruction for Preference Evaluation (<INSTRUCTION>) 

  

Evaluation for the decreasing risk-averse preferences with the 5 points input method proceeds in 

following order. 

(1) On the evaluation screen first appeared, assign tentatively the input values for three fractiles, 

0.25, 0.5, and 0.75. The values for 0.0 and 1.0 points are automatically indicated. MIDASS draws a 

preference curve for the input data with a click on the <OK> button. 

(2) Proceed to the Consistency Check screen with the <NEXT> button. MIDASS checks the 

consistency of the 5 input points with the decreasing positive risk aversion functions. 

(i) Confirm the 50-50 gambles and their certainty equivalent (CE) values for the user sequentially. 

The 50-50 chance lottery technique is used for the construction or confirmation of the preference 

curve for the user. The lottery technique assesses a lottery and its certainty equivalent (CE). Three 

lotteries with the 50-50 chance forks are constructed, whose consequences for the attribute are v(0.0) 

or v(1.0), v(0.0) or v(0.5), and v(0.5) or v(0.0) and their certainty equivalents (CE) are assessed with 

0.5, 0.25, and 0.75-values of the preferences respectively. The three lotteries are constructed with the 

substitutions of the assessed attribute values in order. Then assign the CE values as input data on the 

screen. 

The v(x.x) denotes the value of an attribute, for which user’s preference is assessed with the 

x.x-value. Note that the worst value of the attribute is assessed with the 0.0-value of the preference, 

which is represented as v(0.0), and the best value is assessed with 1.0, which is represented as v(1.0). 

On the screen, the parenthesis of v(x.x) is omitted.     

(ii) Check the input values for CE carefully. Then supply presumably the Assessed value v*(.5) as 

the same as the Implied value v (.5). (iii) Follow the messages generated by MIDASS. The user can 

revise the Assessed value v*(.5) on the screen deliberately according to the suggestions. 

(3) The user can be back to the first input screen, if necessarily, with a click on the <QUIT> button. 

Check the shape of the preference curve on the screen, which is newly generated with the revised input 

values. Then proceed to the Consistency Check screen again with the NEXT button. 

(4) This process can be repeated many times until the user is satisfied with the consistency, which is 

informed by a message on the screen. 

(5) When the consistency has been obtained for the decreasing risk aversion, choose the utility 

function type to be assessed, the piecewise-exponential average type (PIECEX) or the 

sum-of-exponential type (SUMEX) with the <PIECEXFIT> button or the <SUMEXFIT> button on 

the screen respectively. 

(6) The valuation results for user’ utility functions appear on the next screen. 
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B. Instruction for Selecting the Probability Distribution (<HELP>) 

 

MIDASS supports the derivation of three types of the probability distributions: Continuous 

probability, Piecewise quadratic distribution, and Discrete distribution. The continuous probability is 

derived in the mathematical distribution functions, whose input values are assigned by the user.  The 

piecewise quadratic distribution is derived in the piecewise quadratic function forms with the input 

data assigned by the user. The discrete distribution is constructed with the relative frequency 

distribution in the histogram and its smoothing represents the piecewise linear distribution functions. 

MIDASS also supports Bayes statistics.   

In the probability evaluation, the ALT-value indicated for the attribute is used as the uncertain 

quantity. The distribution functions for the uncertain quantities are constructed heuristically by the user. 

Input data is different according to the distribution types. 

The evaluation proceeds with selecting the proper button on the menu screen for the probability 

evaluation. 

  
I. Continuous Probability Distribution 

  
The evaluation of the continuous distributions are not so much "flexible" due to the use of the 

mathematical distribution forms, but more "reasonable" and easier to generate and manipulate in the 

subsequent works. 

MIDASS supports three groups of the mathematical distributions. The selection of the distribution 

type depends on the quantitative characteristics of the data (i.e. the attribute value as an uncertain 

quantity).  

A. Family Group 1, for which the attribute data takes the values between 0 and 1. 

B. Family Group 2, for which the attribute data takes the nonnegative values (i.e. larger than 0). 

C. Family Group 3, for which the attribute data takes the unrestricted values (from minus infinity 

to plus infinity). 

Input data for the assessment are usually parameters, moments, and/or fractiles of the distribution. 

< General attention! >  

(1) Note that the assessor usually has an inclination to assess the 0.25 and 0.75-fractiles with 

substantially shorter tails than they should be. 

(2) The graph on the screen can be enlarged with a click when the numerical values on the 

horizontal axis are shown with congestion. 

 
A. Family Group 1. Attribute data takes 0 to 1 values. 

The qualitative or fractional data are suitable to this Group. 
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1. Beta distribution: <Beta> 

This type may have a wide variety of shapes and easy to assess by the user.  

The distribution may be either symmetric or skew depending on the parameters.  

-------- Suggestion -------------------------- 

The evaluation is recommended in the following process. 

(1) Try this distribution type first. 

(i) Assess the values for the 0.25 and 0.75-fractiles. 

   (ii) Alternatively, if it is available, input the mean (MEAN), m, and the standard deviation 

(STDDEV) values as the moments. The MEAN-value must be in between 0 and 1. The 

STDDEV-value must be in between 0 and Sqrt(m(1 - m)). 

 (2) When the user is not satisfied with the skewness of the assessed distribution, the parameter 

adjustment will be helpful for the correction of the skewness.  

 (i) When the parameter B increases, the distribution skews to the right side having a longer tail to 

the left side. When the parameter B decreases, the distribution skews to the left-side having a longer 

tail to the right side. 

 (ii) When the parameter C increases with the fixed B-value, the variance (dispersion) will become 

smaller, and vice versa.   

<Attention!>   

The parameter C should be larger than the parameter B > 0.  

 
2. Bounded lognormal distributions: <Bounded Lognormal> 

This family closely resembles the beta distributions, except in the cases when the beta distribution 

is nearly uniform and when the substantial probability is assigned to the data values very close to 0 or 

1.  

-------- Suggestion -------------------------- 

(1) When the user is not satisfactory with the beta distribution, try this distribution type. 

(2) Assess the distribution first with the same fractile values as the beta distribution.  

(3) When the distribution shape is not satisfactory to the user, try to change the values of the two 

fractiles to the same direction, either increase or decrease.  

(4) Try, for example, to decrease the values a bit both for the 0.25 and 0.75-fractiles. Then the 

distribution will skew to the left side. When the fractiles increase, the distribution skews to the right 

side.  

(5) If desired, the parameter values can be corrected on the reference of the values generated by the 

program.  

<Attention!>   

The parameter MU takes an unrestricted value, but the SIGMA should be positive. 
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B. Family Group 2: Attribute data takes nonnegative values. 

This family is applied to most popular data and is used widely. Economic and managerial data have 

generally nonnegative characteristics.  

The user is recommended to proceed in order with the following distribution types. 

 
  1. Lognormal distributions: <Lognormal> 

The shape of this family is always skew with a long tail to the right side. 

--------- Suggestion ------------------ 

(1) Try this distribution type first in this Group. Input the values for the fractiles as indicated. 

 (2) If the spread from the 0.25 to the 0.75-fractile is small relative to the distance between the 

origin and the median, then the shape of the distribution will be nearly symmetric.  

As the spread increases, the distribution becomes more and more skew. 

 (3) The parameter MU is an unrestricted value and the SIGMA is a positive value. 

 
2. Logstudent distributions: <Logstudent> 

The tails of the logstudent may be longer than the tails of the lognormal, but they cannot be shorter. 

The control over the tail length works only in one direction. 

--------- Suggestion ------------------ 

(1) When the user is not satisfactory with the lognormal distribution, try this distribution type. 

(2) When you wish to extend both tails longer than in the lognormal distributions, use this type of 

distribution with the values for the 0.25 and 0.75-fractiles fixed and increase a bit for the 0.875-fractile. 

The value of the 0.875-fractile for the logstudent may be greater than that of the lognormal distribution, 

but cannot be smaller.  

(3) For the correction of the skewness, the user also can change the parameters, SIGMA for 

example. When the value increases, the shape skews to left side. When the value decreases, the shape 

moves to the center position and becomes more close to the symmetric type. 

(4) The parameter MU is unrestricted, but SIGMA and NU should take positive values. 

 
3. Gamma-q distributions: <Gamma-q> 

When the user wishes to extend one tail longer and shorten the other in the lognormal distribution, 

use this distribution type with the values for the 0.25 and 0.75-fractiles fixed. 

The parameter q controls the length of the tails of the distribution and can be any positive or 

negative value other than 0.  

The program requests the user to specify the parameter q directly as input data. Two additional 

assignments are either other two parameters or the values for the 0.25 and 0.75-fractiles of the 

distribution. 
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------- Suggestion ----------------------------- 

(1) Try first the same values for the 0.25 and 0.75-fractiles as the preceding distribution. 

(2) Follow the subsequent steps. 

Step 1. Start with q = 1 when you wish to extend the left tail, or start with q = - 1 when you wish to 

extend the right tail. 

Step 2. If this shape is not satisfactory to the user, then double or halve the q-values sequentially. As 

the q-value increases, the shape of the distribution skews to the right side having a longer tail to the 

left side. As the q-value decreases, the distribution skews to the left side having a longer tail to the 

right side.  

(3) If the parameter q is positive, the left tail is longer and the right tail is shorter than in the 

lognormal distribution. When the q is negative, the reverse is true. 

(4) When the parameter q approaches 0 from either side, the shape of the distribution approaches 

the lognormal distribution. 

(5) The two parameter values, R and S, should be positive. 

< Attention!> 

(1) The q-value should not be set very close to 0.  

(2) The values of the fractiles are fixed in the Step 1 and the Step 2. 

  
4. Weibull distributions: <Weibull> 

Weibull distribution is used independently to assess the extreme distributions, which is applied to 

the data having a very low probability for the extreme but critical values in either side of the 

distribution. This distribution type is used in the extreme statistics such as in reliability or risk 

analysis.   

The Weibull distribution has a widely flexible property. 

The attribute value x is used as t = x / b in the calculation, where b > 0 is the scale parameter.    

----- Suggestion -------------------------- 

(1) To use the shape parameter A as input data is recommended. 

(2) The parameter A should be a positive integer.  

(3) When the value of the parameter A increases, the distribution moves to the right side with a 

longer tail to the left side and a smaller variance. When the A decreases, the distribution skews to the 

left side with a longer tail to the right side and a larger variance.  

 
 C. Family Group 3: Attribute data takes unrestricted values. 

This distribution family so far has been known in the use for the statistical estimation of the 

population parameters and the testing for the statistical hypothesis.  In decision analysis, this family 

can be used for preliminary statistical treatment in the database construction. Direct assessment with 
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this family, however, is also useful due to the many variations of the parameters to be assigned in the 

probability evaluation. 

  
1. Gaussian (Normal) distributions: <Gaussian (Normal)> 

The Gaussian distribution is the most well-known symmetric distribution. The shape of the 

distribution is inflexible and thus may not necessarily suitable for user’s direct evaluation. In the cases, 

however, where the law of large numbers is applied, this type of the distribution plays an important 

role in the evaluation of unknown distribution, whose specification is difficult. The distribution is also 

used often in the statistical experiments, such as the parameter estimation and statistical testing. 

---------Suggestion--------------------------- 

(1) Although the normal distribution is not suitable for the heuristic derivation of DM’s distribution, 

it sometimes can be used as a good approximation to unknown real distributions with wide variations.  

(2) The parameter input for M and S is recommended, although the values for the 0.25 and 

0.75-fractiles can be also assigned. 

(3) The parameter M takes an unrestricted value, but the parameter S should be a positive value. 

   
2. Arcsinh-Normal distributions: <Arcsinh-Normal> 

The arcsinh-normal distribution is used as an alternative to the Gaussian distribution. If the user is 

not satisfied with the Gaussian distribution, then try this family. 

The shape of this distribution can be either symmetric or skew, with the very long tail to either the 

left side or the right side.  

  ----- Suggestion ------------------------------- 

The valuation of the distribution proceeds in the following steps. 

Step 1. Start with a Gaussian distribution. If the distribution is not satisfied by the user, then try the 

arcsinh-normal distribution with reference of the original fractile values. 

Step 2. Fix a value of a fractile such as the median, for example, generated in the Gaussian distribution. 

Then try to narrow the substantial range of the distribution.  

(i) Increase the values for the 0.125 and 0.25-fractiles and decrease the values for the 0.75 and 

0.875-fractile with the 0.5-fractile value fixed. As the upper fractile (0.75 and 0.875)-values decrease 

and/or the lower fractile (0.125 and 0.25)-values decrease, the statistical range of the distribution 

becomes narrower (i.e. the width of the distribution shape is widened).  

(ii) Alternatively, try the reverse. Then the substantial range of the distribution is widened (i.e. the 

width of distribution shape is narrowed).  

(iii) When the distribution is symmetric, the tails must be long at least as the same as the tails of the 

Gaussian distribution with the same interquartile range.   

Step 3. If the distribution is still not appropriate for user’s opinion, then change the μ  and/or σ  
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value.  

< Attention! > 

(1) In the parameter input, the SIGMA should be set as a relatively very small value. 

(2) The value of the octile should not be too close to the adjacent quartile. This means that the tail 

should have an appropriate length for this distribution type.   

 
3. Logistic distributions: <Logistic> 

The logistic distribution is known with the “law of growth” and used in the cumulative forms for 

evaluating the growth curves in various fields, such as biological, chemical, demographical, social, 

etc.  

------ Suggestion ------------------ 

(1) The parameter often is assessed by regression analysis using the time-series data.  

(2) The parameter ALPHA should takeａpositive value. 

 
 4. Student Distributions: <Student> 

The Student distribution is an alternative symmetric distribution, whose shape is resemble to the 

Gaussian distribution, but has a relatively sharp and lower median with the “heavy” tails in the both 

side. This distribution is used when the user is not satisfactory with other distribution types.  

The distribution is also known for the use in the statistical experiments, such as the parameter 

estimation and the testing of the statistical hypothesis, for example, in quality control, etc.  

------ Suggestion ------------------ 

(1) The general Student distribution is assessed with the parameter MU (= M), whose value is 

unrestricted, and the parameters SIGMA (= S) and NU (degree of freedom), whose values take the 

positive values. The MU is not defined when NU is less than or equal to1, and the SIGMA is infinite 

when Nu is less than or equal to 2. 

(2) The standard or unit Student distribution (called the t distribution) is assessed with the 

parameters, MU = 0 and SIGMA = 1. The parameter NU and SIGMA should take positive values 

although MU is unrestricted. . 

(3) The Cauchy distribution is the t distribution with the parameter NU = 1. The MU value is not 

defined in this distribution. 

(4) The moments is not used the same as the other cases in this family, Gaussian and 

Arcsinh-normal distributions. 

 
II. <Piecewise Quadratic Distribution> 

When the user intends to derive a quadratic distribution heuristically, the distribution can be 

constructed with the piecewise quadratic curve. The assessment is executed with the specification of 
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several input points on the screen. Then MIDASS derives the piecewise quadratic distribution. 

This process, however, often may confront with a difficulty in assessing the distribution consistent 

with the piecewise quadratic type. The assessment should proceed carefully and patiently. 

------- Suggestion ----------- 

1. As input values, specify 3-25 points, or preferably 10-12 points with equal width, which must 

include the 0 and 1-fractiles. Then the program checks if these input values are consistent with the 

piecewise quadratic forms and, if not, a message is generated to prompt the correction of the input 

values.  

2. Input data should take a finite range. 

3. All cumulative distributions in the discrete type have the general shape as follows. 

(1) The steepest, or modal, portion of the graph is a linear segment.  

(2) If the linear segment is not at the end of the left-side, the graph has a convex shape to the left-side 

when viewed from below and is tangent to the F = 0 axis (usually the lower horizontal axis). 

(3) If the linear segment is not at the end of the right-side, the graph is concave to the right side when 

viewed from below and is tangent to the F = 1 axis (usually the upper horizontal line). 

<Attention!>  

(1) Note that the assessor usually has an inclination to assess an excessively sharp mode, the steepest 

point, and an excessively plain tail.  

(2) When the graph has the S shape, the user should not select the mode of the distribution as the input 

value. Instead, the user should select two points marking the ends of the linear segment. 

 
III. <Discrete Distribution> 

The construction of the database for the attributes often requires the pretreatment and checks of 

the original data obtained from the production sites. The elementary statistical treatment of data base is 

usually to make the relative frequency distribution, which is derived in the form of the histogram in 

the descriptive statistics. The smoothing of a shape of the histogram derives the discrete distribution. 

When the user prefers to assess the discrete distribution, MIDASS constructs the discrete distributions. 

 The relative frequency distributions are used widely in various fields of the operational 

management, for example, in the field of the industrial management such as in derivation of the 

Paretian map, which is used in ABC analysis for the inventory control and in “seven tools” for the 

quality control. The “control map” in the “seven tools” is also constructed with the discrete 

distribution.  

The application fields of the discrete distributions are extended further to various fields.   

 
IV. <Bayesian Statistics> 

MIDASS supports the Bayesian statistics for the two-valued population and the many-valued 
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population. The data as an uncertain quantity for the two-valued population takes a fraction value and 

the data for the many-valued population takes any value. Note that the input data for the many-valued 

population is the average of the original population data. Specify a file name for the probability 

distribution, whose values are already preserved. Use the button for one of the population types, <UQ 

FRACTION> or <AVERAGE>. Then MIDASS calculates the Bayes formula with the input of the 

sample statistics as indicated. 

The posterior distribution of DM is generated with the Bayes formula, which revises the prior 

distribution of DM.  
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