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CONTINUOUS STATE DYNAMIC PROGRAMMING
VIA NONEXPANSIVE APPROXIMATION

JOHN STACHURSKI

Abstract. This paper studies fitted value iteration for continu-
ous state dynamic programming using nonexpansive function ap-
proximators. A number of nonexpansive approximation schemes
are discussed. The main contribution is to provide error bounds
for approximate optimal policies generated by the value iteration
algorithm.

1. Introduction

Most infinite horizon dynamic programming problems are solved using

some version of Bellman’s principle of optimality, which allows opti-

mal policies to be computed from a two-period program defined using

the value function v∗. Bellman’s principle of optimality is central to

economic modeling not only because it can describe the decision prob-

lems of individual agents under rational expectations, but also because

many decentralized market equilibria can be obtained as the solution

to a corresponding dynamic program.1

When no simple analytical representation of v∗ is available, a stan-

dard algorithm for solving the programming problem is value iteration.

Value iteration involves computing an approximate value function by

Date: February 22, 2006.
The author is grateful for financial support from Australian Research Council

Grant DP0557625, and for many helpful discussions with Rabee Tourkey.
1The set of potential references is far too large to attempt a serious bibliogra-

phy. Influential applications of dynamic programming to economic problems include
McCall (1970), Samuelson (1971), Lucas and Prescott (1971), Brock and Mirman
(1972), Hall (1978), Lucas (1978), Kydland and Prescott (1982) and Mehra and
Prescott (1985).
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2 JOHN STACHURSKI

iteration of the Bellman operator T on some initial function v.2 Under

mild assumptions T is sup-norm contracting, and the resulting sequence

(T nv)∞n=1 converges geometrically to v∗. The contractiveness of T also

yields bounds for the error associated with calculating an approximate

optimal policy using T nv in place of the true value function v∗.

If the state space is infinite, one cannot in general implement the func-

tions v, Tv, . . . , T nv on a computer. One solution is to replace the state

space with a finite grid, and the original model with a “similar” model

which evolves on this reduced state space. A second is fitted value

iteration, a typical algorithm for which is

initialize v

repeat

sample Tv(xi) at finite set of grid points {xi}
use samples to construct approximation w ∈ F of Tv

set v = w

until a suitable stopping rule is satisfied

Here F is a class of functions with finite parametric representation.

The map from v to w is in effect an approximate Bellman operator T̂ ,

and fitted value iteration is equivalent to iteration with T̂ in place of

T .

Approximation maps sending Tv 7→ w ∈ F are typically chosen to

minimize some distance measure:

(1) w ∈ argminω∈F ‖Tv − ω‖, ‖ · ‖ a suitable norm.

A number of approximation schemes have good performance over the

class of functions typically encountered in applied economic modeling.

Popular choices include Chebychev polynomials, cubic splines and neu-

ral nets.3

2The excellent survey of Rust (1996) contains an extensive discussion of value
iteration, along with other numerical methods for dynamic programming, such as
policy iteration and Euler equation methods.

3Efficient approximation makes use not only of the observations of Tv on the
grid points, but also of any smoothness, convexity and other such properties of
Tv, which give information about the function between the grid points. Ideally,
relatively few grid points are able to convey a large amount of information about Tv,
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Note, however, that the ultimate objective is to minimize not (1) but

some measure of distance between the optimal policy and the approxi-

mate optimal policy computed from T̂ nv. In this connection, attention

must be paid to whether or not the approximation scheme interacts

well with the iteration scheme needed to compute the fixed point v∗:

a scheme which represents the function Tv well in the sense of (1)

at each iteration may still lead to poor dynamic properties for the

sequence (T̂ nv). As approximation errors are compounded at each it-

eration, limn→∞ T̂ nv may deviate substantially from limn→∞ T nv = v∗;

in fact the sequence may fail to converge at all.4

The key problem here is a lack of compatibility between the sup-norm

contraction property of T—which drives convergence of (T nv)∞n=1 to

v∗—and the potentially expansive properties of the approximation. To

clarify this point, let us decompose T̂ into the action of two operators

L and T : First T is applied to v—in practice Tv is evaluated only at

finitely many points—and then an approximation operator L sends the

result into w ∈ F . The contractiveness of T̂ = L ◦ T depends on the

contractiveness of L, and L is not generally contracting.5

The present paper proceed as follows. Following a suggestion of Gor-

don (1995), we restrict attention to approximation architectures such

that L is nonexpansive with respect to the sup-norm; from which it

follows that the composition T̂ := L ◦ T is a contraction mapping.

We exploit the contractiveness of T̂ to obtain a set of errors bounds

for approximate optimal policies which applies to any nonexpansive

approximation architecture.

thereby reducing the number of computations needed to update with the Bellman
operator.

4See, for example, Tsitsiklis and Van Roy (1996, Section 4), which gives an
example of divergence under least-squares approximation.

5We should remark that many approximation operators are naturally
nonexpansive—particularly those which involve orthogonal projection onto a closed,
convex set. However, this nonexpansiveness is with respect to the norm in (1),
rather than the sup-norm. A standard choice for the norm in (1) is some version
of the L2 norm (under which the function space in question is a Hilbert space, and
the orthogonal projection map is well-defined).
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An additional contribution of this paper is to investigate the expansive-

ness of shape-preserving function approximators. Previously, Judd and

Solnick (1994) highlighted the computational advantages of such ap-

proximators, where the “shapes” of greatest interest are monotonicity

and convexity (concavity). We show that a certain class of shape-

preserving quasi-interpolants popular in computer aided design are in

fact nonexpansive.

We also observe that when the map L corresponds to a simple near-

est neighbor approximation rule—a kind of nonexpansive interpolant—

iteration with L ◦ T provides an algorithm that can be identified with

discretization of the dynamic program. The algorithm is simple to pro-

gram, admits the use of adaptive grids, and error bounds constructed

in the paper all apply. In contrast, the common procedure of replacing

a continuous state model with a “similar” discrete model and solving

the discrete version permits no adaptation of the grid between itera-

tions, and is relatively difficult to analyze in terms of approximation

error.

A brief summary of existing research is as follows. Within the artificial

intelligence literature, Gordon (1995) proposed the idea of constructing

a general theory of nonexpansive approximations applied to dynamic

programming. Drummond (1996) investigated adding penalties to the

derivatives of function approximators in order to prevent sup-norm ex-

pansiveness (overshooting). Guestrin et al. (2001) study nonexpansive

approximations in factored Markov Decision Processes. We add to

this literature by establishing error bounds for policies computed using

value iteration based on a general nonexpansive approximation opera-

tor.6 Our focus is on structures suitable for economic applications.

Within the economic literature, various studies have been made of ap-

proximation architectures which turn out to be nonexpansive. Judd

and Solnick (1994) observed that a class of spline interpolants pre-

serve the contraction property of T̂ , and exploited this fact in their

discussion of errors. Santos and Vigo-Aguiar (1998) considered a finite

element method using piecewise affine functions. They also observed

6See also the important results of Tsitsiklis and Van Roy (1996), who provided
error bounds for optimal policies when the state and action spaces are finite.
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that their approximation scheme preserve the contraction property of

T̂ . Rust (1997) studies a random discretized Bellman operator which

is a probability one contraction.

The paper proceeds as follows. Section 2 formulates the dynamic pro-

gramming problem. Section 3 discusses nonexpansive approximation

schemes. Section 4 considers the measurement of approximation er-

ror, and provides some justification for the measure used in this paper.

Section 5 states results, and Section 6 gives proofs.

2. Formulation of the Problem

If (U, d) is a metric space, then B(U) denotes the Borel subsets of U ,

C(U) is the continuous functions from U to R, bB(U) is the bounded

Borel measurable functions from U to R, and bC(U) = bB(U) ∩C(U).

In what follows, measurability refers to Borel measurability unless oth-

erwise stated. For f ∈ bB(U) we let ‖f‖∞ be defined by supx∈U |f(x)|.
Further, d∞ denotes the metric on bB(U) associated with this norm.7

A map M : U → U is called nonexpansive if it satisfies the condition

(2) d(Mw,Mw′) ≤ d(w, w′), ∀w, w′ ∈ U ;

and a contraction of modulus % if there exists a % ∈ [0, 1) with

(3) d(Mw,Mw′) ≤ %d(w,w′), ∀w, w′ ∈ U.

Let M1 and M2 be two maps from the space U to itself. It is trivial to

show that if M1 is a contraction of modulus % and M2 is nonexpansive,

then M2 ◦M1 is a contraction of modulus %.

Consider the following abstract infinite horizon stochastic dynamic pro-

gramming problem, defined by a tuple (S, A, Γ, r, %,M). Here S is a

state space, A is an action space, and Γ is a nonempty correspondence

mapping S into B(A), with Γ(x) interpreted as the set of feasible ac-

tions when the current state is x. Both S and A are Borel subsets of

finite-dimensional Euclidean space.

Given S, A and Γ, define

K := {(x, u) ∈ S × A : u ∈ Γ(x)}.
7Both (bC(U), d∞) and (bB(U), d∞) are complete metric spaces.
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This collection of points is called the set of all feasible state/action

pairs. The map r : K → R is a measurable “reward” function, while

% ∈ (0, 1) is a discount factor, and M(x, u; dy) is a distribution over S

for each feasible state/action pair (x, u) ∈ K. Here M(x, u; B) should

be be interpreted as the conditional probability that next period state

Xt+1 ∈ B when the current state Xt = x and the current action Ut =

u.8 For example, if the future state is determined according to

(4) Xt+1 = F (Xt, Ut, Wt+1),

where (Wt)
∞
t=1 is a sequence of independent shocks with distribution ϕ,

then

(5) M(x, u; B) =

∫
1B[F (x, u, z)]ϕ(dz).

The system evolves as follows. At the start of time, the agent observes

X0 = x0 ∈ S, where x0 is some fixed initial condition, and then chooses

action U0 ∈ Γ(X0) ⊂ A. After choosing U0, the agent receives a reward

r(X0, U0). The next state X1 is now drawn according to distribution

M(X0, U0; dy) and the process repeats, with the agent choosing U1,

receiving reward r(X1, U1), and so on.

Let Π denote the set of all measurable functions π : S → A with π(x) ∈
Γ(x) for all x ∈ S. We refer to Π as the set of feasible policies. Each

fixed policy π ∈ Π and initial condition x0 ∈ S defines a Markov chain

(Xt), where X0 is set equal to x0, and then, recursively, Xt+1 is drawn

from M(Xt, π(Xt); dy). We let Px0
π denote the joint distribution on the

sequence space (S∞,⊗∞
n=1B(S)) associated with this chain, while Ex0

π

denotes the expectation operator corresponding to Px0
π .

To set up the problem, we define a function from Π× S into R by

(6) vπ(x0) := Ex0
π

[
∞∑

t=0

%tr(Xt, π(Xt))

]
.

Thus vπ(x0) is the value of following the policy π when starting at initial

condition x0. The optimization problem is then given by maxπ∈Π vπ(x0),

8Formally, by a distribution on S is meant a probability measure on (S,B(S)).
In addition, (x, u) 7→ M(x, u;B) is required to be measurable, ∀B ∈ B(S).
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where x0 is regarded as fixed. The value function v∗ : S → R is defined

as

(7) v∗(x0) = sup
π∈Π

vπ(x0), x0 ∈ S.

A policy π∗ ∈ Π is called optimal if it attains the supremum in (7) for

every x0 ∈ S. In other words, π∗ ∈ Π is optimal if and only if vπ∗ and

v∗ are the same function.

Assumption 2.1. The map r is continuous and bounded on K, while

Γ is continuous and compact valued. Further,

(x, u) 7→
∫

w(y)M(x, u; dy)

is continuous as a map from K to R whenever w ∈ bC(S).9

The following theorem is a standard optimality result.10

Theorem 2.1. Under Assumption 2.1, the value function v∗ is the

unique function in bB(S) which satisfies

(8) v∗(x) = sup
u∈Γ(x)

{
r(x, u) + %

∫
v∗(y)M(x, u; dy)

}
, ∀x ∈ S.

In fact v∗ is continuous, and we can replace sup with max in (8). If

π∗ ∈ Π and

(9) v∗(x) = r(x, π∗(x)) + %

∫
v∗(y)M(x, π∗(x); dy), ∀x ∈ S,

then π∗ is optimal. At least one such optimal policy π∗ ∈ Π exists.

Conversely, if π∗ is an optimal policy then it satisfies (9).

Two kinds of contraction mappings are used to study the optimality

results. First, let Tπ : bB(S) → bB(S) be defined for all π ∈ Π by

(10) Tπw(x) = r(x, π(x)) + %

∫
w(y)M(x, π(x); dy).

Further, let T : bB(S) → bB(S) be defined by

(11) Tw(x) = sup
u∈Γ(x)

{
r(x, u) + %

∫
w(y)M(x, u; dy)

}
.

9This last assumption is a version of the so-called Feller property. See, for
example, Stokey, Lucas and Prescott (1989, Chapter 8).

10See, for example, Hernández-Lerma and Lasserre (1999, § 8.5).
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The second operator T is usually called the Bellman operator. Using

the Bellman operator we can restate the first part of Theorem 2.1 as:

v∗ is the unique fixed point of T in bB(S).

It is well-known that for every π ∈ Π, the operator Tπ is a contraction

on (bB(S), d∞) of modulus %. The unique fixed point of Tπ in bB(S)

is vπ, where the definition of vπ is given in (6). In addition, Tπ is

monotone on bB(S), in the sense that if w, w′ ∈ bB(S) and w ≤ w′, then

Tπw ≤ Tπw′.11 Similarly, the Bellman operator is also a contraction of

modulus %; and monotone on bB(S).12

3. The Approximation Operator

To carry out fitted value iteration we use an approximation operator

L which maps bB(S) into a collection of functions F ⊂ bB(S). In

general, L constructs an approximation Lv ∈ F to v ∈ bB(S) according

to a sample {v(xi)}k
i=1 of evaluations of v on grid points {xi}k

i=1. As

discussed in the introduction, we focus on approximation architectures

with the property that L is nonexpansive with respect to d∞:

(12) ‖Lv − Lw‖∞ ≤ ‖v − w‖∞, ∀v, w ∈ bB(S).

We assume further that L is a projection, in the sense that L ◦ L = L

on bB(S). In particular, if v ∈ F , then v is a fixed point of L.

Example 3.1. (Nearest neighbors) An elementary class of nonex-

pansive maps is provided by k-nearest neighbors approximation, the

simplest version of which is when k = 1. For this specification Lv(x) is

set to v(xi), where i = argminj ‖x− xj‖.13 Thus Lv takes only finitely

many values. Moreover, it is clear that

(13) ‖Lw − Lv‖∞ ≤ sup
1≤i≤k

|w(xi)− v(xi)|, ∀w, v ∈ bB(S).

In particular, L is nonexpansive on bB(S) with respect to the sup norm.

Interestingly, iteration with T̂ = L ◦ T provides an implementation of

discretization for dynamic programs: Let v̂n := T̂ nv, so that v̂n takes

11Here inequalities such as w ≤ w′ are pointwise inequalities on S.
12These results are standard. See, for example, Puterman (1994), Stokey, Lucas

and Prescott (1989) or Hernández-Lerma and Lasserre (1999).
13Here ‖ · ‖ is the Euclidean norm on S.
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finitely many values v̂n(xi), 1 ≤ i ≤ k. Let Bi be the subset of the

state S on which v̂n takes the value v̂n(xi). We can now obtain T v̂n at

the grid point xj via

T v̂n(xj) = sup
u∈Γ(xj)

{
r(xj, u) + %

∫
v̂n(y)M(xj, u; dy)

}

= sup
u∈Γ(xj)

{
r(xj, u) + %

k∑
i=1

v̂n(xi)M(xj, u; Bi)

}
.

These values T v̂n(x1), . . . , T v̂n(xk) define LT v̂n = T̂ n+1v = v̂n+1, and

the iteration proceeds.14

There are several advantages to this form of discretization. First, since

L is nonexpansive the error bounds developed below all apply. Sec-

ond, the reward function r is never discretized, and nor need it be—

presumably the primitive r can be implemented without discretization.

Finally, it is possible to adjust the location and size of the grid at each

iteration.15

Example 3.2. (Kernel averagers) Kernel-based approximation meth-

ods provide a class of smooth approximation architectures which have

attracted much attention in recent years, partly because they are simple

to implement in high-dimensional state spaces. One of these methods

is the so-called kernel averages, which typically can be represented by

an expression of the form

(14) Lv(x) =

∑k
i=1 Kh(xi − x)v(xi)∑k

i=1 Kh(xi − x)
.

Here the kernel Kh is a nonnegative mapping from S → R such as the

radial basis function e−‖·‖/h. The value of the kernel decays to zero

as x diverges from xi. Thus, Lv(x) is a convex combination of the

observations v(x1), . . . , v(xk) with larger weight being given to those

observations v(xi) for which xi is close to x. The smoothing parameter

h controls the weight assigned to more distant observations.

14In high dimensions it may be more efficient to evaluate the terms M(xj , u;Bi)
by Monte Carlo rather than numerical integration. See Rust (1997) for more dis-
cussion of Monte Carlo methods in high-dimensional problems.

15A number of algorithms use variable grids for discretized dynamic program-
ming. See, for example, Rust (1997).
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The following lemma (Gordon, 1995) is elementary but useful. It shows

that the approximation operators associated with kernel averagers are

nonexpansive with respect to d∞. It also provides an upper bound for

the d∞-distance between Lw and Lv which can be computed exactly.

Lemma 3.1. The operator L in (14) satisfies (13). In particular, L is

nonexpansive with respect to the sup norm.

Proof. Pick any x ∈ S, and let λ(x, i) := Kh(xi−x)/
∑k

j=1 Kh(xj −x).

Using
∑k

i=1 λ(x, i) = 1, we have

|Lw(x)− Lv(x)| =

∣∣∣∣∣
k∑

i=1

λ(x, i)(w(xi)− v(xi))

∣∣∣∣∣
≤

k∑
i=1

λ(x, i)|w(xi)− v(xi)| ≤ sup
1≤i≤k

|w(xi)− v(xi)|.

Since x is arbitrary the claim in the lemma holds. �

Example 3.3. (Continuous piecewise linear interpolation) A

common form of approximation in dynamic programming is piecewise

linear (piecewise affine) spline interpolation.16 To describe a general

set up, let {xi}k
i=1 be a finite subset of S ⊂ Rd with the property

c. hull{xi}k
i=1 = S, and let T be a triangularization of S relative to the

nodes {xi}k
i=1.

17 In other words, T is a partition of S into a finite col-

lection of non-overlapping, non-degenerate simplexes, where, for each

∆ ∈ T , the set of vertices {ζi}d+1
i=1 ⊂ {xi}k

i=1.
18

Each x ∈ ∆ can be represented uniquely by its barycentric coordinates

relative to ∆:

x =
d+1∑
i=1

λ(x, i)ζi, where λ(x, i) ≥ 0,
d+1∑
i=1

λ(x, i) = 1.

For v ∈ bB(S) we define the interpolation operator L by

Lv(x) =
d+1∑
i=1

λ(x, i)v(ζi).

16See, for example, Santos and Vigo-Aguiar (1998) and Munos and Moore (1999).
17Here c.hull{xi}k

i=1 is the convex hull of {xi}k
i=1.

18A simplex is called non-degenerate if it has positive measure in Rd.
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An argument similar to the proof of Lemma 3.1 shows that if v, w ∈
bB(S), then at x we have

|Lw(x)− Lv(x)| ≤ sup
1≤i≤d+1

|w(ζi)− v(ζi)| ≤ ‖w − v‖∞.

Since x is arbitrary, L is clearly nonexpansive.

Example 3.4. (Schoenberg’s variation diminishing operator)

In a well-known study, Judd and Solnick (1994) emphasize the ad-

vantages of fitted value iteration with shape-preserving approximators;

here the shapes of greatest interest are monotonicity and convexity, and

approximators which preserve them not only incorporate known struc-

ture from the target function in the approximating function, they also

allow monotonicity and convexity to be exploited in the optimization

step of the value iteration algorithm.19

Judd and Solnick discuss several univariate shape-preserving architec-

tures, including (nonsmooth) univariate piecewise linear interpolants

and (smooth) Schumaker splines. Here we describe a further class of

smooth, shape-preserving approximators known as Schoenberg varia-

tion diminishing splines. Variation diminishing splines are extremely

popular in applications such Computer Aided Geometric Design both

for their shape preserving properties and for their simplicity—which in

turn gives fast evaluation. An easy argument shows that the approx-

imation operator associated with variation diminishing splines is not

only smooth and shape-preserving, but also nonexpansive.

To construct the operator we set S = [a, b] ⊂ R, and in place of a

standard grid we use for each d ∈ N a d + 1-regular knot sequence

(ti)
k+d+1
i=1 , which satisfies

a = t1 = · · · = td+1 < td+2 < · · · < tk+1 = · · · = tk+d+1 = b.

Here d is the order of the spline, so that, for example, d = 3 corre-

sponds to a cubic spline. The Schoenberg splines are built using k

19Monotonicity is exploited as follows: In monotone programs the optimal action
is often increasing in the state, in which case one need not search for optimal actions
in that subset of the action space which is dominated by the optimal action at a
lower state. The importance of convexity in optimization needs no illustration here.
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basis functions which are known as B-splines. The latter are defined

recursively by

Bi,0 := 1[ti,ti+1), i = 1, . . . , k,

and then, i = 1, . . . , k,

Bi,d(x) :=
x− ti

ti+d − ti
Bi,d−1(x) +

ti+d+1 − x

ti+d+1 − ti+1

Bi+1,d−1(x),

where in the definition we are using the convention that 0/0 = 0. For

fixed d the basis functions B1,d, . . . , Bk,d are linearly independent and

satisfy

k∑
i=1

Bi,d = 1S.

Their span is often denoted by Sd:

Sd :=

{
k∑

i=1

αiBi,d : (α1, . . . , αk) ∈ Rk

}
.

Clearly Sd ⊂ bB(S). Schoenberg’s variation diminishing operator is

now given by

L : bB(S) 3 v 7→
k∑

i=1

v(t∗i )Bi,d ∈ Sd,

where t∗i := (ti+1 + · · ·+ ti+d)/d.

It is well-known that L preserves monotonicity and convexity (concav-

ity) in v.20 It is easy to see that L is also nonexpansive:

Lemma 3.2. Schoenberg’s variation diminishing operator is nonexpan-

sive as a map from (bB(S), d∞) to itself.

The proof is very similar in spirit to that of Lemma 3.1 and is omitted.

20See, for example, Lyche and Mørken (2002, Chapter 5).
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4. A Digression on Measurement of Error

Any analysis of approximation methods requires a measurement of er-

ror. One algorithm is determined to be better than another when it

produces an approximate solution with smaller error than the other

for a given amount of computational effort. Conversely, one cannot

rank two algorithms or approximation methods unless error measure-

ment is specified in advance. In this section we discuss appropriate

measurements of error from the perspective of economic modeling, ar-

guing in favor of an approach which measures “behavioral” rather than

geometric error.

To fix ideas, consider again the dynamic programming problem for-

mulated in Section 2. Let π∗ be an optimal policy, and let π̂ be an

approximation. The error associated with π̂ is often measured as ei-

ther

e1(π̂) = sup
x∈S

|π∗(x)− π̂(x)|

or

e2(π̂) =

(∫
(π∗(x)− π̂(x))2dx

)1/2

.

The first measures the least upper bound of the pointwise deviation

between π̂ and the target π∗, while the second is the so-called L2 dis-

tance. The former is often preferred because it is easy to interpret. On

the other hand, e1 is very sensitive to local deviations—even those on

sets of measure zero which in simulations have no influence on time

series generated by the model. For this reason some authors prefer the

L2 distance, which ignores deviation on sets of zero measure.21

The issue is further complicated by the existence of other viable error

measures. For example, one might also favor the L1 distance
∫
|π̂−π∗|,

or a measure such as supx∈S(π∗(x) − π̂(x))2, which gives more than

proportional penalty to large deviations. In choosing between these

error measures, the problem we are facing is that in a function space

such as Π there is no universal measure of “closeness.” To determine

21See, for example, Munos (2005). Reiter (2001) makes a similar point. The ar-
gument for the L2 norm is more compelling if the norm is weighted by the stationary
distribution of the state variables under the approximate optimal policy.
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when one approximation is better than another one must take a stand

on how closeness (and hence errors) should be determined.

In doing so, the economic modeler requires a loss function over the

set of policies Π which indicates the cost (to the modeler) of deviating

from the optimal policy as a result of approximation error. From a sci-

entific perspective, good approximations should lead to effective tests

for whether the model is correct. In other words, good approxima-

tions must accurately reflect the testable implications of the model—in

which case a suitable rule for the loss function is that the modeler

prefers approximations which correspond well to the predictions of the

model over those which correspond poorly. The optimal policy itself

corresponds exactly to the predictions of the model, and hence incurs

no loss.

Consider, for example, the Euler residual techniques studied by Judd

(1992, 1998), Den Haan and Marcet (1994), Santos (2000), Reiter

(2001) and others. Errors are assessed by inserting the time series

generated by approximate optimal policies into the corresponding Eu-

ler equations. For example, a well-known optimal growth model due

to Brock and Mirman (1972) has an Euler equation of the form

(15) u′(ct) = %Etu
′(ct+1)f

′(kt+1, zt+1),

where u is utility, c is consumption, f is a production function, k

is capital and z is a shock. The argument is that if a given policy

produces consumption paths which fit (15) poorly then we are unlikely

to observe such behavior by agents, as a violation of (15) indicates

there are incentives for the agent to transfer consumption across time

periods until equality holds. The size of the error in (15) corresponds

to the degree of incentive to modify behavior.

While Euler residual methods are not always applicable—in that they

require smooth primitives and interiority of optimal choices—here we

adopt the essential principle: Approximation π̂1 is preferred to ap-

proximation π̂2 if π̂1 is more compatible with the economic incentives

of agents in the model. The rationale is that if agents respond to

incentives, then π̂1 is a more plausible description of the behavioral

implications of the model than π̂2. This is true regardless of whether
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e(π̂1) > e(π̂2) or vice versa, where e is one of the error measures such

as e1 or e2 discussed above.

One can always test the incentive compatibility of approximation π̂ in

a straightforward way by evaluating the value-loss

E(π̂) := v∗(x0)− vπ̂(x0), π̂ ∈ Π.

For example, consider a single monopolist whose objective is to max-

imize the present discounted value of a stream of net profits. Let x0

be the initial condition for the state variable, let vπ(x0) be the value of

following policy π as in (6), and let v∗ be the value function, so v∗(x0)

is the maximum (net present value of) profit from x0. In this case the

agent’s incentives are by definition dictated by the profit stream, and

approximation π̂1 is preferred to π̂2 if and only if vπ̂1(x0) > vπ̂2(x0);

equivalently, E(π̂1) < E(π̂2).

Notice that in making this argument one need not take a position on

the cognitive processes that underpin rational behavior. The actors

in the economy represented by the monopolist agent can be viewed as

solving optimization problems, or responding to price signals such as

market valuation, or they can be seen as the product of an evolutionary

process where poorly managed firms do not survive. In either case, if

vπ̂1(x0) < vπ̂2(x0), then the higher profit stream generated by π̂1 implies

that this behavior corresponds more closely to the predictions of the

model than does that implied by π̂2.

In most fields the value-loss measure E is the de facto standard for

measuring approximation error for policies, and we have argued that

the same should be true of economics.22 Below, all our error bounds

are stated in terms of E-error. Before presenting them we conclude this

section with a second example of the suitability of the measure E which

concerns a decentralized market involving many agents. The model is

Samuelson’s (1971) famous theory of price equilibrium in a commodity

market with speculative investment.

22See, for example, Puterman (1994, Theorem 6.3.1) or Hernández-Lerma and
Lasserre (1999, Proposition 8.4.2). Santos (2000) and Reiter (2001) both link Euler
equation residuals to value-loss.
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In brief, the model describes intertemporal equilibrium in a single com-

modity market with two sources of demand: final consumption demand

ct determined by inverse demand function P (pt = P (ct)), and specula-

tive demand qt. In equilibrium these demands sum to the total supply

at t, denoted by yt. This supply yt consists of the “harvest” Ht plus

aqt−1, where a < 1 is a “shrinkage” parameter and qt−1 is carryover

from the last period. The harvest process (Ht) is independent and

identically distributed.

For fixed interest rate r, the system of prices and path for carryover

and consumption must satisfy the arbitrage conditions

(16) (1 + r)−1aEtpt+1 − pt ≤ 0, t ≥ 0,

(17) qt{(1 + r)−1aEtpt+1 − pt} = 0, t ≥ 0.

As Samuelson points out, one can construct an equilibrium path for

prices, consumption and carryover by setting out the problem of a

fictitious social planner with discount factor (1+r)−1 and period utility

function U(c) =
∫ c

0
P (x)dx. The resulting dynamic program

(18) maxE

[
∞∑

t=0

(1 + r)−tU(ct)

]
s.t. ct + qt = yt, yt+1 = aqt + Ht, y0 given

has Karush–Khun–Tucker first order optimality conditions given by

(19) (1 + r)−1aEtU
′(ct+1)− U ′(ct) ≤ 0, t ≥ 0,

(20) qt{(1 + r)−1aEtU
′(ct+1)− U ′(ct)} = 0, t ≥ 0,

and setting pt = U ′(ct) produces an equilibrium system satisfying the

arbitrage conditions (16) and (17), along with pt = P (ct). The system

is fully defined by an optimal carryover function π∗ which solves (18).

Observe that the process for prices, consumption, carryover and stock

generated by carryover policy π̂1 accords better with the incentives of

agents in the market than those generated by carryover policy π̂2 pre-

cisely when E(π̂1) < E(π̂2), or, equivalently, vπ̂1(y0) > vπ̂2(y0). Lower

loss (higher value) equates to greater consumer surplus, which in turn
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initialize v ∈ bB(S) and tolerance δ

repeat

sample Tv at a finite set of grid points

compute T̂ v = L ◦ Tv from the samples

set e = ‖T̂ v − v‖∞ and then v = T̂ v

until e ≤ δ

solve for a policy π ∈ Π with

π(x) ∈ argmaxu∈Γ(x)

{
r(x, u) + %

∫
v(y)M(x, u; dy)

}

Figure 1. Approximate Value Iteration Algorithm

means that π̂1 realizes more of the potential gains from trade. Approx-

imation π̂2, on the other hand, generates a lower consumer surplus,

and unexploited gains from trade mean larger violation of the arbi-

trage conditions, putting the associated price process under greater

pressure. Policy π̂1 therefore accords better with the predictions of the

model than does π̂2.

5. Results

In all of what follows, L : bB(S) → F is a nonexpansive approximation

operator (Section 3). The construction of that operator in turn depends

on a fixed set of grid points {xi}k
i=1 ⊂ S as discussed above. The map

T̂ := L ◦ T is the approximate Bellman operator, T̂ n is n compositions

of T̂ with itself, and v̂ is the unique fixed point of T̂ in bB(S).

Consider the approximate value iteration algorithm in Figure 1. We

wish to bound the deviation v∗(x0)−vπ(x0), where x0 ∈ S is the initial

condition for the dynamic programming problem. Here v∗(x0) is of

course the value of the optimal policy, and vπ(x0) is the value of the

policy π produced in the final step—the function vπ ∈ bB(S) is defined

by (6).

If the fixed point v̂ of T̂ is equal to the fixed point v∗ of T , and if in

addition we can take the limit of T̂ nv and so compute v̂ exactly, then
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there is no error, and the policy π chosen using v̂ is optimal. Actually

neither of these two conditions hold in practice, and in fact they provide

a natural decomposition of errors into two components: The first is the

deviation of v̂ from v∗, which results from imperfect approximation

under L. The second error is the deviation of T̂ nv from v̂, and should

be stated in terms of the distance between T̂ nv and T̂ n+1v or some

other observable, as the deviation of T̂ nv from v̂ cannot be computed

directly.

We use this error decomposition to give an error bound for the value

of the approximate optimal policy. Combining ideas found in Puter-

man (1994), Judd and Solnick (1994), Gordon (1995), Rust (1996) and

Santos and Vigo-Aguiar (1998), the value of the approximate optimal

policy is shown to deviate from that of the optimal policy by less than

a bound determined by supw∈V ‖w−Lw‖∞ and ‖T̂ n+1v− T̂ nv‖∞. Here

‖ · ‖∞ is the sup-norm, and V is a class of functions containing v∗. The

first term supw∈V ‖w−Lw‖∞ indicates the performance of the approxi-

mation map L. The second term ‖T̂ n+1v−T̂ nv‖∞ is an observable error

which can be used to test a stopping rule in the iteration algorithm.

In the first theorem below, we require that, as well as v∗, the sequence

(T T̂ nv)∞n=1 also lies in V .

Theorem 5.1. Let L be nonexpansive, let δ is the tolerance for the

stopping rule and let V be a class of functions in bB(S) containing

v∗ and the sequence (T T̂ nv)∞n=1. If π is the policy generated by the

approximate value iteration algorithm, then for all initial conditions

x0 ∈ S we have

v∗(x0)− vπ(x0) ≤
2

1− %

(
%δ + sup

w∈V
‖w − Lw‖∞

)
.

Remark 5.1. The bound in Theorem 5.1 should be compared to the

bound v∗(x0)−vπ(x0) ≤ 2%δ/(1−%) given by Puterman (1994, Theorem

6.3.1) for the finite state case, where no approximation is used and value

iteration can be carried out exactly. In the present case, if there is no

approximation error and supw∈V ‖w − Lw‖∞ = 0, then the bound in

Theorem 5.1 reduces to Puterman’s bound. This suggests that our

bound is relatively tight.
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Remark 5.2. It may seem that the error e = ‖T̂ v − v‖∞ in the value

iteration algorithm will be difficult to evaluate accurately. However,

since both v and T̂ v lie in the simple parametric class F , evaluation of

the error is in practice usually straightforward.

Now we turn to the second theorem of the paper. Here, our objective is

the weaken the assumptions of Theorem 5.1. In particular, the assump-

tion that T T̂ nv lies in a simple class V for each n may be too strict.

In contrast, one often has a considerable amount of information about

v∗ which can be used to assess the approximation error ‖v∗ − Lv∗‖∞.

The next bound uses only this information, but at the cost of a larger

constant term:

Theorem 5.2. Let L and δ be as in Theorem 5.1. If π is the policy

generated by the approximate value iteration algorithm, then for all

initial conditions x0 ∈ S we have

v∗(x0)− vπ(x0) ≤
2

(1− %)2
(%δ + ‖v∗ − Lv∗‖∞) .

The proofs of Theorems 5.1 and 5.2 are given below.

6. Proofs

Let us now address the proof of Theorem 5.1. Since the initial condition

x will vary according to the problem, we construct a bound on the

deviation v∗(x)− vπ(x) which is uniform over x ∈ S. In practice, this

is done by bounding the sup-norm error ‖v∗−vπ‖∞. Using the triangle

inequality, the sup-norm error is broken down as

(21) ‖v∗ − vπ‖∞ ≤ ‖v∗ − T̂ n+1v‖∞ + ‖T̂ n+1v − vπ‖∞,

where v ∈ bB(S) is the initial condition in the value iteration algorithm.

The next lemma bounds the first of these two errors on the right hand

side of (21) in terms of the stopping rule error ‖T̂ n+1v − T̂ nv‖∞ and

the approximation error ‖v∗ − Lv∗‖∞.

Lemma 6.1. For every n ∈ N we have

(1− %)‖v∗ − T̂ n+1v‖∞ ≤ ‖v∗ − Lv∗‖∞ + %‖T̂ n+1v − T̂ nv‖∞.
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Proof. Fix n ∈ N. By the triangle inequality,

(22) ‖v∗ − T̂ n+1v‖∞ ≤ ‖v∗ − v̂‖∞ + ‖v̂ − T̂ n+1v‖∞.

Regarding the first term in the sum (22), we have

‖v∗ − v̂‖∞ ≤ ‖v∗ − T̂ v∗‖∞ + ‖T̂ v∗ − v̂‖∞
= ‖v∗ − Lv∗‖∞ + ‖T̂ v∗ − T̂ v̂‖∞
≤ ‖v∗ − Lv∗‖∞ + %‖v∗ − v̂‖∞.

(23) ∴ (1− %)‖v∗ − v̂‖∞ ≤ ‖v∗ − Lv∗‖∞.

Regarding the second term in the sum (22), we have

‖v̂ − T̂ n+1v‖∞ ≤ ‖v̂ − T̂ n+2v‖∞ + ‖T̂ n+2v − T̂ n+1v‖∞
≤ %‖v̂ − T̂ n+1v‖∞ + %‖T̂ n+1v − T̂ nv‖∞.

(24) ∴ (1− %)‖v̂ − T̂ n+1v‖∞ ≤ %‖T̂ n+1v − T̂ nv‖∞.

Combining (22), (23) and (24) gives the bound we are seeking. �

Next consider the second term in (21). The following bound holds.

Lemma 6.2. If the approximate value iteration algorithm terminates

after n + 1 iterations, so that, for all x ∈ S,

(25) π(x) ∈ argmaxu∈Γ(x)

{
r(x, u) + %

∫
T̂ n+1v(y)M(x, u; dy)

}
,

then for this n we have the error bound

(1−%)‖T̂ n+1v−vπ‖∞ ≤ ‖T T̂ n+1v−LT T̂ n+1v‖∞+%‖T̂ n+1v−T̂ nv‖∞.

Proof. Fix n ∈ N. By the triangle inequality,

(26) ‖T̂ n+1v − vπ‖∞ ≤ ‖T̂ n+1v − T T̂ n+1v‖∞ + ‖T T̂ n+1v − vπ‖∞.

Consider the second term in the right hand side of (26). From the

definition of Tπ in (10) and the fact that π solves (25), it is clear

that T T̂ n+1v and TπT̂ n+1v are equal. Moreover, we know that Tπ is a

contraction of modulus %, and vπ is the unique fixed point. Hence

‖T T̂ n+1v − vπ‖∞ = ‖TπT̂ n+1v − Tπvπ‖∞ ≤ %‖T̂ n+1v − vπ‖∞.
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Substituting this into (26) we get

‖T̂ n+1v − vπ‖∞ ≤ ‖T̂ n+1v − T T̂ n+1v‖∞ + %‖T̂ n+1v − vπ‖∞.

(27) ∴ (1− %)‖T̂ n+1v − vπ‖∞ ≤ ‖T̂ n+1v − T T̂ n+1v‖∞.

The right hand side of (27) is a slightly awkward bound to work with

in applications, so we split it up as follows:

‖T̂ n+1v − T T̂ n+1v‖∞ ≤ ‖T̂ n+1v − T̂ n+2v‖∞ + ‖T̂ n+2v − T T̂ n+1v‖∞
≤ %‖T̂ nv − T̂ n+1v‖∞ + ‖LT T̂ n+1v − T T̂ n+1v‖∞.

Substituting this into (27) gives the bound that we are seeking. �

Proof of Theorem 5.1. Pick any x ∈ S. Suppose that the approximate

value iteration algorithm terminates after n+1 iterations. Substituting

the bounds in Lemmas 6.1 and 6.2 into (21) yields

(1− %)‖v∗ − vπ‖∞ ≤ ‖v∗ − Lv∗‖∞
+ ‖T T̂ n+1v − LT T̂ n+1v‖∞ + 2%‖T̂ n+1v − T̂ nv‖∞.

Since v∗ ∈ V and T T̂ n+1v ∈ V , this reduces to

(1− %)‖v∗ − vπ‖∞ ≤ 2 sup
w∈V

‖w − Lw‖∞ + 2%‖T̂ n+1v − T̂ nv‖∞.

By the definition of n and δ we have ‖T̂ n+1v − T̂ nv‖∞ ≤ δ.

∴ (1− %)‖v∗ − vπ‖∞ ≤ 2 sup
w∈V

‖w − Lw‖∞ + 2%δ.

∴ (1− %)(v∗(x)− vπ(x)) ≤ 2 sup
w∈V

‖w − Lw‖∞ + 2%δ.

Dividing through by (1− %) gives the bound we are seeking. �

Next we turn to the proof of Theorem 5.2. The proof is based on the

following lemma:

Lemma 6.3. If the approximate value iteration algorithm terminates

after n + 1 iterations, so that, for all x ∈ S,

(28) π(x) ∈ argmaxu∈Γ(x)

{
r(x, u) + %

∫
T̂ n+1v(y)M(x, u; dy)

}
,

then for this n we have

(29) (1− %)‖v∗ − vπ‖∞ ≤ 2‖T̂ n+1v − v∗‖∞.
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Proof. We have

(30) ‖v∗ − vπ‖∞ ≤ ‖v∗ − T̂ n+1v‖∞ + ‖T̂ n+1v − vπ‖∞.

But

(31) ‖T̂ n+1v − vπ‖∞ ≤ ‖T̂ n+1v − T T̂ n+1v‖∞ + ‖T T̂ n+1v − vπ‖∞.

Consider the first term on the right hand side of (31). Observe that for

any w ∈ bB(S) we have

‖w − Tw‖∞ ≤ ‖w − v∗‖∞ + ‖v∗ − Tw‖∞
≤ ‖w − v∗‖∞ + %‖v∗ − w‖∞ = (1 + %)‖w − v∗‖∞.

Substituting in T̂ n+1v for w, we obtain

(32) ‖T̂ n+1v − T T̂ n+1v‖∞ ≤ (1 + %)‖T̂ n+1v − v∗‖∞.

Now consider the second term on the right hand side of (31). It

has already been observed that for this particular policy π we have

T T̂ n+1v = TπT̂ n+1v, so

‖T T̂ n+1v − vπ‖∞ = ‖TπT̂ n+1v − vπ‖∞
= ‖TπT̂ n+1v − Tπvπ‖∞ ≤ %‖T̂ n+1v − vπ‖∞.

Substituting this bound and (32) into (31), we obtain

‖T̂ n+1v − vπ‖∞ ≤ (1 + %)‖T̂ n+1v − v∗‖∞ + %‖T̂ n+1v − vπ‖∞.

∴ ‖T̂ n+1v − vπ‖∞ ≤ 1 + %

1− %
‖T̂ n+1v − v∗‖∞.

This inequality and (30) together give

‖v∗ − vπ‖∞ ≤ ‖v∗ − T̂ n+1v‖∞ +
1 + %

1− %
‖T̂ n+1v − v∗‖∞.

Simple algebra now gives (29). �

Proof of Theorem 5.2. Pick any x ∈ S, and suppose that the value

iteration algorithm terminates after n + 1 steps. By Lemma 6.3 we

have

v∗(x)− vπ(x) ≤ 2

1− %
‖T̂ n+1v − v∗‖∞.

Applying Lemma 6.1, this becomes

v∗(x)− vπ(x) ≤ 2

(1− %)2
(%‖T̂ n+1v − T̂ nv‖∞ + ‖v∗ − Lv∗‖∞).
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The claim in Theorem 5.2 now follows from the definition of δ. �
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