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PARAMETRIC CONTINUITY OF STATIONARY
DISTRIBUTIONS

CUONG LE VAN AND JOHN STACHURSKI

Abstract. For Markovian economic models, long-run equilibria
are typically identified with the stationary (invariant) distributions
generated by the model. In this paper we provide new sufficient
conditions for continuity in the map from parameters to these equi-
libria. Several existing results are shown to be special cases of our
theorem.
Journal of Economic Literature Classifications C61, C62

1. Introduction

Let Xt be a vector of endogenous and exogenous variables, jointly fol-

lowing a Markov process generated by some underlying model. In eco-

nomic dynamics, one frequently considers situations where the sequence

(Xt)
∞
t=0 is stationary. For example, Brock and Mirman (1972) famously

proved that the stochastic optimal growth model admits a stationary

process, and that every process is in fact asymptotically stationary.

In the Markov case, stationarity reduces to the existence of a “station-

ary distribution” µ, such that if Xt has law µ, then so does Xt+j for all

j ∈ N. If such a µ exists then it naturally becomes a focus of equilib-

rium analysis. For example, if µ is also unique and has certain stability

properties, then a law of large numbers (ergodicity) result also holds,

in which case sample moments from the series (Xt)
∞
t=0 can be identified
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with integrals of the relevant functions with respect to the stationary

distribution µ.

Typically, the underlying laws which drive the process (Xt)
∞
t=0 depend

on a vector of parameters, which may for example be policy instru-

ments, or regression coefficients to be estimated from the data. In this

case the parameters themselves determine the stationary distribution.

Our paper investigates conditions under which the functional relation-

ship between parameters and stationary distributions is continuous.1

The study of how stationary distributions vary with the parameters is

a stochastic analogue of standard comparative dynamics and has many

applications. A typical example is found in the Simulated Moments Es-

timator of Duffie and Singleton (1993), consistency of which requires

continuity of stationary distributions in the unknown parameters.2 An-

other example is in computational economics, where perturbed models

may be easier to solve numerically than the original, but solutions of

the perturbed system must be close to those of the original model as

the level of perturbation becomes small. An application of this type is

discussed in Section 5.

Within economics, perhaps the best known result in this area (para-

metric continuity for stochastic equilibria) is a theorem which appears

in Stokey, Lucas and Prescott (1989, Theorem 12.13) and is appar-

ently due to R.E. Manuelli. The result pertains to Markov models on a

compact state space. Another result in the literature is that of Stenflo

(2001), who proves parametric continuity for noncompact state spaces

when the transition rule is contracting on average.

In this paper, we use Berge’s Theorem of the Maximum to provide a

new parametric continuity result. The basic idea is as follows: Sta-

tionary distributions can be identified as the fixed points of a certain

operator Pθ mapping distributions into distributions, where θ ∈ Θ is

a parameter. If we can furnish a metric % on the space of distribu-

tions, then the function F (θ, µ) := −%(µ, Pθ(µ)) is zero if and only if

1A related question is parametric monotonicity of stationary distributions. See,
for example, Huggett (2003), or Mirman, Morand and Reffett (2005).

2See in particular, Duffie and Singleton (1993, Section 4.3, Assumption 1).
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µ is stationary given θ. In fact, providing that at least one stationary

distribution exists for each θ, it is clear that the set of stationary dis-

tributions and the set of maximizers of µ 7→ F (θ, µ) coincide. When

Berge’s conditions are satisfied, his Theorem of the Maximum tells us

precisely when the dependence of these maximizers on the parameters

will be continuous.

We then show that both the result of Manuelli and the parametric

continuity result of Stenflo are in fact special cases of our theorem.3

We also provide a new result (Proposition 5.1) which is another special

case of the main theorem, and should prove useful in applications.

This claim is illustrated using two examples. The first is a rational

expectations pricing problem, and the second is a simple growth model.

Readers interested in applying the techniques in this paper rather than

studying the theory should go directly to Section 5, and consult Propo-

sition 5.1. The two examples are intended to provide guidance on how

to verify the assumptions of the proposition.

2. Set Up

Let P(S) be the collection of probabilities on (S,B(S)), where S is

any separable, completely metrizable topological space, and B(S) is

its Borel sets. Let M (S) be the linear space of finite signed measures

on (S,B(S)), and let bC(S) be the bounded continuous real valued

functions on S. For µ ∈ M (S) and h ∈ bC(S) we use the symmetric

notation 〈µ, h〉 = 〈h, µ〉 to denote
∫

S
hdµ. Let w(M (S), bC(S)) be

the weak topology on M (S) generated by the set of linear functionals

µ 7→ 〈µ, h〉, h ∈ bC(S), in the usual way (see, e.g., Stokey, Lucas and

Prescott, Chapter 12), and let w(P(S), bC(S)) be the relative topology

on P(S).

3A caveat is that for the problem Stenflo considers we require that the closed and
bounded subsets of the state space are precisely the compact sets—as is the case,
for example, with finite-dimensional Euclidean vector space. By contrast, Stenflo’s
results hold in any completely metrizable topological space.
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Below we make use of the following well-known Skorohod–Dudley rep-

resentation theorem: If (µn)∞n=1 is a sequence in P(S) and µn → µ ∈
P(S) in the topology w(P(S), bC(S)), then there exists a probability

space (Ω,F ,P) and S-valued random variables (Xn)∞n=1 and X with

Xn (resp., X) having distribution µn (resp., µ) and such that Xn → X

as n→∞ holds P-almost surely.

We also make use of the fact that w(P(S), bC(S)) is metrizable. In

particular, the Fortet-Mourier metrization of w(P(S), bC(S)) is de-

fined as follows: Let d be any distance function which metrizes the

topology on S. Let bL(S, d) be the collection of bounded Lipschitz

functions on (S, d). This space is given the norm

(1) ‖h‖bL := sup
x∈S

|h(x)|+ sup
x 6=y

|h(x)− h(y)|
d(x, y)

.

Now set %FM(µ, ν) := sup |〈µ, h〉 − 〈ν, h〉|, where the supremum is over

all h ∈ bL(S, d) with ‖h‖bL ≤ 1. Given that S is separable, the function

%FM so defined is known to metrize w(P(S), Cb(S)) (cf., e.g., Dudley

2002, Theorem 11.3.3).

A stochastic kernel (or transition probability function) on S is a map

P : S×B(S) → [0, 1] with the property that x 7→ P (x,B) is Borel mea-

surable for each B ∈ B(S), and B 7→ P (x,B) is an element of P(S)

for each x ∈ S. We set Ph(x) :=
∫

S
h(y)P (x, dy) for real valued h on S

where this integral is defined. In addition, for µ ∈ M (S), we write µP

for the element of M (S) defined by (µP )(B) :=
∫
P (x,B)µ(dx). Thus,

P is an operator which acts on functions to the right and measures to

the left.4

It can easily be shown that h 7→ Ph is a positive (i.e., increasing) linear

operator on bC(S), as is µ 7→ µP on M (S). Clearly P1S = 1S. Also,

we have 〈µP, h〉 = 〈Ph, µ〉 for all h ∈ bC(S) and all µ ∈ P(S).5 For

x ∈ S we use δx to denote the probability with unit mass on x. We let

P t denote t compositions of P with itself.

4This notation is quite standard. See, for example, the classic monograph of
Meyn and Tweedie (1993).

5In other words, the two operators are adjoint. See Stokey, Lucas and Prescott
(1989, Theorem 8.3).
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It is well-known that δxP
t is the marginal distribution of Xt given

that X0 ≡ x ∈ S, and (Xt)
∞
t=0 follows the Markov process defined by

P ; while P th(x) is the expectation of h(Xt) conditional on X0 ≡ x.

The reader is referred to Stokey, Lucas and Prescott (1989, p. 213) for

further discussion.

Given P , a stationary or invariant distribution is a µ ∈ P(S) such

that µP = µ. A function V : S → [0,∞) is called a Lyapunov function

(or simply Lyapunov) if it is continuous and all sublevel sets

CV,a := {x ∈ S : V (x) ≤ a}, a ∈ R

are compact.6 Let L (S) be the set of Lyapunov functions on S. Fi-

nally, a subset Q of P(S) is called tight if, for all ε > 0, there is a

compact K ⊂ S such that supµ∈Q µ(S \K) ≤ ε.

3. Results

Our starting point is a parameter space Θ and a family of stochastic

kernels {Pθ : θ ∈ Θ}. Here Θ is an arbitrary topological space. Let N

denote any subset of Θ. Define Λ(θ) := {µ ∈ P(S) : µ = µPθ}.

Assumption 3.1. N ×P(S) 3 (θ, µ) 7→ µPθ ∈ P(S) is continuous.7

Assumption 3.1 is a continuity assumption on the primitives, without

which there can be little hope of general continuity results for solutions.

Below we develop versions of this condition which are easier to verify in

applications. It should also be noted that the continuity in Assumption

3.1 helps to ensure existence of stationary distributions via Brouwer–

Schauder type fixed point arguments.

6Loosely speaking, when S is not itself compact, V must get large towards the
“edges” of S. A classic example of a Lyapunov function is the Euclidean (in fact
any) norm in Rn. For our purposes it is useful to note that if S is compact then every
continuous nonnegative function on S is Lyapunov. Alternatively, if d metrizes
the topology on S and the closed bounded subsets of (S, d) are compact, then
V (x) = d(x, x0) is Lyapunov for each x0 ∈ S.

7Unless otherwise stated, all topological notions concerning P(S) refer to
w(P(S), bC(S)). Also, product spaces are given the product topology.
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Assumption 3.2. For each θ ∈ N , there is a V ∈ L (S) and x ∈ S

such that lim inft→∞ P
t
θV (x) <∞.

As discussed above, the term P t
θV (x) can be interpreted as the expec-

tation of V (Xt), where (Xt)
∞
t=0 is the Markov process starting at initial

condition x and driven by stochastic kernel Pθ. Boundedness of this

expectation in the limit helps to contains probability mass to regions

where V is relatively small. In turn, this bounding of probability mass

is closely connected to stability. For example, the following existence

result is immediate from Meyn and Tweedie (1993, Proposition 12.1.3).

Lemma 3.1. If Assumptions 3.1 and 3.2 hold, then the set of station-

ary distributions Λ(θ) is nonempty for all θ ∈ N .

Parametric continuity is a classic problem of interchanging orders of

limits, for which a degree of uniformity is usually required. The next

assumption implies a kind of uniform compactness. In stating it we

adopt the following notation: For W ∈ L (S) and M ∈ N, let Γ(W,M)

be the set of all µ ∈ P(S) satisfying
∫
Wdµ ≤M .

Assumption 3.3. There exists a W ∈ L (S) and an M ∈ N such that

Λ(θ) ⊂ Γ(W,M) for all θ ∈ N .8

We can now present our main result:

Theorem 3.1. If Assumptions 3.1–3.3 hold for some N ⊂ Θ, then

the correspondence θ 7→ Λ(θ) is nonempty, compact valued, and upper

hemicontinuous on N .

Proof. Define F (θ, µ) := −%FM(µ, µPθ).
9 Taking W and M as given

in Assumption 3.3, set H(θ) := argmaxµ∈Γ(W,M) F (θ, µ). Note that

8 In applying Assumptions 3.2 and 3.3 we make use of the following result: If
V ∈ L (S), M ∈ N, and Q ⊂ P(S) with supµ∈Q

∫
V dµ ≤ M then Q is tight. (The

proof is not difficult. See Meyn and Tweedie, 1993, Lemma D.5.3.) The closure of
Q is then w(P(S), bC(S))-compact by Prohorov’s theorem.

9The metric %FM was defined above. In fact any distance function which metrizes
our weak topology on P(S) will do.
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µ ∈ Λ(θ) iff F (θ, µ) = 0. Also, by Assumption 3.1, the function F is

continuous on N ×P(S). Furthermore, Γ(W,M) is compact (see the

comments in footnote 8) and nonempty (by Lemma 3.1 and Assump-

tion 3.3). Berge’s Theorem of the Maximum (Aliprantis and Border,

1999, p. 539) then implies that θ 7→ H(θ) is upper hemicontinous

on N . Finally, observe that H(θ) = Λ(θ) for all θ ∈ N , because

Λ(θ) ⊂ Γ(W,M) by Assumption 3.3, and Λ(θ) is nonempty (recall

Lemma 3.1). �

Remark 3.1. For example, if there is a unique fixed point µθ for each

θ ∈ N , then θ 7→ µθ is continuous on N .

4. Existing Applications

In this section we show how some seemingly unrelated existing results

can be derived from Theorem 3.1.

4.1. Compact State. First, consider the compact state space result of

Stokey, Lucas and Prescott (1989, Theorem 12.13), which is apparently

due to R.E. Manuelli:

Theorem 4.1. Let S be compact. If Assumption 3.1 holds for some

N ⊂ Θ and Λ(θ) is single valued, then θ 7→ Λ(θ) is continuous on N .

This result is immediate from Theorem 3.1: Set V = W = 0 everywhere

on S and let M = 0 in Assumptions 3.2 and 3.3.

Even though this theorem is quite straightforward, it is not always

easy to check Assumption 3.1 in applications. For example, the joint

continuity of (θ, µ) 7→ µPθ is more difficult to check that the require-

ment that µ 7→ µPθ and θ 7→ µPθ are continuous for each θ and µ

respectively. Moreover, the immediate object of interest in economic

studies is usually a stochastic difference equation, rather than a sto-

chastic kernel. Finally, in much of applied macroeconomics the state

space is not compact. Below we discuss results which address some of

these concerns.
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4.2. Average Contractions. In this section we review the results of

Stenflo (2001, Theorem 2). Suppose that S = (S, d) is boundedly com-

pact.10 In this case it turns out that his parametric continuity theorem

is also a special case of Theorem 3.1.11 To state his theorem, let (Z,Z )

be an arbitrary measurable space, and let P(Z) be the probabilities

on (Z,Z ). Stenflo considers the stochastic recursive model

(2) Xt+1 = Tθ(Xt, ξt+1), where ξt ∼ ψθ ∈ P(Z), ∀t ∈ N.

Here Tθ is a measurable function sending S × Z → S for each θ ∈ Θ,

and (ξt)
∞
t=1 is an independent sequence, all with distribution ψθ. For

x ∈ S and B ∈ B(S) we set Pθ(x,B) := ψθ{z ∈ Z : Tθ(x, z) ∈ B}.
Stenflo restricts attention to the case where Θ = (Θ, e) is a metric space

(e is the metric on Θ). He makes the following assumptions, where, as

before, N is an arbitrary subset of Θ:

Assumption 4.1. There exists a λ ∈ (0, 1) such that, ∀ θ ∈ N ,∫
d(Tθ(x, z), Tθ(x

′, z))ψθ(dz) ≤ λd(x, x′), ∀x, x′ ∈ S.

Assumption 4.2. There exists an x0 ∈ S such that

L := sup
θ∈N

∫
d(Tθ(x0, z), x0)ψθ(dz) <∞.

It is known (see, e.g., Stenflo, 2001, Theorem 1) that

Lemma 4.1. If Assumptions 4.1 and 4.2 hold, then Pθ has a unique

stationary distribution µθ ∈ P(S) for each θ ∈ N . Moreover, for each

x ∈ S and θ ∈ N we have δxP
t
θ → µθ as t→∞.

To derive parametric continuity he requires in addition:

10A metric space is called boundedly compact if all the closed balls are com-
pact. The finite dimensional vector spaces are typical examples. We need bounded
compactness of S to ensure that x 7→ d(x, x0) is Lyapunov on S for all x0 ∈ S.

11It should be noted, however, that Stenflo obtains rates of convergence. Rates
are useful for deriving error bounds in computational problems. In contrast, The-
orem 3.1 cannot be used to derive rates.
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Assumption 4.3. There exists a function δ mapping [0,∞) to itself

such that δ(x) → 0 when x→ 0, and

sup
z∈Z

sup
x∈S

d(Tθ(x, z), Tθ′(x, z)) ≤ δ(e(θ, θ′)), ∀ θ, θ′ ∈ N.

Assumption 4.4. The map N 3 θ 7→ ψθ ∈ P(Z) is continuous with

respect to the total variation norm topology on P(Z).

Theorem 4.2 (Stenflo). Let µθ be as in Lemma 4.1. If Assump-

tions 4.1–4.4 all hold, then θ → µθ is continuous on N .

When S is boundedly compact this turns out to be a special case of

Theorem 3.1:

Proposition 4.1. If S is boundedly compact, then Assumptions 4.1—

4.4 imply Assumptions 3.1–3.3, with V (x) = W (x) = d(x, x0) and

M = L/(1− λ).

The proof of the proposition is given in the appendix.

5. A Further Application

Next we develop a new application of Theorem 3.1, which extends

Stenflo’s results in Section 4.2 and is intended to be useful in economic

applications. Let S be a separable and completely metrizable topo-

logical space (unlike the previous section, S need not be boundedly

compact), and let (Z,Z ) again be a measure space. Consider once

more the model

Xt+1 = Tθ(Xt, ξt+1), where ξt ∼ ψθ ∈ P(Z), ∀t ∈ N.

Here Tθ : S × Z → S is measurable, (ξt)
∞
t=1 are indepedent and identi-

cally distributed, N is an arbitrary subset of the parameter space (Θ, e)

where e is a metric on Θ, and Pθ(x,B) := ψθ{z ∈ Z : Tθ(x, z) ∈ B} is

the stochastic kernel corresponding to this model.

First, we wish to weaken Assumption 4.3, which is too restrictive

in some applications (see below). The following condition is clearly

weaker:
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Assumption 5.1. The map N 3 θ 7→ Tθ(x, z) ∈ S is continuous for

each pair (x, z) ∈ S × Z.

We wish also to relax Assumption 4.1, which requires that the law of

motion is contracting on average. For example, if we take S = Z =

R, d(x, y) = |x − y|, and law of motion Xt+1 = gθ(Xt) + ξt+1, then

Assumption 4.1 requires that gθ has slope with absolute value strictly

less than one everywhere on R, uniformly over all θ ∈ N . Such a

requirement is rather strict. Instead consider

Assumption 5.2. For each compact C ⊂ S, there is a K <∞ with∫
d(Tθ(x, z), Tθ(x

′, z))ψθ(dz) ≤ Kd(x, x′), ∀x, x′ ∈ C, ∀ θ ∈ N.

In essence, this is a local Lipschitz assumption.

Next we add drift with respect to a Lyapunov function, which has

the effect of shifting probability mass towards areas of the state space

where the Lyapunov function is small:

Assumption 5.3. There exists a V ∈ L (S), λ ∈ (0, 1) and L ∈ [0,∞)

such that, ∀ θ ∈ N ,

PθV (x) :=

∫
V (Tθ(x, z))ψθ(dz) ≤ λV (x) + L, ∀x ∈ S.

Finally, an assumption is necessary on the continuity of θ 7→ ψθ:

Assumption 5.4. Either θ 7→ ψθ is continuous in total variation norm,

or Z is a separable and completely metrizable topological space, and

for each x ∈ S and compact C ⊂ Z, there is a J <∞ s.t.

d(Tθ(x, z), Tθ(x, z
′)) ≤ Jd(z, z′), ∀z, z′ ∈ C, ∀ θ ∈ N.

Regarding Assumption 5.4, note that for continuity in total variation

norm, Z need not be a topological space. Also, this condition (conti-

nuity in total variation) subsumes the important special case that the

distribution ψθ does not in fact depend on θ. The second alternative

requires a local Lipschitz property on z 7→ Tθ(x, z).
12

12For simplicity we are using the same notation d for the metric on S and the
metric on Z, although they may be different.
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Under these assumptions we have the following result, the proof of

which is given in the appendix:

Proposition 5.1. If Assumptions 5.1–5.4 hold, then Λ(θ) is nonempty

for each θ ∈ N . If Λ(θ) = {µθ}, then θ 7→ µθ is continuous on N .

We give two applications of Proposition 5.1.

Example 1. Consider the following (slightly simplified) version of

the speculative storage model treated in Bobenrieth, Bobenrieth and

Wright (2006); hereafter BBW. Production of a given commodity is

identified with an IID sequence of “harvests” (ξt)
∞
t=1. Agents consist of

a continuum of identical consumers and speculators (storers), each of

measure one. Consumers have inverse demand curve f , the properties

of which are given below. Demand for the commodity in each period

is the sum of demand by consumers and demand by speculators, and

supply is the sum of the harvest and λq, where λ ∈ (0, 1) parameterizes

depreciation from period to period, and q is the quantity q stored by

speculators in the previous period.

It is well-known (interested readers should consult BBW or Samuelson,

1971) that an equilibrium system for prices (pt)
∞
t=0, consumption (ct)

∞
t=0

and storage (qt)
∞
t=0 can be found by solving the problem

max E

[
∞∑

t=0

βtu(ct)

]
s.t. Xt+1 = λqt + ξt+1, qt + ct = Xt,

of a representative agent, where Xt is supply at time t, the utility

function u is defined by
∫ x

0
f(z)dz = u(x) and β is the inverse of the

gross interest rate.

Following BBW, we assume that u is twice differentiable, strictly in-

creasing, strictly concave, bounded, and satisfies the interiority con-

dition limc↓0 u
′(c) = ∞; and that the distribution ψ of ξt has finite

first moment and consists of both singular and absolutely continu-

ous components (with respect to Lebesgue measure). That is, ψ =

αψs +(1−α)ψc, 0 < α < 1. BBW assume that the singular component

ψs has an atom at zero. To ease the exposition we assume here further

than ψs = δ0.
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Using standard arguments, BBW show that the representative agent’s

optimization problem is solved by a unique storage (carryover) function

q, which maps current supply Xt to storage quantity q(Xt), and induces

law of motion

(3) Xt+1 = λq(Xt) + ξt+1, ξt ∼ ψ.

The map q is continuous and increasing on [0,∞). The corresponding

consumption function c(x) := x− q(x) is also increasing. Equilibrium

prices are given by

pt = p(Xt), p := u′ ◦ c = f ◦ c.

A unique stationary distribution µ exists for (Xt)
∞
t=0 given by (3).13

The stationary distribution for prices is µ ◦ c−1 ◦ f−1.

In their paper, BBW discuss computation of the stationary distribu-

tion for prices. This exercise is complicated by the atom at zero in the

shock distribution, which in turn causes unboundedness of the equilib-

rium pricing functional (see BBW for further details). To avoid this

difficulty, BBW consider a perturbed version of the same model, where

the shock has no atom at zero. In what follows the perturbation is

implemented by setting ψθ = αδθ + (1− α)ψc, where θ > 0.

For this perturbation the corresponding representative agent’s opti-

mization problem is again solved by a unique storage (carryover) func-

tion qθ, which maps current supply Xt to storage quantity qθ(Xt), and

induces law of motion

(4) Xt+1 = λqθ(Xt) + ξt+1, ξt ∼ ψθ.

As before, qθ is continuous and increasing on [0,∞). The corresponding

consumption function cθ(x) := x−qθ(x) is also increasing. The rational

expectations pricing functional becomes pθ := f ◦ cθ. A unique station-

ary distribution µθ exists for (Xt)
∞
t=0 given by (4), and the stationary

distribution for prices is the probability measure µθ ◦ c−1
θ ◦ f−1.

13A simple proof of existence and uniqueness can be obtained from Lemma 4.1.
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It is hoped that the perturbed equilibrium µθ ◦ c−1
θ ◦ f−1 converges to

the true equilibrium µ ◦ c−1 ◦ f−1 as θ → 0. The main difficulty here is

to establish that

Proposition 5.2. The map θ 7→ µθ is continuous on Θ := [0,∞).

Proof. We cannot apply Stenflo’s Proposition 4.1 because, among other

things, θ 7→ ψθ is only continuous in the weak topology rather than

total variation norm. Instead we apply Proposition 5.1. Here S =

Z = [0,∞), both spaces being endowed with the usual metric, and

Tθ(x, z) = λqθ(x) + z.

Pick any θ0 ∈ Θ and any bounded neighborhood N of θ0. We show

that Assumptions 5.1–5.4 all hold on N , in which case Proposition 5.1

applies, and continuity on N—and in particular at θ0—is verified.

Regarding Assumption 5.1, continuity of θ 7→ qθ(x) and hence θ 7→
λqθ(x) + z follows from standard arguments (see BBW).

Assumption 5.2 is also straightforward, as for any x, x′ ∈ S we have∫
d(Tθ(x, z), Tθ(x

′, z))ψθ(dz) ≤ |λqθ(x)− λqθ(x
′) ≤ |x− x′|.

Here the second inequality is due to the fact that λ < 1, and that both

qθ and cθ are increasing in x.

Regarding Assumption 5.3, let V (x) := x, which is clearly a Lyapunov

function on S. For any θ ∈ N and x ∈ S we have∫
V (Tθ(x, z))ψθ(dz) =

∫
Tθ(x, z)ψθ(dz)

= λqθ(x) +

∫
zψθ(dz)

≤ λx+ sup
θ∈N

∫
zψθ(dz) = λV (x) + L,

where L := supθ∈N

∫
zψθ(dz). Since N is bounded the term on the far

right is finite, and Assumption 5.3 is verified.

Assumption 5.4 is also immediate, because for any x ∈ S and θ ∈ N

we have d(Tθ(x, z), Tθ(x, z
′)) ≤ |z − z′|. This concludes the proof of

Proposition 5.2. �
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One can verify in addition that

Proposition 5.3. The perturbed equilibrium µθ ◦ c−1
θ ◦ f−1 converges

to the true equilibrium µ ◦ c−1 ◦ f−1 as θ → 0.

The proof follows from Proposition 5.2 and Lemma 6.1 in the appendix.

The details are omitted.

Example 2. A representative household maximizes

E0

∞∑
t=0

βt(η ln ct + (1− η) ln `t),

subject to ct +kt+1 ≤ Akα
t (1− `t)1−αεt+1, α ∈ (0, 1). We take (εt)

∞
t=1 as

IID on (0,∞). It is well-known that the optimal accumulation policy

for this model is given by kt+1 = αβAkα
t (1 − `)1−αεt+1, where ` :=

(1− η)/(1− αη). Taking logs and setting κ := ln k and ξ := ln ε gives

(5) κt+1 = b+ ακt + ξt+1.

Let ξ ∼ ψ ∈ P(R), with E|ξ| :=
∫
|z|ψ(dz) < ∞. Also, let S =

Z = R, and let d(x, y) = |x − y|. Finally, although b depends on

several parameters it is sufficient for our purposes to regard it as a

single parameter taking values in R. With this convention we can take

θ := (b, α) 3 R× (0, 1) =: Θ,

and Tθ(κ, z) = b + ακ + z. For this model we cannot apply Stenflo’s

parametric continuity result, because Assumption 4.3 is not satisfied.

To see this, take θ = (b, α) and θ′ = (b′, α′) with α 6= α′. Then

sup
κ∈S

d(Tθ(κ, z), Tθ′(κ, z)) = sup
κ∈S

|b+ ακ+ z − b′ − α′κ− z|

≤ |b− b′|+ |α− α′| sup
κ∈S

|κ| = ∞.

However, Proposition 5.1 is easy to apply. Let N be any open subset of

Θ with compact closure N̄ ⊂ Θ. By Lemma 4.1, (5) has one and only

one stationary distribution µθ for each θ ∈ N , so to prove thatN 3 θ 7→
µθ ∈ P(S) is continuous we need only verify that Assumptions 5.1–5.4

hold on N .
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Assumptions 5.1 and 5.4 are completely trivial. Assumption 5.2 is also

straightforward, because for all θ ∈ N we have

d(Tθ(κ, z), Tθ(κ
′, z)) = |b+ακ+ z− b−ακ′− z| = α|κ− κ′| ≤ d(κ, κ′).

Regarding Assumption 5.3, let V (x) := |x|, which is clearly Lyapunov

on R. Since N̄ is a compact subset of Θ = R× (0, 1), there is a λ < 1

and an L0 <∞ such that α ≤ λ and |b| ≤ L0 for all (b, α) ∈ N . Setting

L := L0 + E|ξ|, we get∫
V (Tθ(κ, z))ψ(dz) =

∫
|b+ ακ+ z|ψ(dz)

≤ α|κ|+ |b|+ E|ξ| ≤ λV (κ) + L.

As a result, Assumptions 5.1–5.4 are all verified, Proposition 5.1 ap-

plies, and θ 7→ µθ is continuous on N .

6. Appendix

The remaining proofs are now given. We begin with some preliminary

observations:

First, if g ∈ bL(S, d) and ‖g‖bL ≤ r, then ‖r−1g‖bL ≤ 1; from which

we can see that if µ and µ′ ∈ P(S), and g ∈ bL(S, d) with ‖g‖bL ≤ r,

then |〈µ, g〉 − 〈µ′, g〉| ≤ r%FM(µ, µ′).

Call h : S ⊃ C → R K-Lipschitz on C if |h(x)− h(x′)| ≤ Kd(x, x′) for

all pairs x, x′ ∈ C. Below we make use of

Lemma 6.1. Let {gn}n∈N be a collection of measurable real functions

on S, and let {µn}n∈N∪{µ} ⊂ P(S). We have |〈gn, µn〉−〈gn, µ〉| → 0

as n→∞ whenever the following three conditions hold.

1. µn → µ in w(P(S), bC(S)),

2. ∃M <∞ such that |gn| ≤M for all n ∈ N, and

3. for each compact C ⊂ S, there exists a K <∞ such that every

gn is K-Lipschitz on C.
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Proof. Pick any ε > 0. As S is separable and completely metriz-

able, any convergent sequence in P(S) is tight (Dudley, 2002, The-

orem 11.5.3), and we can take a compact C ⊂ S such that supn µn(S \
C) ≤ ε and µ(S \C) ≤ ε. Moreover, the Skorohod–Dudley representa-

tion yields a probability space (Ω,F ,P) and S-valued random variables

(Xn)∞n=1 and X with Xn (resp., X) having distribution µn (resp., µ)

and such that Xn → X as n→∞ holds P-almost surely. Let E denote

expectation with respect to P.

Observe that

|〈gn, µn〉 − 〈gn, µ〉| = |E gn ◦Xn − E gn ◦X| ≤ E |gn ◦Xn − gn ◦X|.

The far right term can be decomposed as

(6) E |gn ◦Xn − gn ◦X|1{Xn ∈ C and X ∈ C}

+ E |gn ◦Xn − gn ◦X|1{Xn /∈ C or X /∈ C}.

Since |gn| ≤M and

|gn ◦Xn − gn ◦X|1{Xn ∈ C and X ∈ C} ≤ Kd(Xn, X),

the Dominated Convergence Theorem implies that the first term in (6)

converges to zero. Regarding the second term, we have

|gn◦Xn−gn◦X|1{Xn /∈ C or X /∈ C} ≤ 2M(1{Xn /∈ C}+1{X /∈ C}).

∴ 0 ≤ lim sup
n→∞

|〈gn, µn〉 − 〈gn, µ〉| ≤ 4Mε.

As ε is arbitrary the claim is proved. �

Proof of Proposition 4.1. First we verify Assumption 3.1. To do so,

pick any (θ, µ) in N×P(S), and any sequence (θn, µn)∞n=1 ⊂ N×P(S)

converging to (θ, µ). Let h ∈ bL(S, d), ‖h‖bL ≤ 1. We need to show

that

(7) |〈µnPθn , h〉 − 〈µPθ, h〉| = |〈Pθnh, µn〉 − 〈Pθh, µ〉| → 0 (n→∞).

This will be true if each of the terms in the dominating sum

(8) |〈Pθnh, µn〉 − 〈Pθnh, µ〉|+ |〈Pθnh, µ〉 − 〈Pθh, µ〉|

converges to zero.
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Claim 1. Under the hypotheses of the proposition, the first term in

(8) converges to zero as n→∞.

Define gn(x) := Pθnh(x). Evidently |gn| ≤ |h| ≤ 1, and

|gn(x)− gn(x′)| =
∣∣∣∣∫ h(Tθn(x, z))ψθn(dz)−

∫
h(Tθn(x′, z))ψθn(dz)

∣∣∣∣
≤

∫
|h(Tθn(x, z))− h(Tθn(x′, z))|ψθn(dz)

≤
∫
d(Tθn(x, z), Tθn(x′, z))ψθn(dz).

Assumption 4.1 now gives

(9) |gn(x)− gn(x′)| ≤ λd(x, x′), ∀x, x′ ∈ S, ∀n ∈ N.

It follows that gn ∈ bL(S, d) and ‖gn‖bL ≤ 2 for all n; and hence

|〈Pθnh, µn〉 − 〈Pθnh, µ〉| = |〈gn, µn〉 − 〈gn, µ〉| ≤ 2%FM(µn, µ) → 0.

Claim 2. Under the hypotheses of the proposition, the second term

in (8) converges to zero as n→∞.

Clearly

|〈Pθnh, µ〉 − 〈Pθh, µ〉|

≤
∫ ∣∣∣∣∫ h(Tθn(x, z))ψθn(dz)−

∫
h(Tθ(x, z))ψθ(dz)

∣∣∣∣µ(dx).

Fix x ∈ S and consider the term inside the absolute value symbols. It

is dominated by

(10)

∣∣∣∣∫ h(Tθn(x, z))ψθn(dz)−
∫
h(Tθ(x, z))ψθn(dz)

∣∣∣∣
+

∣∣∣∣∫ h(Tθ(x, z))ψθn(dz)−
∫
h(Tθ(x, z))ψθ(dz)

∣∣∣∣ .
From Assumption 4.3, the first term in this sum is bounded above by

(11)

∫
|h(Tθn(x, z))− h(Tθ(x, z))|ψθn(dz)

≤
∫
d(Tθn(x, z), Tθ(x, z))ψθn(dz) ≤ δ(e(θn, θ)).
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Since |h| ≤ 1, the second term in the sum (10) is bounded above by

‖ψθn − ψθ‖, where ‖ · ‖ is the total variation norm on P(Z).

Since x ∈ S was arbitrary and µ is a probability measure we have

(12) |〈Pθnh, µ〉 − 〈Pθh, µ〉| ≤ δ(e(θn, θ)) + ‖ψθn − ψθ‖.

Claim 2 now follows from Assumptions 4.3 and 4.4. The required

continuity of (θ, µ) 7→ µPθ is verified.

Next we prove Assumptions 3.2 and 3.3 with V (x) = W (x) = d(x, x0)

and M = L/(1 − λ). Bounded compactness of S implies that V ∈
L (S). For fixed x ∈ S we have

PθV (x) =

∫
V (Tθ(x, z))ψθ(dz)

=

∫
d(Tθ(x, z), x0)ψθ(dz)

≤
∫
d(Tθ(x, z), Tθ(x0, z))ψθ(dz) +

∫
d(Tθ(x0, z), x0)ψθ(dz)

≤ λV (x) + L.

Since x was arbitrary, we have

PθV ≤ λV + L pointwise on S.

Iterating on this inequality, and using the fact that Pθ is positive and

linear with Pθ1S = 1S, we get

P t
θV ≤ λtV + λt−1L+ λt−2L+ · · ·+ L.

This and the fact that λ and L are independent of θ with λ < 1 provides

the uniform bound

sup
θ∈N

sup
t≥1

P t
θV ≤ V +

L

1− λ
.

In particular, for x = x0 we get supθ∈N supt≥1 P
t
θV (x0) ≤ L/(1 − λ),

which verifies Assumption 3.2.

Now let Vn := V ∧ n be the n-th truncation of V , and let µθ be the

stationary distribution corresponding to θ. Since Vn ∈ bC(S), ∀n ∈ N,
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Lemma 4.1 and the definition of convergence in w(P(S), bC(S)) imply

that

(13) lim
t
P t

θVn(x0) =

∫
Vndµθ.

Also, since Pθ and hence P t
θ are positive operators, we have P t

θVn(x0) ≤
P t

θV (x0), which in turn is bounded by L/(1− λ). The Monotone Con-

vergence Theorem now gives∫
V dµθ = lim

n

∫
Vndµθ = lim

n
lim

t
P t

θVn(x0) ≤
L

1− λ
, ∀θ ∈ N.

Assumption 3.3 is therefore satisfied with W (x) = V (x) = d(x, x0) and

M = L/(1− λ). �

Proof of Proposition 5.1. First we verify Assumption 3.1. As in the

proof of Proposition 4.1, let (θ, µ) ∈ N ×P(S), and let (θn, µn)∞n=1 ⊂
N×P(S) be a sequence converging to (θ, µ). Fix h ∈ bL(S, d), ‖h‖bL ≤
1. As in the proof of Assumption 3.1 in Proposition 4.1, we proceed by

establishing that both terms in (8) converge to zero.

Claim 1. Under the hypotheses of the proposition, the first term in

(8) converges to zero as n→∞.

To prove Claim 1, define again gn(x) := Pθnh(x). Under this notation,

we are seeking to establish that

|〈gn, µn〉 − 〈gn, µ〉| → 0 (n→∞).

This will hold if the conditions of Lemma 6.1 are established. Since

µn → µ by hypothesis, we need only check Conditions 2 and 3 of the

lemma. Evidently |gn| ≤ |h| ≤ 1 Moreover, by ‖h‖bL ≤ 1,

|gn(x)− gn(x′)| =
∣∣∣∣∫ h(Tθn(x, z))ψθn(dz)−

∫
h(Tθn(x′, z))ψθn(dz)

∣∣∣∣
≤

∫
|h(Tθn(x, z))− h(Tθn(x′, z))|ψθn(dz)

≤
∫
d(Tθn(x, z), Tθn(x′, z))ψθn(dz).

Pick any compact C ⊂ S. Assumption 5.2 gives

(14) |gn(x)− gn(x′)| ≤ Kd(x, x′), ∀x, x′ ∈ C, ∀n.
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Condition 3 of Lemma 6.1 then holds, and the claim is proved.

Claim 2. Under the hypotheses of the proposition, the second term

in (8) converges to zero as n→∞.

To prove the claim, note that |〈Pθnh, µ〉 − 〈Pθh, µ〉| is equal to∣∣∣∣∫ ∫
h(Tθn(x, z))ψθn(dz)µ(dx)−

∫ ∫
h(Tθ(x, z))ψθ(dz)µ(dx)

∣∣∣∣
≤

∫ ∣∣∣∣∫ h(Tθn(x, z))ψθn(dz)−
∫
h(Tθ(x, z))ψθ(dz)

∣∣∣∣µ(dx).

If we fix x ∈ S and define

rn(z) := h(Tθn(x, z)), r(x) = h(Tθ(x, z)),

then by the Dominated Convergence Theorem it is sufficient for Claim

2 to show that

|〈rn, ψn〉 − 〈r, ψ〉| → 0 (n→∞),

where we are writing ψn for ψθn and ψ for ψθ. But

|〈rn, ψn〉 − 〈r, ψ〉| ≤ |〈rn, ψn〉 − 〈rn, ψ〉|+ |〈rn, ψ〉 − 〈r, ψ〉|.

Moreover, that |〈rn, ψ〉−〈r, ψ〉| → 0 is immediate from Assumption 5.1

and the Dominated Convergence Theorem. Hence it remains only to

show that

(15) |〈rn, ψn〉 − 〈rn, ψ〉| → 0 (n→∞).

That this holds true under the total variation convergence of ψn to

ψ in the first condition of Assumption 5.4 is immediate. Let us now

establish the same under the alternative hypothesis in Assumption 5.4.

We check the conditions of Lemma 6.1. That ψn → ψ in w(P(S), bC(S))

is true by hypothesis. Evidently |rn| ≤ |h| ≤ 1, so Condition 2 of the

lemma holds. Moreover, by ‖h‖bL ≤ 1,

|rn(z)− rn(z′)| ≤ d(Tθn(x, z), Tθn(x, z′)).

Fix C ⊂ S, compact. Assumption 5.4 gives

(16) |rn(z)− rn(z′)| ≤ Jd(z, z′), ∀z, z′ ∈ C, ∀n.

Condition 3 of the lemma therefore holds, and the claim is verified.
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Now we argue that Λ(θ) is nonempty for each θ ∈ N . An identical

argument to the iterative procedure used in the proof of Proposition 4.1

yields

(17) sup
θ∈N

sup
t≥1

P t
θV (x) ≤ V (x) +

L

1− λ
.

Moreover, it is easy to see that Assumption 5.2 implies Pθ is Feller

for each θ ∈ N (see Stokey, Lucas and Prescott, 1989, p. 220 for a

definition). Existence of a stationary distribution µθ now follows from

Meyn and Tweedie (1993, Proposition 12.1.3). Clearly Assumption 3.2

is also verified by (17).

It only remains to check Assumption 3.3 under the hypothesis that

Λ(θ) = {µθ} is single-valued. Define from Pθ the new operator P̄θ by

P̄θ := t−1
∑t

j=1 P
j
θ . By Meyn and Tweedie (1993, Proposition 12.1.4),

δxP̄
t → µθ as t→∞ for all x ∈ S. Repeating exactly the verification of

Assumption 3.3 in Proposition 4.1, but replacing Pθ by P̄θ, we can see

that Assumption 3.3 also holds under the hypotheses of Proposition 5.1.

The proof is done. �
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