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Abstract. This paper studies a Monte Carlo algorithm for com-

puting distributions of state variables when the underlying model

is a Markov process. It is shown that the L1 error of the esti-

mator always converges to zero with probability one, and often at

a parametric rate. A related technique for computing stationary

distributions is also investigated.

Journal of Economic Literature Classifications: C15, C22, C63

1. Introduction

Many models of economic and financial processes are both stochastic

and dynamic. The system for the state variables often has a Markov

structure, and when shocks are nondegenerate, or when the set of

agents has positive measure, the distribution of the state is nonde-

generate over some subset of Rn. This distribution may indicate the

dispersion of asset holdings, wealth, capital, wages or other such at-

tributes across agents; or the probabilities of future outcomes for the

state.
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2 JOHN STACHURSKI

In recent years, computing these distributions themselves—rather than

just moments and other summary statistics—has become an increas-

ingly important computational task. In terms of computer time, per-

haps the most important source of demand is simulation-based econo-

metric and statistical techniques such as maximum likelihood, where

distributions are evaluated numerically and then compiled into likeli-

hood functions for optimization. Typical examples are Elerain, Chib

and Shephard (2001) and Hurn, Lindsay and Martin (1999), who in-

vestigate simulation-based techniques for estimating the parameters of

stochastic differential equations.

Another source of interest in distributions stems from the need to in-

spect the output of artificial economies. Distributions provide a com-

plete description of event probabilities at a given point in time, or of

cross-sectional outcomes in heterogeneous agent models. One example

is the study of firm size dynamics, such as found in Rossi-Hansberg and

Wright (2005). Much of that paper considers questions specific to dis-

tributions, including relating the weight in the tails of size distributions

to human capital shares and other features.

Another example of the increased interest in computing distributions

is the rapidly growing field of density forecasting. Many central banks

now produce inflation density forecasts rather than point estimates.

With these densities one can assess the implied likelihood of different

inflation outcomes, or integrate loss functions. Predictive densities

therefore permit more satisfactory evaluation of policy decisions than

do moments alone.

In this paper we explore the so-called “look-ahead” estimator, a Monte

Carlo method due to Glynn and Henderson (2001) for computing nu-

merically the distributions of state variables from a given model. As

with other simulation-based techniques, the method can be used to ex-

amine the predictive aspects of models too complex to admit analytical
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solution. It can also be viewed as a complement to discretization tech-

niques for solving nonlinear models, although the domain of application

is not identical.

Our focus is on the global convergence properties of the look-ahead

estimator, a proper understanding of which is essential for assessing

numerical error. Arguably the most important global measure of error

for this estimator is the L1 distance between the estimator and target

distribution. By applying a famous concentration of measure inequal-

ity due to McDiarmid, we are able to show that the L1 error always

converges to zero with probability one.

Second, we establish rates of convergence for expected L1 and inte-

gral mean squared error for a large class of models. These rates are

strictly faster than those obtained for nonparametric kernel density es-

timators when the latter are used to compute distributions of Markov

models. As such, the estimator should prove extremely useful for sim-

ulated maximum likelihood and other computer intensive statistical

techniques.

Several applications are used to illustrate the main theorems. These

include a discretized diffusion processes studied by Elerain, Chib and

Shephard (2001), a threshold autoregression, a model of commodity

price dynamics under a rational expectations due to Samuelson (1971)

and Deaton and Laroque (1992), and a simple (but nonstationary)

version of Brock and Mirman’s (1972) stochastic optimal growth model.

The paper is structured as follows. Section 2 gives an overview of the

problem and construction of the look-ahead estimator, as well as a

review of known properties. Section 3 formulates the general model

and introduces the key assumptions. Section 4 considers probability

one convergence for global error measures. Section 5 gives rates of

convergence for global error measures. Section 6 provides applications.

Proofs are given in Section 7.
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2. Outline of the Problem

Let’s take for now our primitive as a model which, after the relevant

decision problems have been solved, can be expressed as

(1) Xt = Ht(Xt−1,Wt), X0 = x0 given , Wt ∼ ϕ.

HereXt takes values in S ⊂ Rk andWt takes values in Z ⊂ Rj, whileHt

maps S×Z → S. We assume that the shocks (Wt)t≥1 are independent

over time and identically distributed (iid) with common distribution

ϕ; and x0 is a fixed point in S.1

Although (1) is a discrete time model, other models of interest include

continuous time diffussions of the form

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt

with X0 = x0 given and t 7→ Wt a Weiner process. When solving for

distributions of these models numerically, a standard technique is to

discretize the time parameter along a suitably fine grid. The discretized

model is in the form of (1) when Ht is appropriately defined.

When analytical results are unavailable, one can still explore the impli-

cations of (1) by computing distributions of the state variables (Xt)t≥0.

The distribution ψT of XT provides a complete description of the prob-

abilities implied by the model for time T events; or of the dispersion of

features across the population in a heterogeneous agent model. If (1)

is stationary and ergodic, another common exercise is computation of

the stationary (invariant) distribution for the state, which we denote

ψ∞. The issues here are mathematically more subtle but conceptually

very similar, and we discuss them in detail below.

1The iid restriction on the shocks and the fact that the state variable only enters

with one lag may seem restrictive. In fact any vector-valued discrete time Markov

process can be expressed in the form of (1) by suitably adjusting the definition of

the state. In either case, the main theory in Section 3 considers a general discrete

time Markov process.
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2.1. Marginal Distributions. Let T ∈ N and let ψT denote the dis-

tribution of the S-valued random variable XT defined inductively by

(1). A common procedure for computing ψT is to first discretize the

state space onto a grid of size n. One can then either derive for each

t a Markov matrix on the grid which approximately represents the

probabilistic dynamics in (1) and solve out for the implied distribution

ψn
T by matrix multiplication; or apply quadrature-type techniques to

approximate the relevent integral operators.

Discretization has both advantages and disadvantages. Discrete com-

putations are usually fast, and at times globally convergent. On the

other hand, bounds on the deviation of ψn
T from ψT are almost always

difficult to obtain. In numerical analysis, quantitative error bounds

which can be inferred from the model primitives are often as impor-

tant as asymptotic convergence results.

An alternative approach is Monte Carlo simulation, which usually be-

gins by drawing n independent observations (X1
T , . . . , X

n
T ) of the time

T state by the following straightforward procedure:

for m in 1 to n do

set X = x0

for t in 1 to T do

draw W ∼ ϕ and set X = Ht(X,W )

endfor

set Xm
T = X

endfor

By definition each Xm
T is a draw from the target distribution ψT . With

the sample, one can construct a histogram, an empirical distribution

function, or a nonparametric kernel density estimate such as

(2) fn
T (y) :=

1

n · δn

n∑
m=1

K

(
y −Xm

T

δn

)
,

where K is a probability density, and the “bandwidth” parameter δn

is chosen so that nδn → 0 as n→∞.
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Regarding (2), it is well-known that—at least when ψT is a density—we

always have |fn
T (y)−ψT (y)| → 0 as n→∞ with probability one for all

y ∈ S. Further, probability one (almost sure) convergence to zero also

holds for the L1 error
∫
|fn

T − ψT |, independent of the choice of kernel

K (cf., e.g., Devroye and Lugosi, 2001).

On the other hand, the finite sample properties of fn
T are not always

good. For example, the error E|fn
T (y)− ψT (y)| is known to be propor-

tional asymptotically to (nδn)−1/2, and since δn → 0 with n at a rate

that is sensitive to dimension of the state space S, the convergence rate

is strictly slower that O(n−1/2), and possibly much slower (Yakowitz,

1985). Slow convergence is common to many forms of Monte Carlo

simulation.

Fast convergence of a proposed estimator such as fn
T to ψT is particu-

larly important in applications such as simulated maximum likelihood,

where densities need to be computed for a large collection of param-

eters. Even when computing only a small number of distributions,

however, convergence rates can be slow when the state space is high-

dimensional, or when drawing variates from the state distributions is

computationally expensive. In addition, low probability regions of the

state space are rarely sampled, making it difficult to uncover features

of the distribution on these sets via simulation.2

Speed of convergence is also an issue when one wishes to compute

the expectation of loss (or utility) functions over the state space. For

example, if ` is a loss function on S, then one often evaluates E`(XT ) :=∫
`(y)ψT (y)dy using the statistic n−1

∑n
m=1 `(X

m
T ), where (Xm

T ) is an

iid sample as before. The worst case performance of this estimator is

2Another issue for fn
T is that poor choice of bandwidth or kernels can have sig-

nificant impact on rates of convergence and finite sample properties. Making good

choices depends on sufficient knowledge of the target density ψT . Such knowledge

is not always easy to acquire for marginal distributions of state variables when the

information at hand consists only of the laws of motion given in (1).
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in fact poor. If we restrict attention to loss functions bounded by some

constant M , then, for all n ∈ N,

(3) sup
|`|≤M

∣∣∣∣∣ 1n
n∑

m=1

`(Xm
T )−

∫
`(y)ψT (y)dy

∣∣∣∣∣ = 2M with prob. 1.

Here the supremum is over all Borel measurable ` : S → R with |`| ≤
M . In other words, the worst-case error fails to decrease, let alone

converge to zero, as n→∞.

The term n−1
∑n

m=1 `(X
m
T ) in (3) corresponds to integrating the func-

tion ` with respect to the empirical distribution function (EDF) asso-

ciated with the sample (Xm
T ). This EDF is an estimate of ψT . With

alternative estimators of ψT the worst-case bound (3) converges to zero

relatively quickly. We now turn to such an estimator.

2.2. The Look-Ahead Estimator. Improved performance of dis-

tribution estimators requires additional structure. In this paper we

obtain that structure by assuming that the conditional distribution

P (Xt−1, dy) ofXt givenXt−1 can be represented by density p(Xt−1, y)dy.

An elementary example of when this assumption holds is provided by

the Solow model

(4) kt = sAkα
t−1Wt, lnWt ∼ N(0, σ2),

where k is capital, and s, α and A are positive parameters. It is clear

that when kt−1 is taken as given, kt|kt−1 is lognormally distributed:

ln kt|kt−1 ∼ N(ln(sA)+α ln kt−1, σ
2). Thus, P (kt−1, dy) = p(kt−1, y)dy,

where

(5) p(kt−1, y) = (2πσ2)−1/2 1

y
exp

{
−(ln y − ln(sA)− α ln kt−1

2σ2

}
.

Returning to the general model, fix T ∈ N and suppose that the con-

ditional distribution of XT given XT−1 can be represented by density

pT (XT−1, y)dy. Using pT , Glynn and Henderson (2001) proposed the

following “look-ahead” estimation scheme for ψT . First, generate n in-

dependent draws of the state variable as above, but this time generate
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draws of XT−1 rather than of XT .3 Now calculate

(6) ψn
T (y) :=

1

n

n∑
m=1

pT (Xm
T−1, y).

That ψn
T is a natural estimator of ψT follows from the well-known

Markov identity

(7) E pT (XT−1, y) = ψT (y), ∀y ∈ S.

A short proof of (7) is given below, but the intuition is relatively simple:

If ψT (y) is thought of as the probability of observing y at T , then this

should be equal to the probability pT (x, y) of going from x at T−1 to y

at T , summed over x and weighted by the probability that XT−1 = x;

and this is precisely the left hand side of (7).

From (6) and (7) we have Eψn
T (y) = 1

n
nψT (y) = ψT (y) at each point y,

so that ψn
T is pointwise unbiased. Moreover, the law of large numbers

implies that, with probability one,

(8) ψn
T (y) =

1

n

n∑
m=1

pT (Xm
T−1, y) → EpT (XT−1, y) = ψT (y)

as n→∞. In other words, ψn
T (y) is a consistent estimator of ψT (y) at

each point y ∈ S.

Notice that ψn
T makes use of the structure of the model as embodied

in pT —a key aspect of efficient computation. In contrast to fn
T there

is no bandwidth parameter, nor any need to choose a kernel K. These

two features suggest that ψn
T will have good finite sample properties to

match the asymptotic result (8). Indeed, the Central Limit Theorem

implies that when suitable second moment restrictions are satisfied, the

error E|ψn
T (y)− ψT (y)| is asymptotically O(n−1/2), independent of the

dimension of the state space S.

3Hence the name “look-ahead.”
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Figure 1. The Look-Ahead Estimator.

Figure 1 compares realizations of ψn
T and fn

T with the actual time T

density ψT for the Solow model (4).4 We argued that the distribution

for the current state kt given kt−1 is the lognormal density p(kt−1, y)dy

in (5). Given this function p, and using samples as the vector which

contains the draws of the time T − 1 state, the look-ahead estimate

ψn
T (y) is evaluated for Figure 1 (using the language R) by

look_ahead = function(y) {

q = numeric(n) # vector of length n

for (i in 1:n) q[i] = p(samples[i],y)

return( mean(q) )

}

4In the figure, the parameters are α = 0.3, A = 2, σ = 0.11, and s = 0.2.
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In Figure 1 the estimates of ψT are for T = 2. The initial condition ψ0

has been deliberately chosen as multi-modal, making ψ2 multi-modal

and increasing the complexity of the approximation problem.5 Despite

this complexity, the combination of log-linearity and log-normality

means that an analytical solution for ψT is also available for compari-

son, and this is plotted using the ◦ symbol. The look-ahead estimate

ψn
T is the unbroken line. Although the sample size is tiny by Monte

Carlo standards (n = 100), the estimator closely follows the actual

density.

The broken line in Figure 1 is a kernel density estimate fn
T of the form

given in (2). In this case we are using the default algorithm in R.6 The

kernel density estimate uses the same draw of shocks as the look-ahead

estimate, and the same sample size (n = 100). At least for this default

algorithm, convergence is much slower.7

This paper analyzes extensively the convergence properties of the look-

ahead estimator. We concentrate on global error, that is, on conver-

gence of the function ψn
T to ψT . Of primary interest is the L1 error,

which is given by

‖ψn
T − ψT‖ :=

∫
S

|ψn
T (y)− ψT (y)|dy.

In contrast to the integral mean squared error, this measure is always

well-defined. Further, Scheffés identity provides a natural quantitative

interpretation. That is, ‖ψn
T − ψT‖ = 2× supB |

∫
B
ψn

T −
∫

B
ψT |, where

5We are using ψ0 = (1/3)(f1 + f2 + f3), where fi is lognormal with parameters

µi and σi; µ1 = −4, σ1 = 1, µ2 = 3, σ2 = 1, µ3 = 7, σ3 = 0.5.
6The kernel K is Gaussian, and the bandwidth is selected according to the

rule-of-thumb δn = 1.06 min(σ̂n, R̂n/1.34)n−1/5, where σ̂n is the sample standard

deviation, and R̂n is the inter-quartile range.
7Of course the nonparametric kernel estimator is far more general, and, moreover,

careful choice of bandwidth and kernel will lead to faster convergence. The point

is that when the look-ahead estimator is applicable, it automatically incorporates

model structure, while for the kernel estimator including enough structure to obtain

similar rates of convergence is in general a nontrivial exercise.
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the supremum is over all Borel subsets of the state space S. It follows

that if ‖ψn
T − ψT‖ ≤ ε, then for any event B of interest the deviation

in the probability assigned to B by the approximate density ψn
T from

that assigned by the true density ψT is less than ε/2.

We prove for the first time that ψn
T always converges to ψT in L1 with

probability one as n→∞. The proof is based on McDairmid’s famous

concentration of measure inequality. In addition, we provide rates of

convergence for global error measures. We prove that for a wide class

of models the expected L1 error (respectively, the integral mean square

error) is O(n−1/2) (respectively, O(n−1)). For some common models

we provide upper bounds on the L1 and integral mean square error in

terms of the functions Ht and the distribution ϕ of the shock in the

benchmark (1).

2.3. Computation of Stationary Distributions. In some cases the

model is stationary over time (Ht = H for all t) and ergodic, in the

sense that the distribution ψt of Xt converges to some limiting dis-

tribution ψ∞ (usually called the stationary or invariant distribution)

independent of initial conditions. For such models the stationary dis-

tribution has the interpretation of long-run stochastic equilibrium, and

hence is of central interest to researchers.

As Glynn and Henderson (2001) point out, the look-ahead estimator

can often be applied. Precisely, let p(Xt−1, y)dy again be the condi-

tional density of Xt given Xt−1 as implied by Xt = H(Xt−1,Wt), and

let (X1, . . . , Xn) be a series drawn recursively from Xt = H(Xt−1,Wt).

They propose the estimator

(9) ψn
∞(y) :=

1

n

n∑
t=1

p(Xt, y).

Notice that we are now summing over time, rather than across inde-

pendent samples of the state at a fixed point in time.
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The intuition for ψn
∞ is as follows. As discussed above, a stationary

density for the model Xt = H(Xt−1,Wt) is defined as a density ψ∞

satisfying

(10)

∫
p(x, y)ψ∞(x)dx = ψ∞(y), ∀ y ∈ S.

When a stationary density exists, and moreover, ψt → ψ∞ in L1 as

t→∞, we also have the correlated law of large numbers result

(11)
1

n

n∑
t=1

w(Xt) →
∫
w(x)ψ∞(x)dx as n→∞,

where w is any measurable function with
∫
w(x)ψ∞(x)dx finite, and

convergence is with probability one. As a result,

(12) ψn
∞(y) =

1

n

n∑
t=1

p(Xt, y) →
∫
p(x, y)ψ∞(x)dx = ψ∞(y)

with probability one as n→∞. Thus the look-ahead estimator ψn
∞ is

again seen to be a very natural estimator, and Glynn and Henderson

establish strong finite sample and asymptotic properties under reason-

able assumptions. We extend their analysis by establishing almost sure

L1 convergence to the true density under weaker conditions than pre-

vious results.

3. The General Model

The state space is any separable and completely metrizable topological

space S. Let B denote the Borel sets of S, and let (S,B) be endowed

with a σ-finite measure µ. Typically S is a Borel subset of Rk, in which

case µ will always be the Lebesgue measure. To emphasize this, when

integrating over S with respect to µ, we write dx for µ(dx), dy for

µ(dy), etc.; and
∫

in place of
∫

S
.

As usual, L1(S,B, µ) is the set of real, B-measurable functions f : S →
R such that f is µ-integrable. The set of densities on S is the set of

ψ ∈ L1(S,B, µ) with ψ ≥ 0 and
∫
ψdµ = 1. In all of what follows, ‖ · ‖

is the standard L1 norm, so that ‖f‖ =
∫
|f |dµ.
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A distribution on S is a probability measure on (S,B). A stochastic

kernel is a family of distributions P (x, dy) on S, ∀x ∈ S, with the

property that x 7→ P (x,B) is Borel measurable for each B ∈ B. The

standard interpretation is that P (x, dy) is the probability distribution

of tomorrow’s state given that the current state is x. For example, in

the case of (1) we have

(13) Pt(x,B) = ϕ{z ∈ Z : Ht(x, z) ∈ B}.

Although (1) is the basic model we envisage in applications, for the sake

of generality we take as our formal primitive a discrete time Markov

chain (Xt)t≥0 on S defined by initial condition x0 ∈ S and stochastic

kernels (Pt)t≥1. That is,

(14) X0 = x0 and then, recursively, Xt ∼ Pt(Xt−1, dy).

When the sequence (Pt) is defined by (13), the stochastic process (Xt)

generated by (1) and the sequence defined in (14) coincide.

A more precise formulation of (14) is as follows. Given initial con-

dition x0 and sequence of kernels (Pt)t≥1, there exists a probability

space (Ω,F ,P) and a sequence of S-valued random variables (Xt)t≥0

on (Ω,F ,P) with the property that X0 = x0 and

(15) P{Xt ∈ B |Ft−1} = P{Xt ∈ B |Xt−1} = Pt(Xt−1, B),

for all t ≥ 1 and all B ∈ B. Here (Ft)t≥0 is the natural filtration,

so that Ft := σ(X0, . . . , Xt). Every discrete time Markov chain can

be represented in this way, and we refer the reader to texts such as

Durrett (1996, Chapter 5) for further background.

A density kernel p on S is a measurable map p : S × S → [0,∞) such

that p(x, y)dy is a density on S for every x ∈ S. We now state our

main assumption, which is viewed as holding throughout the rest of

the paper without need for citation.
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Assumption 3.1. For each stochastic kernel Pt in (Pt)t≥1, there exists

a density kernel pt which represents it. Precisely,

(16) Pt(x,B) =

∫
B

pt(x, y)dy, ∀B ∈ B, ∀x ∈ S.

At this point we can verify Equation (7). To do so, take expectations

of both sides of (15) to get P{Xt ∈ B} = EPt(Xt−1, B). From this

expression, (16) and Fubini’s Theorem we have

(17) P{Xt ∈ B} =

∫
B

E pt(Xt−1, y)dy, ∀B ∈ B.

From (17) it is clear that the distribution ofXt is represented by density

ψt(y)dy := E pt(Xt−1, y)dy, for every t ≥ 1.

Following (6), the T -step look-ahead (TSLA) estimator is the random

density function ψn
T defined by ψn

T (y) := 1
n

∑n
m=1 pT (Xm

T−1, y), where

X1
T−1, . . . , X

n
T−1 are iid draws from ψT−1. If pt = p for all t, then

the stationary distribution look-ahead (SDLA) estimator is the ran-

dom density function ψn
∞ defined by ψn

∞(y) := 1
n

∑n
t=1 p(Xt, y), where

now we are now summing over a time series draw, rather than across

independent samples of the state at a fixed point in time.8

4. Almost Sure Global Convergence

As discussed above, the L1 error ‖ψn
T − ψT‖ is arguably the most im-

portant measure of error for density estimators. Glynn and Henderson

(2001) establish that the L1 error of the TSLA ψn
T always converges to

zero in probability and in expectation. They also prove the stronger

notion of almost sure convergence when pT is uniformly continuous and

bounded on S × S. In fact almost sure L1 convergence always holds:

Theorem 4.1. The TSLA ψn
T converges in L1 to ψT with probability

one as n→∞.

8In other words, X1, . . . , Xn obeys (14).
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Now consider almost sure L1 convergence for the look-ahead estimator

of the stationary distribution. We require some minimal conditions

on the Markov chain to ensure that its time series satisfy the strong

law of large numbers. To state them, extra definitions are necessary.9

Suppose for now that pt = p for all t. A density ψ∞ is called stationary

for p if (10) holds; that is, if
∫
p(x, y)ψ∞(x)dx = ψ∞(y) holds for all

y ∈ S. Let (Xt)t≥0 be the Markov chain generated by p and initial

condition X0 = x0 ∈ S. For this chain define

L(x0, A) := P ∪t≥1 {Xt ∈ A}.

The chain is called irreducible if there exists a nontrivial measure λ

on (S,B) such that L(x0, A) > 0 for all x0 ∈ S and all A ∈ B with

λ(A) > 0; and Harris recurrent if L(x0, A) = 1 for all x0 ∈ A whenever

A ∈ B and λ(A) > 0. A Harris recurrent chain with a stationary

distribution is called positive Harris. (For Harris chains the stationary

distribution is necessarily unique.)

Assumption 4.1. The model is time homogeneous: pt = p for all t.

The Markov chain (Xt)t≥0 generated by p is positive Harris.

This positive Harris assumption is sufficient to obtain a law of large

numbers result for the series (Xt)t≥0: By Meyn and Tweedie (1993,

Theorem 17.1.7), if (Xt)t≥0 is positive Harris with stationary distribu-

tion ψ∞, then for every function w : S → R with
∫
|w|dψ∞ < ∞ we

have 1
n

∑n
t=1w(Xt) →

∫
w(x)ψ∞(x)dx almost surely as n → ∞. (In

fact the converse is true, in the sense that when a stationary distri-

bution exists and the law of large numbers holds for all such w then

(Xt)t≥0 is positive Harris. In this sense the positive Harris assumption

is minimal for our purposes.)

For positive Harris chains, Glynn and Henderson (2001) proved almost

sure L1 convergence of the SDLA ψn
∞ to ψ∞ when p is uniformly contin-

uous and bounded on S × S. Here we show that the same result holds

9See Meyn and Tweedie (1993) for further details.
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under the following condition, which is weaker than uniform continuity

and independent of boundedness.

Assumption 4.2. Let d metrize S. The kernel p is continuous in y

uniformly in x. Precisely, for all ε > 0 and all y ∈ S, there is a δ > 0

such that d(y′, y) < δ implies supx∈S |p(x, y)− p(x, y′)| < ε.

Theorem 4.2. If Assumptions 4.1 and 4.2 hold, then the SDLA ψn
∞

converges in L1 to ψ∞ with probability one.

5. Rates of Convergence

Asymptotic convergence results are reassuring, but without bounds

on the rate of convergence they provide no guidance on finite sample

properties, or when algorithms should be terminated. In this section

we examine rates of convergence, and bounds on global error measures

such as expected L1 error or integral mean squared error.

Consider first the expected L1 error for the TSLA ψn
T . In macroeco-

nomics it is common to deal with continuous models on compact state

spaces.10 Our first result shows that for these and some related models,

the expected L1 error is O(n−1/2).

Theorem 5.1. If pT is bounded by K on S × S, then

E‖ψn
T − ψT‖ ≤

√
1

n
Kµ(S).

Clearly this bound is only useful when µ(S) < ∞. To deal with more

general state spaces, we require that the shock is additive with expo-

nentially decreasing tails. In addition, a mild restriction is placed on

the growth rate of the law of motion:

10See, for example, Brock and Mirman (1972), or Stokey, Lucas and Prescott

(1989, Chapter 13).
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Assumption 5.1. Let S = Z = Rk, and let Xt = gt(Xt−1) + Wt,

where Wt is distributed according to some density ϕ on Rk, the map

gt : Rk → Rk is measurable for all t, and, for some norm ‖ · ‖ on Rk,

(i) ∃α,L > 0 s.t. ‖gt(x)‖ ≤ α‖x‖+L for all t ∈ N, all x ∈ Rk; and

(ii) ∃K, % > 0 s.t. ϕ(z) ≤ K exp(−%‖z‖2) for all z ∈ Rk.

Theorem 5.2. Let (Xt) be the sequence in Assumption 5.1, where X0

is a constant x0 ∈ S, let ψT be the density of XT , and let ψn
T be the

TSLA of ψT . If Assumption 5.1 holds, then E‖ψn
T − ψT‖ = O(n−1/2).

Another common measure of global error is the integral mean square

error, defined as

IMSE (ψn
t ) := E

∫
[ψn

t (y)− ψt(y) ]2 dy, t ∈ N ∪ {∞}.

We give a condition for the integral mean square error of the TSLA

to be O(n−1). This result cannot hold in complete generality, because

the IMSE is not always defined for target densities with heavy tails.

We therefore impose a restriction on the tails of the family of dis-

tributions pt(x, y)dy. Note that the rate O(n−1) compares well with

the optimal rate O(n−4/5) for nonparametric kernel density estimators

when the target density is twice differentiable and satisfies some tail

restrictions.11

Theorem 5.3. Let (pt)t≥1 be given and let T ∈ N be fixed. If ψn
T is

the TSLA of ψT , then IMSE (ψn
T ) = O(n−1) whenever

∫
pT (x, y)2 dy is

bounded above independent of x ∈ S. In particular,

(18) IMSE (ψn
T ) ≤ 1

n
· sup

x∈S

∫
pT (x, y)2 dy.

Notice that the rate does not depend on the dimension of S, although

the dimension may influence the size of the constants in the order term.

We give some applications of this result in Section 6.

11See, for example, van der Vaart (1998, Chapter 24).
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All of the preceding results pertain to the TSLA ψn
T . Our final result

of this section shows that for the SDLA ψn
∞ the expected L1 error

E‖ψn
∞ − ψ∞‖ is also O(n−1/2), at least when we restrict attention to

uniformly ergodic Markov chains on finite measure spaces.

Definition 5.1. Let Assumption 4.1 hold, so that pt = p for all t. The

Markov chain (Xt) generated by p and x0 is called uniformly ergodic if

p has a unique stationary distribution ψ∞, and, moreover, there exist

positive constants R and α, both independent of x0, such that α < 1

and, for all t,

(19) ‖ψt − ψ∞‖ ≤ Rαt.

We note that uniform ergodicity is equivalent to aperiodicity combined

with Doeblin’s condition (Meyn and Tweedie, 1996, Theorem 16.0.2).

A number of other useful sufficient conditions are also available, and

the reader is referred to Meyn and Tweedie (1996, Chapter 16).

Theorem 5.4. Let Assumption 4.1 hold, so that pt = p for all t, and

let the Markov chain (Xt) generated by p and x0 be uniformly ergodic.

If p is bounded by K on S × S, then the SDLA ψn
∞ satisfies

E‖ψn
∞ − ψ∞‖ ≤

√
4R

n(1− α)
Kµ(S),

where R and α are as in (19).

Again, this bound is only useful when µ(S) < ∞. The property of

O(n−1/2) convergence for the SDLA in more general situations is left

to future research.

6. Examples and Applications

6.1. Existence of Density Kernels. Consider Assumption 3.1, which

requires that each transition probability Pt(x, dy) has a density repre-

sentation pt(x, y)dy. When does this condition hold for the basic model
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(1)? In other words, when is Pt(x, dy) absolutely continuous with re-

spect to Lebesgue measure µ for given t and x? Since

(20) Pt(x,B) = ϕ{z ∈ Z : Ht(x, z) ∈ B} = ϕ(H−1
t (x,B)),

where H−1
t (x,B) ⊂ Z is the preimage of B under Ht(x, ·), what we

require is that this inverse map pulls Lebesgue null sets back into ϕ

null sets. If ϕ is itself a density, then it is sufficient that the inverse

map pulls Lebesgue null sets back into Lebesgue null sets, a property

known as nonsingularity.

Rather than focusing on nonsingularity, we develop a sufficient condi-

tion that holds in many applications, and has the advantage of pro-

viding an explicit representation for pt(x, y)dy. To start, note that

pt(x, y)dy must represent the distribution of the random variable Y :=

Ht(x,W ) when W ∈ Z is drawn according to ϕ. For all y ∈ S where

there is no z ∈ Z with Ht(x, z) = y we should have pt(x, y) = 0. The

remainder of S we denote Sx, and on this set we construct pt(x, y) by

a change of variable argument. The details are in the following lemma:

Lemma 6.1. For the model (1), let Z and S be open subsets of Rk, and

let ϕ be a density on Z. Let Sx := H(x, Z), the range of z 7→ H(x, z),

and let z 7→ Ht(x, z) be one-to-one for each x ∈ Sx. Define Gx : Sx → Z

to be the inverse mapping of this function. If Gx is a C1 function for

each x ∈ S, then Assumption 3.1 holds.12 Moreover, if Jx denotes the

Jacobian of Gx, then

(21) pt(x, y) =

ϕ[Gx(y)] · | det Jx(y)| if y ∈ Sx

0 otherwise,

This is an elementary change of variable result, and the proof is omit-

ted. The following corollary helps to illustrate application of the lemma.

12A function f from one open subset of Euclidean space to another is called C1

if it is continuously differentiable everywhere on its domain.
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Corollary 6.1. Assume that Z = S = Rk, that ϕ is a density on Z,

and that

(22) Xt = Ht(Xt−1,Wt) = gt(Xt−1) + Σt(Xt−1)Wt,

where gt : S → S is any Borel measurable function, and Σt(x) is an

invertible n× n matrix for all t and all x ∈ S. In this case,

(23) pt(x, y) = ϕ{Σt(x)
−1[y − gt(x)]} · | det Σt(x)

−1|

holds everywhere on S × S.

Example 6.1. Elerain, Chib and Shephard (2001) study the continu-

ous time diffusion processes

dYt = a(t, Yt)dt+ b(t, Yt)dWt,

where Yt is Rk-valued, t 7→ Wt is a standard Weiner process, and b

is everywhere strictly positive definite. To estimate parameters they

apply the Euler–Maruyama discretization, obtaining

Yt = Yt−1 + a(t− 1, Yt−1) + b(t− 1, Yt−1)Wt,

where Wt is standard normal. Corollary 6.1 clearly applies, and

pt(x, y) = ϕ{b(t− 1, x)−1[y − x− a(t− 1, x)]} · | det b(t− 1, x)−1|,

where ϕ is the standard normal density.

Example 6.2. Let Z = S = R, and consider the elementary smooth

transition threshold autoregression (STAR) model

(24) Xt = (β0 +β1Xt−1)(1−G(Xt−1))+(β′0 +β′1Xt−1)G(Xt−1)+σWt,

where (Wt)t≥1 is iid according to density ϕ on S, σ > 0, and G : S →
[0, 1] is a smooth transition function, such as the logistic function,

satisfying G′ > 0, limx→−∞G(x) = 0 and limx→∞G(x) = 1. Evidently

the conditions of Corollary 6.1 are satisfied, and from (23) we get

(25) pt(x, y) = p(x, y) = ϕ

{
y − g(x)

σ

}
1

σ
,

where g(x) := (β0 + β1x)(1−G(x)) + (β′0 + β′1x)G(x).
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Example 6.3. Next, consider the following model of a commodity

market due to Samuelson (1971) and Deaton and Laroque (1992). Total

supply of the commodity at time t is denoted Xt. There are two types

of consumers. The first buy for consumption, and their demand is Dt.

The second are speculators, who buy inventory It. After allowing for

depreciation δ, the speculators sell their remaining stock (1 − δ)It in

the following period. The sum of this and the harvest Wt+1 give total

supply next period:

(26) Xt+1 = (1− δ)It +Wt+1

The harvest is assumed iid with density ϕ on Z := (0,∞). Demand by

consumers is a function D(P ) of the price, which in turn is solved as

a rational expectations pricing functional P over the state space S :=

(0,∞) via abitrarge conditions. Thus, P (Xt) is the price that prevails

at time t, and demand by consumers is Dt = D(P (Xt)). Combining

this with the market equilibrium condition Xt = Dt + It and (26) we

get

(27) Xt+1 = (1− δ)[Xt −D(P (Xt))] +Wt+1.

From Lemma 6.1 it follows immediately that the corresponding density

kernel p exists, and is given by

p(x, y) = ϕ{y − (1− δ)[x−D(P (x))]}

whenever y − (1− δ)[x−D(P (x))] ≥ 0 and zero otherwise.

Example 6.4. Consider the optimal growth model of Brock and Mir-

man (1972). At t a representative household observes kt and divides it

between consumption ct and investment xt. Productivity At+1 is then

observed, and production takes place, yielding output At+1f(xt) at the

start of t+1. Here At := (1+γ)tWt, where γ is the rate of productivity

growth, and (Wt)t≥1 are iid on Z := (0,∞) with density ϕ.
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Let Π be the set of all Borel measurable h : [0,∞) → [0,∞) satisfying

0 ≤ h(k) ≤ k. These are the feasible policies, and each defines a process

(28) kt = Atf(h(kt−1)) + (1− δ)kt−1,

where δ ∈ (0, 1] is the depreciation rate. The agent has period utility

u and discount factor β; and chooses h to solve

(29) max
h∈Π

E

{
∞∑

t=0

βtu(cht )

}
,

where cht := kt − h(kt). Let u be bounded for simplicity.13 Let u and f

both be nonnegative, differentiable, strictly increasing, with u strictly

concave, limc→0 u
′(c) = ∞ and f(0) = 0. In this case it is known that

a solution h to (29) exists. Under standard conditions we also have

0 < h(k) < k for every k ∈ S.14 Suppose this is the case.

Consider the optimal dynamics for k on S := (0,∞), which are given by

the random sequence (28) under the optimal policy h. Since h(k) > 0

for all k ∈ S and f ′ > 0 we have f(h(k)) > 0 for all k ∈ S. Using this

fact one can verify the conditions of Lemma 6.1, and (21) gives us

(30) pt(x, y) = ϕ

{
y − (1− δ)x

(1 + γ)tf(h(x))

}
1

(1 + γ)tf(h(x))

when y > (1− δ)x and zero otherwise.

6.2. Stationary Distributions. Next we illustrate Assumption 4.1,

which imposes Harris recurrence. In doing so, let us note that by

Meyn and Tweedie (1993), Theorems 6.0.1(iii), 9.0.2 and 12.1.2(ii),

if S is a subset of Rk which contains an open set, if p is Feller and

13This is assumed here only for simplicity. As is well-known, many specific

models with unbounded utility can also be treated by dynamic programming on

the basis of assumptions constraining maximal growth rates under the stochastic

production function relative to the precise utility specification.
14For example, this is true when f is concave. Even when concavity fails, rea-

sonable sufficient conditions exist. See, for example, Nishimura and Stachurski

(2005).
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irreducible with respect to the restriction of Lebesgue measure to S,

and if the Markov chain (Xt)t≥0 generated by p is tight for all the initial

conditions X0 ≡ x0 ∈ S, then p is positive Harris.15

Example 6.5. Returning to the STAR model of Example 6.2, it is

easy to show that if ϕ is standard normal, for example, then p defined

in (25) is irreducible with respect to Lebesgue measure on R. Since G

is assumed continuous, p is also Feller. We now verify tightness under

the hypotheses α := max{|β1|, |β′1|} < 1 and E|Wt| <∞.

Simple algebra shows that there is a finite constant L such that

(31) |g(x)| ≤ α|x|+ L, ∀x ∈ S.

∴ Et−1|Xt| = Et−1|g(Xt−1) + σWt| ≤ α|Xt−1|+ L+ σ

∫
|z|ϕ(dz).

∴ E|Xt| ≤ αE|Xt−1|+ L′, L′ := L+ σ

∫
|z|ϕ(dz).

Iterating this inequality backwards in time to t = 0 we get

E|Xt| ≤ αt|x0|+
L′

1− α
.

∴ sup
t≥0

E|Xt| ≤ |x0|+
L′

1− α
.

Chebychev’s inequality now gives

P{|Xt| ≥ n} ≤ n−1

(
|x0|+

L′

1− α

)
, ∀n ∈ N.

Evidently (Xt) is tight, and the STAR model is positive Harris.

Example 6.6. Consider again the stochastic growth model in Ex-

ample 6.4. Let γ = 0, so that pt = p is stationary. It has been

shown (Nishimura and Stachurski, 2005) that this model is positive

Harris whenever the usual Inada conditions hold and both
∫
xϕ(dx)

and
∫
x−1ϕ(dx) are finite.

15Recall that a collection of random variables (Xt)t≥0 taking values in S is

called tight whenever, for each ε > 0, there is a compact subset K of S such

that supt≥0 P{Xt /∈ K} ≤ ε. Recall also that p is called (weak) Feller if x 7→∫
h(y)p(x, y)dy is continuous and bounded on S whenever h is.
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Now let’s turn to Assumption 4.2. A special but important case is

where S is an open subset of R. For this case it is easy to see that

Assumption 4.2 is satisfied whenever pt(x, y) is differentiable in y for

each (x, y) ∈ S × S, and

(32) ∀y ∈ S, ∃Ky ∈ R s.t.

∣∣∣∣∂pt(x, y)

∂y

∣∣∣∣ ≤ Ky, ∀x ∈ S.

Example 6.7. Consider the stochastic growth model of Example 6.4.

Let lnWt ∼ N(0, 1), and, for simplicity, let δ = 1. Notice that pt is

neither bounded nor uniformly continuous on S×S = (0,∞)×(0,∞).16

However, Assumption 4.2 holds, as can easily be verified via (32). In

fact, the representation (30) and some simple calculus shows that∣∣∣∣∂pt(x, y)

∂y

∣∣∣∣ ≤ Ky :=
1√

2πy2
, ∀x ∈ S.

Example 6.8. In the nonlinear autoregression (24), it is clear from

(25) that Assumption 4.2 holds whenever ϕ is differentiable on R and

ϕ′ is bounded.

Next we illustrate Assumption 5.1.

Example 6.9. In the STAR model Xt = g(Xt−1) +Wt, where

g(x) := (β0 + β1x)(1−G(x)) + (β′0 + β′1x)G(x), Wt ∼ N(0, σ2),

Assumption 5.1 is satisfied with α = max{|β1|, |β′1|}, L = max{|β0|, |β′0|},
K = (2πσ2)−1/2 and % = (2σ2)−1.

6.3. Quantitative Bounds. Finally, an application of Theorem 5.3

is given.

Proposition 6.1. Consider the model (22), where Σt(x) is positive

definite for all t and x. Let (pt)t≥1 be the corresponding density kernels,

defined by (23). Let ϕx
t be the density of the random term Σt(x)Wt. Let

T ∈ N be fixed, and let ψn
T be the TSLA of ψT . If there exist constants

16In fact, pt may not be continuous when f is non-concave.
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K ≥ 0 and % > 0 such that ϕx
t satisfies ϕx

t (z) ≤ K exp(−%‖z‖), for all

x ∈ S, t ∈ N and z ∈ Z, then

(33) IMSE (ψn
T ) ≤ K2

n

2πk/2

Γ(k/2)(2%)k
(k − 1)!

If ϕx
t satisfies ϕx

t (z) ≤ K exp(−%‖z‖2), for all x ∈ S, t ∈ N and z ∈ Z,

then

(34) IMSE (ψn
T ) ≤ K2

n

(
π

2%

)k/2

.

The conditions in the proposition are just small tail assumptions for

the distribution ϕ of Wt. The will be satisfied if, for example, Σt(x) is

a constant and ϕ is Gaussian.

7. Proofs

Proof of Theorem 4.1. The following proof draws on ideas in Devroye

and Lugosi (2001, § 9.4) concerning concentration of measure inequal-

ities. A discussion of McDairmid’s inequality can be found there.

For the proof, fix n ∈ N, and let Sn be the n-fold cartesian product

of S with itself, a typical element of which is x = (x1, . . . , xn). Let

X1
T−1, . . . , X

n
T−1 be iid draws from ψT . By McDairmid’s inequality, if

g is a measurable function from Sn to R such that

sup |g(x)− g(x′)| ≤ c,

where the supremum is over all pairs x, x′ in Sn which differ on at most

one coordinate, then

P{|g(XT−1)− Eg(XT−1)| ≥ ε} ≤ 2 exp

(
−2ε2

nc2

)
,

where g(XT−1) := g(X1
T−1, . . . , X

n
T−1). Setting

g(x) = g(x1, . . . , xn) =

∫ ∣∣∣∣∣ 1n
n∑

m=1

pT (xm, y)− ψT (y)

∣∣∣∣∣ dy
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gives g(XT−1) = ‖ψn
T − ψT‖. Pick any x, x′ ∈ Sn such that x and x′

differ only at the k-th coordinate. In this case |g(x) − g(x′)| is given

by the expression∣∣∣∣∣
∫ ∣∣∣∣∣ 1n

n∑
m=1

pT (xm, y)− ψT (y)

∣∣∣∣∣ dy −
∫ ∣∣∣∣∣ 1n

n∑
m=1

pT (x′m, y)− ψT (y)

∣∣∣∣∣ dy
∣∣∣∣∣ ,

which is bounded above by∫ ∣∣∣∣∣ 1n
n∑

m=1

pT (xm, y)−
1

n

n∑
m=1

pT (x′m, y)

∣∣∣∣∣ dy
=

1

n

∫
|pT (xk, y)− pT (x′k, y)|dy.

∴ |g(x)− g(x′)| ≤ 1

n

∫
|pT (xk, y)− pT (x′k, y)|dy ≤

2

n
.

∴ P{|g(XT−1)− Eg(XT−1)| ≥ ε} ≤ 2 exp

(
−nε2

2

)
.

∴ P{| ‖ψn
T − ψT‖ − E‖ψn

T − ψT‖ | ≥ ε} ≤ 2 exp

(
−nε2

2

)
.

It now follows from the Borel-Cantelli Lemma that

lim
n→∞

| ‖ψn
T − ψT‖ − E‖ψn

T − ψT‖ | → 0 almost surely.

Thus, limn→∞ ‖ψn
T−ψT‖ → 0 almost surely whenever E‖ψn

T−ψT‖ → 0.

In other words, convergence in expectation implies almost sure conver-

gence. That convergence in expectation always holds was shown in

Glynn and Henderson (2001, Theorem 4). �

Next is the proof of Theorem 4.2. By Schéffe’s Lemma, ‖ψn
∞−ψ∞‖ → 0

whenever ψn
∞ → ψ∞ pointwise. Moreover, by the LLN in Meyn and

Tweedie (1993, Theorem 17.1.7), we know that at each point y ∈ S

the look-ahead estimator ψn
∞(y) converges to the true density ψ∞(y)

on the complement of a set Ey with P(Ey) = 0. However, since S

may be uncountable, we cannot conclude that ψn
∞ → ψ∞ pointwise

with probability one. Thus, to show almost sure L1 convergence, some

degree of regularity is imposed on the density kernel p to help control
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the uncountable family of P-null sets {Ey : y ∈ S}. This is the purpose

of Assumption 4.2.

Lemma 7.1. Let Bδ(y) := {y′ : d(y, y′) < δ}. If Assumption 4.2 holds

then ψ∞ is continuous on S, and ψn
∞ is continuous on S uniformly in

n, in the sense that for all ε > 0 and all y ∈ S there is a δ > 0 such

that

(35) y′ ∈ Bδ(y) =⇒ sup
n∈N

|ψn
∞(y)− ψn

∞(y′)| ≤ ε.

Proof. Regarding the first statement, fix ε > 0 and y ∈ S. Choose

δ > 0 as in Assumption 4.2. Then for y′ ∈ Bδ(y),

|ψ∞(y)− ψ∞(y′)| =
∣∣∣∣∫ p(x, y)ψ∞(x)dx−

∫
p(x, y′)ψ∞(x)dx

∣∣∣∣
≤
∫
|p(x, y)− p(x, y′)|ψ∞(x)dx ≤ ε.

Regarding (35), the same argument yields a δ > 0 such that for y′ ∈
Bδ(y) we have

|ψn
∞(y)− ψn

∞(y′)| ≤ 1

n

n∑
t=1

|p(Xt, y)− p(Xt, y
′)| ≤ 1

n

n∑
t=1

ε.

�

Proof of Theorem 4.2. As discussed above, it is sufficient to show that

ψn
∞ converges to ψ∞ pointwise for all paths ω in some set E ∈ F with

P(E) = 1. So let A be a countable dense subset of S, and note by

the LLN that for each a ∈ A there is a corresponding set Ea ⊂ Ω

with P(Ea) = 1 and ψn
∞(a) → ψ∞(a) on Ea. Let E := ∩a∈AEa.

Clearly P(E) = 1. We claim that for every path ω ∈ E we have

ψn
∞ → ψ∞ as n → ∞ pointwise. To see this, fix any such path, any

y ∈ S and any ε > 0. By Lemma7.1 we can take a δ > 0 such that

|ψ∞(y) − ψ∞(y′)| < ε for all y′ ∈ Bδ(y), and, in addition, (35) holds.

Choose a ∈ A ∩Bδ(y).
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By the triangle inequality, |ψn
∞(y)− ψ∞(y)| is less than

|ψn
∞(y)− ψn

∞(a)|+ |ψn
∞(a)− ψ∞(a)|+ |ψ∞(a)− ψ∞(y)|

∴ |ψn
∞(y)− ψ∞(y)| ≤ 2ε+ |ψn

∞(a)− ψ∞(a)|,

where ε does not depend on n. Because we are considering a path in

E, taking limits gives

lim
n→∞

|ψn
∞(y)− ψ∞(y)| ≤ 2ε.

Since ε is arbitrary the proof is done. �

Proof of Theorem 5.1. By Fubini’s Theorem, Jensen’s inequality and

independence of the sequence X1
T−1, . . . , X

n
T−1 we get

E‖ψn
T − ψT‖ =

∫
E|ψn

T (y)− ψT (y)|dy

≤
∫ √

Var(ψn
T (y))dy

=

√
1

n

∫ √
Var(pT (Xm

T−1, y))dy

≤
√

1

n

∫ √
EpT (Xm

T−1, y)
2dy.

Since pT ≤ K everywhere on S × S, the bound

E‖ψn
T − ψT‖ ≤

√
1

n
Kµ(S).

holds for all n ∈ N. �

Next we turn to the proof of Theorem 5.2. The proof involves several

lemmata.

Lemma 7.2. If Assumption 5.1 holds, then E exp(r‖Xt‖) <∞ for all

r > 0 and all t ∈ N.

Proof. By (i) of Assumption 5.1, we have, for all t ∈ N,

‖Xt‖ ≤ α‖Xt−1‖+ L+ ‖Wt‖.
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∴ r‖Xt‖ ≤ rαt‖x0‖+
t−1∑
i=0

rαi(L+ ‖Wt−i‖).

∴ exp(r‖Xt‖) ≤ exp(rαt‖x0‖)
t−1∏
i=0

exp(rαiL)
t−1∏
i=0

exp(rαi‖Wt−i‖)).

∴ E exp(r‖Xt‖) ≤ exp(rαt‖x0‖)
t−1∏
i=0

exp(rαiL)
t−1∏
i=0

E exp(rαi‖Wt−i‖)).

From (ii) of Assumption 5.1 the expectation E exp(a‖Wt‖)) is finite for

any a > 0, so the right hand side of the last inequality is finite. �

Lemma 7.3. If (ii) of Assumption 5.1 holds, then there exists a posi-

tive constant N such that ϕ(z) ≤ N exp(−‖z‖) for all z ∈ S.

Proof. Let M := {z : ‖z‖ ≤ 1/%}. For z /∈ M we have %‖z‖ > 1, and

hence %‖z‖2 > ‖z‖. Therefore,

K exp(−%‖z‖2) ≤ K exp(−‖z‖), ∀z /∈M.

Now set K0 := supz∈M K exp(−%‖z‖2 + ‖z‖), so that

K exp(−%‖z‖2) ≤ K0 exp(−‖z‖), ∀z ∈M.

Now setting N := max{K0, K} and applying (ii) of Assumption 5.1

provides a constant with the desired property. �

Proof of Theorem 5.2. The proof of Theorem 5.1 provides the bound

E‖ψn
T − ψT‖ ≤

√
1

n

∫ √
EpT (Xm

T−1, y)
2dy.

We must verify that the integral is finite. To this end, observe that

Lemma 7.3 yields an N <∞ with

p(Xm
T−1, y)

2 = ϕ(g(Xm
T−1)− y)2 ≤ N2 exp(−2‖g(Xm

T−1)− y‖).

But

exp(−2‖g(Xm
T−1)− y‖) ≤ exp(−2‖y‖+ 2‖g(Xm

T−1)‖).
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∴
√

Ep(Xm
T−1, y)

2 ≤ N
√

E exp(−2‖y‖+ 2‖g(Xm
T−1)‖)

≤ N exp(−‖y‖)
√

E exp(2‖g(Xm
T−1)‖)

≤ N exp(−‖y‖)
√

E exp(2α‖Xm
T−1‖+ 2L)

≤ N exp(−‖y‖) exp(L)
√

E exp(2α‖Xm
T−1‖).

As a result,

E‖ψn
T − ψT‖ ≤

√
1

n
N

∫
exp(−‖y‖)dy exp(L)

√
E exp(2α‖Xm

T−1‖).

Here the expectation on the right is finite from Lemma 7.2. �

Proof of Theorem 5.3. Since the TSLA is unbiased and {X1
T−1, . . . , X

n
T−1}

are independent, we have

IMSE (ψn
T ) =

∫
E[ψn

T (y)− ψT (y)]2 dy

=

∫
Var(ψn

T (y)) dy =
1

n

∫
Var(pT (Xm

T−1, y)) dy.

But evidently∫
Var pT (Xm

T−1, y) dy ≤
∫

EpT (Xm
T−1, y)

2 dy = E

∫
pT (Xm

T−1, y)
2 dy.

(36) ∴ IMSE (ψn
T ) ≤ 1

n
E

∫
pT (Xm

T−1, y)
2 dy.

The result (18) now follows. �

Proof of Theorem 5.4. By Fubini’s theorem,

E‖ψn
∞ − ψ∞‖ =

∫
E|ψn

∞(y)− ψ∞(y)|dy,

so it suffices to show that for any y ∈ S,

(37) (E|ψn
∞(y)− ψ∞(y)|)2 ≤ 4RK2

n(1− α)
.

Our first observation is that, by Jensen’s inequality,

(38) (E|ψn
∞(y)− ψ∞(y)|)2 ≤ E(ψn

∞(y)− ψ∞(y))2.
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Letting g(x) := p(x, y)− ψ∞(y), we can rewrite the right hand side of

(38) as

E

(
1

n

n∑
t=1

g(Xt)

)2

=
1

n2

∑
1≤s,t≤n

E g(Xs)g(Xt)

=
1

n2

n∑
i=1

E g(Xt)g(Xt) +
2

n2

∑
1≤i<j≤n

E g(Xs)g(Xt)

≤ 2

n2

∑
1≤i≤j≤n

E g(Xs)g(Xt)

=
2

n2

n−1∑
k=0

n−k∑
i=1

E g(Xt)g(Xt+k).

Our next step is to consider the terms E g(Xt)g(Xt+k). In doing so,

we use the following result, which can be established from (15), the

monotone class theorem and a simple inductive argument (see Durrett,

1996, § 5.1): For any bounded Borel measurable real function h on S

and any t, k ∈ N we have

(39) E(h(Xt+k) |Ft) =

∫
h(z)pk(Xt, z)dz,

where pk(x, z)dz is the distribution of the state k periods hence when

the current state is x, defined inductively by

p1 := p, pk(x, z) :=

∫
pk−1(x, z′)p(z′, z)dz′.

As a result,

E g(Xt)g(Xt+k) = E(E(g(Xt)g(Xt+k) |Ft))

= E(g(Xt)E(g(Xt+k) |Ft)) = E

(
g(Xt)

∫
g(z)pk(Xt, z)dz

)
.

(40) ∴ E g(Xt)g(Xt+k) ≤ sup
x∈S

|g(x)| ×
∣∣∣∣∫ g(z)pk(x, z)dz

∣∣∣∣ .
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Pick any x ∈ S. On one hand,

|g(x)| = |p(x, y)− ψ∞(y)|

≤ K + |ψ∞(y)| = K +

∣∣∣∣∫ p(x, y)ψ∞(x)dx

∣∣∣∣ ≤ 2K.

On the other hand,∣∣∣∣∫ g(z)pk(x, z)dz

∣∣∣∣ =

∣∣∣∣∫ p(z, y)pk(x, z)dz − ψ∞(y)

∣∣∣∣
=

∣∣∣∣∫ p(z, y)pk(x, z)dz −
∫
p(z, y)ψ∞(z)dz

∣∣∣∣
≤
∫
|p(z, y)| × |pk(x, z)− ψ∞(z)|dz

≤ K

∫
|pk(x, z)− ψ∞(z)|dz.

Moreover, by uniform ergodicity,∫
|pk(x, z)− ψ∞(z)|dz ≤ Rαk.

Putting these bounds together with (40) and using the fact that x ∈ S
was arbitrary, we obtain

E g(Xt)g(Xt+k) ≤ 2K2Rαk.

∴
n−1∑
k=0

n−k∑
i=1

E g(Xt)g(Xt+k) ≤
n−1∑
k=0

n−k∑
i=1

2K2Rαk ≤ n
2K2R

1− α
.

∴
2

n2

n−1∑
k=0

n−k∑
i=1

E g(Xt)g(Xt+k) ≤
4K2R

n(1− α)
.

The proof is now done. �

Proof of Proposition 6.1. We apply (18). Under the first condition we

have∫
pT (x, y)2 dy =

∫
ϕx

t [y − gT (x)]2dy

≤
∫
K2 exp(−2%‖y − gT (x)‖)dy =

∫
K2 exp(−2%‖z‖)dz.
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Direct integration gives∫
exp(−2%‖x‖)dx =

2πk/2

Γ(k/2)(2%)k
(k − 1)! ,

from which (33) now follows. The proof for the second case is essentially

identical, this time using∫
exp(−2%‖x‖2)dx =

(
π

2%

)k/2

.

�
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