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NECESSARY AND SUFFICIENT CONDITIONS FOR
STABILITY OF FINITE STATE MARKOV CHAINS

JOHN STACHURSKI

Abstract. This note considers finite state Markov chains which

overlap supports. While the overlapping supports condition is

known to be necessary and sufficient for stability of these chains,

the result is typically presented in a more general context. As such,

one objective of the note is to provide an exposition, along with

simple proofs corresponding to the finite case. Second, the note

provides an additional equivalent condition which should be useful

in applications.

1. Introduction

It is a standard result in the literature that every Markov matrix on a

finite state space which is both irreducible and aperiodic is asymptot-

ically stable—a unique stationary distribution exists, and iterating on

any initial distribution with the matrix generates a trajectory which

converges to the stationary distribution. (This situation is also called

ergodicity.) Note however that the conditions are not necessary. For

example, it is easy to construct matrices which are asymptotically sta-

ble but not irreducible.
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In what follows we review the notion of Markov chains which overlap

supports. The property of overlapping supports has been investigated

by authors such as Lasota (1994), who showed that a certain class of

positive linear operators mapping L1 into itself were asymptotically

stable if and only if they overlapped supports and had the additional

property of Lagrange stability. For finite state Markov chains, every

Markov matrix can be identified with one of these operators, and is au-

tomatically Lagrange stable. Hence the overlapping supports property

is necessary and sufficient.1

These results are not well known in the literature on finite state Markov

chains. A brief exposition is provided, along with simple proofs special-

ized to the finite case. Second, the note adds an additional condition

(Condition (3) of Theorem 2.1 below) which is equivalent to overlap-

ping supports in the finite state case, and is relatively easy to check in

applications.

2. Results

Let S be the finite set of sizeN , and let P(S) be the set of distributions

on S. That is, P(S) is all ϕ ∈ RS such that ϕ(s) ≥ 0, for all s ∈ S,

and
∑

s∈S ϕ(s) = 1. By a Markov matrix is meant an N×N matrix M,

where each row is an element of P(S). For general x ∈ RS we impose

the `1 norm ‖x‖ :=
∑

s∈S |x(s)|. If ϕ, ψ ∈ P(S), then ‖ϕ − ψ‖ is

propotional to the total variation distance between these distributions.

1Recently, Zaharopol (2000) showed that every such operator which overlaps

supports and has an invariant distribution is asymptotically stable. In the finite

state case, every Markov chain has an invariant distribution.
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A ψ∗ ∈ RS is called a stationary distribution for Markov matrix M if

ψ∗ ∈ P(S) and ψ∗ = ψ∗M, where, as is traditional, we are treating

distributions as row vectors. The matrix is called ergodic or asymp-

totically stable if there is one and only one such ψ∗ in P(S), and,

moreover, ‖ψMt − ψ∗‖ → 0 as t→∞ for every ψ ∈ P(S).

We say that two distributions ϕ and ψ overlap if ϕ ∧ ψ 6= 0; alter-

natively, if ∃s ∈ S with ϕ(s) > 0 and ψ(s) > 0. Also, we say that

T : P(S) → P(S) is a strict contraction if

∀ϕ, ψ ∈ P(S) with ϕ 6= ψ, ‖Tϕ− Tψ‖ < ‖ϕ− ψ‖.

The definitions lead us to several equivalent conditions for asymptotic

stability:

Theorem 2.1. Let M be a Markov matrix on S. The following state-

ments are all equivalent:

(1) M is asymptotically stable;

(2) ∀ϕ, ψ ∈ P(S), ∃t ∈ N such that ϕMt and ψMt overlap;

(3) ∃t ∈ N such that any two rows of Mt overlap; and

(4) ∃t ∈ N such that Mt is a strict contraction on P(S).

Remark. The second property is usually identified with the notion

that M overlaps supports. The third property is relatively easy to check

in applications. For example, if a column of Mt is strictly positive then

(3) clearly holds for this t. This is a well-known stability condition.2

However, the fact that any two rows of Mt overlap does not imply that

Mt has a strictly positive column. As a result, (3) can hold for smaller

2For a recent exposition see Stroock (2005).
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t, which means that asymptotic stability can potentially be verified for

a smaller power of M.

Before beginning the proofs we make some preliminary observations.

One is that distributions ϕ and ψ overlap if and only if ‖ψ − ϕ‖ < 2.

This is because ‖ϕ−ψ‖ =
∑

s∈S |ϕ(s)−ψ(s)|, and because nonnegative

real numbers a and b satisfy |a − b| ≤ a + b, with strict inequality if

and only if both are strictly positive.

Second, it is easy to show and well-known that if M is any Markov

matrix and ϕ, ψ ∈ P(S), then ‖ϕM− ψM‖ ≤ ‖ϕ− ψ‖ always holds.

From this we conclude that if ϕMt and ψMt overlap, then so do ϕMt+k

and ψMt+k for every k ∈ N, because

‖ϕMt+k − ψMt+k‖ ≤ ‖ϕMt − ψMt‖ < 2.

Proof of Theorem 2.1. (1) =⇒ (2). Let ϕ, ψ ∈ P(S). By (1) there is

a t ∈ N such that ‖ϕMt − ψMt‖ < 2, which implies (2).

(2) =⇒ (3) Let e1, . . . , eN be the cannonical basis vectors for RS.3

Let t(n,m) ∈ N be such that enM
t(n,m) and emMt(n,m) overlap, and let

t := supn,m t(n,m). Now consider the n-th and m-th row of Mt. These

are precisely enM
t and emMt, which overlap.

(3) =⇒ (4) Pick any ϕ, ψ ∈ P(S), where ϕ 6= ψ. Let t be as in (3),

and let p(s, s′) be a typical element of Mt. We have

‖ϕMt − ψMt‖ =
∑
s′∈S

∣∣∣∣∣∑
s∈S

(ϕ(s)− ψ(s))p(s, s′)

∣∣∣∣∣ .
Let a(s) := ϕ(s) − ψ(s). Observe that for some s1 ∈ S we have

a(s1) > 0, and for some s2 ∈ S we have a(s2) < 0. Using the fact

3That is, en(s) = 1 if s = n and zero otherwise.
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that rows s1 and s2 of Mt overlap, choose a further s′′ ∈ S such that

p(s1, s
′′) and p(s2, s

′′) are both strictly positive. For this s′′ we have

|
∑
s∈S

a(s)p(s, s′′)| <
∑
s∈S

|a(s)p(s, s′′)|,

owing to the fact that at least some of the terms such as a(s1)p(s1, s
′′)

are strictly positive, while other such as a(s2)p(s2, s
′′) are strictly neg-

ative. It now follows that∑
s′∈S

∣∣∣∣∣∑
s∈S

a(s)p(s, s′)

∣∣∣∣∣ < ∑
s′∈S

∑
s∈S

|a(s)p(s, s′)| =
∑
s∈S

|a(s)|
∑
s′∈S

p(s, s′).

Since rows of Mt sum to one, the last term is just
∑

s∈S |a(s)|, which

is ‖ϕ− ψ‖.

(4) =⇒ (1). Every strict contraction mapping a compact metric space

into itself is known to be asymptotically stable.4 Therefore Mt has a

unique fixed point ψ∗ in P(S), and ψMt·k → ψ∗ as k →∞. It remains

to show that M is asymptotically stable. To see that this is the case,

pick any ε > 0, and choose k ∈ N so that ‖(ψ∗M)Mt·k−ψ∗‖ < ε. Then

‖ψ∗M− ψ∗‖ = ‖(ψ∗Mt·k)M− ψ∗‖ = ‖(ψ∗M)Mt·k − ψ∗‖ < ε.

Since ε was arbitrary, it follows that ‖ψ∗M−ψ∗‖ = 0, and ψ∗ is a fixed

point of M.

Stability: Fix ψ ∈ P(S), and choose k ∈ N so that ‖ψMt·k −ψ∗‖ < ε.

Then n ≥ t · k implies

‖ψMn − ψ∗‖ = ‖(ψMt·k)Mn−t·k − ψ∗Mn−t·k‖ ≤ ‖ψMt·k − ψ∗‖ < ε.

�

4For a proof, see for example Stachurski (2003).
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