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Abstract

We present a model of incomplete information games with sets of priors. Upon

arrival of private information, each player “updates” by the Bayes rule each of pri-

ors in this set to construct the set of posteriors consistent with the arrived piece of

information. Then the player uses a possibly proper subset of this set of posteriors

to form beliefs about the opponents’ strategic choices. And finally the player evalu-

ates his actions by the most pessimistic posterior beliefs à la Gilboa and Schmeidler

(1989). So each player’s preferences may exhibit non-linearity in probabilities which

can be interpreted as the player’s aversion to ambiguity or uncertainty. In this setup,

we define a couple of equilibrium concepts, establish existence results for them, and

demonstrate by examples how players’ views on uncertainty about the environment

affect the strategic outcomes.
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1 Introduction

We present a model of incomplete information games with multiple priors. More specif-

ically, our model is the same as the standard Bayesian games of incomplete information

except for one point: instead of a prior over the states, we assume that there is a set of

priors. Upon arrival of private information, each player “updates” by the Bayes rule each

of priors in this set to construct the set of posteriors consistent with the arrived piece

of information. Then the player uses a possibly proper subset of this set of posteriors

to form beliefs about the opponents’ strategic choices. And finally the player evaluates

his actions by the most pessimistic belief à la Gilboa and Schmeidler (1989). So each

player’s preferences may exhibit non-linearity in probabilities which can be interpreted as

the player’s aversion to ambiguity or uncertainty.

In this setup, we define a couple of equilibrium concepts, establish existence results

for them, and demonstrate by examples how players’ views on uncertainty about the

environment affect the strategic outcomes. Not only the aversion to uncertainty matters

in a player’s own decision making, but also it has strategic effects on the other players’

strategic decision making.

Our model is simple and very tractable since it is a minimal departure from the stan-

dard Bayesian approach for the games of incomplete information. On the other hand, our

model is rich enough to capture important aspects of incomplete information games, and

distinguish the two key ingredients of incomplete information: lack of information about

payoffs and ambiguity about them.

To appreciate our contribution, let us start with a brief review of the standard ap-

proach. By definition, a game of incomplete information is a description of strategic

environment where players do not necessarily know some of the important parameters

of the environment, such as payoffs. Harsanyi (1967—68) advocated the approach of rep-

resenting incomplete information games by Bayesian games with imperfect information,

which is now the standard approach.

For our purpose, Harsanyi’s points can be summarized into the following two points.

The first point is that the source of uncertainty can be expressed by an underlying state

space, and the incompleteness can be reduced to difference of private information among

the players. The reason is that if there is any ambiguity about the fundamental specifi-

cation of the game, it is due to the fact that the description of the underlying states is

insufficient. The rational players then would not and should not be satisfied with such a

description. If the description is refined, to its limit, then all the payoff relevant issues

and the structure of knowledge among players can be summarized in a state space. We

accept this view in our model, and assumes that there is an underlying state space and

each state is a complete description of the game.

The second point is that there is a single, common prior over these states and each

player evaluates his private information by the Bayes rule. We have a different view on

this. When the players do not know payoffs and thus the information is incomplete, the

players must take into account “risks” about payoffs: since his private information is

insufficient, the player can learn payoffs only probabilistically at best. But there is also

2



ambiguity about the strategic environment: the player may have some thoughts about

possibilities, but they are so vague that the player is unable to assign probabilities.

In principle, a model of incomplete information games should be able to address risks

and uncertainty separately, to study if and how these two aspects of incomplete information

affect the outcome of the game. But in Harsanyi’s framework with a single and common

prior, by construction, there is no technical difference between genuine lack of information

and ambiguity about payoffs and/or knowledge among players.

So even accepting the postulate that the players should be able to describe all the

relevant states, we think that it is still natural that the players have little idea about the

likelihood of these states. Thus for instance we want to allow for events whose probability

is perfectly agreed, but the players cannot evaluate subevents of the events; that is, there

are many ways to assign probabilities to the subevents, and the players are not sure about

which is the right one. Instead of a single prior, we allow for multiple priors.

The assumption of multiple priors can be justified at the level of individual decision

making to begin with (Gilboa and Schmeidler, 1989). It has been criticized that the

standard framework of Bayesian theory does not necessarily capture the aspect of decision

making which can be attributed to ambiguity of the problem; e.g., the Ellsberg paradox.

Ambiguity is not resolved by considering more sophisticated Bayesian models, and the

attitude towards ambiguity should be modelled differently from that towards risks.

In strategic environments of incomplete information, the problem is more serious,

and we think that the use of multiple priors is justified all the more. Say we accept

the Bayesian view and assume that from the point of view of a single player, a player

can assign probabilities to possible events using his own private information; that is,

the Ellsberg paradox type problem does not occur as far as a player evaluates his own

payoffs. But there still remains a room for ambiguity about what the other players might

be contemplating, and this matters. You may be so confident that you could assign

probabilities on payoff relevant states, but you may hesitate to assume the same ability

for the other players. Then your strategic decision making will be affected by the way the

game appears ambiguous to the other players.

In other words, even if the uncertainty concerning payoff relevant issues may be reduced

to risks, the same procedure may be unduly demanding for the uncertainty on knowledge

about how the other players might think about each other. In such an environment, there

will be strategic effects from the ambiguity about players’ knowledge, which cannot be

addressed by a single common prior model.

To get more concrete idea about how our approach can be applied, consider the fol-

lowing simple example. Say there are two experienced investors who are interested in the

rating of the profitability of a firm to be announced near future. There are four possible

ratings, 1, 2, 3, and 4, where the smaller number is better. From the past experiences,

they know each other very well and they share the idea that the profitability of this firm

is neutral in the sense that the probability of good ratings 1 or 2 is 0.5, and that of bad

ratings 3 or 4 is 0.5. Investor 1 is very good at identifying very promising firm and Investor

2 is very good at identifying very bad one. That is, by the private information, Investor
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1 can tell {1} from {2, 3, 4}, and Investor 2 can tell {4} from {1, 2, 3}. Now suppose that
the firm’s profitability is in fact very good. Then Investor 1 knows for sure that the rating

will be 1, but he is unsure about what Investor 2 might think. Investor 1 can deduce that

Investor 2 concludes that the firm’s profitability is not very bad, but it is ambiguous how

Investor 2 might think about the relative likelihood in {1, 2, 3}.
A natural set of priors is the set of all probabilities on {1, 2, 3, 4} such that probabilities

of events {1, 2} and {3, 4} are 0.5, and thereby we can express the fact that the two
investors agree upon the likelihood of these two events. When the true state is 1, Investor

2 updates his beliefs. Since he was unable to determine the probabilities over 3 and 4

to start with, he will not be able to tell whether 4 did not occur by chance, or 4 had

no chance to start with. So learning that 4 has not occurred does not reduce ambiguity

about the relative probabilities of {1, 2} and {3}, not to mention those between 1 and 2.
Then Investor 1 must take into account not only the fact that Investor 2 does not know if

1 has occurred or not, but also the fact that Investor 2 is not able to assign a unique set

of probabilities to {1, 2, 3}.
Notice that the above reasoning depends on the updating rule. In principle player’s

optimal behavior depends on how he updates priors. We assume that the updating rule is

also part of the description of the game, i.e., the updating rules are exogenously given and

the players understand the updating rules of all the players. We do so by the following

reasons. First, in the multiple priors models, there are various reasonable updating rules,

and they have different strategic implications. So the model should not subscribe itself

to a particular updating rule. Secondly, since updating rules have strategic implications,

endogenizing them will yield excessive degrees of freedom, and consequently the model

will lose its descriptive power. Thirdly, studying the roles of different updating rules in

games is of interest for itself.

Obviously, there can be many reasonable criteria for decision making under uncertainty.

We adopt the Gilboa-Schmeidler approach to capture ambiguity and aversion to it. Al-

though we are aware of valid criticism of Epstein and Zhang (2001) that this is not exactly

what should be termed ambiguity or uncertainty, we contend that the Gilboa-Schmeidler

approach at least addresses some important aspects of ambiguity and uncertainty, and its

tractable form is also very appealing.

Our equilibrium concept is interim: that is, each player chooses the best action for any

realization of private signal in equilibrium. It is well known that a player with multiple

priors tends to exhibit dynamic inconsistent behavior for any updating rule; that is, a

strategy which is utility maximizing ex ante may specify actions which will be deemed

inferior once private information is received, and vice versa. We contend that the interim

notion is more relevant, since even in Harsanyi’s framework, the ex ante maximization

of utility is a purely theoretical tool and it happens to coincide with the interim notion

because the expected utility with Bayesian updating is dynamically consistent.

Moreover, it is interesting to investigate the implication of some players’ dynamic

inconsistent behavior to other players who may have a single prior. Even if you are a

textbook Bayesian player, you have to take into account how other non-Bayesian players

4



with an unusual updating rule may behave. We emphasize again that the study of such

a non-Bayesian behavior is all the more important in strategic environments. Even if one

regards the non-Bayesian behavior as irrelevant at the level of individual decision making,

he will choose different actions from the ones he would against Bayesians, since actions

taken by those non-Bayesians will influence his welfare, and vice versa.

Let us mention related works. Lo (1998) uses a multiple prior model to study auctions

as a game with incomplete information.1 As far as we know, there has been no attempt

to study the incomplete information games as a general class of games with multiple

priors, with an important exception of Epstein and Wang (1996).2 They present a very

general form of games of incomplete information and our model constitutes a subclass of

their games. Our focus is rather on presentation of workable and user friendly special

models, which is rich enough to address issues of incompleteness of information beyond

the standard Bayesian approach.

Let us conclude this introduction with an outline of this paper. We shall give the

details of our model in Section 2. We then propose two equilibrium concepts, which

are natural extension of the Bayesian Nash equilibrium in Section 3. We contend that

both concepts make sense, and establish the existence results for them. Section 4 contains

examples to demonstrate how our model works and to show some interesting features of the

model. In Section 5 we discuss the foundations of the model to argue why our model with

these equilibrium concepts constitutes a desirable representation of incomplete information

games. We also provide a result generalizing the agreement theorem of Aumann (1976)

under the common multiple prior assumption, which is an interesting by-product. We also

discuss complete information games and related works in the literature.

2 Incomplete information games with multiple priors

2.1 Basic setup

We consider finite player incomplete information games with finitely many actions and

states. Except for multiple priors, the setup is standard. The players are indexed by

i ∈ I := {1, . . . , I}. Each player i ∈ I has a finite set of actions denoted by Ai. The set
of action profiles is denoted by A =

Q
i∈I Ai with generic element a = (ai)i∈I . We shall

also write a = (ai, a−i) ∈ Ai ×
Q
j 6=iAj abusing notation.

The set of payoff relevant states is denoted by Ω, and Ω is assumed to be finite.3

The incompleteness of information is summarized by a random signal τ = (τi)i∈I , each
component of which is observed privately by each player. When ω ∈ Ω occurs, player
i ∈ I observes a signal τi (ω), and then chooses an action in Ai. Denote by Ti the range
of τi and let T =

Q
i∈I Ti. Thus τi is a function from Ω to Ti and τ = (τi)i∈I is a function

1Ozdenoren (2002) further elaborates the work of Lo (1998). See also Chen et al. (2002).
2See also Ahn (2003).
3The model can be extended to the model where Ω is an infinite measurable state space, but we restrict

our attention to the finite case in order to avoid various measurability and continuity issues associated

with an infinite state space.
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from Ω to T .

For any finite set X denote by ∆ (X) the set of all probability distributions on X. A

strategy of player i ∈ I is a function σi from Ti to∆ (Ai). Write σi (ai|ti) for the probability
of player i choosing action ai ∈ Ai when he observes ti ∈ Ti by convention. Denote by
Si the set of all strategies for player i and let S =

Q
i∈I Si be the set of strategy profiles.

For an action profile a = (ai)i∈I and a profile of realization of signals t = (ti)i∈I ∈ T , we
write σ (a|t) for the probability of action profile a chosen, i.e., σ (a|t) =Qi∈I σi (ai|ti). We
shall also write σ = (σi,σ−i) ∈ Si ×

Q
j 6=i Sj and σ−i (a−i|t−i) =

Q
j 6=i σj (aj |tj), abusing

notation.

Player i’s preference ordering over strategy profiles will be generated by a payoff func-

tion ui : A× Ω→ R. In the standard incomplete information game, one could assume in
addition that the payoff function ui(a,ω) depends on players’ observed realizations of the

signals only, by replacing ui(a,ω) with ûi(a, t) = E[u(a,ω)|τ(w) = t]. In our framework,
however, this transformation may change the strategic structure of the game because we

will consider multiple priors and the expectation operator is not uniquely determined.

2.2 Multiple priors

We depart from the standard framework of incomplete information games by assuming

that there is a non-empty compact set of priors Pi ⊆ ∆(Ω) for player i ∈ I. We assume
that there is no null signal, i.e., P (τ−1i (ti)) > 0 for all ti ∈ Ti, P ∈ Pi, and i ∈ I. The
standard incomplete information game corresponds to the case where Pi is a singleton for
all i ∈ I. The set Pi is intended to capture the ambiguity about the structure of the game,
which is different from the strategic risk generated by the other players’ choices of actions.

We will demonstrate the different roles of “ambiguity” and “risk” by some examples later.

A natural and interesting case is when the set of priors is generated by an underlying

information sub-field E ⊆ 2Ω and a probability measure Q defined over E . Note that Q
assigns a probability to every E ∈ E , but not to E 6∈ E . Thus, if E 6= 2Ω, then a probability
of some event is not known. The inner measure P∗ : 2Ω → [0, 1] and the outer measure

P ∗ : 2Ω → [0, 1] are defined by the rules:

P∗(E) = sup
X⊆E,X∈E

Q(X), P ∗(E) = inf
E⊆X,X∈E

Q(X)

for all E ⊆ Ω. If E = 2Ω, P∗ = Q = P ∗ by construction. Consider a set of priors
Pi = {P ∈ ∆(Ω) : P∗(E) ≤ P (E) ≤ P ∗(E) for all E ⊆ Ω} . (1)

To interpret, think of E as an information structure which is known to player i, and Q is a
probability assessment of E . For an “unknown” event E /∈ E , P∗(E) is the most cautious
estimate of the probability of E and P ∗(E) is the most optimistic estimate of probability
of E. Thus in this case, the set Pi can be thought as the set of priors which are consistent
with Q and E in the sense that each P ∈ Pi assigns to each unknown event a probability
weight at least as much as the cautious estimate and at most as much as the optimistic

estimate. If Q and E are objectively given to all the players, it is also natural to assume
players have a common prior set defined by (1).

6



2.3 Updating rules

Each player chooses an action after the private signal is revealed, as we mentioned earlier.

Like in the standard Bayesian games, updating upon private information generates the

differences in views of players. Since the prior is not unique, however, the private informa-

tion will matter through two channels in our framework. The first is the channel through

the standard Bayesian updating: when player i ∈ I observes ti, he updates each prior
P ∈ Pi by the Bayes rule, and the updated prior in turn affects his choice of actions, just
as in the standard analysis. But the following second channel is not captured in the stan-

dard analysis: since information is private, the sets of updated priors are different among

the players in general even if Pi is the same for all i ∈ I. Thus after updating, the state
of ambiguity represented by the set of updated prior probabilities is private. In heuristic

words, a revelation of private information might change the degree of ambiguity about the

structure of the game, and this may occur differently among the players. Thus differences

in views about the ambiguity of payoffs are generated by how the players process their

private information to re-evaluate the ambiguity. We shall formalize these ideas below.

For each P ∈ ∆ (Ω) and ti ∈ Ti, denote by P (·|ti) ∈ ∆(Ω) the conditional probabilities
over Ω; that is, P (E|ti) = P

¡
τ−1i (ti) ∩ E

¢
/P
¡
τ−1i (ti)

¢
for E ⊆ Ω. Let

Pi(ti) = {P (·|ti) ∈ ∆ (Ω) : P ∈ Pi}
be the set of posteriors when ti ∈ Ti has been observed. An updating rule Φi : Ti → 2Pi(ti)

for player i ∈ I is a function that assigns a non-empty compact subset of Pi(ti) to each
ti ∈ Ti. After ti is observed, player i uses posteriors in Φi (ti) to evaluate his actions.
The updating rules for players are given as one of the primitives of the game, and the

equilibrium concepts for themselves will be well defined for any such given rules. When

Pi is a singleton for all i ∈ I, the updating rule coincides with that given by the Bayes
rule, and our model will be reduced to the standard Bayesian games. But when Pi is not
a singleton, there is a vast variety of sensible updating rules in principle. Among them,

there are a couple of natural and technically tractable updating rules of particular interest,

and we shall concentrate on these cases in the examples we consider.4

The first is the Fagin-Halpern updating rule or the full Bayesian (FB) updating rule

(Fagin and Halpern, 1990; Jaffray, 1992):

Φi (ti) = Pi(ti) for all ti ∈ Ti. (2)

In words, this is the case where the private information leads the player to update the risk

component of the priors but does not help him to update the degree of uncertainty.

The second is the Dempster-Shafer updating rule or the maximum likelihood (ML)

updating rule (Dempster, 1967; Shafer, 1976):

Φi (ti) = {Q(·|ti) ∈ Pi(ti) : Q ∈ arg max
P∈Pi

P
¡
τ−1i (ti)

¢} for all ti ∈ Ti. (3)

Thus, Φi (ti) is the set of posteriors derived from priors that evaluates ti as the most likely

signal.
4See Gilboa and Schmeidler (1993) for axiomatization of updating rules.
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2.4 Definition of games and decision rules

To sum up the setup, an incomplete information game with multiple priors is a tuple

G := hΩ, I, (τi)i∈I , (Pi)i∈I , (Φi)i∈I , (Ai)i∈I , (ui)i∈Ii. The incompleteness of information is
expressed by the priors (Pi)i∈I , the signals (τi)i∈I , and the updating rules (Φi)i∈I .

The equilibrium concepts we introduce in the next section adopt the following decision

rules in G. After ti is observed, player i uses posteriors in Φi (ti) to evaluate his actions.
The interim payoff to a randomized action µi ∈ ∆(Ai) given σ−i ∈ S−i(=

Q
j 6=i Sj) and

Q ∈ Φi (ti) is
Ui(µi,σ−i|Q) =

X
ω∈Ω

X
ai∈Ai

X
a−i∈A−i

µi(ai)ui (ai, a−i,ω)σ−i (a−i|τ−i (ω))Q(ω).

We write Ui(ai,σ−i|Q) instead of Ui(µi,σ−i|Q) if µi(ai) = 1. Since the set of actions and
the set of states are finite, Ui(µi,σ−i|Q) is continuous in (µi,σ−i, Q). We assume that each
player uses an extremely pessimistic decision rule. That is, given the updated priors, we

require that each player evaluates his actions using the worst possible scenario. Formally,

after ti ∈ Ti is observed, the interim payoff to a randomized action µi ∈ ∆ (Ai) given
σ−i ∈ S−i is

Vi (µi,σ−i|ti) = min
Q∈Φi(ti)

Ui(µi,σ−i|Q). (4)

Notice that the interim payoff function is well behaved, continuous and concave in

µi because Ui is continuous and the set Φi (ti) is compact by assumption. The concavity

follows since it is the minimum of linear functions of µi. But Vi (µi,σ−i|ti) is not necessarily
linear in µi. So a player may strictly prefer to randomize actions, which will lead us to

consider two different equilibrium concepts. Such an extreme decision rule is well studied

in the decision theory literature (Gilboa and Schmeidler, 1989) and hence it constitutes

one of natural specifications of games with uncertainty and ambiguity, but certainly not

the only one.5

3 Equilibrium concepts and existence

3.1 Equilibrium with multiple priers I: mixed strategy

We start with an equilibrium concept for G = hΩ,I, (τi)i∈I , (Pi)i∈I , (Φi)i∈I , (Ai)i∈I , (ui)i∈Ii
adopting the standard interpretation of mixed strategy in incomplete information games.

Definition 1 A strategy profile σ∗ ∈ S is a mixed equilibrium of G if, for each i ∈ I and
ti ∈ Ti,

Vi
¡
σ∗i (ti) ,σ

∗
−i|ti

¢ ≥ Vi ¡µi,σ∗−i|ti¢ (5)

for all µi ∈ ∆ (Ai).
5It is known that, for some class of sets of priors, the decision rule of Gilboa and Schmeidler (1989)

coincides with the decision rule based upon the Choquet integral (Schmeidler, 1986, 1989) with respect to

convex capacities. In that case, our model of an incomplete information game with multiple priors can be

defined as an incomplete information game with convex capacities.
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That is, in a mixed equilibrium of G, each player is maximizing his interim payoffs

by choosing a lottery conditional on his signal. It is clear that if the set of priors Pi is a
singleton for all i ∈ I, the mixed equilibrium of G is equivalent to the standard Bayesian
Nash equilibrium.

The condition (5) trivially implies that Vi
¡
σ∗i (ti) ,σ

∗
−i|ti

¢ ≥ Vi
¡
ai,σ

∗
−i|ti

¢
for any

action ai ∈ Ai, i.e., no pure action yields a higher payoff to player i. Since the interim
payoff function Vi (µi,σ−i|ti) given by (4) is concave in µi, pure actions will often be
strictly dominated by optimally mixed actions.6

Proposition 2 A mixed equilibrium of G exists.

Proof. We apply the standard existence theorem for a Nash equilibrium. Since Ω and Ai
are finite, Si is compact and convex for all i ∈ I. For σ−i ∈ S−i, let Bi (σ−i) ⊆ Si be the
set of best responses of player i:

Bi (σ−i) =
\
ti∈Ti

½
σi ∈ Si : σi (ti) ∈ arg max

µi∈∆(Ai)
Vi (µi,σ−i|ti)

¾
.

We are done if σ−i 7→ Bi (σ−i) is a non-empty, compact and convex valued, and up-
per hemicontinuous correspondence by applying Kakutani fixed point theorem to σ 7→Q
i∈I Bi (σ−i).
Note that Ui(µi,σ−i|Q) is continuous in (µi,σ−i, Q) and that Φi (ti) is compact. Since

Vi(µi,σ−i|ti) is the minimum of Ui(µi,σ−i|Q) over Q ∈ Φi(ti), Vi (µi,σ−i|ti) is continuous
in (µi,σ−i) and concave in µi. Thus, for each ti, the correspondence which maps σ−i
to the set {σi ∈ Si : σi (ti) ∈ argmaxµi Vi (µi,σ−i|ti)} is non-empty, compact and convex
valued, and upper hemicontinuous. Thus, Bi(σ−i) is compact and convex valued, and
upper hemicontinuous as the intersection of such correspondences. Finally, Bi (σ−i) is
non-empty, since for each ti, {σi ∈ Si : σi (ti) ∈ argmaxµi Vi(µi,σ−i|ti)} is non-empty and
this set puts no restriction on the component corresponding to t0i 6= ti. This completes the
proof. ¥

Since a mixed equilibrium is a Nash equilibrium of a strategic form game, it inherits

the standard properties of the Nash equilibrium. For instance, in a mixed equilibrium, no

player ever uses a dominated action.

3.2 Equilibrium with multiple priors II: pure strategy

Allowing mixed strategy as in the previous subsection is a technically natural extension of

the standard Bayesian Nash equilibrium. However, since preferences exhibit non-linearity

in probability, the concept of mixed strategy is less innocuous than in the standard case.

For instance, since the preference over mixed strategies is concave, the players may wish

to randomize two actions if they are equally favorable. Then it is not clear what pre-

vents the player from keep randomizing, beyond the strategy space specified before. Such

possibilities are simply assumed away in the previous setup.
6Such an example will be discussed in Subsection 4.3.
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Thus we introduce an alternative notion, which is a natural analogue to the equilibrium

in beliefs by Crawford (1990), so we shall adopt the same terminology.

Definition 3 A strategy profile σ∗ ∈ S is an equilibrium in beliefs of G if, for each i ∈ I
and ti ∈ Ti, σi(ai|ti) > 0 implies

Vi
¡
ai,σ

∗
−i|ti

¢ ≥ Vi ¡a0i,σ∗−i|ti¢ (6)

for all a0i ∈ Ai.

The equilibrium in beliefs of G can be understood just as an equilibrium in beliefs

for the complete information games in strategic form. In particular, in an equilibrium

in beliefs σ∗, each player i is taking a pure action, but is believed to be randomizing
over pure actions that are indifferent, as prescribed in σ∗i , by the other players. Such
beliefs are consistent with player i’s interim payoff maximization behavior, although it is

not necessarily fully self-fulfilling in the sense that players’ beliefs coincide with players’

actual (methods of) choices of actions.

It is clear that if the set of priors Pi is a singleton for all i ∈ I, an equilibrium in

beliefs of G is equivalent to the standard Bayesian Nash equilibrium. It follows directly
from the definitions that if a mixed equilibrium σ∗ has the property that every player i
at any ti chooses a pure action, then it is an equilibrium in beliefs. When the updating

rule is singleton-valued, then both equilibrium concepts coincide, since after updating

the players’ preferences are linear in probability assigned to actions. But in general, an

equilibrium in beliefs of G is not necessarily a mixed equilibrium of G, nor vise versa.

Proposition 4 An equilibrium in beliefs of G exists.

Proof. We modify Crawford’s existence argument to fit our setting. For each i ∈ I, and
for any σ−i ∈ S−i, let Bi (σ−i) be defined by the rule:

Bi (σ−i) =
\
ti∈Ti

½
σi ∈ Si : σi (ai|ti) = 0 if ai /∈ arg max

a0i∈Ai
Vi
¡
a0i,σ−i|ti

¢¾
.

By construction, Bi (σ−i) is non-empty. It is convex valued and upper hemicontinuous as
the intersection of convex valued and upper hemicontinuous correspondences (note that

Vi (a
0
i,σ−i|ti) is continuous in σ−i). So the correspondence σ 7→

Q
i∈I Bi (σ−i) has a fixed

point σ∗. Then by the construction of Bi, σ∗ constitutes an equilibrium in beliefs of G. ¥

Since each player chooses a best action given information and the others’ strategies, no

player ever chooses an action which is dominated by another (pure) action. An equilibrium

action may be dominated by a “mixed action” but like Crawford’s idea in the complete

information games, the basic hypothesis here is that the players never randomize, and it

is their beliefs which are in equilibrium.
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4 Examples: ambiguity under strategic interaction

We shall present examples which clarify the role of ambiguity in our model.

4.1 Difference of ambiguity induced by private information

In our setup, incomplete information can be expressed by differences in private infor-

mation, as Harsanyi’s Bayesian game. We shall give an example in which differences of

ambiguity can be expressed by differences in private information.

Let there be two players, and consider a state space,

Ω = {1, 2, 3a, 3b, 4a, 4b}

where the players have assigned probability ε/2 to the events {1} and {2} and probability
(1 − ε)/2 to the events {3a, 3b} and {4a, 4b}, respectively, where 0 < ε ≤ 1 is a given

parameter. The difference between state 3a and state 3b and that between 4a and 4b are

ambiguous in the sense that the players do not know how the probabilities assigned to

{3a, 3b} and {4a, 4b} should be allocated to these states. Thus the players have a common
set of priors, which is:

P1 = P2 =
½
P ∈ ∆ (Ω) : P ({1}) = P ({2}) = ε

2
, P ({3a, 3b}) = P ({4a, 4b}) = (1− ε)

2

¾
.

Let E = {1, 2}. The following table summarizes the actions and payoffs, where Player
1 chooses a row and Player 2 chooses a column, and the numbers on the left are Player

1’s payoffs and on the right are Player 2’s payoffs.

ω ∈ E
α β

α 1,−2 0, 0

β 0,−2 1, 0

ω 6∈ E
α β

α 1, 1 0, 0

β 0, 1 1, 0

Note that Player 1’s best response is to choose the action Player 2 chooses. Given ω,

Player 2’s payoffs are independent of Player 1’s choice of action, and Player 2 wants to

choose β if ω ∈ E and to choose α if ω 6∈ E. Notice that Player 2’s payoffs do not depend
on Player 1’s choice of actions.

As a bench mark, consider the case where there is no private information. Then both

players agree that event E occurs with probability ε, and this is common knowledge. So in

this game the multiplicity of priors is inessential if both players remain uninformed about

the state. If ε is small enough, then playing α maximizes Player 2’s payoff regardless of

Player 1’s behavior, and thus a unique equilibrium is that both players choose α.

Now let us consider private information. The ranges of signals (τ1, τ2) are

T1 = {{1, 3a, 3b}, {2, 4a, 4b}},
T2 = {{1, 3a, 4a}, {2, 3b, 4b}},

11



where τi (ω) ∈ Ti is the set containing ω ∈ Ω. The reader may find it easy to think of this
as if the private information is given by partitions suggested by T1 and T2.

We assume that both players use the FB updating rule (2). So the set of updated

priors is that of all probability distributions which are consistent with observation. We

have:

Φ1({1, 3a, 3b}) ={P ∈ ∆ (Ω) : P ({1}) = ε, P ({3a, 3b}) = 1− ε},
Φ1({2, 4a, 4b}) ={P ∈ ∆ (Ω) : P ({2}) = ε, P ({4a, 4b}) = 1− ε},

Φ2({1, 3a, 4a}) =
½
P ∈ ∆ (Ω) : P ({1}) = ε

ε+ 2 (x+ y)
, P ({3a}) = 2x

ε+ 2 (x+ y)
,

P ({4a}) = 2y

ε+ 2 (x+ y)
where x ∈

∙
0,
1− ε

2

¸
, y ∈

∙
0,
1− ε

2

¸¾
,

Φ2({2, 3b, 4b}) =
½
P ∈ ∆ (Ω) : P ({2}) = ε

ε+ 2 (x+ y)
, P ({3b}) = 2x

ε+ 2 (x+ y)
,

P ({4b}) = 2y

ε+ 2 (x+ y)
where x ∈

∙
0,
1− ε

2

¸
, y ∈

∙
0,
1− ε

2

¸¾
.

We shall find a unique equilibrium of this game. Note that the updated probabilities of

E are:

{P (E) |P ∈ Φ1(t1)} = {ε}, {P (E) |P ∈ Φ2(t2)} = [ε/(2− ε), 1]

for all t1 ∈ T1 and t2 ∈ T2.7 Thus, within each player, the evaluation of E is the same

for every state ω ∈ Ω. But in spite that the players start with a common set of multiple
priors, they have different uncertainty concerning E when ε > 0; Player 1 assigns the

unique probability ε and Player 2 assigns multiple probabilities ranging from ε/(2 − ε)

to 1. The difference of uncertainty is attributed to the difference of private information

T1 and T2.

To find optimal actions, let p be the probability Player 2 chooses action α. For any

t2 ∈ T2, the interim payoff of Player 2 is

min
P∈Φ2(t2)

((−2p+ 0 · (1− p)) · P (E) + (1p+ 0 · (1− p)) · (1− P (E)))

= min
P (E)∈[ε/(2−ε),1]

(−3pP (E) + p) = −3p+ p = −2p

if p > 0, and it is 0 if p = 0, which implies that β is a strictly dominant action for

all t2 ∈ T2. Knowing this, Player 1, who wants to match his action, must choose β for
all t1 ∈ T1. To summarize, the game has a unique equilibrium, in both definitions we
proposed, in which both players always choose β. Note that this is true for any small

ε > 0.

Now look at the case ε = 0 where there is no difference of uncertainty concerning the

event E because E is null:

{P (E) |P ∈ Φ1(t1)} = {P (E) |P ∈ Φ2(t2)} = {0}.
7Though players have different uncertainty, there is a common probability in the sense that {P (E) |P ∈

Φ1(t1)} ∩ {P (E) |P ∈ Φ2(t2)} 6= ∅. We will discuss this issue in the next section.
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Thus payoffs are given by the table corresponding to ω 6∈ E with probability one. So we

have a complete information game with a randomization device τ , but since α is a strictly

dominant action for Player 2, we conclude that there is a unique equilibrium where both

players choose α.

In conclusion, the equilibrium set changes discontinuously with respect to ε at ε = 0.

Note that even at ε = 0, the players have multiple priors. But Player 2’s set of updated

probabilities of the relevant event E gets degenerate at ε = 0, and this fact generates the

discontinuity. Intuitively, Player 2, being very pessimistic, hesitates to choose action α

which is very bad when E occurs, as long as there is some chance that E is true. When

ε = 0, his worry disappears and he is willing to choose α.

Notice the dynamic inconsistency of Player 2’s behavior: suppose Player 2 could com-

mit in advance to the action he will be playing after arrival of private information. Then

for any prior in P2, the value of committing to always playing α is −2× ε + 1× (1− ε),

which is positive if ε is small, better than the value of committing to β whose value is zero.

Since Player 1 is just reacting to Player 2’s action, the difference of the equilibrium be-

havior from the bench mark case can also be attributed (at least partially) to the dynamic

inconsistent behavior of Player 2.

But for a game theoretic implication, a more important point is the way Player 1’s

behavior is affected. Notice that Player 1 unambiguously assigns a single probability to

the payoff relevant event E, irrespective of the value of ε and his private information. So

as far as his payoffs are concerned, he has no uncertainty at all. But he knows that his

opponent tends to interpret her private information very pessimistically, and he must take

this into account in equilibrium. In fact, this example can be modified that Player 1 has a

single prior; just take any prior in P1. Hence this example can also be seen as an instance
of a standard Bayesian player’s action is affected by the other non-Bayesian player.

4.2 An equilibrium with no BNE justification and the role of updating

rule

Here we shall give a simple example where there is an equilibrium with multiple priors

under the FB updating rule (2) which cannot be justified as a Bayesian Nash equilibrium

for the given state space and information structure, and moreover it is not an equilibrium

if the ML updating rule (3) is adopted. So this is also an example to understand the role

of updating as well as multiplicity of priors.

We use the same notation as in the previous example. Let Ω = {1, 2a, 2b, 3} with

P1 = P2 = {P ∈ ∆ (Ω) : P (1) = 0.25, P ({2a, 2b}) = 0.5, P (3) = 0.25}.

Let the payoffs be given by the following table.

ω = 1

α β

α 3, 3 0, 1

β 0, 0 1, 1

ω ∈ {2a, 2b}
α β

α 1, 3 1, 1

β 0, 0 0, 1

ω = 3

α β

α 3, 3 0, 1

β 0, 0 1, 1
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The signals are given by:

T1 = {{1}, {2a}, {2b}, {3}}, T2 = {{1, 2a}, {2b, 3}}.

So Player 1 always knows the payoffs, and Player 2’s payoffs do not depend on ω. So there

is no “ambiguity” in the payoff structure.

With the FB updating rule, the following strategy profile constitutes an equilibrium

with multiple priors for both definitions.

σ1({1}) = β, σ1({2a}) = α, σ1({2b}) = α, σ1({3}) = β,

σ2({1, 2a}) = β, σ2({2b, 3}) = β.

Let us confirm this. Since α is a dominant action for Player 1 when ω ∈ {2a, 2b}, playing
α in 2a and 2b is optimal. If Player 2 plays β, β is a best response for Player 1 when

ω ∈ {1, 3}. So Player 1’s behavior is optimal. Player 2’s behavior can be shown to be
optimal by a similar calculation as in the previous example. Intuitively, when Player 1 is

to play β in state 1, after observing {1, 2a}, if Player 2 is to play α with some probability,
he will assign probability one to state 1 which is the worst scenario, and then playing β

for sure is a best response. A symmetric argument applies for {2b, 3}.
But the strategy profile given above cannot be a Bayesian Nash equilibrium for any

single prior P ∈ Pi. The reason is as follows: since P (2a) + P (2b) = 0.5 must hold,

one of 2a and 2b must have ex ante probability no less than 0.25. Assume that it is 2a

without loss of generality since the structure of the game is symmetric. Then after {1, 2a}
is observed, Player 2 must assign at least probability 0.5 to state 2a. Since Player 1 plays

α in state 2a, this implies that Player 2 knows that α is played at least probability 0.5,

and then he must choose α since it is the risk dominant action for Player 2.

The strategy profile above is not an equilibrium with the ML updating rule. For

Player 2, after observing {1, 2a}, the prior which makes this most likely is the one assigning
ex ante probability of 0.5 to 2a. Thus he believes action β and α occurs with ratio 0.25 : 0.5,

and so Player 2 must play α. Since it is never a best response of Player 1 to play β with

any probability in states 2a and 2b, we see that Player 2 must always play α in any

equilibrium. Then Player 1 must always play α since it is a best response to α for any ω.

In conclusion, with the ML updating rule, in a unique equilibrium strategy profile, both

players always play α.

4.3 Difference of two equilibrium concepts

Let us give an example to clarify the differences of the two notions of equilibria we pro-

posed.8 Let I = {1, 2} and Ω = {1, 2}. The set of priors P1 = P2 is just the set of all
probability distributions on Ω. Player 2 observes every ω ∈ Ω, but Player 1 has no private
information. Player 1 has three actions, α,β, γ and Player 2 has two actions 1 and 2.

Independent of Player 1’s action, Player 2’s payoff is 10 if he chooses action ω when

ω ∈ Ω occurs, otherwise 0. Then for both equilibrium concepts, Player 2 must play action

8This example and discussion are inspired by Lo (1996).
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ω when ω ∈ Ω is observed. This makes the game effectively a single person decision

problem of Player 1 against the nature, where the decision maker has multiple priors P1.
The payoffs of Player 1 are as follows.

1 2

α 10 0

β 0 10

γ 1 1

Then the payoffs to actions α and β are both zero owing to Player 1’s pessimistic

expectations, whereas action γ is worth 1. So a unique equilibrium in beliefs is that

Player 1 chooses γ and Player 2 behaves as described above. But if mixed actions are

considered, randomizing equally between α and β yields 5 irrespective of priors, and this is

payoff maximizing. So in a unique mixed equilibrium, Player 1 chooses this randomization

strategy.

5 Discussions and generalizations

5.1 Foundations

Let us comment on a couple of issues on the foundation of our model: preferences and

types.

For preferences, we simply postulated that there exist sets of priors and that the play-

ers’ preferences over strategies are induced by the most pessimistic posteriors. A possible

objection is lack of axiomatic foundations, and our defense is as follows. As for the use of

multiple priors, in a single person setting, there is a well known axiomatization of such pref-

erence relations by Gilboa and Schmeidler (1989). Even for complete information games,

a common justification for expected utility preferences is based on individual decision

making. So if this line of justification is accepted, we contend that the Gilboa-Schmeidler

axiomatization justifies our multiple priors approach as well.

To discuss the role of types in our model, let us first review the standard approach:

each point of a type space are associated a state of nature as well as a single posterior for

each player on the type space itself. The type of a player encodes not only his beliefs on

the space, but also his beliefs about others’ beliefs, his beliefs about others’ beliefs about

others’ beliefs, and so on. Whether or not this entire sequence of beliefs can be captured

in a single type space with a common prior is a fundamental question to the construction

and analysis of games with incomplete information. Mertens and Zamir (1985) did the

first mathematical analysis on this, and gave an affirmative answer.

In our framework, we postulate that a multiple posterior version of type spaces as

above: with each point of a type space are associated a state of nature as well as multiple

posteriors for each player on the type space itself. Then a similar question as above will

naturally arise. Can one construct a type space with multiple priors as above from a

hierarchy of sets of beliefs which justifies a common set of priors, or something alike?
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We chose a neutral position on this: we allowed heterogenous sets of priors, but for

the examples to illustrate the power of the model, we assumed a common set of priors.

But obviously it is of great theoretical interest how far the analysis of Mertens and Zamir

can be extended.

A seminal work in this direction is Epstein and Wang (1996), which criticize the

Bayesian approach of comprehensive belief types and provide a preference based construc-

tion of general type space which serves as a foundation for games with incomplete infor-

mation. Our model conforms to their general definition of incomplete information games.

But the preference based approach, by construction, does not spell out the structure of

sets of beliefs independently.

More closely related to our model is Ahn (2003)’s construction of type spaces. He con-

sidered players with multiple priors over the state space, which is similar to our model, and

studied generalization of the classic coherency condition which produces a Mertens-Zamir

style type space to encode the hierarchy of beliefs. He discussed a class of incomplete infor-

mation games with multiple priors to demonstrate that his result serves as its foundation.

The class of games in Ahn (2003) consist of players with multiple priors and general pref-

erences over players’ beliefs and consequences. It can be seen that if the preferences is

defined in terms of the decision rule of Gilboa and Schmeidler (1989), the class of games

are reduced to our model. In this sense, Ahn (2003)’s result directly serves as a foundation

of our model.9

5.2 Common knowledge and “agreeing to disagree”

Despite mathematical justifications, it has been pointed out that the common prior as-

sumption has too much economic implications; e.g., various no trade results originated in

Milgrom and Stokey (1982). This excess power of the model gives rise to some skepti-

cism, and indeed it has motivated many works on relaxing the common prior assumption

(more importantly common support assumption) in the literature. So a generalized type

space argument justifying a common set of priors is not necessarily enough to rule out

heterogeneity of priors sets.

But it is not clear if the common set of priors assumption in our model have similar

drawbacks. Recall that the differences in views are also expressed by private information

in our model. But since there are two channels, risks and ambiguity, through which private

information makes differences, our model is rich enough to distinguish the strategic effects

of ambiguity from the usual Bayesian effects. Indeed, recall that all the examples in

Section 4 assume a common set of priors. Thus the important implications we draw from

the examples do not rely on the heterogeneity of priors at all. For instance, we saw in

Subsection 4.2 a game where there is an intuitive equilibrium with common multiple priors

representing the ambiguity about the game, but this equilibrium cannot be explained by

9Ahn (2003) also defined an equilibrium concept, which can be translated in our framework. Roughly

speaking, a strategy profile is an equilibrium in Ahn’s sense in our model if it is both a mixed equilibrium

and a equilibrium in beliefs in our model. Since there are games where these two concepts do not imply

each other as we saw in Subsection 4.3, Ahn’s equilibrium may not exist in general.
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a single common prior.

Therefore, the common set of priors assumption does not seem to be too restrictive as

far as our main messages are concerned. But obviously there should be some restrictions.

We investigate this issue below, by considering the role of “common knowledge” via the

problem of “agreeing to disagree” à la Aumann (1976) in our setup.

Since our premise is that the structure of the game is completely determined by state

ω ∈ Ω, and the private information of player i is given by τi, it is natural to adopt

Aumann’s formulation of common knowledge in our setup. That is, an event E ⊆ Ω is
common knowledge (at ω ∈ E) if E contains a partition element of the finest common

coarsening of partitions
©
τ−1i (ti) : ti ∈ Ti

ª
, i = 1, . . . , I. Thus the multiplicity of priors

does not play any role in determining whether or not an event is common knowledge

among the players.

Let an event E ⊆ Ω be given. For each player i ∈ I and a state ω ∈ Ω, define ρi(E|ω)
by the rule:

ρi(E|ω) = {p ∈ [0, 1] : p = P (E), P ∈ Φi(τi(ω))},

which is the collection of player i’s ex post evaluation of E at ω ∈ Ω.
A natural question in view of Aumann’s theorem is if players with common multiple

priors can agree to disagree, and if they do, to what extent they agree. We attempt to

answer this question by the following proposition, which contains Aumann’s agreement

theorem as a special case.

Proposition 5 Let E ⊆ Ω be an event. Suppose that

• Pi = P ⊆ ∆(Ω) for all i ∈ I,

• every player adopts the FB updating rule,

• for all i ∈ I, ρi(E|ω) is common knowledge at ω ∈ Ω : that is, the event {ω0 ∈ Ω :
ρi(E|ω) = ρi(E|ω0)} is common knowledge,

• for all i ∈ I, ρi(E|ω) is a closed interval.

Then we have: \
i∈I

ρi(E|ω) 6= ∅.

Proof. The common knowledge assumption implies that there exists a common knowledge

event F with ω ∈ F such that ρi(E|ω0) = ρi(E|ω) for all ω0 ∈ F for each i ∈ I. For any ω0 ∈
F , set ti = τi(ω

0), and then it must be true that τ−1i (ti) ⊆ F since F is common knowledge.
Thus, P (E|ti) = P

¡
τ−1i (ti) ∩ E

¢
/P
¡
τ−1i (ti)

¢
= P

¡
τ−1i (ti) ∩ F ∩E

¢
/P
¡
τ−1i (ti)

¢
= P (E∩

F |ti). That is, the conditional probabilities of E and E ∩ F are the same at any ω0 ∈ F
for any P ∈ P.
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Let p∗(i), p∗(i) ∈ [0, 1] be the upper bound and the lower bound of ρi(E|ω0):

p∗(i) = min
p∈ρi(E|ω0)

p = min
P∈P

P (E|τi(ω0)) = min
P∈P

P (E ∩ F |τi(ω0)),

p∗(i) = max
p∈ρi(E|ω0)

p = max
P∈P

P (E|τi(ω0)) = max
P∈P

P (E ∩ F |τi(ω0)),

for all ω0 ∈ F .
Let P∗, P ∗ ∈ P be such that:

P∗(E|F ) = P∗(E ∩ F )/P∗(F ) = min
P∈P

P (E ∩ F )/P (F ),
P ∗(E|F ) = P ∗(E ∩ F )/P ∗(F ) = max

P∈P
P (E ∩ F )/P (F ).

Then, for any ti ∈ τi (F ), we have:

p∗(i) ≤ P∗(E ∩ F |ti) = P∗(E ∩ F ∩ τ−1i (ti))

P∗(τ−1i (ti))
,

p∗(i) ≥ P ∗(E ∩ F |ti) = P ∗(E ∩ F ∩ τ−1i (ti))

P ∗(τ−1i (ti))
,

or equivalently,

p∗(i)P∗(τ−1i (ti)) ≤ P∗(E ∩ F ∩ τ−1i (ti)),

p∗(i)P ∗(τ−1i (ti)) ≥ P ∗(E ∩ F ∩ τ−1i (ti)).

Since both P∗ and P ∗ are priors and so they are additive, summing the above over ti ∈
τi (F ), we have

p∗(i)P∗(F ) ≤ P∗(E ∩ F ),
p∗(i)P ∗(F ) ≥ P ∗(E ∩ F ).

This means that [P∗(E|F ), P ∗(E|F )] ⊆ ρi(E|ω) for every i, so we have established the
result. ¥

This result is an extension of Aumann’s theorem since if Pi is singleton, so is each
ρi (E|ω) and hence

T
i∈I ρi(E|ω) 6= ∅ implies the agreement ρi (E|ω) = ρj (E|ω) for any

i, j ∈ I.
We can interpret

T
i∈I ρi(E|ω) = ∅ as a situation where the players completely disagree

about posterior beliefs on E. So the proposition implies that complete disagreement cannot

be common knowledge, and so it has the flavor of Aumann’s theorem: if posteriors are

common knowledge, they must share a posterior belief as one of the posterior beliefs in

ρi(E|ω).
In general, the sets ρi(E|ω), i = 1, . . . , I, differ from each other, and thus there are

posterior beliefs in their posterior belief sets which do not belong to each others’ posterior

belief set. Consider the example discussed in Subsection 4.1. We have already obtained

ρ1(E|ω) = {ε}, ρ2(E|ω) = [ε/(2− ε), 1]
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for all ω ∈ Ω. Thus, ρ1(E|ω) and ρ2(E|ω) are common knowledge at every ω ∈ Ω. Clearly,
ρ1(E|ω) 6= ρ2(E|ω) and ρ1(E|ω) ∩ ρ2(E|ω) = ρ1(E|ω).

The problem of “agreeing to disagree” is closely related to various no trade results,

and this issue for multiple prior models is discussed in Kajii and Ui (2004). They present

a framework to understand the possibility of a purely speculative trade under asymmetric

information, where the decision making rule of each trader conforms to the multiple priors

model. In this framework, they derive a necessary and sufficient condition on the sets of

posteriors, thus implicitly on the updating rules adopted by the players, for non-existence

of trade such that it is always common knowledge that every player expects a positive

gain. As a corollary of the main result, they obtain generalization of Proposition 5, which

states that, not only when Pi = Pj for all i, j ∈ I, but also when
T
i∈I Pi 6= ∅, we obtainT

i∈I ρi(E|ω) 6= ∅. For more details, see Kajii and Ui (2004).

5.3 Complete information games

Consider the special cases where payoff functions are independent of state ω. Thus sig-

nals and priors can be seen as external randomization devices. Then our model can be

understood as a complete information game with an external randomization device, but

there is ambiguity about which randomization devices are to be used. Let us relate this

to the studies on generalizations of Nash equilibrium for complete information games,

by allowing uncertainty averse players. These studies include Dow and Werlang (1994),

Eichberger and Kelsey (2000), Klibanoff (1996), Marinacci (2000), and Lo (1996, 2002).

It can be shown that the mixed equilibrium in our definition is a correlated equilibrium

under uncertainty in Lo (2002) in general, and when the signals are independent for any

priors, it corresponds to the equilibrium (with agreement) of Lo (1996).

In the studies of the generalized Nash equilibrium, the issue is endogenous formation

of beliefs, accommodating players’ possibly non-additive beliefs on the other’s actions. On

the other hand, in our framework, player’s beliefs about the opponents’ action distributions

are formed from two components: the first is about the opponents’ strategic choices of

actions after they have observed signals, and the second is inference about what private

signals the opponents have observed, given the player’s private information. The player’s

beliefs may be non-additive for the second components, but they are additive for the first.

So the possibly non-additive part is exogenous in our framework, which makes our model

very tractable to analyze complete information games with uncertainty averse players.

Moreover, there is a conceptual difficulty of endogenously formed non-additive beliefs,

in particular in dynamic settings with more than 2 players, that it is not clear how updating

is done. In our setup the updating is controlled exogenously so there will be no conceptual

issues of this kind.

Coming back to the example discussed in Subsection 4.3, Lo (1996) used essentially the

same example to justify why he favors mixed equilibrium over equilibrium in beliefs. One

of the reasons is that an action dominated by a mixed action may survive in equilibrium

in beliefs with uncertainty aversion: a player may form an excessively pessimistic beliefs

about the others’ choices and so he may assign an excessively low value to something
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whose payoffs depend on the others’ choices, even if he could perfectly hedge risks had

he not been occupied with an extremely pessimistic view. Also, since the support of a

non-additive measure is not necessarily well defined, the equilibrium in beliefs requires

well defined support by definition.

However, we do not particularly favor the mixed equilibrium over the equilibrium in

beliefs. First of all, both make good sense. Secondly, it is not necessarily a defect of

the equilibrium concept if a particular player chooses a “dominated” action. In strategic

environments, we are often interested in strategic implications of dominated action to the

other players. Thirdly, in our model, the equilibrium in beliefs do not have this problem

about the support. Roughly speaking, our equilibrium in beliefs can be regarded as a

purified version of the equilibrium in beliefs à la Dow and Werlang (1994), and it is well

behaved.

Since a standard Nash equilibrium is always an equilibrium with uncertainty aversion,

if endogenous formation of non-additive beliefs is considered, there is a vast set of equilibria

which including the ones supported by extremely pessimistic expectations of some players.

Therefore, although the generalized Nash equilibrium concepts explain why players may

be stuck in a situation by pessimism, they do not have any stronger predictive power than

the standard Nash equilibrium. In order to be used for economic analysis, one need to

think about “refinements” of those endogenous equilibria, as is done in Marinacci (2000)

for instance, after all.

Our position is that the payoff matrix should be “complete” by itself and it is more

natural to model any extra doubt and ambiguity about how players might have among

themselves as an exogenous state space (and multiple priors) outside the payoff matrix. If

one has to apply an extraneous refinement criteria on “equilibria” affected by ambiguity

anyway, why not describe the ambiguity specifically in the model.

5.4 Higher order beliefs

One may wonder if the vagueness can still be expressed in a standard Bayesian approach

with a sophisticated higher order knowledge structure. Indeed, the Bayesian framework

turned out to be fruitful, and many aspects of what one might want to attribute to

ambiguity can be simulated by lack of common knowledge of payoffs at the level of higher

order beliefs. That is, if action choices of the players are driven by some consideration of

higher order beliefs, one can interpret them as results of ambiguous nature of the game.

For instance, in so called “global games” approach suggested by Carlsson and van Damme

(1993), a remotely related piece of information of some type of players has global effect

by iterative dominance argument. This approach has proven to be very effective.10 Also,

Mukerji and Shin (2002) point out, despite only for 2 player games, different notions of

equilibrium with non-additive beliefs for complete information games may be reinterpreted

as equilibrium in associated games of incomplete information with a common prior where

the structure of the original game is not common knowledge to various degrees.

10Morris and Shin (1998) is an elegant application. See also an excellent survey by Morris and Shin

(2002).
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We however think that ambiguity and remotely related information should be described

separately, at least at the normative level, and this is our basic motivation. Risk and un-

certainty should yield qualitatively different strategic implications in games of incomplete

information, and they do in our model. Although the higher order belief interpretation

may be a good proxy, but by construction the two sources of incompleteness cannot be

distinguished within the standard Bayesian framework.

Also, the higher order belief approach requires a delicate construction of type space in

general. Even in the simple example in the introduction, we need to consider a vast state

space of belief types to express the probability of Investor 1 assigns on the possibility of

Investor 2 might have assigned probability q on state 3, and the probability of Investor 2

knows Investor 1 assigned that way, etc, etc. In our setup we may stick to these 4 intuitive

states. One may ask why think of a black box of multiple priors whose role is not clear,

but we think that the relation between ambiguity and this construction of large type space

is no easier to understand. We contend that our model provides descriptively far simpler

and more useful tool for economic analyses of the role of ambiguity.

We by no means claim that our model is a perfect representation of games with in-

complete information, but we maintain that our model is a tractable and reasonable way

of addressing incomplete information games: when it is difficult to resolve the incomplete-

ness of information by a higher order hierarchy of beliefs types, our recommendation is to

resolve it using multiple priors as we propose, instead of using a complex belief type space

to bury the interesting thought process of the players.

5.5 On finiteness assumptions and generalizations

Let us conclude by mentioning possible generalization of our models. We assumed the

state space and action sets to be finite sets. But the definitions of equilibria we proposed

are very general. For instance, an auction model of Lo (1998) conforms to our model except

for finiteness.11 It is worth pointing out that the so called global games which assumes

an “improper prior” of uniform distribution over the entire real line12 can be readily

interpreted as multiple priors with the ML updating rule in our model. Conceptually,

there is not much reason for using finite models, and in fact one would need to use infinite

state space to model complex structures of incomplete information.

We chose a finite model to make the existence results transparent, but more impor-

tantly it is one of purposes that even with a simple finite model is rich enough to explaining

interesting phenomena. Technically, we are confident that the existence results can be ex-

tended to allow an infinite state space and infinite actions once we assume strong enough

continuity and compactness. The existence problem for a general infinite state space is

delicate even for Bayesian equilibria, so our model naturally inherits the same difficulty,

and in addition, the equicontinuity property of payoff functions indexed by the updated

prior sets (Φi)i∈I is tricky in general spaces.

11In Lo’s model, private signals are assumed to be independent, which makes his model very tractable.
12See a survey by Morris and Shin (2002).
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