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Abstract

This paper presents a general framework to understand the possibility of a purely

speculative trade under asymmetric information, where the decision making rule of

each trader conforms to the multiple priors model (Gibloa and Schmeidler, 1989):

the agents are interested in the minimum of the conditional expected value of trade

where the minimum is taken over the set of posteriors. In this framework, we derive

a necessary and sufficient condition on the sets of posteriors, thus implicitly on the

updating rules adopted by the agents, for non-existence of trade such that it is al-

ways common knowledge that every agent expects a positive gain.
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1 Introduction

This paper presents a general framework to understand the possibility of a purely specu-

lative trade under asymmetric information, where the decision making rule of each trader

conforms to the multiple priors model (Gibloa and Schmeidler, 1989): the agents are in-

terested in the minimum of the conditional expected value of trade where the minimum

is taken over the set of posteriors. In this framework, we derive a necessary and sufficient

condition on the sets of posteriors, thus implicitly on the updating rules adopted by the

agents, for non-existence of interim agreeable trade, i.e., trade such that it is always

common knowledge that every agent expects a positive gain.

The condition is closely related to the existence of a common prior in the single prior

model, and thus our results give an insight about the role of a “common set of priors” in

the multiple prior model. Since the model in this paper is an extension of the standard

Bayesian trading model initiated by Milgrom and Stokey (1982), our results can be seen

as a generalization of results obtained by Morris (1995) and Feinberg (2000), further

elaborated by Samet (1998) and Ng (2003).

A simple analogy to the standard Bayesian model might suggest that the existence of

a common prior, i.e., the non-emptiness of the intersection of agents’ sets of priors, would

imply non-existence of interim agreeable trade. Indeed, as is characterized by Billot et

al. (2000), this is basically the case for ex ante agreeable trade. But for the interim trade

agreement, the problem is more subtle. Even in the standard Bayesian model with a

single prior, as is shown in the above literature, the necessary and sufficient condition for

no interim agreeable trade is weaker than the common prior assumption; the condition

is that the posteriors of the traders are consistent with some (fictitious) common prior.

In our model of multiple priors, however, the issue is more complicated, since there are

many possible ways to update multiple priors upon arrival of private information. We

consider a collection of all (fictitious) priors consistent with the posteriors and call it a

maximal rectangular prior set. The necessary and sufficient condition for non-existence

of interim agreeable trade is that the intersection of these sets is non-empty.

Non-existence of purely speculative trade in general non-expected utility frameworks,

including multiple prior models, with asymmetric information has been studied by Dow

et al. (1990), Ma (2001), and Halevy (2004), so let us clarify our contribution with

respect to these works. These papers were intended to characterize the condition on the
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ex ante preference relation which ensures the non-existence of interim agreeable trade for

any information structure. The condition Ma (2001) and Halevy (2004) found for this

purpose is essentially the weak decomposability axiom studied by Grant et al. (2000),

which leads to a dynamically consistent decision making rule.

In contrast to these papers, we concentrate on multiple priors models. Since the weak

decomposability is typically not satisfied for this class of models, one might think that

our results are inconsistent with the aforementioned results. The key difference is that

we assume a fixed information structure, and hence our condition on the set of possible

posteriors is relative to the fixed information structure.

As a matter of fact, the reader will see that the dynamic consistency is relevant in our

condition as well, and the relevant concept is the rectangularity introduced by Epstein

and Schneider (2003) and Wakai (2002).1 Wakai (2002) showed that the rectangularity is

sufficient for no trade. Thus our main contribution is the necessity part of the argument,

especially the necessity of a common prior. But we also contend that our formulation,

inspired by a beautiful paper of Samet (1998), is much simpler but captures the essence of

the problem. In particular, our approach clarifies the precise role of dynamic consistency

in the analysis.

The organization of the paper is as follows. Section 2 describes the model and

summarizes basic known results. Section 3 reports the main results. Section 4 discusses

the implications of our results in comparison with those in the standard Bayesian model.

Section 5 contains examples.

2 Setup

We consider the following information structure for a finite number of agents, who are

allowed to have multiple posteriors.

• Ω = {1, . . . , n}: a finite set of states.

• ∆(Ω) = {p ∈ RΩ : p(ω) ≥ 0 for all ω ∈ Ω, Pω∈Ω p(ω) = 1}: the set of probability
distributions over Ω. A generic element of ∆(Ω) is denoted by p = (p(1), . . . , p(n)).

For E ⊆ Ω, we write p (E) for Pω∈E p (ω).

1We adopt the term “rectangularity” from Epstein and Schneider (2003).
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• p (·|E): the conditional probability given E over Ω when p (E) > 0 for p ∈ ∆(Ω).
That is, p (A|E) = p (A ∩E) /p (E) for A,E ⊆ Ω. If p (E) = 0, let p (·|E) be an
arbitrary element of ∆(Ω).

• P = 2∆(Ω)\∅: a collection of all non-empty subsets of ∆(Ω).

• I = {1, . . . , I}: a finite set of agents. For each i ∈ I,

— Πi is an information partition of Ω for agent i, and Πi(ω) is the partition

element containing ω ∈ Ω. A generic element of Πi is denoted by πi.
— Φi : Πi → P is a function such that:
∗ p(πi) = 1 for all p ∈ Φi(πi) and πi ∈ Πi,
∗ Φi(πi) is closed and non-empty for all πi ∈ Πi.

We refer to the function Φi as a posterior function of agent i ∈ I.

Definition 1 We call hΩ,I, {Πi}i∈I , {Φi}i∈Ii an information structure with multiple
posteriors.

In our setup, we take posteriors rather than priors as primitives. The posterior

function is intended to describe the beliefs of agent i ∈ I after a partition element πi ∈ Πi
is observed. A natural case of course will be where the posterior function is derived from

an updating rule operated on a set of priors (cf. Gibloa and Schmeidler, 1993). We shall

list below a couple of standard updating rules. Let Pi ∈ P be a non-empty, closed set

such that {p ∈ Pi : p(πi) > 0} 6= ∅ for all πi ∈ Πi and i ∈ I.

1. The full Bayesian updating (FB-updating) on Pi:

Φi (πi) := {p (·|πi) : p (πi) > 0, p ∈ Pi}.

2. The maximum likelihood updating (ML-updating) on Pi:

Φi (πi) := {p (·|πi) : p (πi) = max
p0∈Pi

p0 (πi)}.

The standard Bayesian model corresponds to the case where Pi is a singleton for every

agent. When Pi is a singleton, the derived posterior functions in the above examples

4



coincide trivially, and they are convex valued. It is easy to check that Φi(πi) is a closed

set for the ML-updating rule. For the FB-updating rule, if minp∈Pi p(πi) > 0, Φi(πi) is
closed.

Alternatively, one can start with a given posterior function and ask what set of priors

will be compatible with it, and this is the path we shall pursue in this paper. First of

all, a minimal Bayesian consistency requirement is that any point in Φi(πi) should be a

conditional probability of some priors in the prior set.

Definition 2 A prior set Pi ∈ P is said to be compatible with Φi if, for any πi ∈ Πi
and p ∈ Φi(πi), there exists p0 ∈ Pi with p0 (·|πi) = p. A prior set Pi ∈ P is said to be

fully compatible with Φi if Pi is compatible with Φi and p ∈ Pi with p (πi) > 0 implies
p (·|πi) ∈ Φi(πi) for any πi ∈ Πi.

To put if differently, Pi ∈ P is compatible with Φi if and only if {p (·|πi) : p(πi) >
0, p ∈ Pi} ⊇ Φi(πi) for all πi ∈ Πi; and Pi ∈ P is fully compatible with Φi if and only if
{p (·|πi) : p(πi) > 0, p ∈ Pi} = Φi(πi) for all πi ∈ Πi.

If Pi is fully compatible with Φi, then,

Pi ⊆
[
p∈Pi

X
πi∈Πi

p(πi)Φi(πi) (1)

where the summation is the Minkowski sum. The inclusion above may be strict in

general. A stronger consistency requirement below, introduced by Epstein and Schneider

(2003) and Wakai (2002), asks for the equality:

Definition 3 A prior set Pi ∈ P is rectangular (with Φi) if Pi is fully compatible with
Φi and

Pi =
[
p∈Pi

X
πi∈Πi

p(πi)Φi(πi).

To sum up, we have introduced three progressively stronger Bayesian consistency

requirements for prior sets: compatibly, full compatibility, and rectangularity. See Ex-

ample 1 in Section 5 which illustrates the differences of the three requirements.

We summarize below the relationship between the three Bayesian consistency re-

quirements and the FB-updating or the ML-updating.
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Lemma 1 The following claims are true:

• If Φi is the ML-updating on Pi, then Pi is compatible with Φi.

• Φi is the FB-updating on Pi if and only if Pi is fully compatible with Φi.

• If Pi is rectangular, then the FB-updating and the ML-updating coincide.

Proof. The first and second claims are apparent. We prove the last claim. Pick any

π̂i ∈ Πi and fix any p∗ ∈ Pi with p
∗ (π̂i) = maxp0∈Pi p

0 (π̂i). For any p ∈ Pi such

that p(πi) > 0 for πi ∈ Πi with p∗(πi) > 0, by the definition of rectangularity, p̄ :=P
πi∈Πi p

∗(πi)p (·|πi) ∈ Pi. So p̄ (·|π̂i) = p (·|π̂i) is obtained by the ML updating on Pi.

For any Φi, there is a fully compatible, rectangular prior set; fix any Q ∈ P and

define

Pi :=

⎧⎨⎩p ∈ X
πi∈Πi

q(πi)Φi(πi) : q ∈ Q
⎫⎬⎭ =

[
q∈Q

X
πi∈Πi

q(πi)Φi(πi). (2)

Then, Pi is rectangular with Φi. Conversely, any rectangular prior set Pi can be written of

the form (2); let Q = Pi in the construction (2). Then by the definition of rectangularity,S
p∈Pi

P
πi∈Πi p(πi)Φi(πi) = Pi.

For given Φi, define a rectangular prior set P
∗
i ∈ P by the rule:

P ∗i :=

⎧⎨⎩p ∈ X
πi∈Πi

q(πi)Φi(πi) : q ∈ ∆(Ω)
⎫⎬⎭ =

[
q∈∆(Ω)

X
πi∈Πi

q(πi)Φi(πi). (3)

We shall refer to P ∗i as the maximal rectangular prior set because P
∗
i is maximal in the

collection of all rectangular prior set ordered by the set inclusion relation. The set P ∗i
will play an important role in the main result. We have the following properties of P ∗i :

• Φi(πi) ⊆ P ∗i for each πi ∈ Πi; consider q ∈ ∆(Ω) with q (πi) = 1 in (3).

• p ∈ P ∗i if and only if p(πi) > 0 implies p(·|πi) ∈ Φi(πi) by (3).

• From (1) and (3), P ∗i is the collection of all probability distributions over Ω con-
tained in some prior set fully compatible with Φi. In particular, if Pi is fully

compatible with Φi, then Pi ⊆ P ∗i .
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• If Φi is singleton-valued, P ∗i is the set of all priors which generates the posteriors
given by Φi in the standard sense. In other words, if

T
i∈I P

∗
i 6= ∅, then the

posteriors are consistent in the sense of Harsanyi (1967—1968).

• P ∗i is closed (and hence compact) since Φi(πi) is closed for all πi ∈ Πi.

For f ∈ RΩ and i ∈ I, let

Eif(ω) = min
p∈Φi(Πi(ω))

p · f (4)

where p · f = P
ω∈Ω p(ω)f(ω). That is, Ei assigns the smallest conditional expected

value of f at ω. Similarly, we write

E0i f = min
p∈Pi

p · f (5)

when the reference to the prior set Pi is clear from the context: E0i f is the smallest

expected value.

We consider a collection of functions {fi ∈ RΩ}i∈I with
P
i∈I fi = 0. We interpret

a function fi as a financial asset; when ω ∈ Ω is realized, agent i ∈ I who owns fi
receives the value of fi(ω). Assume that the initial position of each agent is neutral: he

receives 0 regardless of ω. Since we require
P
i∈I fi = 0, the collection {fi}i∈I can be

understood as a trade arrangement. Now if agent i with a posterior function Φi adopts

the very pessimistic decision rule of maximizing the minimum expected value (Gibloa

and Schmeidler, 1989), then the agent is willing to accept fi at ω if Eifi(ω) > 0. Thus,

if Eifi(ω) > 0 for every i ∈ I, we shall deem that a trade arrangement {fi}i∈I where
agent i ∈ I receives fi is interim agreeable to all agents. Similarly, an ex ante agreement

can be defined. We discuss the relationship between them in Section 4.3.

For the case of a single prior, Samet (1998) showed the following result.

Proposition 1 Suppose that Φi(πi) is a singleton for all πi ∈ Πi and i ∈ I. Let P ∗i be
the maximal rectangular prior set for i ∈ I. Then Ti∈I P ∗i 6= ∅ if and only if there exists
no {fi ∈ RΩ}i∈I with

P
i∈I fi = 0 such that Eifi(ω) > 0 for all ω ∈ Ω, for i ∈ I.

Note that
T
i∈I P

∗
i 6= ∅ implies that there exists a common prior p ∈

T
i∈I P

∗
i such

that Φi(πi) = {p(·|πi)} for all πi ∈ Πi and i ∈ I if p(πi) > 0, or {Φi}i∈I is consistent
in the sense of Harsanyi (1967—1968). Thus, the proposition says that there exists a

common prior if and only if there exists no interim agreeable trade arrangement.
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Let δE ∈ RΩ be an indicator function of E ⊆ Ω such that δE(ω) = 1 if ω ∈ E and

δE(ω) = 0 otherwise. Note that EiδE(ω) is a posterior probability of E ⊆ Ω held by
agent i ∈ I at ω ∈ Ω. As a corollary of Proposition 1, we have the agreement theorem
of Aumann (1976).2

Corollary 1 Suppose that Φi(πi) is a singleton for all πi ∈ Πi and i ∈ I. If
T
i∈I P

∗
i 6= ∅

and EiδE(ω) is constant over all ω ∈ Ω for all i ∈ I, then EiδE(ω) = EjδE(ω) for all

i, j ∈ I.

Samet (1998) showed the following separation theorem of many convex sets in a

simplex in order to show the above results.

Lemma 2 Let K1, . . . ,KI be convex, closed, subsets of ∆(Ω). Then,
TI
i=1Ki = ∅ if an

only if there are f1, . . . , fI ∈ RΩ such that
PI
i=1 fi = 0 and xi · fi > 0 for each xi ∈ Ki,

for i = 1, . . . , I.

3 Results

Let us first provide a result which relates the conditional expectation and the uncondi-

tional expectation with the Bayesian consistency requirements.

Lemma 3 Let c ∈ R. (i) Let Pi be fully compatible with Φi for i ∈ I. Then, p · f > c
for all p ∈ Pi if Eif(ω) > c for all ω ∈ Ω. (ii) Let P ∗i be the maximal rectangular prior
set for i ∈ I. Then, p · f > c for all p ∈ P ∗i if and only if Eif(ω) > c for all ω ∈ Ω.

Proof. Let Pi be fully compatible with Φi. Suppose that Eif(ω) = minp∈Φi(Πi(ω)) p ·f > c
for all ω ∈ Ω. Pick any q ∈ Pi. Note that q =

P
πi∈Πi q(πi)q (·|πi). For each πi ∈ Πi

with q(πi) > 0, full compatibility implies that q(·|πi) ∈ Φi(πi) and thus q (·|πi) · f ≥
minp∈Φi(πi) p ·f > c. Therefore, q ·f =

P
πi∈Πi q(πi)(q (·|πi) ·f) > c, which establishes (i).

For (ii), if p · f > c for all p ∈ P ∗i , we have Eif(ω) = minp∈Φi(Πi(ω)) p · f > c for

all ω ∈ Ω since Φi (Πi(ω)) ⊆ P ∗i for all ω ∈ Ω. The converse also holds because of full
compatibility of P ∗i .

2We can replace Ω with a common knowledge event in Proposition 1. The condition that Eifi(ω) > 0

for all i ∈ I and ω ∈ Ω can be re-stated that “a positive gain from trade is common knowledge” at

ω ∈ Ω. Corollary 1 can be modified analogously.
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The converse of (i) does not hold even if Pi is rectangular. See Example 1 in Section 5.

We report our main results which extend Proposition 1 and Corollary 1 to the case

where Φi(πi) is not a singleton.

Proposition 2 Let P ∗i be the maximal rectangular prior set for i ∈ I and let co (P ∗i ) be
its convex hull. Then,

T
i∈I co (P

∗
i ) 6= ∅ if and only if there exists no {fi ∈ RΩ}i∈I withP

i∈I fi = 0 such that Eifi(ω) > 0 for all ω ∈ Ω, for i ∈ I.

Proof. Since co (P ∗i ) is convex and closed for each i ∈ I, by Lemma 2,
T
i∈I co (P

∗
i ) 6= ∅

if and only if there are no f1, . . . , fI ∈ RΩ such that
P
i∈I fi = 0 and pi · fi > 0 for each

pi ∈ co (P ∗i ), for i ∈ I. Note that pi · fi > 0 for each pi ∈ co (P ∗i ) if and only if pi · fi > 0
for each pi ∈ P ∗i . Thus, Lemma 3 completes the proof.

Corollary 2 If
T
i∈I co (P

∗
i ) 6= ∅, and if, for each i ∈ I,

min
p∈Φi(Πi(ω))

p(E), max
p∈Φi(Πi(ω))

p(E)

are constant over all ω ∈ Ω, then, for i, j ∈ I,

min
p∈Φi(Πi(ω))

p(E) ≤ max
p∈Φj(Πj(ω))

p(E).

Proof. Let

ci = min
p∈Φi(Πi(ω))

p(E) = EiδE(ω), ci = max
p∈Φi(Πi(ω))

p(E) = −Ei(−δE)(ω)

for i ∈ I. We show that ci ≤ cj .
Suppose that I = {1, 2}. If cj < ci with i 6= j, let fi = δE − c and fj = c− δE where

cj < c < ci. Then, Eifi(ω) > 0 and Ejfj(ω) > 0 for all ω ∈ Ω, which contradicts toT
i∈I co (P

∗
i ) 6= ∅. Thus, we must have ci ≤ cj .

Suppose that I = {1, . . . , I} with I ≥ 3. If cj < ci with i 6= j, let fi = δE − ci,
fj = cj − δE , fk = (ci − cj)/(I − 2) for k 6= i, j where cj < cj < ci < ci. Then,

Eifi(ω) > 0 for all i ∈ I, which contradicts to Ti∈I co (P ∗i ) 6= ∅. Thus, we must have
ci ≤ cj , completing the proof.
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4 Discussions

We discuss three important differences between Proposition 1 with singleton-valued pos-

terior functions and Proposition 2 with general posterior functions.

4.1 On the existence of common priors sets

If Φi is singleton-valued, the implication of
T
i∈I P

∗
i 6= ∅ is clear, as we have already

discussed: the agents look as if they share a common prior from the observer’s point of

view. The common prior assumption is necessary and sufficient for the interim no trade,

i.e., non-existence of interim agreeable trade, by Proposition 1.

This leads us to the following question: if Φi is not singleton-valued, what is the im-

plication of
T
i∈I co(P

∗
i ) 6= ∅? To consider this question, we discuss a sufficient condition

for
T
i∈I co(P

∗
i ) 6= ∅.

Lemma 4 Let Pi ∈ P for i ∈ I and let co (Pi) be its convex hull. If
T
i∈I co(Pi) 6= ∅

and Pi is fully compatible with Φi for all i ∈ I, then
T
i∈I co(P

∗
i ) 6= ∅.

Proof. Since Pi is fully compatible with Φi, we have Pi ⊆ P ∗i and thus co(Pi) ⊆ co(P ∗i ).
This implies that

T
i∈I co(P

∗
i ) ⊇

T
i∈I co(Pi) 6= ∅.

For example, suppose that Φi is derived from the FB-updating on Pi and Pi = Pj

for all i, j ∈ I. That is, there exists a “common prior set” P ∈ P fully compatible

with Φi for all i ∈ I.3 Then, trivially,
T
i∈I co(Pi) 6= ∅. Thus, by Lemma 4, we haveT

i∈I co(P
∗
i ) 6= ∅, and by Proposition 2, there are no interim agreeable trade arrange-

ments if minp∈Pi p(πi) > 0 and thus Φi(πi) is closed.4

If “full compatibility” is replaced by “compatibility” in the lemma, the consequence

of the lemma may not be true in general. Remember that if Φi is the FB-updating, then

Pi is fully compatible with Φi, while if Φi is the ML-updating, then Pi is compatible with

Φi, but not necessarily fully compatible with Φi. Thus, the ML-updating may result in

3As we have pointed out in Lemma 1, the ML-updating and the FB-updating coincide if Pi is rect-

angular. So the discussion here is readily extended to the ML-updating if the rectangularity is satisfied.
4A similar result can be obtained even if we replace the assumption of minp∈Pi p(πi) > 0 with

maxp∈Pi p(πi) > 0 by defining the FB-updating rule in terms of the closure of that in the original

definition: Φi (πi) := Cl {p (·|πi) : p(πi) > 0, p ∈ P}.
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T
i∈I co(P

∗
i ) = ∅ even if every agent has a common prior set. For such an example, see

Example 2 in Section 5.

On the other hand, as far as full compatibility is retained,
T
i∈I co(P

∗
i ) 6= ∅ may hold

even if
T
i∈I Pi = ∅, but

T
i∈I co(Pi) 6= ∅. Such an example is found in Example 3 in

Section 5.

To sum up, if Φi is not singleton-valued, the “common prior set” assumption with

full compatibility of the prior set is sufficient for the interim no trade, but not necessary.

Even the empty intersection of agents’ prior sets may result in non-existence of interim

agreeable trade. Thus, it is not the case that, for the non-existence of interim agreeable

trade, the agents must behave as if they have a common set of multiple priors.

4.2 Uncertainty aversion: the role of zero endowment assumption

We have assumed that the initial position of each agent is neutral, i.e., the endowments

of financial assets are zero. When Φi is singleton-valued, the zero endowment assumption

is not restrictive. If Φi(πi) is a singleton for all πi ∈ Πi, then Ei is a linear operator: for
all f, g ∈ RΩ, Eif(ω)−Eig(ω) = Ei(f − g)(ω). Thus, we have the following claim as an

immediate consequence of Proposition 1:

Corollary 3 Suppose that Φi(πi) is a singleton for all πi ∈ Πi and i ∈ I. Fix any
{gi ∈ RΩ}i∈I with

P
i∈I gi = 0. Then the following two conditions are equivalent:

(i)
T
i∈I P

∗
i 6= ∅; (ii) There exists no {fi ∈ RΩ}i∈I with

P
i∈I fi = 0 such that Eifi(ω) >

Eigi(ω) for all ω ∈ Ω, for i ∈ I.

To interpret, think of {gi}i∈I as an initial arrangement of trade: gi (ω) is the amount
agent i receives if state ω is realized. Imagine that an alternative trading arrangement

{fi}i∈I is proposed to the agents. Then, the condition for {fi}i∈I in (ii) means that
{fi}i∈I is deemed desirable to all the agents at any state ω ∈ Ω. Roughly speaking,
there cannot be a mutually beneficial trade when the agents know that the environment

is zero-sum if and only if there exists a common prior, for any initial arrangement of

trade.

However, the same logic does not extend to the case of multiple priors, i.e., the zero

endowment assumption is restrictive when Φi is not singleton-valued. That is, even

if
T
i∈I co(P

∗
i ) 6= ∅, there may exist two trade arrangements {fi}i∈I and {gi}i∈I withP

i∈I fi = 0 and
P
i∈I gi = 0 such that Eifi(ω) > Eigi(ω) for all ω ∈ Ω, for i ∈ I.
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We shall give an example in Example 4 of Section 5, but let us first discuss why this

is the case. Mathematically, this occurs because of concavity of the operator Ei which

is the minimum of linear operators given by priors. In terms of economics, because of

“uncertainty aversion” of traders, there can be an agreeable trade arrangement {fi}i∈I
over {gi}i∈I which may reduce “uncertainty” of trade {gi}i∈I for all the traders. Thus
even if there is a common understanding on the priors set, the environment starting with

{gi}i∈I is not necessarily zero-sum. Thus in such a case, trading on private information
should not be deemed purely speculative to begin with.

As one can expect, a no trade result similar to Corollary 3 is obtained as a straight-

forward corollary to Proposition 2 if {gi}i∈I are assumed to be constant; by construction,
there is no “uncertainty” in trade {gi}i∈I if it is constant and thus Eif(ω) − Eig(ω) =
Ei(f − g)(ω) holds.

Corollary 4 Fix any ci ∈ R for i ∈ I with Pi∈I ci = 0. Then the following two

conditions are equivalent: (i)
T
i∈I co(P

∗
i ) 6= ∅; (ii) There exists no {fi ∈ RΩ}i∈I withP

i∈I fi = 0 such that Eifi(ω) > ci for all ω ∈ Ω, for i ∈ I.

4.3 Efficiency and dynamic consistency

We have considered non-existence of interim agreeable trade. In this subsection, we

study its relation with non-existence of ex ante agreeable trade. More precisely, we

consider whether ex ante efficiency implies interim efficiency (cf. Milgrom and Stokey,

1982), which is the issue of dynamic consistency.

Let a prior set Pi ∈ P be given and Φi be a posterior function derived from some

updating rule on Pi. To study ax ante efficiency and interim efficiency of trade arrange-

ments, we restrict our attention to trade arrangements with bounded volumes:

T = {{fi ∈ RΩ}i∈I :
X
i∈I

fi = 0, bi ≤ fi ≤ bi for all i ∈ I},

where bi < 0 < bi for every i ∈ I. As before, we write

E0i f = min
p∈Pi

p · f

for i ∈ I. We say that:

12



• {fi}i∈I ∈ T is ex ante efficient in T if there exists no {gi}i∈I ∈ T such that

E0i gi > E
0
i fi for all i ∈ I.

• {fi}i∈I ∈ T is interim efficient in T if there exists no {gi}i∈I ∈ T such that

Eigi(ω) > Eifi(ω) for all ω ∈ Ω and i ∈ I.
Since T is compact, both an ex ante efficient trade arrangement and an interim efficient

trade arrangement exist.

As a bench mark, let us first recall the case of a single prior, where the expected

value can be written as:

E0i f =
X
ω∈Ω

Eif(ω)× pi (ω) . (6)

where pi ∈ ∆(Ω) is a prior for i ∈ I. As is well known, ex ante efficiency implies interim
efficiency in this case.

For the case of multiple priors, the relation between ex ante efficiency and interim

efficiency is more delicate. As Dow et al. (1990) demonstrated, it is known that ex

ante efficiency does not necessarily imply interim efficiency. We shall clarify this issue by

investigating the implications of each of the three progressively stronger Bayesian consis-

tency requirements, compatibility, full compatibility, and rectangularity, we introduced

in Section 2. We begin by characterizing ex ante efficiency of zero endowments. Consider

the trivial partition Πi = {Ω}, and let Φi be the FB-updating on Pi ∈ P . Then, as an
immediate corollary of Proposition 2, we have the following characterization of ex ante

efficiency of zero endowments, which can be regarded as a special case of Billot et al.

(2000):5

Corollary 5 The following conditions are equivalent: (i)
T
i∈I co(Pi) 6= ∅; (ii) there

exists no {fi ∈ RΩ}i∈I with
P
i∈I fi = 0 such that E

0
i fi > 0 for all i ∈ I.

For the case of a single prior, this result is reduced to the trivial fact that the agents

agree to trade ex ante if and only if they disagree about the likelihood of the states; that

is, no trade is ex ante efficient if and only if the players have the same prior.

First, suppose that Pi is compatible but not fully compatible with Φi. Then, we can

easily construct an example of ex ante efficient trade which is not interim efficient, even
5Different from our result, Billot et al. (2000) considered strictly risk averse traders and assumed

convex sets of priors. For the issue of ex ante agreeable trade, see also Kajii and Ui (2004a).
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if every agent has a common prior set. If every agent has a common prior set, then zero

trade is ex ante efficient by Corollary 5. But if Pi is not fully compatible, we may haveT
i∈I co(P

∗
i ) = ∅, as we discussed in Section 4.1, and thus zero trade may not be interim

efficient. See Example 2 in Section 5.

Second, suppose that Pi is fully compatible with Φi. If a constant trade is ex ante

efficient, then it is interim efficient. That is, dynamic consistency holds for constant

trade arrangements. To see this, look at (i) of Lemma 3, which says that if an interim

improvement over constant is possible for all agents, then an ex ante improvement is

possible. Note that the role of constant trade is similar to that discussed in Section 4.2,

and that the efficiency of constant trade implies
T
i∈I co(P

∗
i ) 6= ∅ by Corollary 4. Thus,

ex ante efficiency implies interim efficiency only when
T
i∈I co(P

∗
i ) 6= ∅.

Finally, suppose that Pi is rectangular with Φi. Then, as is pointed out by Epstein

and Schneider (2003) and Wakai (2002), the ex ante efficiency does imply the interim

efficiency for any trade arrangements. That is, dynamic consistency holds for any trade

arrangements. We state it formally for completeness:

Lemma 5 Suppose that Pi is rectangular for all i ∈ I. If {fi}i∈I ∈ T is ex ante efficient
in T, then it is interim efficient in T.

Proof. Fix any {fi}i∈I ∈ T. For each i ∈ I, let

q∗i ∈ argmin
q∈Pi

X
πi∈Πi

µ
min

p∈Φi(πi)
p · fi

¶
q (πi) , ri(·|πi) ∈ arg min

p∈Φi(πi)
p · fi

for πi ∈ Πi. By the definition of rectangularity, we must have

p0i :=
X
πi∈Πi

q∗i (π)ri(·|πi) ∈ Pi.

This implies that p0i ∈ argminp∈Pi p · fi, and hence E0i fi =
P

ω∈ΩEifi(ω)× q∗i (ω). So if
{fi}i∈I ∈ T is ex ante efficient, then it is interim efficient.

Based upon the above observation, Proposition 2 can be re-interpreted as follows.

Recall that P ∗i is the maximal rectangular prior set. If P
∗
i is taken as though it is the set

of priors for agent i, the condition
T
i∈I co(P

∗
i ) 6= ∅ holds if and only if zero endowment

is ex ante efficient by Corollary 5. By Lemma 5, if zero endowment is ex ante efficient,

then it is interim efficient because P ∗i is fully compatible with Φi.
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5 Examples

In this section, we provide examples which clarify the meaning of concepts and results

in the paper.

Example 1

This example is intended to illustrate the differences among the consistency requirements

for prior sets, compatibility, full compatibility, and rectangularity as well as the maximal

rectangular prior set in Section 2. Let Ω = {1, 2, 3}, Πi = {{1, 2}, {3}}, Φi({1, 2}) =
{(12 , 12 , 0), (0, 1, 0)}, Φi ({3}) = {(0, 0, 1)}.

• Pi = {(12 , 12 , 0), (0, 12 , 12), (1, 0, 0)} is compatible but is not fully compatible with Φi
since the posterior of (1, 0, 0) given {1, 2} is not included in Φi ({1, 2}).

• A smaller set P 0i = {(12 , 12 , 0), (0, 12 , 12)} is fully compatible. The set P 0i , however, is
not rectangular, since 12(

1
2 ,
1
2 , 0)+

1
2(0, 0, 1) is not in P

0
i although p = (0,

1
2 ,
1
2) ∈ P 0i

gives p ({1, 2}) = p ({3}) = 1
2 and (

1
2 ,
1
2 , 0) ∈ Φi ({1, 2}), (0, 0, 1) ∈ Φi ({3}).

• On the other hand, P 00i = {(14 , 14 , 12), (0, 12 , 12)} is fully compatible and rectangular.

• The maximal rectangular prior set is

P ∗i = co
µ½
(
1

2
,
1

2
, 0), (0, 0, 1)

¾¶
∪ co ({(0, 1, 0), (0, 0, 1)}) .

• Let f ∈ RΩ be such that f = (−1, 2, 1). Then, Eif (1) = Eif (2) =
1
2 and

Eif (3) = 1. For Pi, E
0
i f = −1, but for P 0i , E0i f = 1

2 , confirming (i) of Lemma 3.

• Let f ∈ RΩ be such that f = (1, 2,−1). For P 00i , E0i f = 1
4 > 0, but Eif (3) = −1.

On the other hand, for P ∗i , E
0
i f = −1 < 0, confirming (ii) of Lemma 3.

Example 2

As we discussed in Section 4.1, if there exists a common prior set and posterior functions

are derived from the FB-updating, then the condition of Proposition 2 is satisfied. This

may not be the case if posterior functions are derived from the ML-updating. The

following example illustrates this observation.
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Let Ω = {1, 2, 3, 4}, I = {1, 2}, Π1 = {{1, 2}, {3, 4}}, Π2 = {{1, 3}, {2, 4}}. Consider

P1 = P2 =

½
pt ∈ ∆(Ω) : pt =

µ
1 + t

5
,
2t

5
,
2− 2t
5

,
2− t
5

¶
, 0 ≤ t ≤ 1

¾
.

Let Φi be the ML-updating on Pi for i = 1, 2. Thus, Pi is compatible with Φi for

i = 1, 2. Then, we can show that co(P ∗1 ) ∩ co(P ∗2 ) = ∅. To see this, calculate {1} =
argmaxt∈[0,1] pt ({1, 2}), {0} = argmaxt∈[0,1] pt ({3, 4}), {0} = argmaxt∈[0,1] pt ({1, 3}),
{1} = argmaxt∈[0,1] pt ({2, 4}). Let E = {1, 4}. Then,

min
p∈Φ1(Π1(ω))

p(E) = max
p∈Φ1(Π1(ω))

p(E) =
1

2
,

min
p∈Φ2(Π2(ω))

p(E) = max
p∈Φ2(Π2(ω))

p(E) =
1

3

for all ω ∈ Ω. Thus, by Corollary 2, we must have co (P ∗1 ) ∩ co (P ∗2 ) = ∅.

Example 3

Let Ω = {1, 2, 3}, I = {1, 2}, and Π1 = Π2 = {Ω}. Let P1 = {(1, 0, 0), (0, 12 , 12)} and P2 =
{(0, 1, 0), (12 , 0, 12)}. Let Φi be the FB-updating on Pi for i = 1, 2. Clearly,

T
i∈I Pi = ∅,

but (13 ,
1
3 ,
1
3) ∈

T
i∈I co(Pi) 6= ∅. Thus, by Lemma 4, we must have

T
i∈I co(P

∗
i ) 6= ∅.

Example 4

The following example, discussed by Kajii and Ui (2004b), illustrates that
T
i∈I co(P

∗
i ) 6=

∅ but there are trade arrangements {fi}∈I and {gi}∈I such that Eifi(ω) > Eigi(ω) for
all ω ∈ Ω, i ∈ I.

Let I = {1, 2} and consider a state space Ω = {1, 2, 3a, 3b, 4a, 4b} where the players
have assigned probability 0.2 to the events {1} and {2} and probability 0.3 to the events
{3a, 3b} and {4a, 4b}, respectively. The difference between state 3a and state 3b and
that between 4a and 4b are ambiguous in the sense that the players do not know how

the probabilities assigned to {3a, 3b} and {4a, 4b} should be allocated to these states.
Thus the players have a common set of priors, which is:

P1 = P2 = {p ∈ ∆(Ω) : p({1}) = p({2}) = 0.2, p({3a, 3b}) = p({4a, 4b}) = 0.3} .
The private information of players are given by the following partition.

Π1 = {{1, 3a, 3b}, {2, 4a, 4b}}, Π2 = {{1, 3a, 4a}, {2, 3b, 4b}}.
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Let Φi be the FB-updating on Pi for i = 1, 2. We have:

Φ1({1, 3a, 3b}) ={p ∈ ∆(Ω) : p({1}) = 0.4, p({3a, 3b}) = 0.6},
Φ1({2, 4a, 4b}) ={p ∈ ∆(Ω) : p({2}) = 0.4, p({4a, 4b}) = 0.6},

Φ2({1, 3a, 4a}) =
½
p ∈ ∆(Ω) : p({1}) = 0.2

0.2 + x+ y
, p({3a}) = x

0.2 + x+ y
,

p({4a}) = y

0.2 + x+ y
where x ∈ [0, 0.3], y ∈ [0, 0.3]

¾
,

Φ2({2, 3b, 4b}) =
½
p ∈ ∆(Ω) : p({2}) = 0.2

0.2 + x+ y
, p({3b}) = x

0.2 + x+ y
,

p({4b}) = y

0.2 + x+ y
where x ∈ [0, 0.3], y ∈ [0, 0.3]

¾
.

Let E = {1, 2}. Note that the updated probabilities of E are:

{p(E) | p ∈ Φ1(Π1(ω))} = {0.4}, {p(E) | p ∈ Φ2(Π2(ω))} = [0.25, 1]

for all ω ∈ Ω. Consider trade arrangements {fi}i∈I and {gi}i∈I such that f1(ω) =
−f2(ω) = −1 if ω ∈ E and f1(ω) = −f2(ω) = 1 otherwise, and gi(ω) = −fi(ω) for all
ω ∈ Ω and i = 1, 2. Then, E1f1(ω) = minp∈{0.4} p · (−1) + (1 − p) · 1 = 0.2, E1g1(ω) =
minp∈{0.4} p ·1+(1−p) · (−1) = −0.2, E2f2(ω) = minp∈[0.25,1] p ·1+(1−p) · (−1) = −0.5,
and E2g2(ω) = minp∈[0.25,1] p · (−1) + (1 − p) · 1 = −1. Thus, E1f1(ω) > E1g1(ω) and

E2f2(ω) > E2g2(ω) for all ω ∈ Ω even if P1 = P2 ⊆ co(P ∗1 ) ∩ co(P ∗2 ) 6= ∅.
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