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Abstract

In a model of a two-period exchange economy under uncertainty, we find both upper and

lower bounds for the risk free interest rate when the agents’ utility functions exhibit constant

absolute risk aversion. These bounds are independent of the degree of market incompleteness,

and so in particular these results show to what extent market incompleteness can explain the

risk-free rate puzzle in this class of general equilibrium models with heterogeneous agents.

A general method of finding these bounds without the assumption of constant absolute risk

aversion is also presented.

JEL Classification Code: D52, D91, E21, E44, G12.

Keywords: The risk-free rate puzzle, constant absolute risk aversion, incomplete markets,

general equilibrium.
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1 Introduction

In this paper, we consider a model of an exchange economy under uncertainty with two con-

sumption periods and one physical good, where consumption smoothing over time and uncer-

tainty is done by asset transactions in financial markets. The preference relation of each agent

is represented by a time-independent, additively separable utility function and the discount

factor is common across them. Markets may be incomplete, and initial endowments may not

be marketable.

In this setting, the equilibrium prices depend delicately on the structure of the incomplete

markets in general, and exact prices cannot be obtained without knowing specific structure of

markets. But even in the situation where it is regarded plausible to assume that the markets

are incomplete, the exact structure of markets is difficult to observe in the context of financial

markets; it is one thing to find that some markets are missing and so some types of risks cannot

be insured, but it is another to identify exactly which type of risk is uninsurable. Thus, in order

to learn equilibrium prices, it is desirable to know theoretical ranges of possible equilibrium

prices, i.e., upper and lower bounds of equilibrium prices, which do not depend on the fine

details of the market structure. We are interested in finding such bounds.

In this paper we concentrate on bounds for the risk free rate of return. This is of special

interest since there has been extensive research under the name of the risk free rate puzzle,

given by Weil (1992). Kocherlakota (1996) provides an excellent survey on this topic. So, in

this context, just as Weil’s (1992) original contribution, our aim is to provide a benchmark for

the question of to what extent the market incompleteness can possibly explain the observed risk-

free interest rate in general equilibrium models with heterogeneous agents with time separable

utility functions.

The contribution of this paper is two fold. The first contribution of this paper is to identify

the upper and lower bounds for the bond price, which only depend on the primitives of the

economy, when every agent’s utility function exhibits constant absolute risk aversion (CARA for

short). The bounds are succinctly related to the degree of risk aversion and the risk properties

of initial endowments. We emphasize that they are independent of market incompleteness; that

is, we do not assume anything as to what kind of risky assets are available for trade.

The second contribution is to provide a general method of finding upper and lower bounds
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when there is no condition imposed on the utility functions other than the convexity of deriv-

atives (the prudence of an agent’s utility function in Kimball’s (1992) sense), and there is no

assumption on the incompleteness of markets. As a simple application of this general method,

we show that the equilibrium price of the risk-free bond is no lower than the discount factor,

provided the derivative of every agent’s utility function is a convex function and the expected

aggregate endowment in the second period is no larger than the first-period aggregate endow-

ment.

As far as we know, no existing contribution has clarified bounds on the bond price (or

lower bound on the interest rate) in a succinct way. So we believe that not only these results

complement Weil’s original contribution by further clarifying the theoretical explanatory power

of market incompleteness for the risk free rate puzzle, but also these will serve as a valuable tool

for finding a rough estimate of equilibrium interest rates, since computation of an equilibrium

price system is not necessarily a straightforward task when markets are incomplete. In a broader

perspective, we believe that the analysis of this paper suggests a new and important line of

research in the so called general equilibrium with incomplete markets (GEI) literature. The

existence and inefficiency results have been established in general setups, but when it comes

to the detailed pricing implications, mostly computational approaches with specific market

structures are prevalent. This paper is one of the first attempts to fill the gap for a deeper

understanding of GEI.

Let us briefly mention related works. Levine and Zame (1998, 2002) considered an infinite-

horizon economy under uncertainty with heterogeneous agents to investigate how the possibility

of intertemporal income transfers weakens equilibrium implications of incomplete markets. A

key step of their analysis is to find an upper bound on the interest rate. Our technique is

inspired by theirs, though we do not need to make any a priori distinction between the cases

with and without the aggregate risk as they did.1 Willen (1998) uses a similar technique, again

for the case without aggregate risk, in the context of international trade between two countries

with differing market incompleteness. The result for the bounds with CARA utility functions

generalizes an earlier result shown in Elul (1997) on the risk-free rate puzzle, who identified

several conditions under which introducing a new security raises the equilibrium risk-free interest

1To be exact, our technique was inspired by a working paper version of Levine and Zame (2002), and they

subsequently adopted our argument with acknowledgement in the published version.
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rate.2

The next section presents the model of this paper. Section 3 deals with the case of CARA

utility functions and find upper and lower bounds for the risk-free bond price. Section 4 discusses

a general method of finding bounds on the bond price and shows that the bond price cannot

be lower than the common discount factor. Section 5 concludes with an extension to infinite

dimensional cases, and also suggests a couple of directions of future research.

2 The Model

There are two trading periods, 0 and 1, and there is a single perishable good in each period.

There is no uncertainty in the first period, when the consumption good and assets are exchanged.

At the beginning of the second period, the assets pay off, and then consumption takes place.

The uncertainty in the second period is described by a finite state space Ω, and each state ω ∈ Ω
occurs with probability µ (ω) > 0. We often refer to each function from Ω to R as a random

variable. Denote by 1 the function from Ω to R that takes constant value one. The constant

variable 1 will be interpreted as the risk-free discount bond. Let X be a linear subspace in the

set of all random variables such that 1 ∈X. We take the commodity space to be R × X and

denote by E the expectation operator with respect to µ. A generic element of R × X will be

denoted by (x0,x), where x0 corresponds to consumption in the first period, and x is a random

variable that corresponds to consumption in the second period.

There are H agents in the economy. Each agent, indexed h ∈ {1, · · · ,H}, is characterized
by:

• Time invariant von Neumann Morgenstern utility function uh. It is increasing, strictly
concave and continuously differentiable. Its derivative Duh is assumed to be a convex

function; that is, it exhibits prudence.

• Initial endowment vector is in the consumption set; that is, (eh0 , eh) ∈ R×X.

We assume that the agents have a common discount factor δ > 0. Thus the preference

relation of agent h is represented by the expected utility function Uh : R×X → R defined by
2The key step for this result was reported in an unpublished paper of Hara (1998).
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Uh(xh0 ,x
h) ≡ uh

³
xh0

´
+ δ

X
ω∈Ω

uh
³
xh (ω)

´
µ (ω) = uh

³
xh0

´
+ δE

³
uh
³
xh
´´
. (1)

The agents trade assets in period 0. The market span is a linear subspace M of the com-

modity space X. An element of M corresponds to a vector of returns of some portfolio of the

assets. The arbitrage free prices of the portfolios are described by a linear function p : M → R,

which is referred to as a state price function. Since the prices of underlying assets generating

the market span M can be recovered from a state price function, we do not model individual

specifications of these assets explicitly. This also facilitates a simpler exposition for our results.

The agents are assumed to be price takers. Agent h’s utility maximization problem is, given

market span M and a state price function p:

Max

(xh0 ,x
h) ∈ R×X

Uh(xh0 ,x
h)

subject to: xh − eh ∈M,
(xh0 − eh0) + p(xh − eh) = 0.

The first constraint implies that the net trade vector xh − eh can be achieved through asset
trades, and the second constraint is the budget constraint. Notice that the first-period con-

sumption is assumed to be the numéraire, whose price equals one. Under our assumptions,

since p (z) units of period 0 consumption must be given up for a budget feasible net trade z,

the first order necessary and sufficient conditions for the maximization are the feasiblity and

p (v) = δ
E[zDuh(xh)]
Duh(xh0)

for any z ∈M .
The case of complete markets corresponds to the case where the market span M coincides

with the commodity space X. Since our purpose is to characterize the equilibrium price of bond

without reference to the structure of markets, the market span M should not be related to the

other primitives of the economy a priori. So in particular we do not require eh ∈ M. Besides,
the results in Section 3 would be much simpler, but uninteresting, if eh ∈M were required.

We write eh = E
¡
eh
¢
, e =

P
h e

h, e = E (e) , and e0 =
P
h e

h
0 . So e

h is agent h’s expected

endowment in the second period, e is the aggregate endowment in the second period, which is

a random variable, e is the expected aggregate endowment in the second period, and e0 the

aggregate endowment in the first period.

We say that a state price function p and a consumption allocation ((xh0 ,x
h))h∈{1,...,H} con-
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stitute an equilibrium for the economy with market spanM if, for every h, (xh0 ,x
h) is a solution

to the above maximization problem and
PH
h=1(x

h
0 ,x

h) =
PH
h=1(e

h
0 , e

h). It can then be shown

that the asset markets clear automatically. It is known that an equilibrium exists, and any

equilibrium is constrained efficient in the sense that no welfare improving reallocation of goods

respecting the market span, since the market span is fixed.

So the equilibrium price of the risk-free discount bond is p(1) and the equilibrium risk-free

interest rate is p(1)−1 − 1. Hence a lower interest rate means a higher bond price, and vice
versa. Note that the first order condition for utility maximization implies that the equilibrium

bond price is equal to the discounted expected marginal utility; that is,

δ
E
¡
Duh

¡
xh
¢¢

Duh
¡
xh0
¢ = p (1) (2)

holds in equilibrium.

To conclude section, a few remarks on the model are due. First, note that the time-

separability and time-invariance of the utility functions Uh are maintained. Dropping these

properties and using recursive or habit-formation utility functions would result in a different

equilibrium level of the risk-free interest rate, which is a method of solving the risk-free rate

puzzle that we shall not pursue here. Secondly, the linearity of M and p means that there

are no transaction costs; in particular there is no short sales constraint. This is an important

assumption of this model, because introducing transaction costs is known to partially solve the

equity premium and risk-free rate puzzles. Finally, the agents uses a common probability µ

as well as a common discount factor δ. Calvet, Grandmont, and Lemaire (1999) analyzed the

consequences of dropping the assumption of a common probability. As Gollier (2001) mentioned,

the subjective time discount factors could be formally identified with subjective probabilities,

and so the difficulties arising from incorporating heterogeneous time discount factors are the

same as those arising from heterogeneous beliefs.

3 Bounds with CARA Utility Functions

In this section, we consider the case of CARA utility functions. We start with such a restrictive

class because sharper results obtain in this case, and these also provide intuitions for general

cases considered in the next section.
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We assume that von Neumann Morgenstern utility function uh has a constant coefficient

αh > 0 of absolute risk aversion, so that uh (w) = − exp ¡−αhw¢ for every h. The reciprocal
1/αh of the absolute risk aversion is called the absolute risk tolerance and denoted by γh. The

utility function can now be written as

Uh(xh0 ,x
h) = − exp(−αhxh0)− δE(exp(−αhxh)).

Notice that Duh(w) = αh exp
¡−αhw¢ is a convex function, and so the prudence assumption of

the previous section is met. The condition (2) in this case is reduced to:

p(1) =
δhE

£
exp(−αhxh)¤

exp(−αhxh0)
. (3)

3.1 Monotonicity of the risk-free interest rates

A special character of a CARA utility function is that its logarithmic transformation is quasi-

linear in the direction of (1,1). Formally, for each h, define Wh : R×X → R by Wh(xh0 ,x
h) =

(−1/αh) log(−Uh(xh0 ,xh)). This is well defined because Uh(xh0 ,xh) < 0 and it represents the

same preference as Uh because the function u 7→ (−1/αh) log(−u) is strictly increasing.

Lemma 1 The transformed function Wh is quasi-linear in (1,1).

Proof. For any (xh0 ,x
h) ∈ R×X, taking into account the orthogonal decomposition (xh0 ,xh) =©

(xh0 ,x
h)− t (1,1)ª+ t (1,1) where t = 1

2

¡
xh0 +E

£
xh
¤¢
, we have

Wh(xh0 ,x
h) (4)

=− 1

αh
log{exp(−αhxh0) + δE

h
exp(−αhxh)

i
} (5)

=− 1

αh
log
n
exp(−αhxh0 − t) exp

³
−αht

´
+ δE

h
exp(−αh

³
xh − t1) exp

³
−αht1

´´io
(6)

=− 1

αh
log
n
exp(−αhxh0 − t) + δE

h
exp(−αh

³
xh − t1)

´io
+ t. (7)

So Wh is linear in the direction of (1,1), as we wanted.

This fact can also be confirmed by showing that the derivative of Wh in the direction of

(1,1) is one. Notice also that the non-linear part of the expression above is strictly concave.

To obtain a lower and an upper bounds for the risk free rate, we first establish the following

result:3

3This result was originally proved in Hara (1998). This is a generization of Proposition 1 of Elul (1997).
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Proposition 2 Let M and N be two market spans such that 1 ∈M ⊂ N. Let p : M → R be

an equilibrium state price function for M and q : N → R be an equilibrium state price function

for N. Then p(1) ≥ q(1).

Proof. Let ((xh0 ,x
h))h∈{1,··· ,H} be a consumption allocation corresponding an equilibrium state

price p. From (3), we can also write Wh for every h as follows:

Wh(xh0 ,x
h) = −γh log((1 + p(1)) exp(−αhxh0)) = −γh log(1 + p(1)) + xh0 .

Summing these over h, using the market clearing condition, and writing γ =
PH
h=1 γ

h, we

obtain:

HX
h=1

Wh(xh0 ,x
h) = −γ log(1 + p(1)) +

HX
h=1

xh0 = −γ log(1 + p(1)) +
HX
h=1

eh0 . (8)

Writing ((x̂h0 , x̂
h))h∈{1,··· ,H} for a consumption allocation for q, we can similarly obtain:

HX
h=1

Wh(x̂h0 , x̂
h) = −γ log(1 + q(1)) +

HX
h=1

eh0 . (9)

By Lemma 1, every Wh is quasi-linear in (1,1) ∈ R × N and the constrained efficiency

of every equilibrium allocation, the allocation ((x̂h0 , x̂
h))h∈{1,··· ,H} must be a solution to the

utilitarian welfare maximization problem:

Max((zh0 ,zh))h∈{1,··· ,H}
PH
h=1W

h(zh0 , z
h)

subject to zh − eh ∈ N for every h,PH
h=1(z

h
0 , z

h) =
PH
h=1(e

h
0 , e

h).

(10)

Since M ⊂ N, the equilibrium allocation ((xh0 ,x
h))h∈{1,··· ,H} for M satisfies the constraints in

(10). Hence
PH
h=1W

h(xh0 ,x
h) ≤PH

h=1W
h(x̂h0 , x̂

h). Thus, by (8) and (9),

−γ log(1 + p(1)) +
HX
h=1

eh0 ≤ −γ log(1 + q(1)) +
HX
h=1

eh0 . (11)

Hence p(1) ≥ q(1).

Remark 3 Each Wh is quasi linear in (1,1) with strictly concave non-linear component, so is

the sum. Therefore, the solution to (10) is uniquely determined up to transfers in the direction

of in (1,1). This means that the inequality (11) must be strict if at least one agent consume

differently in the two equilibrium, and so p(1) > q(1).
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The result says less complete the markets M are, the lower the risk-free interest rate is.

This monotonicity is a remarkable property of the CARA economies and it does not hold in the

general setting. This should not be confused but contrasted with the invariance property of

risky asset prices established by Oh (1996) and his predecessors, the property that with CARA

utility functions and normally distributed asset payoffs, the relative prices among risky assets4

do not depend on the market span.

Proposition 2 implies that the equilibrium risk-free interest rate is highest when M = X,

i.e., the markets are complete, and it is lowest when M coincides with the line spanned by 1,

i.e., the risk-free bond is the only asset traded in markets. In order to find the upper and lower

bounds on the interest rates that are independent of market spans, therefore, it is sufficient to

identify those rates with the complete markets and with the least complete markets, which we

shall do in the following subsections.

3.2 Bounds on the risk-free rate

Even for the CARA economies, the equilibrium bond price delicately depends on the structure

of the market spanM when markets are incomplete. But with the complete markets, the mutual

fund theorem enables us to obtain an explicit formula for the bond price, which depends on the

initial endowments only through the aggregate values e0 and e; and the aggregate risk toleranceP
h γ

h how they are distributed among the agents is irrelevant for the complete market bond

price. So we can use the explicit formula to obtain a desired bound.

Proposition 4 Denote γ =
P
h γ

h. Let p : X → R be an equilibrium state price function for

the complete market span X, then

p(1) = δE

µ
exp

µ
−1
γ
(e− e01)

¶¶
.

Proof. We shall explicitly construct an equilibrium where the price of bond is given as in the

statement. This is sufficient since it can be shown that an equilibrium is unique from the fact

that the agents’ preferences are smooth and quasi-linear with respect to (1,1).

4To be exact, we need to assume that the payoffs of the risky assets have zero mean, because otherwise the

change in the risk-free interest rate would affect relative prices of risky assets according to how large their means

are.
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First for each h, find (xh0 ,x
h) ∈ R×X such that

xh − xh01 =
γh

γ
(e− e01) , (12)

and

xh0 + δE

µ
xh exp

µ
−1
γ
(e− e01)

¶¶
= eh0 + δE

µ
eh exp

µ
−1
γ
(e− e01)

¶¶
, (13)

hold simultaneously. Such an (xh0 ,x
h) exists uniquely, since if we substitute xh in (13) with

xh = xh01+
¡
γh/γ

¢
(e− e01), the left hand side is increasing in xh0 , and it goes to +∞ or −∞

as xh0 approaches to +∞ or −∞. We shall show that the profile of consumption bundles,¡
(xh0 ,x

h)
¢
h∈{1,...,H} , and the state price function given by

z 7→ δE

µ
z exp

µ
−1
γ
(e− e01)

¶¶
. (14)

constitute an equilibrium.

Take the summation of both sides of equalities (12), and we haveX
h

xh − e =
ÃX

h

xh0 − e0
!
1. (15)

From (13), we have

δE

µ³
xh − eh

´
exp

µ
−1
γ
(e− e01)

¶¶
= −

³
xh0 − eh0

´
,

for each h, and so summing these up, and using (15), we have

δE

ÃÃX
h

xh − e
!
exp

µ
−1
γ
(e− e01)

¶!

= δ

ÃX
h

xh0 − e0
!
E

µ
exp

µ
−1
γ
(e− e01)

¶¶

= −
ÃX

h

xh0 − e0
!
.

Since E (exp (− (1/γ) (e− e01))) > 0, this equality implies
P
h x

h
0 = e0, and so that

P
h x

h = e

from (15). Hence the allocation is feasible.

The equality (12) also implies that, for all h,

δ
Duh(xh)

Duh(xh0)
= δ exp

³
−αh

³
xh − xh01

´´
= δ exp

µ
−αhγ

h

γ
(e− e01)

¶
= δ exp

µ
−1
γ
(e− e01)

¶
,
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which does not depend on h. Thus the allocation
¡
(xh0 ,x

h)
¢
h∈{1,··· ,H} is Pareto efficient and its

supporting state price function coincides with the state price function defined by (14). Finally,

the equality (13) implies that every agent’s budget constraint is satisfied. Hence the state price

function is an equilibrium price function. The proof is thus completed.

Let us now consider the lowest risk free rate, for the case where M is equal to the line

spanned by 1. i.e., the risk free asset is the only marketable asset.

For future reference, for each h, define

ch ≡ E
¡
Duh

¡
eh
¢¢

Duh
¡
eh
¢ =

E
¡
exp

¡−αheh¢¢
exp

¡−αheh¢ = E
³
−αh

³
eh − eh1

´´
.

So ch is proportional to the first order condition (2) evaluated at the (average) endowment

vector. We shall see in the next section that ch measures agent h’s prudence evaluated at

his initial endowment, and so we shall refer to ch as the prudence at the initial endowments.5

Another way to look at this number is to apply the second-order Taylor approximation exp(w) ≈
1+w+2−1w2. Then ch ≈ 1+2−1 ¡αh¢2Var(eh), or αhS(eh) ≈ ¡2(ch − 1)¢1/2 , where S denotes
the standard deviation. The numbers ch thus measure the variability of his second-period initial

endowments weighted by the constant coefficients of absolute risk aversion. As shown by Duffie

and Jackson (1990), Demange and Laroque (1995), Ohashi (1995), Rahi (1995), and others,

they help provide a necessary and sufficient condition for the optimal asset structure when only

a limited number of assets can be traded in markets.

Now we are ready to state our result for the lowest risk free rate: let αmax = max{α1, . . . ,αH}
and αmin = min{α1, . . . ,αH}, and set

bA =

⎧⎪⎪⎨⎪⎪⎩
exp

µ
−αmax e− e0

H

¶
if ē− e0 ≤ 0,

exp

µ
−αmin e− e0

H

¶
if ē− e0 > 0.

(16)

Proposition 5 Let M be the line spanned by 1 and p : M → R be an equilibrium state price

function for M . Then:

1. p(1) ≤ δbAmax{c1, . . . , cH}.
5This is related to but different from the absolute prudence of Kimball (1990), −D3uh(xh)/D2uh(xh) in that

it is measured for a random variable and therefore depends on his absolute prudence at different consumption

levels.
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2. If, moreover, e0 = e and c1 = · · · = cH , then p(1) = δch for every h.

Proof. Let
¡¡
xh0 ,x

h
¢¢H
h=1

be the associated equilibrium allocation.

1. From the resource constraint there exists an h such that xh − xh0 ≥ (e− e0) /H. Then
for that h,

Duh(xh)

Duh(xh0)
=
exp

£−αhxh¤
exp

£−αhxh0¤ = exp
h
−αh(xh − xh0)

i
≤ exp

∙
−α

h (e− e0)
H

¸
. (17)

By the definition of b, we have

exp

∙
−α

h (e− e0)
H

¸
≤ b.

Hence
Duh(xh)

Duh(xh0)
≤ b (18)

for some h.

On the other hand, since M is spanned by 1, we can write xh = eh + yh1 for some yh ∈ R.
By construction x̄h = ēh + yh, and so we have xh − xh1 = eh − eh1. Hence

E
¡
Duh(xh)

¢
Duh(xh)

=
E
£
exp

¡−αhxh¢¤
exp (−αhx̄h) (19)

=
E
£
exp

¡−αheh¢ exp ¡−αhyh1¢¤
exp (−αhēh) exp (−αhyh)

=
E
¡
exp

¡−αheh¢¢
exp

¡−αheh¢
= ch (20)

for every h.

By the first-order condition for the bond demand, we have

p(1) = δ
E
¡
Duh(xh)

¢
Duh(xh0)

= δ
Duh(xh)

Duh(xh0)

E
¡
Duh(xh)

¢
Duh(xh)

.

By (18) and (20), therefore,

p(1) ≤ δbAc.

2. The symmetric argument is applicable. Since e0 = e, we have bA = 1 and

Duh(xh)

Duh(xh0)
≥ 1

for some h. By equality (20), we have p(1) ≥ δch. Thus

p(1) ≥ δmin{c1, . . . , cH}.
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Since min{c1, . . . , cH} = max{c1, . . . , cH}, this and the first part establish the second part.
By gathering the preceding results, we can now give the upper and lower bounds on the

equilibrium bond price.

Proposition 6 Let M be a market span such that 1 ∈M and p : M → R be an equilibrium

state price function for M , then

δE

µ
exp

µ
−1
γ
(e− e01)

¶¶
≤ p(1) ≤ δbAmax{c1, . . . , cH}.

Proof. This can be obtained by combining Propositions 2, 4, and 5.

3.3 Negative risk-free interest rates

The bound we obtained delicately depends on the prudence at the initial endowments ch. Since

this parameter requires information on agents’ individual risks, one may wonder if this can

be replaced with some aggregate property of the economy. In this subsection, we argue that

this task will be difficult by considering a subclass of CARA economies. To give the idea first,

notice that the second part of Proposition 5 states that the upper bound of the bond price in

the first part is indeed attained if the expected aggregate endowment is constant over time, and

all agents have the same prudence at the initial endowments ch. So if ch can get arbitrary large

whereas the aggregate distribution of initial endowments remains constant, it shows that the

equilibrium bond price in incomplete markets can be arbitrarily large (so the rate of interest

is even negative — recall that the good is not storable) while the bond price in the complete

markets stays at the discount factor δ.

Now we formally state the class of economies. For each h, fix initial endowments (eh0 , e
h) ∈

R × X such that (1) each eh have the same distribution with a positive variance and (2)

e = e01. Set α1 = · · · = αH ≡ α. An example of the initial endowments that satisfies the

first two conditions is that Ω = {1, . . . ,H}, µ(ω) = 1/H, eh(ω) = 1 if ω = h and eh(ω) = 0

otherwise, and eh0 = 1 for every h. For each s > 0, define the s-stretched economy as the economy

consisting of the H agents, with initial endowments
¡
eh0 , e

h + s
¡
eh − eh1¢¢ ∈ R × X and the

same constant coefficients αh = α of absolute risk aversion as before. Thus we have a series of

CARA economies indexed by s. Note that the aggregate endowment of the s-stretched economy

is independent of s, and it is (e0, e) for every s > 0. So one may hope to find a lower bound for

the risk free rate which depends on (e0, e), as well δ and α.
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Proposition 7 Let M be the line spanned by 1 and ps :M → R be an equilibrium state price

function for M and let qs : X → R be an equilibrium state price function with the complete

markets of the s-stretched economy. Then:

1. ps(1)→∞ as s→∞.

2. qs(1) = δ for every s > 0.

Part 1 of this proposition claims that the equilibrium bond price with the least complete

market becomes unboundedly large, while the bond price in the complete markets is equal to

δ regardless of the values of s. In particular, even when the bond price equals to the common

discount factor δ at the complete-market equilibrium, the bond price may be greater than one

and the risk-free interest rate may well be negative.

Proof. For each s > 0, define

c (s) =
E
¡
exp

¡−αh ¡eh + s ¡eh − eh1¢¢¢¢
exp

¡−αhE ¡eh + s ¡eh − eh1¢¢¢
=
E
¡
exp

¡−αh ¡eh + s ¡eh − eh1¢¢¢¢
exp

¡−αheh¢ .

This is well defined since all the eh + s
¡
eh − eh1¢ have the same distribution and all the

αh are equal, the last expression does not depend on h. Part 2 of Proposition 5 implies that

ps(1) = δc(s) for every s. Moreover, writing Bh = {ω ∈ Ω | eh(ω)− eh ≤ 0}, we also have

c(s) = E
³
exp

³
−αh (s+ 1)

³
eh − eh1

´´´
≥ µ(Bh)E

³
exp

³
αh (s+ 1)

³
eh1− eh

´´
| Bh

´
≥ µ(Bh)E

³
αh (s+ 1)

³
eh1− eh

´
| Bh

´
≥ µ(Bh)αh (s+ 1)E

³
eh1− eh | Bh

´
Since eh has a positive variance, µ(Bh) > 0 and E

¡
eh1− eh | Bh¢ > 0. Hence

µ(Bh)αh (s+ 1)E
³
eh1− eh | Bh

´
as s→∞. Thus, as s→∞, c(s)→∞ so ps(1) = c(s)→∞.

2. Since the aggregate endowment of the s-stretched economy equals (e0, e) for every s > 0,

Proposition 4 implies that

ps(1) = δE

µ
exp

µ
−1
γ
(e− e01)

¶¶
.
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Since e = e01 by the second condition, ps(1) = δ.

4 A General Method of Finding Bounds

In this section, inspired by the proof of Proposition 5, we discuss a general method of finding

upper and lower bounds for the risk-free interest rate, without assuming constant absolute risk

aversion. As an easy consequence of this, we show that if the expected aggregate endowment

is non-increasing over time, then the equilibrium risk-free bond price is not lower than the

common discount factor δ.

Recall that the first order condition (2) holds under our maintained assumption, which can

be rewritten as, for every agent h,

p(1) = δ
E
¡
Duh(xh)

¢
Duh(xh0)

= δ
Duh(xh)

Duh(xh0)

E
¡
Duh(xh)

¢
Duh(xh)

, (21)

where x̄h = E
¡
xh
¢
. Since the equality holds for all h, if we can find bounds forE

¡
Duh(xh)

¢
/Duh(xh0)

for some h, these bounds serve as bounds for the equilibrium risk-free interest rate, or, equiva-

lently, for the risk-free bond price. The right-hand side of (21) shows that it is the product of

two factors, and we shall discuss the properties of these in turn.

The first factor Duh(xh)/Duh(xh0) is the intertemporal marginal rate of substitution. If

e0 ≥ e, then xh0 ≥ xh for some h and hence this factor is no smaller than 1 for this h. Similarly,
if e0 ≤ e, then this factor is no larger than 1 for some h. By closely examining the risk attitude
of this agent, we can find a bound better than 1.

Note first that if a von Neumann Morgenstern utility function u is more risk averse than

another v, then, for every w0 and w1 with w0 ≥ w1, we have
Du(w1)

Du(w0)
≥ Dv(w1)
Dv(w0)

.

Let e0 ≥ e, then the agents must consume more in the first period in equilibrium, and so

there is an agent who does so more than the average; that is, there is an h such that xh̄0 −
xh̄ ≥ H−1 (e0 − e) ≥ 0. If agent h is more risk averse than an agent with constant absolute
risk aversion with coefficient α on the interval [xh̄, xh̄0 ] then using the inequality above for

v (w) = − exp (−αw), we have

Duh(xh)

Duh(xh0)
≥
exp

h
−αxh

i
exp

h
−αxh0

i ≥ expµαe0 − e
H

¶
≥ 1.
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So the general recipe for finding a tighter lower bound for the term Duh(xh)/Duh(xh0) when

e0 ≥ e is to identify agent h who consumes more in the first period relative to the other agents
and measure the minimum absolute risk aversion α on the interval

h
xh̄, xh̄0

i
. Then the lower

bound for the bond price is improved form one to exp
¡
αH−1 (e0 − e)

¢
.

For some utility functions, the relative risk aversion may vary in a much narrower range

over relevant wealth levels than the absolute risk aversion. We can then improve the above

bound by using the intertemporal ratio e0/e of aggregate endowments. Indeed, if the (generally

non-constant)relative risk aversions of uh are larger than α, then we have

Duh(xh)

Duh(xh0)
≥
³e0
e

´α ≥ 1.
Symmetric bounds can be obtained for the case of e0 ≤ e, though we then need to use the

maximum absolute risk aversions. We shall be precise on this point in the proof of Proposition

8.

The second factor E
¡
Duh(xh)

¢
/Duh(xh) shows how much, in ratio, the marginal utility

from the bond is increased by the risk present in the second-period consumption. By Jensen’s

Inequality, this is no smaller than 1. It measures the degree of prudence of Kimball (1990).

Indeed, if a von Neumann Morgenstern utility function u is more risk averse and more prudent

than another v, then, for every x ∈ X with E(x) = x, it can be shown that

E (Du(x))

Du(x)
≥ E (Dv(x))

Dv(x)
.

Once, for example, we know that the (generally non-constant) absolute risk aversions and

prudence of every uh lie in an interval [αmin,αmax], we can conclude that

E
¡
exp(−αminxh)

¢
exp(−αminxh)

≤ E
¡
Duh(xh)

¢
Duh(xh)

≤ E
¡
exp(−αmaxxh)

¢
exp(−αmaxxh)

for every h, which provides both the upper and lower bounds of E
¡
Duh(xh)

¢
/Duh(xh).

Again, for some utility functions, the relative risk aversion and relative prudence may vary

in a much narrower range than the absolute risk aversion and absolute prudence. The relative

prudence is defined by

−D
3u(x)x

D2u(x)

17



and for the utility function u(x) = (1−α)−1 ¡x1−α − 1¢ exhibiting constant relative risk aversion
α, it is constantly equal to α+ 1. Moreover, then,

E (Du(x))

Du(x)
= xαE

¡
x−α

¢
.

Note the relative and absolute risk aversions, as well as the relative and absolute prudence, give

rise to the same ordering between any two utility functions. This implies that we can apply

the same argument as for the absolute risk aversion and absolute prudence: If the relative risk

aversion of every h lie in an interval [αmin,αmax] and the relative prudence of every h lie in an

interval [αmin + 1,αmax + 1], then³
xh
´αmin

E

µ³
xh
´−αmin¶ ≤ E ¡Duh(xh)¢

Duh(xh)
≤
³
xh
´αmax

E

µ³
xh
´−αmax¶

for every h.

We have thus obtained bounds for the first factor Duh(xh)/Duh(xh0) for some h and bounds

for the second factor E
¡
Duh(xh)

¢
/Duh(xh) for every h. By multiplication, we can obtain

bounds for the bond price p(1). The following proposition is a straightforward consequence of

the above method.

Proposition 8 Let M be a market span such that 1 ∈M . Also let a state price function

p :M → R and a consumption allocation
¡¡
xh0 ,x

h
¢¢
h∈{1,··· ,H} constitute an equilibrium for M .

1. Suppose that, for every h, the coefficients of absolute risk aversions over the intervalh
xh̄, xh̄0

i
lie in the interval [αmin,αmax] and define bA as in equality (16). Then p(1) ≥ δbA.

2. Suppose that, for every h, the relative risk aversion over the interval
h
xh̄, xh̄0

i
lie in the in-

terval [αmin,αmax] and the relative prudence over the same interval lie in [αmin + 1,αmax + 1],

and define bR by

bR =

⎧⎨⎩
³e0
e

´αmax
if e ≤ e0,³e0

e

´αmin
if e > e0

Then p(1) ≥ δbR.

If e0 ≥ e, then bA ≥ 1 and bR ≥ 1, and hence p(1) ≥ δ, that is, the equilibrium bond price

must not be lower but may be higher than the common discount factor δ. It is easy to show
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that if
P
h e

h = e01 (i.e., the total endowments are time independent and there is no aggregate

uncertainty) and the markets are complete, then p(1) = δ. This proposition thus implies that

if the aggregate endowment is deterministic and stationary, then the incompleteness of the

markets must not raise the risk-free interest rate.

Proof. Since Duh is convex for every h, we have

E
¡
Duh(xh)

¢
Duh (x̄h)

≥ 1. (22)

Let h = h̄ be such that xh̄ − xh̄0 ≤ H−1 (e− e0) , and thus

Duh̄
³
x̄h̄
´

Duh̄
³
xh̄0

´ ≥ Duh̄
³
xh̄0 +H

−1 (e− e0)
´

Duh̄
³
xh̄0

´ . (23)

If e− e0 ≥ 0, then

Duh̄
³
xh̄0 +H

−1 (e− e0)
´

Duh̄
³
xh̄0

´ ≥ exp
µ
−αmax e− e0

H

¶
.

If e0 − e < 0, then

Duh̄
³
xh̄0 +H

−1 (e− e0)
´

Duh̄
³
xh̄0

´ ≥ exp
µ
−αmin e− e0

H

¶

Hence, by plugging (22) and (23) into (21), we complete the proof.

2. This part can be proved analogously.

Notice that the equality (21) shows that if e0 ≤ e and the Duh are concave in the relevant
interval of wealth levels, then p(1) ≤ δ would follow. The more interesting case, however, is

where the Duh are convex as assumed earlier, because most frequently applied utility functions,

such as those exhibiting constant absolute or relative risk aversions, have this property.

Note that, in the proof of Proposition 8, we did not use any bound on the prudence measure
E(Duh(xh))
Duh(x̄h)

except that it is no less than one; in particular, we did not use any information

of the second-period equilibrium allocation
¡
x1, . . . ,xH

¢
. The general approach we described

above, however, shows that such a piece of information would improve the lower bound on

the equilibrium bond price. For this reason, the bounds obtained in Proposition 8 should not

be expected to be tight. The task of finding the equilibrium allocation or the (bounds for)

prudence measure
E(Duh(xh))
Duh(x̄h)

is not straightforward in general. Sharper results obtain for the
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case of CARA utility functions because the monotonicity of the risk-free rate (Proposition 2)

implies that the lowest rate is attained when the risk-free bond is the only tradeable asset, at

which the prudence measure
E(Duh(xh))
Duh(xh)

is the same as the prudence at the initial endowments,

ch =
E(Duh(eh))
Duh(eh)

.

5 Conclusion

In this paper, we have found the upper and lower bounds on the risk-free interest rates in a two-

period model with incomplete asset markets. The upper bound was given for general utility

functions, while the lower bound was only for CARA utility functions. We also discussed a

general method of finding upper and lower bounds. These results will be useful in illustrating

the risk-free rate puzzle in tractable general equilibrium models with incomplete asset markets.

It is assumed throughout this paper that the state space Ω is a finite set. This implies,

among other things, that the expected utility E
¡
uh
¡
xh
¢¢
, which appeared in the definition

of Uh (equality (1)), and the expected marginal utility E
¡
Duh

¡
xh
¢¢
, which appeared in the

first-order condition for the utility maximization problem on the risk-free bond (equality (2)),

are finite. If Ω is infinite, then the expected utility or expected marginal utility (or both) may

be infinite and we may not be able to talk sensibly about the preference ordering or first-order

conditions. A list of sufficient conditions for these to be finite in terms of utility function and the

underlying probability space can be found in Nielsen (1993, Proposition 1 and 5). A lesson to be

learnt from his results is that the finiteness of the expected utility does not automatically imply

that of the marginal utility. However, in the case of CARA utility functions, as in Section

3, if the expected utility E
¡
uh
¡
xh
¢¢
is finite for every second-period consumption x ∈ X,

then so is the expected marginal utility E
¡
Duh

¡
xh
¢¢
, since the derivative of the exponential

function is the exponential function itself. Moreover, then, every xh ∈ X and Duh
¡
xh
¢
are

square-integrable and the Gateaux derivative of Uh at xh in the direction of z ∈ X is given by

E
¡
zDuh

¡
xh
¢¢
. Hence the first-order condition is still given by p(z) = δ

E(zDuh(xh))
Duh(xh0 )

for every

z ∈M .

20



References

[1] Calvet, L., J.-M. Grandmont, and I. Lemaire, 1999, Aggregation of heterogeneous beliefs

and asset pricing in complete financial markets, mimeo.

[2] Demange, G., and G. Laroque, 1995, “Private Information and the Design of Securities,”

Journal of Economic Theory 65: 233—57.

[3] Duffie, D., and M. Jackson, 1990, “Optimal Innovation of Futures Contracts,” Review of

Financial Studies 2, 275—296.

[4] Elul, R., 1997, “Financial Innovation, Precautionary Saving and the Risk-Free Rate,”

Journal of Mathematical Economics 27: 113—31.

[5] Gollier, C., 2001, Economics of Time and Risk, MIT Press, Cambridge, Mass.

[6] Hara, C., 1998, “Risk-Free Interest Rates with Negative Exponential Utility Functions and

Incomplete Markets,” mimeo, University of Cambridge.

[7] Kimball, M. S., 1990, “Precautionary Saving in the Small and in the Large,” Econometrica,

58, 53—73.

[8] Kocherlakota, N. R, 1996, “The Equity Premium: It’s Still a Puzzle, Journal of Economic

Literature, 34, 42—71.

[9] Levine, D., and W. Zame, 1998, “Risk Sharing and Market Incompleteness,” working

paper, University of California, Los Angeles.

[10] Levine, D., and W. Zame, 2002, “Does Market Incompleteness Matter?,” Econometrica,

70, 1805—1839.

[11] Nielsen, L., 1993, “The Expected Utility of Portfolios of Assets,” Journal of Mathematical

Economics, 22, 439—461.

[12] Oh, G., 1996, Some results in the CAPM with non-traded endowments, Management

Science, 42, 286—293.

[13] Ohashi, K., 1995, “Endogenous Determination of the Degree of Market-Incompleteness in

Futures Innovation,” Journal of Economic Theory, 65, 198—217.

21



[14] Rahi, R., 1995, “Optimal Incomplete Markets with Asymmetric Information,” Journal of

Economic Theory, 65, 171—97.

[15] Weil, P., 1992, “Equilibrium Asset Prices with Undiversifiable Labor Income Risk,” Journal

of Economic Dynamics and Control, 16, 769—790.

[16] Willen, P. S., 1996, “The Effect of Financial Sophistication on the Trade Balance,” working

paper, Princeton University.

22



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /DEU <>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <>
    /ESP <>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <>
    /NOR <>
    /SVE <>
    /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
    /JPN <FEFF004c00610054006500587528>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


