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1 Introduction

The purpose of this paper is to present a game theoretic model of voluntary group in collec-

tive action and to consider dynamic stability of group formation by applying the stochastic

evolutionary game theory introduced by Young (1993) and Kandori, Mailath and Rob (1993).

The problem of collective action is formulated as a standard model of an n-person prisoner’s

dilemma game with heterogeneous players. We focus our analysis on how the heterogeneity

of individuals’ preferences affects the formation and dynamic stability of group in collective

action.

In many real situations, individuals differ in their willingness to participate in a collective

action. For example, some individuals are concerned very much with environmental pollution,

and they are willing to contribute for anti-pollution movements even if they have a small

number of followers. On the other hand, there are other types of individuals who are reluctant

to participate in such a collective activity. They might contribute for anti-pollution only if

a large number of people have already done so. In this paper, we consider the following

questions. What kinds of groups are formed in the collective action problem with heterogeneous

individuals? Does a group consist only of individuals with higher willingness for collective

action, or does it include many types of individuals? If many kinds of groups are possible,

which one is stable in the long run?

The process of group formation is modeled as a two-stage game. In the first stage, individ-

uals decide independently to participate in a group or not. In the second stage, participants

negotiate about collective action in their group. Cooperation must be agreed by all partici-

pants. If the agreement is reached, all members of the group take cooperative actions, bearing

some group costs. Any non-member is allowed to free ride. If the agreement is not reached, the

group is not formed and the noncooperative equilibrium of the n-person prisoner’s dilemma

prevails.

Every individual’s incentive to cooperate is characterized by the minimum size of group

in which participation can make him better off (even with bearing the group costs) than the

noncooperative equilibrium of the prisoner’s dilemma. In this paper, we call this positive

integer the individual’s threshold of cooperation. Individuals with smaller thresholds have

higher motivation to cooperate. It is shown that a group is formed in the Nash equilibrium

of the second stage game if and only if the group size exceeds every member’s threshold of
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cooperation. Such a group is called successful.

By solving backward the two-stage game, the first stage game is reduced to the following

n-person game in strategic form, which we call the group formation game. All individuals

decide independently to participate in a group or not. The group is formed if and only if it

is successful. The group formation game itself presents a model of collective action, which is

different from the original n-person priosoner’s dilemma. All individuals have binary choices

(cooperate, participate, contribute, or not). Neither action dominates the other. The game has

a payoff structure similar to the two-person chicken game. The discrete public good model by

Palfrey and Rosenthal (1984) is a special case of it. In their model, there is a critical number

of contributors for producing the public good, and all individuals have the same threshold of

cooperation.

It is shown that the group formation game has many strict Nash equilibria. The non-

participation is a strict Nash equilibrium when participation costs exist regardless of the success

or failure of a group. In all other strict Nash equilibria, successful groups are formed with free

riders possibly coexisting. An equilibrium group satisfies the property that every member is

critical in the sense that her opting out makes the group unsuccessful. Equivalently, we can

show that an equilibrium group has two stability property: No single member wants to opt out

(internal stability), and no single outsider wants to join in (external stability).

In the second part of the paper, we apply the adaptive play model due to Young (1993,

1998) to the group formation game. Our main objective is to identify which group is stable in

the long run when individuals play the group formation game in an adaptive way. To set the

stage, we first show that the group formation game is acyclic. This implies from the result of

Young (1993) that adaptive play (without mistakes) converges to a Nash equilibrium. We then

examine the stochastic stability of Nash equilibria in the adaptive play with mistakes. To make

the analysis transparent, we focus our attention on the group formation game with exactly two

types of individuals. The first type consists of individuals who might cooperate even if some of

the others do not. Specifically, it is assumed that they share a common threshold, and that it is

strictly below the number of all individuals. The second type consists of individuals who have

lower motivation to cooperate. Specifically, cooperation is optimal for a second type individual

only if all the others do. In this game, there are three strict Nash equilibria: No cooperation,

the full cooperation, and the partial cooperation, in which only the first types participate. In
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the partial cooperation equilibrium, the second types do not cooperate but benefit from the

first types’ cooperation. That is, they are free riding. In contrast, the first types never free

ride in equilibrium. Because of this, we call the second types potential free riders.

It turns out that the long run equilibrium is either partial cooperation or full cooperation

when the participation cost is small. There are two critical factors in determining the long run

equilibrium: the number of potential free riders and the distribution of incentives among them.

Interesting enough, they affect the outcome in a lexicographic way. We first show that if the

number of potential free riders exceeds a critical level, then the partial cooperation is a unique

long run equilibrium. In other words, when there are “large” number of potential free riders,

the free riding equilibrium is the stable outcome regardless of the distribution of incentives

among them. When the number of potential free riders is “small,” in contrast, the distribution

of incentives matters. Specifically, it is shown that the stochastic stability selects a (version

of) risk dominant equilibrium (Harsanyi and Selten 1988) in such a case. The intuition behind

this result is that, when there are not too many potential free riders, the group formation

game can be regarded as a coordination game among them. Therefore the selection outcome

is determined by risk dominance. The following version of risk dominance relation is relevant

here. Since preferences are heterogeneous, the incentives to free ride differ, even among the

potential free riders. In particular, there are the strongest and the weakest free riders, who

have the largest and the smallest incentives to free ride, respectively. For each equilibrium, the

Nash product of deviation losses is computed involving only the two distinguished individuals.

An equilibrium risk dominates the other if the Nash product of the former exceeds that of the

latter. In simple terms, the stable outcome is determined by the balance of the largest and the

weakest incentive to free ride.

Since the seminal work by Olson (1965), the group formation in collective action has been

extensively studied. The group size effect, argued by Olson, that larger groups are less success-

ful in organizing collective action is not necessarily true in our model. The success of collective

action critically depends upon the benefit and cost for each individual to participate. We show

that the diversity of individual incentives to cooperation may enable the largest group in col-

lective action easier than in a homogeneous case, while it causes the multiplicity of equilibrium

groups. Although thresholds of cooperation play an important role in the analysis, our model

is different in an important way from other “threshold” or “critical mass” models (Schelling
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1978, Granovetter 1978, Oliver and Marwell 1988). These models presume a simple behavioral

rule on the part of individuals, in that they participate in collective action if and only if the

number of participants exceeds their thresholds. In contrast, we investigate group formation

games in which individuals behave strategically. That is, even if the number of participants

exceeds their thresholds, they do not necessarily participate, since the best response in such a

situation might be to free ride. Our analysis is also related to a recent work by Diermeier and

van Mieghem (2000) who study a dynamic stochastic process of collective action in Palfrey and

Rosenthal’s (1984) model of public goods. Working in a homogeneous population setup with

a log-linear choice rule, they formulate the dynamic model of collective action as a a birth and

death process and characterize its limit distribution.

The paper is organized as follows. Section 2 constructs the group formation game from

the n-person prisoner’s dilemma. Section 3 characterizes its strict Nash equilibria. Section

4 reviews the stochastic stability theory à la Young (1993), and then shows that the group

formation game is acyclic. Section 5 analyses the stochastic stability of Nash equilibria in the

group formation game with two types. Concluding remarks are given in Section 6. Appendix

collects proofs that are omitted from the main body of the paper.

2 The Model

Consider an n-person prisoner’s dilemma defined as follows. Let N = {1, 2, · · · , n} be the set

of players. Every player i ∈ N has two actions, C (cooperation) and D (defection). Player i’s

payoff is given by

ui(ai, h), ai = C,D, h = 0, 1, · · · , n− 1,

where ai is player i’s action and h is the number of other players who select C. We make the

following assumption.

Assumption 2.1. The payoff function of player i (= 1, ..., n) satisfies:

(1) ui(D,h) > ui(C, h) for every h = 0, 1, · · · , n− 1,

(2) ui(C, n− 1) > ui(D, 0),

(3) ui(C, h) and ui(D,h) are increasing in h.
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This assumption is standard in the literature of an n-person prisoner’s dilemma (Schelling

1978) except that players are “heterogeneous” in the sense that they have different payoff

functions. The heterogeneity of players is critical to the analysis of this paper. Property (1)

means that every player is better off by choosing defection than cooperation, regardless of

other players’ actions. This implies that every player has an incentive to free ride on others’

cooperation. Thus, the action profile (D, · · · , D) is a unique Nash equilibrium of the game. On

the other hand, property (2) says that if all players cooperate, they are all better off than at

the Nash equilibrium. The Nash equilibrium is not Pareto optimal. Property (3) means that

the more other players cooperate, the higher payoffs every player can receive, regardless of her

action. The cooperative action by each player gives positive externality to all others’ welfare.

The prisoner’s dilemma game describes an anarchic state of nature in which players are free

to choose their actions. In such a situation, a natural outcome of the game is the Nash equilib-

rium in which no players cooperate. There have been a huge body of literature which consider

how self-interested individuals voluntarily cooperate in the prisoner’s dilemma situations. To

escape from the state of noncooperation, some suitable mechanisms for preventing opportunis-

tic behavior are needed. The literature has considered the roles of diverse mechanisms such

as morals, convention, norm, long term relationships, evolutionary selection, informal groups,

organizations, law, etc. In this paper, we consider the voluntary creation of a group in which

participants negotiate to cooperate.

The rule of group formation is defined as a two-stage game.

Participation decision stage: Every player i (= 1, . . . , n) decides independently whether or

not to participate in a group. Participation takes small costs, say, for phone calls, mails and

transportations. The participation cost is denoted by a small positive value εi (> 0). Let S

be the set of all participants, and let s = |S|, where |S| is the number of elements in set S. If

s = 0 or s = 1, then no group is possible.1

Group negotiation stage: All participants negotiate about their cooperation according to

the unanimity rule. They decide independently to accept or reject cooperation. The agreement

of cooperation is reached if and only if all participants accept it. When the agreement of

cooperation is reached, all participants choose cooperative actions with group costs allocated

to them. The group costs (including participation cost εi) per capita is given by a real-valued
1When s = 1, the single participant has no incentive to cooperate in the prisoner’s dilemma.
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function c(s) where s is the number of all participants. All non-participants are free to defect.

When the agreement is not reached, all n individuals, both participants and non-participants,

play the original prisoner’s dilemma game.

The purpose of a group is to attain cooperation among its members. Since each member

has an incentive to defect in the prisoner’s dilemma, the group needs some suitable mechanism

to enforce cooperation. The mechanism has various functions such as monitoring members’

actions and punishing them for defection. Obviously, it is costly for group members to establish

such an enforcement mechanism. In what follows, to keep our game model of group formation

as simple as possible, we do not present a formal model of an enforcement mechanism in a

group, but we represent it simply by a group cost function c(s). Okada (1993) considered a

related model of group formation in which group members negotiate for creating an enforcement

institution.

Example 2.1. (Voluntary provision of a public good) There are n players i each with two

actions, contributing a fixed amount m of money to producing a public good (si = 1), or not

contributing (si = 0). Players decide their contributions independently. For an action profile

s = (s1, ..., sn), every player i receives ui(m
∑n

i=1 si)+m(1−si). We assume that (1) the payoff

function ui(s) of the total contribution s = m
∑n

i=1 si is differentiable on the interval [0,mn],

(2) 0 < u′i(s) < 1 for all s, and (3) ui(mn) > ui(0) +m. Under these assumptions, it is easy to

see that the game of voluntary contribution becomes an n-person prisoner’s dilemma game.

We now consider a subgame perfect equilibrium of the two-stage game of group formation

by the usual backward induction. First, we analyze the group negotiation stage. When a group

of s members agree to cooperate, every member receives

vi(C, s− 1) = ui(C, s− 1)− c(s).

We call vi(C, s−1) the group payoff of player i where s is the number of members in the group.

Concerning the group payoff, we assume the following property.

Assumption 2.2. For every i ∈ N , the group payoff vi(C, s− 1) of player i is monotonically

increasing in s, and there exists a unique positive integer si (2 ≤ si ≤ n) such that

vi(C, si − 2) < ui(D, 0) < vi(C, si − 1). (2.1)
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This assumption means that the property (Assumption 2.1) of the n-person prisoner’s

dilemma still holds true even if we replace the original cooperative payoff ui(C, h) with the

group payoff vi(C, h). If Assumption 2.2 does not hold, the problem of group formation becomes

rather trivial. For example, if vi(C, s−1) ≤ ui(D, 0) for all s ≤ n, then no players have incentive

to participate in a group. The positive integer si in (2.1) shows the minimum size of a group

in which member i can be better off than at the noncooperative equilibrium of the prisoner’s

dilemma. We call si player i’s threshold of cooperation. Player i can benefit by cooperation

when other (si − 1) players also cooperate. In this sense, players with smaller thresholds have

higher motivation to cooperate.

Definition 2.1. A subset S of N is called a successful group if |S| ≥ si for every i ∈ S.

The size of a successful group is greater than or equal to all members’ thresholds of coop-

eration. By definition, every member of a successful group can receive higher payoff than the

noncooperative payoff in the prisoner’s dilemma. The naming of a successful group is explained

by the following proposition.

Proposition 2.1. In the group negotiation stage, an agreement for cooperation is reached by

the members of a group in a Nash equilibrium if and only if the group is successful.

Proof. Suppose that all s participants agree to cooperate. Then, every participant receives the

group payoff vi(C, s−1). If any one member reject to cooperate, negotiations break down by the

unanimity rule, and she receives the noncooperative payoff ui(D, 0) in the prisoner’s dilemma.

Therefore, the agreement of cooperation in a group S is reached in a Nash equilibrium if and

only if for all i ∈ S, vi(C, |S| − 1) ≥ ui(D, 0). From Assumption 2.2, this is equivalent to that

the group is successful.

The proposition implies that in every successful group the agreement of cooperation is

reached in a Nash equilibrium of the group negotiation stage. There exists, however, many

“trivial” Nash equilibria leading to the disagreement. For example, any action profile where

at least two participants reject to cooperate are such Nash equilibria. These trivial equilibria

are peculiar to the unanimity rule where everyone has a veto power. We remark that from the

viewpoint of every participant the action of agreement (weakly) dominates that of disagreement.

By this reason, we consider only the Nash equilibrium leading to the agreement of cooperation

in a successful group.
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Given the Nash equilibrium of the group negotiation stage, the participation decision stage

can be reduced to the following game. In the game, every player i in N choose simultaneously

and independently either σi = 1 (participation) or σi = 0 (non-participation). Let Σi = {0, 1}

be the set of actions of player i, and let Σ =
∏
i∈N Σi be the set of action profiles of n players.

For an action profile σ = (σ1, · · · , σn) ∈ Σ, the set S(σ) of participants is given by

S(σ) = {i ∈ N |σi = 1}.

The payoff fi(σ) of player i for an action profile σ = (σ1, · · · , σn) ∈ Σ is defined as follows.

(i) When a group S(σ) of participants is successful,

fi(σ) =

vi(C, |S(σ)| − 1) if σi = 1,

ui(D, |S(σ)|) if σi = 0.

(ii) When S(σ) is not successful,

fi(σ) =

ui(D, 0)− εi if σi = 1,

ui(D, 0) if σi = 0.

where εi (> 0) is a participation cost for a group.

Formally, the reduced form of the participation decision stage is represented by an n-person

game Γ = (N, {Σi, fi}i∈N ) in strategic form. We call it the group formation game.

The group formation game Γ differs from the n-person prisoner’s dilemma game in the

following aspects. In the game Γ, every participant does not need to cooperate (he never coop-

erates in equilibrium) if the number of participants is not large enough to satisfy her threshold

of cooperation. Neglecting a small participation cost εi, every participant can guarantee the

noncooperative payoff in the prisoner’s dilemma. This is not the case in the prisoner’s dilemma

game. If a player selects a cooperative action, she is free ridden by other defectors, and he may

be worse off than the noncooperative equilibrium. In the group formation game, the action of

non-participation does not dominate that of participation. A player can receive higher payoff

by participation than by non-participation when participation is critical to the formation of a

successful group.

Finally, we construct the group formation game Γ of the voluntary provision of a public

good in Example 2.1. The game generalizes Palfrey and Rosenthal’s (1984) model of discrete

public good.
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Example 2.2. (The group formation game in Example 2.1) When s players participate in a

group in Example 2.1, the group payoff of player i is given by ui(sm) − c(s) where c(s) is

the group cost per member. Player i’s threshold si of cooperation is given by the minimum

integer s satisfying ui(sm) − c(s) > ui(0) + m. Every player i in N decide independently to

participate in a group of contributors (σi = 1), or not to participate (σi = 0). For an action

profile σ = (σ1, · · · , σn), every player i’s payoff fi(σ) is defined as follows.

(i) When the group of all participants is successful,

fi(σ) =

ui(sm)− c(s) if σi = 1,

ui(sm) +m if σi = 0.

(ii) Otherwise,

fi(σ) =

ui(0) +m− ε if σi = 1,

ui(0) +m if σi = 0.

Palfrey and Rosenthal’s (1984) model of discrete public good is a special case of the group

formation game defined above. The provision level of the public good is binary, and the public

good is produced only if the number of contributors satisfy a critical level. All players have

identical (linear) payoff functions for the public good, and thus their thresholds of cooperation

are identical. The group cost c(s) is equal to the participation cost ε for any number of

participants.

3 The Nash Equilibria in the Group Formation Game

In this section, we characterize the set of Nash equilibria in the group formation game Γ. We

first examine the best response structure of the game Γ. For an action profile σ = (σ1, · · · , σn) ∈

Σ, let σ−i be the action profile obtained from σ by deleting σi. As usual, an action profile

σ = (σ1, · · · , σn) is sometimes denoted by σ = (σ−i, σi). Let S(σ) be the set of participants in

σ.

Definition 3.1. For an action profile σ = (σ−i, σi) ∈ Σ in Γ, player i’s action σi is called a

best response to σ if fi(σ−i, σi) = max
σ′i∈Σi

fi(σ−i, σi).
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Definition 3.2. The best response graph V of Γ is a binary relation on the set of action profiles

Σ such that, for every σ, σ′ ∈ Σ, (σ, σ′) ∈ V if and only if σ 6= σ′ and there exists exactly one

player i satisfying (i) σ−i = σ′−i and (ii) σ′i is a best response to σ for i. When (σ, σ′) ∈ V , we

write σ → σ′ and call it an edge from σ to σ′.

The definition of the best response graph is due to Young (1993). It plays an important

role in the analysis of stochastic stability of the Nash equilibrium as well as its existence.

Definition 3.3. For a successful group S, member i of S is called critical to S if S − {i} is

not successful.

No successful group can be sustained if any critical member opts out of it. The following

proposition characterizes the best response graph of the group formation game Γ.

Proposition 3.1. An edge of the best response graph V of the group formation game Γ must

be one of the following types.

(1) When S(σ) is a successful group, σ = (σ−i, 1) → (σ−i, 0) for all members i who are

not critical to S(σ).

(2) When S(σ) is not a successful group, σ = (σ−i, 1)→ (σ−i, 0) for all members i of S,

and σ = (σ−i, 0)→ (σ−i, 1) for all non-members i such that S(σ)∪{i} is a successful

group.

Proof. (1) Suppose that S(σ) is a successful group and that member i is not critical. Since the

group S(σ)− {i} remains successful, we have

fi(σ−i, 1) = vi(C, |S(σ)| − 1) < ui(D, |S(σ)| − 1) = fi(σ−i, 0).

Therefore, σi = 0 is a best response to σ for all non-critical members i of S(σ).

(2) Suppose that S(σ) is not a successful group. Then, for all i ∈ S,

fi(σ−i, 1) = ui(D, 0)− εi < ui(D, 0) ≤ fi(σ−i, 0),

where fi(σ−i, 0) is equal to either ui(D, |S(σ)| − 1) or ui(D, 0), depending on whether the

remaining group except player i is successful or not. For any non-member i such that S(σ)∪{i}

is a successful group,

fi(σ−i, 0) = ui(D, 0) < vi(C, |S(σ)|) = fi(σ−i, 1).
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Finally, it can be easily seen that there exist no other edges in the best response graph V given

in the theorem.

Proposition 3.1 reveals the best response structure of the group formation game. In a

successful group, every non-critical member has an incentive to deviate from the group because,

by doing so, she can free ride on cooperation by the group. In an unsuccessful group, every

member has an incentive to deviate from the group for saving participation costs. Remark that

a player outside an unsuccessful group has an incentive to join the group if her participation

makes the group successful. By Proposition 3.1, we can characterize strict Nash equilibria in

Γ.

Proposition 3.2. The group formation game Γ has the following strict Nash equilibria σ =

(σ1, · · · , σn).

(1) σ = (0, · · · , 0), i.e., S(σ) = ∅.

(2) S(σ) is a successful group with every member critical to S(σ).

The proposition can be explained intuitively by an alternative definition of a Nash equilib-

rium of the group formation game Γ. A group of participants in the Nash equilibrium satisfy

two stability properties:

Internal stability : No single member want to opt out of the group.

External stability : No single outsider want to join the group.

It is clear that the action profile σ = (0, · · · , 0) is a Nash equilibrium because no one is willing to

cooperate unilaterally. When a group is not successful, the internal stability is violated because

all participants want to opt out of the group for saving participation costs. When a group is

successful, the external stability always holds because all non-participants have incentive to free

ride. The internal stability implies that every participant is critical to the group. We remark

that if there exists no participation costs, the action profile σ = (0, · · · , 0) is a non-strict Nash

equilibrium because every player is indifferent to her decision of participation. In this case,

action profiles leading to unsuccessful groups are non-strict Nash equilibria if no outsider’s

participation makes the group successful.

We next characterize a Nash equilibrium of the group formation game Γ in terms of players’

thresholds of cooperation. For S ⊂ N and m = 2, · · · , n, we define FS(m) by the number
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of all members in S whose thresholds of cooperation are given by m. That is, FS(m) =

| { i ∈ S | si = m } |. FS represents the distribution of members of S in terms of thresholds of

cooperation. Its definition implies the next lemma.

Lemma 3.1. For S ⊂ N ,

(1) FS(2) + · · ·+ FS(|S|) ≤ |S|.

(2) A group S is successful if and only if FS(2) + · · ·+ FS(|S|) = |S|.

Proposition 3.3. A nonempty subset S of N is the set of participants in a Nash equilibrium

of the group formation game Γ if and only if

FS(2) + · · ·+ FS(|S|) = |S| and FS(|S|) ≥ 2.

Proof. From Proposition 3.2 and Lemma 3.1, it is sufficient to prove that every member of a

successful group S is critical to S if and only if FS(|S|) ≥ 2. Suppose that FS(|S|) ≥ 2. For

every i ∈ S, group S − {i} is not successful because FS−{i}(|S|) ≥ 1. Thus, every member i

of S is critical to S. If FS(|S|) = 1, then a unique member i with si = |S| is not critical to S

because S − {i} is a successful group. If FS(|S|) = 0, all members j of S have thresholds sj of

cooperation with sj ≤ |S| − 1. Therefore, they are not critical to S.

¿From the proposition, we can see how the heterogeneity of a society affects the group

formation. When a society is homogeneous in the sense that all players have identical thresholds

s (2 ≤ s ≤ n) of cooperation, the size of an equilibrium group is uniquely determined by the

common threshold s. On the other hand, when a society is heterogeneous, there exist generally

many Nash equilibria in the group formation game Γ. For example, if there exist at least two

players who have thresholds s of cooperation for each integer s = 2, · · · ,m, then a successful

group of every size s can be formed in a Nash equilibrium of Γ. The heterogeneity of a society

causes the multiplicity of the Nash equilibrium in the group formation game.

The heterogeneity of a society also affects the efficiency (the number of cooperators) of

a group as follows. In a homogeneous society, the largest group of n players can be formed

under a stringent condition that all players’ thresholds are equal to the number n of players,

s1 = · · · = sn = n. To put it differently, the full cooperation can be attained in a homogeneous

society only if all players are “reluctant” to cooperate. In a heterogeneous society, the largest
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group may be sustained in equilibrium under a much weaker condition that FN (n) ≥ 2, that

is, there are at least two players whose thresholds are n.

4 Stochastically Stability in Games

The analysis thus far shows that there are multiple equilibria in a group formation game. More

specifically, there are three types of equilibria. First, the “global defection,” in which no one

cooperates, is always a strict equilibrium. Second, in games with heterogeneous thresholds,

there are typically “partial cooperation” equilibria, in which some players cooperate but the

others do not. Third, the “full cooperation,” in which everyone cooperates, is also a strict

equilibrium. Thus the question arises as to which type of equilibrium is most likely to prevail.

To tackle this problem, we adopt the stochastic equilibrium selection theory á la Young

(1993). In this section, we briefly review the selection theory, and show that it is directly

applicable to group formation games.

Let G be an n-person strategic form game, with the set of strategies Ai, i = 1, . . . , n. Given

a positive integer m, let H be the m-fold direct product of A = A1 × · · · × An. We call an

h ∈ H a state. A state h is a sequence of strategy profiles with length m. H is the state space

of Young’s (1993) Markov chain.

Roughly speaking, the selection theory of Young (1993) works as follows. At each period,

each player is given a set consists of k-strategy profiles (k < m). Let us call the set a sample.

Profiles in the sample are randomly drawn (without replacement) from the current state h,

which consists of m-most recently occurred profiles. In determining her strategy for that period,

each player chooses a best response to her sample. There is a probability ε ≥ 0, however, that

the player enters into an “experimentation” mode. In the experimentation mode, instead of

playing a best response, she chooses her strategy randomly. This behavioral specification is

called adaptive play (with or without mistakes according to ε > 0 or ε = 0). We make following

assumptions. For each player i and each state h, every possible sample of size kfrom h has

a positive probability to be drawn for i. In the adaptive play with mistakes (ε > 0), given

that i is in the experimentation mode, each possible strategy of i can be chosen with positive

probability. Sample drawings, occurrence of experimentation modes, and random choices in

them are all independent both across players and across periods. These assumptions make

the adaptive play with mistakes an irreducible and aperiodic finite state Markov chain on H.
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Thus, for each ε > 0, there is a unique stationary distribution µε on H. A state h ∈ H is

stochastically stable (Foster and Young 1990) if limε→0 µε(h) > 0.

Recall the best response graph V of G (Definition 3.2). A finite sequence a1, . . . , aL in A is

a best response path if (al, al+1) ∈ V for every l = 1, . . . , L−1. The game G is said to be weakly

acyclic if, for every action profile a ∈ A, either a is a strict Nash equilibrium or there exists

a best response path a = a1, a2, . . . , aL such that aL is a strict Nash equilibrium. For weakly

acyclic games, the notion of stochastic stability leads to equilibrium selection as follows. A

recurrent class of a finite state Markov chain is a nonempty set of states that is minimal with

respect to the property that once the chain moves into the set, it stays within the set thereafter.

Consider recurrent classes of the adaptive play without mistakes (ε = 0). In general, a recurrent

class contains multiple states. However, if the stage game is weakly acyclic, then there is a

one to one correspondence between strict equilibria of G and recurrent classes of the adaptive

play without mistakes. Specifically, let NE = {e1, . . . , eJ} be the set of strict Nash equilibria

in the weakly acyclic game G. Young (1993) shows that if sampling is sufficiently incomplete,2

then recurrent classes are precisely H1, . . . , HJ , where Hj = {hj} = {(ej , . . . , ej)}. Moreover,

Young (1993) shows that a stochastically stable state must belong to a recurrent class of the

adaptive play without mistakes. Thus, for a weakly acyclic game G, a stochastically stable

state is essentially a strict equilibrium of G. Let us say that a strict equilibrium of a weakly

acyclic game is stochastically stable if the corresponding state is stochastically stable. If the

stochastically stable equilibrium is unique, it is the one that is observed infinitely many more

times than other equilibria in the long run, when the probability of mistakes is infinitely small.

In this sense, the notion of stochastic stability gives rise to selection among strict equilibria.

What follows is the formal procedure to identify stochastically stable equilibria of a weakly

acyclic game G. Let h = (a1, . . . , am) ∈ H and h′ = (b1, . . . , bm) ∈ H be two states. A state

h′ is a successor of h if bl = al+1 for l = 1, . . . ,m − 1. Let h′ be a successor of h. Note that

any sample of size k from h given to player i, namely, a k-length subsequence of (a1, . . . , am),

determines a probability distribution on A−i, as its empirical frequency. Denote bm = (bmi , b
m
−i).

The strategy bmi ∈ Ai chosen by i is a mistake in the transition from h to h′ if h has no sample

of size k such that bmi is a best response to the empirical frequency of that sample. For every

2Let LG is the maximum length of all such best response sequences. The sampling is sufficiently incomplete

if k ≤ m/(LG + 2).
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h, h′ ∈ H, define resistance r(h, h′) of the transition from h to h′ as follows.

r(h, h′) =


the total number of mistakes
in the transition from h to h′, if h′ is a successor of h,

∞, otherwise.

A sequence of states ω = (h1, . . . , hL) with hl ∈ H (1 ≤ l ≤ L) is called a path from h1

to hL if hl+1 is a successor of hl for l = 1, . . . , L − 1. Define resistance r(ω) of the path ω

by r(ω) =
∑L−1

l=1 r(hl, hl+1). In words, r(ω) is the total number of mistakes that the path ω

contains. Note that a path (h1, . . . , hL) can be considered to be a sequence of action profiles,

as opposed to a sequence of states. That is, the m action profiles that consist of h1, followed

by the “rightmost” profiles of the successive states h2, . . . , hL. In other words, any sequence of

action profiles with length exceeding m determines a path.

For each e ∈ NE, let h(e) be the corresponding state: h(e) = (e, . . . , e). In stochastic sta-

bility analysis, the notion of resistance between equilibrium states is crucial. For two different

equilibria e, e′ ∈ NE, define resistance from e to e′ by

r(e, e′) = min
{
r(ω) | ω is a path from h(e) to h(e′)

}
.

In words, r(e, e′) is the minimum number of mistakes that is sufficient for allowing a path from

e to e′.

A binary relation T on NE is an e-tree if (i) (e, e′) /∈ T for every e′ ∈ NE; (ii) for every

e′ 6= e, there are eι1 , . . . , eιL ∈ NE with eι1 = e′ and eιL = e such that (eιl , eιl+1) ∈ T for every

l = 1, . . . , L− 1. Given an e-tree T , we define stochastic potential ρ(T ) of T by

ρ(T ) =
∑

(e′,e′′)∈T r(e
′, e′′).

Young (1993) shows that a strict Nash equilibrium e of G is stochastically stable if and only if

for every e′-tree T ′ there is an e-tree T such that ρ(T ) ≤ ρ(T ′).

It remains to show that the selection theory of Young (1993) is directly applicable to the

group formation game. A best response path a1, . . . , aL is called a cycle if a1 = aL. The stage

game G is said to be acyclic if no best response path is a cycle. Since the stage game G is

finite, if G is acyclic, then it is weakly acyclic.

Proposition 4.1. The group formation game Γ is acyclic.
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Proof. Let σ = (σ1, · · · , σn) be any action profile in Γ, and let S(σ) be the set of participants

at σ. The following two cases are possible.

Case 1. S(σ) is a successful group:

It follows from Proposition 3.1 that any possible edge σ → σ′ from σ must have the form of

σ′ = (σ−i, 0) for some i ∈ S such that S(σ) is successful. This means that any best response

path starting at σ never return to σ, and thus that there is no cycle including σ.

Case 2. S(σ) is not a successful group:

It follows from Proposition 3.1 that any possible edge σ → σ′ from σ must be one of the

following two types: (i) σ′ = (σ−i, 0) for some i ∈ S, and (ii) σ′ = (σ−i, 1) for some i /∈ S such

that S ∪ {i} is a successful group. It can be seen from the proof in case 1 that, once subcase

(ii) happens, all vertices σ′′ in a best response path following σ′ are associated with successful

groups S(σ′′). This implies that there is no cycle including σ in subcase (ii). Now assume that

subcase (i) holds. Consider an edge σ → σ′ = (σ−i, 0) for i ∈ S. If S(σ′) is a successful group,

the same arguments as in subcase (ii) can be applied. Therefore, it suffices us to consider only a

best response path σ = σ0, σ1, σ2. · · · , σm such that for all k = 1, · · · ,m, S(σk) = S(σk−1)−{j}

for some j ∈ S(σk−1) and S(σk) is not a successful group. Clearly, such a best response path

never returns to σ. Thus, there exists no cycle including σ in subcase (i), either.

5 Equilibrium Selection in Group Formation Games

In the group formation game with heterogeneous thresholds, there are three types of equilibria:

the global defection, the partial cooperation, and the full cooperation. Which equilibrium is

most likely to prevail? Since the group formation game is acyclic, we can identify, in principle,

which equilibrium is the most stable in the sense of stochastic stability. In practice, however, it

turns out to be quite complex to evaluate the relevant resistances for general group formation

games. Thus we turn to a specific class of them, which consists of the group formation games

with two types of players.

5.1 The Group Formation Game with Two Types of Players

A group formation game with two types of players is defined as follows. Recall that the

set of players is N = {1, . . . , n}. Let us partition N into two sets, N1 = {1, . . . , n1} and
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N2 = {n1 + 1, . . . , n}. The size of N1 and N2 are n1 and n2 = n−n1, respectively. We assume

that n1, n2 ≥ 2. N1 and N2 represent two types of players as follows. Assume that

si = n1 for every i ∈ N1, and si = n = n1 + n2 for every i ∈ N2,

where si is player i’s threshold of cooperation, defined in Section 2. For a player in N1, it

may be optimal to cooperate when just n1 − 1 others do. In contrast, a player in N2 has

lower motivation to cooperate, in that only when all the other n1 + n2 − 1 players cooperate,

it becomes advantageous to herself to follow suit.

The assumption of two types drastically simplify the analysis in many ways but it still

possesses essential characters of the group formation game. Most important, it follows from

Proposition 3.3 that there are exactly three strict Nash equilibria.

Proposition 5.1. In a group formation game with two types, there are exactly three strict

Nash equilibria. They are

e1 = (0, . . . , 0), e2 = (

n1︷ ︸︸ ︷
1, . . . , 1,

n2︷ ︸︸ ︷
0, . . . , 0 ), and e3 = (1, . . . , 1).

In words, e1 is the global defection, e2 is the partial cooperation, and e3 is the full co-

operation. Concerning the best response structure of this game, notice the crucial difference

between the two types. For a player in N1, there are no situations in which she receives more by

defecting than the global defection payoff. In other words, no member in N1 has an incentive

to free ride. In contrast, when all members in N1 cooperate, a player in N2 possibly earns more

by defecting than the global defection payoff. That is, she has an incentive to free ride. In this

sense, members of N2 are potential free riders. As a result, their best response structure is

more intricate than that of players in N1. For this reason, it is behavior and payoff of potential

free riders that become most critical to subsequent analysis. Note that members in N2 are in

fact free riding in the partial cooperation equilibrium.

It proves useful to parameterize players’ payoffs. For every i ∈ N1, define

ai = vi(C, n1 − 1), ci = ui(D, 0)− εi, di = ui(D, 0).

ai is the equilibrium payoff in e2, the partial cooperation. A unilateral deviation by an i ∈ N1

from e2 results in di, which is equal to the equilibrium payoff in e1, the global defection. A
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unilateral deviation by an i ∈ N1 from e1 results in ci. Note that ai > di > ci. For every

i ∈ N2, let

ai = vi(C, n− 1), ci = ui(D, 0)− εi, di = ui(D, 0), fi = ui(D,n1).

For player i ∈ N2, ai is the equilibrium payoff in e3, the full cooperation. A unilateral deviation

by an i ∈ N2 from e3 results in di, which is equal to the equilibrium payoff in e1. A unilateral

deviation by an i ∈ N2 from e1 results in ci. fi is the free riding payoff. Note that fi > di > ci

and ai > di.

5.2 Evaluating Resistances

In order to identify the stochastically stable equilibrium, we invoke the “tree analysis” described

in Section 4. To do so, we need to evaluate the resistances. Recall that the resistance r(e, e′) is

a positive integer such that any path from an equilibrium e to another equilibrium e′ contains

at least r(e, e′) mistakes, and that there is such a path with exactly r(e, e′) mistakes. There are

two ways to evaluate the resistance. First, to evaluate it from above, it suffices to construct

a path from e to e′. r(e, e′) never exceeds the number of mistakes that the constructed path

contains. Second, to evaluate it from below, it proves useful to consider an exiting path from

the originating equilibrium and its first exitors.

Definition 5.1. Given an equilibrium state h(e) = (e, . . . , e), an exiting path from e is a path3

of action profiles from h(e) to another state h that contains a profile σ in which some player

i ∈ N plays a best response σi different from ei. For an existing path (e, · · · , e, σ1, · · · , σT )

from e, a player i∗ ∈ N is called a first exitor if i∗ plays a best response that differs from the

equilibrium e for the first time during the path.

For example, a path from h(e2) is an exiting path if it contains σ such that σi = 1 for

some i ∈ N2 and this choice is a best response. Thus in this case, the path contains a sample

to which i ∈ N2 optimally chooses 1. If i∗ ∈ N who chooses στ
∗
i∗ at date τ∗ is a first exitor of

an exiting path from h(e), then for every i ∈ N (including i∗) and every date 1 ≤ τ < τ∗ any

action στi is a mistake whenever στi 6= ei. Note that a first exitor need not be unique. Any

path from h(ei) to h(ej) is an exiting path from ei, but not vice versa.
3Taken as a sequence of action profiles, as opposed to a sequence of states.

18



In a group formation game with two types, the best response structure of a member of N1

differs from that of a member of N2. For example, the action 1 (participation) is a best response

for i ∈ N2 only to e3
−i, but j ∈ N1 can optimally choose 1 to e2

−j as well as to e3
−j . Thus we

need to distinguish exiting paths accordingly. Recall that r(ω) is the number of mistakes that

a path ω contains. For each equilibrium e, define

ri(e,N1) = min { r(ω) | ω is an exiting path from e, with i ∈ N1 as its first exitor } ,

and ri(e,N2) analogously. Define further that

r(e) = min
{

min
i∈N1

ri(e,N1), min
i∈N2

ri(e,N2)
}
,

which we call the exit resistance of e. It is clear that r(e, e′) ≥ r(e) for any e′ 6= e. Moreover,

if there is a path from e to e′ with exactly r(e) number of mistakes, then r(e, e′) = r(e).

Let us start with the global defection equilibrium, e1, in which every player chooses 0.

Consider an exiting path from e1 with a player i ∈ N1 as its first exitor. Any such path (a

sequence of action profiles with length more than m) from e1 contains a sample (a k-length

subsequence of the path) to which i can optimally choose 1. Recall that i ∈ N1 optimally

plays action 1 either to the action profile e2
−i or to e3

−i. To any other action profile, 0 is the

unique best response. Thus any such sample must contain a sufficient number of e2
−i or e3

−i.

Since we are interested in the minimum number of mistakes, fix a sample that contains e2
−i,

but not e3
−i. Now, how many e2

−i is needed? If i chooses 1, she earns the partial cooperation

payoff ai against e2
−i. Against other profiles, she receives the noncooperative payoff di, minus

the participation cost εi. On the other hand, she can assure di if she chooses 0. Now it is

clear that if the cost is sufficiently small, then just one e2
−i suffices. In fact, in our model εi

represents only the participation cost for negotiation, as opposed to the maintenance cost for

cooperation. Thus it is natural to assume that it is indeed “small.” This leads us to conclude

that ri(e1, N1) = n1 − 1. A similar argument shows that ri(e1, N2) = n − 1. Thus we have

r(e1) = n1 − 1.

For the partial cooperation equilibrium e2, we need more careful treatment. It is useful

to introduce some terminology. Given an action profile σ and a player i ∈ N , σ−i is called a

subprofile. Any subprofile σ−i such that σ−i /∈ {e2
−i, e

3
−i} is called a disequilibrium subprofile.4

Note that just one mistake is enough to turn e2
−i or e3

−i into a disequilibrium subprofile.

4In particular, e1
−i is a disequilibrium subprofile.
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Consider ri(e2, N2) first. In e2, every i ∈ N2 free rides by choosing 0. To evaluate ri(e2, N2),

we look for the minimum number of mistakes that is enough to rationalize i ∈ N2 to switch

to 1. Fix a player i ∈ N2 and assume that i is a first exitor in an exiting path from e2. For

i ∈ N2, e3
−i is the only subprofile to which she optimally plays action 1. The best response to

e2
−i is 0, and by so choosing, she earns the free riding payoff, fi. The unique best response to

a disequilibrium subprofile is also 0, which results in the global defection payoff, di. Against

what kind of sample does player i ∈ N2 optimally choose 1? There are two kinds of samples

to be distinguished. First, consider a sample that arises as follows. On day 1 (say), all players

j ∈ N2 (j 6= i) happen to make mistakes simultaneously. And from date 2 on, up to the point

where a sufficient number of e3
−is accumulate, the simultaneous mistakes occur consecutively.

This yields a sample that consists of e2
−i and e3

−i. The incentive to free ride is present, and it

is directly countered by the sufficient number of e3
−i. Player i’s best response to the sample is

1 if

sai + (k − s)ci ≥ sdi + (k − s)fi,

where s (k − s, resp.) is the number of e3
−i (e2

−i, resp.) in the sample. Therefore the sufficient

number of e3
−i turns out to be at least αik, where

αi =
(

fi − ci
ai − di + fi − ci

)
.

For this type of exit to happen, at least (n2 − 1)αik mistakes are required. An exit of this

kind is called an exit via direct transition. Figure 1 exhibits a path in which an exit via direct

transition occurs. In this and similar figures that follow, an action by mistake is indicated by

an asterisk, as 1∗.

(Figure 1 appears about here.)

There is another type of exit from e2. Consider a sample which consists of k − 1 dise-

quilibrium subprofiles, together with just one e3
−i. For example, this sample arises as follows.

Since originating equilibrium is e2, on date 0 i ∈ N2 has the sample that entirely consists of

e2
−i. From day 1 to day k, at least one player j 6= i makes a mistake, and on just one of these

dates all players j ∈ N2 (j 6= i) happen to make mistakes simultaneously. On date k + 1, the

incentive to free ride disappears. As a result and similarly to the argument applied to r(e1),

the best response to the sample is 1 if the participation cost is small enough. For such an event
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to happen, the total number of mistakes required is k − 1 + (n2 − 1). Let us call this kind of

exit an exit via indirect transition. Such an exit is depicted in Figure 2.

(Figure 2 appears about here.)

Now it is clear that n2, the number of potential free riders, matters. If n2 = 2, the required

number of mistakes in an exit via direct transition never exceeds that in an exit via indirect

transition. Thus ri(e2, N2) is given by the number of mistakes in the direct transition. For

three or more players, however, it may well be the case that indirect transition arises with

smaller number of mistakes. Intuitively, ri(e2, N2) is given by the direct transition if n2 is

“small,” but when it is “large” it is given by the indirect transition. Note that the indirect

transition with three or more players requires more than k mistakes (k − 1 + (n2 − 1) > k). It

is worth emphasizing that the large/small distinction becomes relevant because we allow three

or more players in N2. The distinction reflects a salient feature of games with more than two

players.

Consider ri(e2, N1) next. In e2, every i ∈ N1 takes 1. Thus we look for the minimum

number of mistakes required for an optimal switch by i to 0. For i ∈ N1, 0 is a best response

only to disequilibrium subprofiles. Since the originating state is h(e2), however, the initial

sample given to i entirely consists of e2
−i. Thus each e2

−i should be replaced by a disequilibrium

subprofile. Specifically, when the participation cost εi is small enough, the argument given

to ri(e1, N1) also applies here. Namely, all of the e2
−is need to be replaced by disequilibrium

subprofiles. This can happen, for example, on each day from date 1 to date k at least one player

j 6= i makes a mistake. On date k + 1, a sample that contains only disequilibrium subprofiles

is available for i, which allows her to switch optimally to 0. Thus ri(e2, N1) = k. We also call

this type of exit an exit via indirect transition. To summarize, we have r(e2) = ri(e2, N1) = k

when n2 is large and r(e2) ≤ ri(e2, N2) < k when n2 is small.

For exits from the full cooperation equilibrium e3, we also need a large/small distinction

of n2. There is an important difference to note, however. ri(e3, N2) never exceeds k even if

n2 is “large,” since 0 is a best response to the sample that consists entirely of disequilibrium

subprofiles.

These observations lead to the following definition.
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Definition 5.2. The incentive ratio of player i ∈ N2 is the fraction

ηi =
ai − di
fi − di

.

The population size n2 of N2 is large (small , resp.) to exit from e2 for player i ∈ N2 if

n2 − 2 ≥ ηi (n2 − 2 < ηi, resp.) .

n2 is large to exit from e2 if it is large to exit from e2 for every i ∈ N2. Otherwise, n2 is small

to exit from e2.

Similarly, n2 is large (small , resp.) to exit from e3 for player i ∈ N2 if

n2 − 2 ≥ 1
ηi

(
n2 − 2 <

1
ηi
, resp.

)
.

n2 is large to exit from e3 if it is large to exit from e3 for every i ∈ N2. Otherwise, n2 is small

to exit from e3.

Compared to the global defection, every i ∈ N2 receives a larger payoff in both the partial

cooperation and the full cooperation. The incentive ratio ηi measures the relative magnitude

of the payoff advantages of the full cooperation equilibrium and the partial cooperation equi-

librium. It plays a crucial role in the rest of the analysis. Define

α = min
i∈N2

(
fi − ci

ai − di + fi − ci

)
and β = min

i∈N2

(
ai − di

ai − di + fi − ci

)
.

Denote by dze the minimum integer greater or equal to a real number z.

Lemma 5.1. Assume that εi is sufficiently small and k is sufficiently large.

(1) If n2 is large to exit from e2, then r(e2) = k.

(2) If n2 is small to exit from e2, then r(e2) = mini∈N2 ri(e
2, N2) and

(n2 − 1)αk ≤ r(e2) ≤ (n2 − 1) dαke < k.

(3) If n2 is large to exit from e3, then r(e3) = k.

(4) If n2 is small to exit from e3, then r(e3) = mini∈N2 ri(e
3, N2) and

(n2 − 1)βk ≤ r(e3) ≤ (n2 − 1) dβke < k.
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The lemma confirms that the large/small distinction works as desired. In Lemma 5.1, αk

approximates the required number of repetitions of e2
−i in an exit via direct transition, and βk

does so for e3
−i. Lemma 5.1 is proved in Appendix. We proceed to evaluate resistances.

Lemma 5.2.

(1) r(e1, e2) ≤ n1 and r(e1, e2) < r(e1, e3).

(2) r(e2, e1) = r(e2).

(3) r(e3, e1) = r(e3).

(4) If n2 is large to exit from e2, then r(e2, e3) > k.

The exit resistance r(e) gives a lower bound for the resistance r(e, e′). By constructing a

path from e to e′, on the other hand, we get an upper bound for it. Consider the global defection

equilibrium e1. Starting from state h(e1), suppose that players i = 1, . . . , n1 simultaneously

choose action 1 by mistake on, say, date 1. As we saw earlier, just one e2
−i is enough for

i ∈ N1 to switch optimally to 1, provided the participation cost is sufficiently small. Therefore

every i ∈ N1 can play action 1 optimally from date 2 on. See Figure 3. Thus r(e1, e2) ≤ n1.

Moreover, one can show that r(e1, e3) > r(e1, e2). Thus we have Lemma 5.2.(1).

(Figure 3 appears about here.)

By definition, if there is a path from e to e′ with exactly r(e) number of mistakes, then

r(e, e′) = r(e). Consider the partial cooperation equilibrium e2, and recall the path that

implements an exit by i ∈ N2 via direct transition (Figure 1). In the path, all players in N1

keep best responding. It is players j ∈ N2 (j 6= i) that makes mistakes. While they are making

mistakes, i keeps playing 0 optimally. Therefore, no e3
−j appears in the path. Thus there is

no chance for j to switch to 1. Consequently, after i optimally switches to 1, her consecutive

choices of 1 give rise to an accumulation of disequilibrium subprofiles for j 6= i. This directs, in

particular, players in N1 to switch to 0. In this way, the optimal switch to 1 by i ∈ N2 does not

lead to e3, but to e1. Therefore r(e2, e1) = r(e2). Similar arguments apply, not only for indirect

transitions out of e2, but also for transitions out of the full cooperation equilibrium e3. Thus we

have Lemma 5.2.(2) and (3). As a result, we have r(e2, e1) ≤ r(e2, e3) and r(e3, e1) ≤ r(e3, e2).

This result suggests that when the adaptive play moves from the partial cooperation to the
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full cooperation, or the other way around, it is easier to follow the indirect path, in which the

play moves first to the global defection equilibrium, and then to the destination equilibrium.

In the next section, this intuition turns out to be correct.

Lemma 5.2.(4) is a consequence of the fact that ri(e2, N2) exceeds k when n2 is large to

exit from e2. Lemma 5.2 is proved in Appendix.

The analysis so far results in two types of evaluations of resistances. First, the resistances

out of e2 or e3 are evaluated in terms of k. Specifically, they are at most k, and some of them

are less than k only if n2 is small. Second, the resistances out of e1 are independent of k, and

are evaluated in terms of n1. Having made no assumption concerning the relative magnitude

of k and n1, there is no way to compare the two types of resistances. We focus our analysis on

the situation in which the sample size k is much larger than the group size n1. In other words,

we restrict attention to games with “medium” number of players.

Lemma 5.3. For sufficiently large k, r(e1, e2) < min{r(e2, e1), r(e3, e1)}.

Proof. By Lemma 5.2.(1), r(e1, e2) ≤ n1. If the sample size k is large enough so that

k > max
i∈N2

{
n1(ai − di + fi − ci)

fi − ci
,
n1(ai − di + fi − ci)

ai − di

}
,

then we have n1 < min{r(e2), r(e3)} by Lemma 5.1. By definition of the exit resistance,

r(eι) ≤ r(eι, e1), where ι = 2, 3. Therefore n1 < min{r(e2, e1), r(e3, e1)}.

We are now ready to derive equilibrium selection results.

5.3 Equilibrium Selection

Let us say that a tree (weakly, resp.) dominates another if the stochastic potential of the former

is strictly less than (less than or equal to, resp.) that of the latter. In the group formation

game, there are nine trees to consider. They are shown in Figure 4. In what follows, we assume

that the sample size k is sufficiently large and participation costs εi (i ∈ N2) are sufficiently

small.

(Figure 4 appears about here.)

Lemma 5.4. Minimum tree is either T4, T5, T7, or T8. Moreover, T5 weakly dominates T4.

24



Proof. By Lemma 5.2.(1), T4 and T7 dominate T6 and T9, respectively. By Lemma 5.3, T4,

T5, and T7 dominate T1, T2, and T3, respectively. Finally, T5 weakly dominates T4 by Lemma

5.2.(3).

The first result is an immediate consequence of Lemma 5.4.

Theorem 5.1. The global defection equilibrium is not stochastically stable.

If the set N1 of players is “medium” sized, the resistance from the global defection to

the partial cooperation becomes the smallest among the all resistances. That is, the global

defection is the easiest one to flow out from. Therefore it is not stochastically stable. It follows

that the stochastically stable equilibrium must be either partial cooperation or full cooperation.

To identify the selection outcome, it turns out to be critical whether or not n2 is large to exit

from e2. In what follows, let us say n2 is large if n2 is large to exit from e2.

Theorem 5.2. If n2 is large, then the partial cooperation equilibrium is uniquely stochastically

stable.

Proof. By Lemma 5.4, it suffices to show that T5 dominates both T7 and T8. It follows from

Lemma 5.1.(3), (4), and Lemma 5.2.(3) that r(e3, e1) ≤ k. If n2 is large to exit from e2, then

r(e2, e3) > k by Lemma 5.2.(4). Thus r(e2, e3) > r(e3, e1). Therefore T5 dominates T7. If n2

is large to exit from e2, then r(e2, e1) ≥ k by Lemma 5.1.(1). Thus r(e2, e1) ≥ r(e3, e1). This

inequality and Lemma 5.2.(1) together imply that

r(e2, e1) + r(e1, e3) > r(e3, e1) + r(e1, e2).

Therefore T5 dominates T8.

In words, when the number of potential free riders exceeds a critical level, the partial

cooperation equilibrium is stable. There are two ways to read the assumption of the theorem

n2 − 2 ≥ max
i∈N2

ai − di
fi − di

,

which in turn suggest two interpretations of the theorem, respectively. First, given the incentive

ratios of the potential free riders, the theorem states that the free riding equilibrium is the

unique stable outcome when there are sufficient number of them. Second, given the number

of potential free riders, the stronger the incentive to free ride, the smaller the incentive ratio.
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The theorem tells us, quite naturally, when the incentive to free ride is sufficiently strong,

the free riding equilibrium is likely to be observed in the long run. Notice that if fi > ai for

every i ∈ N2, the theorem applies for every n2 ≥ 3. Since we allow heterogeneous preferences,

however, some players may well have large incentive ratios. In such a case, the assumption of

the theorem becomes harder to be satisfied.

Technically, the result comes roughly as follows. When n2 is large it follows that the

resistance from the partial cooperation e2 to the full cooperation e3 is greater than k, and

that the resistance from the partial cooperation e2 to the global defection e1 is exactly k. The

resistance from e3 to e1 is, on the other hand, less than or equal to k. By the first consequence,

the e3 tree e1 → e2 → e3 is dominated by the e2 tree e3 → e1 → e2. By the second, the other e3

tree e2 → e1 → e3 is dominated by the same e2 tree. Thus the minimum tree is e3 → e1 → e2.

When the number of potential free riders is smaller than the critical level, it turns out

that the stochastically stable outcome is determined by a variant of risk dominance relation

(Harsanyi and Selten 1988). Before stating the result, let us introduce the risk dominance

relation relevant here.

Assume that all players in N2 expects that the game will be played according to either the

full cooperation equilibrium or the partial cooperation equilibrium, but they are not certain

about which equilibrium will prevail. Suppose that each player i in N2 expects that the partial

cooperation equilibrium is played with probability t, and the full cooperation equilibrium with

probability 1 − t. If she participates in a group, she receives expected payoff tdi + (1 − t)ai
(neglecting small participation costs εi). If she does not participate, she receives expected

payoff tfi + (1− t)di. Then, it is optimal for her to stay at the full cooperation equilibrium if

t < ηi

1+ηi
. Thus, mini∈N2

ηi

1+ηi
can be interpreted as the maximum level of risk that all players

in N2 can take in staying at the full cooperation equilibrium. Similarly, mini∈N2
1

1+ηi
can be

interpreted as the maximum level of risk that all players in N2 can take in staying at the partial

cooperation equilibrium. Specifically, if

min
i∈N2

ηi
1 + ηi

> min
i∈N2

1
1 + ηi

, (5.1)

then the full cooperation equilibrium is more “robust” than the partial cooperation equilibrium

in the risk consideration. In this case, following the spirit of Harsanyi and Selten (1988), we

say that the full cooperation equilibrium risk dominates the partial cooperation equilibrium.

We are now ready to present the final result. The proof is given in Appendix.
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Theorem 5.3. Assume that n2 is small.

(1) The full cooperation equilibrium is uniquely stochastically stable if

min
i∈N2

ηi
1 + ηi

> min
i∈N2

1
1 + ηi

.

(2) The partial cooperation equilibrium is uniquely stochastically stable if

min
i∈N2

ηi
1 + ηi

< min
i∈N2

1
1 + ηi

.

The risk dominance relation can be rewritten in a simpler form. Let ηM (ηm, resp.) be

the highest (lowest, resp.) incentive ratio among all potential free riders in N2. Then, the risk

dominance condition (5.1) is equivalent to

ηm
1 + ηm

>
1

1 + ηM
,

which can be reduced to ηmηM > 1, or

(am − dm)(aM − dM ) > (fm − dm)(fM − dM ).

The last inequality makes it clear that the risk dominance here is a variant of the original

version of Harsanyi and Selten (1988). In particular, the two coincide each other when n2 = 2.

Moreover, when the full cooperation equilibrium is strictly Pareto efficient, that is, ai > fi

for every i ∈ N2, then the former risk dominates the latter, and thus the full cooperation

equilibrium is stochastically stable.

It is now instructive to consider the following game. In the group formation game, fix

the action of every player in N1 at the participation. The resulting game is a coordination

game played by potential free riders, in which there are exactly two strict equilibria, the

partial cooperation and the full cooperation. The intuition behind Theorem 5.3 is that, when

n2 is small, the stochastically stable outcome of the whole game is the same as that of the

restricted coordination game. Therefore the outcome is determined by the risk dominance

relation. Contrary to the original version of Harsanyi and Selten (1988), however, the relevant

risk dominance relation involves only the maximum incentive ratio and the minimum incentive

ratio. In stochastic stability analysis, only the minimum number of mistakes to upset a given

equilibrium matters. As a result, the outcome is insensitive to incentive ratios of “intermediate”

players.
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6 Concluding Remarks

We have investigated the problem of group formation in collective action in a game theoretic

model. Our analysis has been focused on how heterogeneity of preferences affects the formation

and dynamic stability of voluntary groups. In the model, heterogeneous preferences are de-

scribed by the threshold of cooperation and the incentive ratio of cooperation and free-riding.

We have shown that the heterogeneous preferences yield a genuine multiplicity of strict Nash

equilibria, in that, in addition to the global defection equilibrium, there are in general many

types of cooperative equilibria. By applying the stochastic stability theory, we have consid-

ered which equilibrium is more likely to prevail. The equilibrium selection problem has been

analyzed in the group formation game with two types of individuals. We have shown that

when the number of individuals less motivated to cooperate is larger than a critical level, the

partial cooperation is uniquely stochastically stable. Otherwise, the stochastic stability selects

a risk dominant equilibrium. The risk dominance relation is determined by the highest and the

lowest incentive ratios among those of potential free riders. The full cooperation equilibrium

is uniquely stochastically stable if there exists at least one individual whose incentive ratio is

relatively high, or if there exists no individual whose incentive ratio is considerably low.
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Appendix

Proof of Lemma 5.1.

By definition,

r(e) = min
{

min
i∈N1

ri(e,N1), min
i∈N2

ri(e,N2)
}
.

Therefore Lemma 5.1 follows directly from Lemma A.1 below. Thus it suffices to prove Lemma

A.1. Set

αi =
fi − ci

ai − di + fi − ci
and βi =

ai − di
ai − di + fi − ci

.

Lemma A.1. Let i ∈ N2. For sufficiently small εi, ri(e,Nl) (l = 1, 2) is given as follows.

(1) ri(e1, N1) = n1 − 1.

(2) ri(e1, N2) = n− 1.

(3) ri(e2, N1) = k.

(4) If n2 is large to exit from e2 for player i, then ri(e2, N2) > k.

(5) If n2 is small to exit from e2 for player i, then for sufficiently large k,

(n2 − 1)αik ≤ ri(e2, N2) ≤ (n2 − 1) dαike < k.
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(6) ri(e3, N1) = k.

(7) If n2 is large to exit from e3 for player i, then ri(e3, N2) = k.

(8) If n2 is small to exit from e3 for player i, then for sufficiently large k,

(n2 − 1)βik ≤ ri(e3, N2) ≤ (n2 − 1) dβike < k.

Proof of Lemma A.1.

We are going to evaluate each ri(ej , Nl) by setting up the relevant integer program, and then

evaluating its optimal value. In such a program, t and s are nonnegative integer variables that

satisfy t+s ≤ k, where k is the sample size of the adaptive play. Note that for sufficiently small

εi, ⌈
kεi

ai − di + εi

⌉
= 1 and

⌈
k(ai − di)
ai − di + εi

⌉
= k.

Lemma A.1.(1). ri(e1, N1) = n1 − 1.

Proof. Recall that a player i ∈ N1 optimally plays action 1 either against the action profile e2
−i

or against e3
−i. For any other action profile, 0 is the unique best response. Thus any sample

against which i can optimally choose 1 must contain a sufficient number of e2
−i or e3

−i. Consider

first samples that do not contain e3
−i. Specifically, consider a sample taken by player i ∈ N1

that contains e2
−i for t times, e1

−i for k− t− s times, and s others (excluding e3
−i). If i is a first

exitor, each 1 in e2
−i (there are n1 − 1 of them) is a mistake, and each of the “other s” profiles

contains at least one mistake. Thus one obtains the minimum number of mistakes by solving

the following integer program. Note that 1 is a best response against the sample if and only if

the constraint of the program is satisfied:

min (n1 − 1)t+ s, subject to tai + (k − t)ci ≥ kdi. (A.1)

The constraint in (A.1) is equivalent to

t ≥ k(di − ci)
ai − ci

=
kεi

ai − di + εi
.

For sufficiently small εi, t = 1 and s = 0 is a feasible solution of (A.1). Thus, for samples

without e3
−i, the minimum number of mistakes is n1 − 1. It is clear that for samples with e3

−i,

the number of mistakes exceeds n1 − 1. Thus ri(e1, N1) = n1 − 1.
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Lemma A.1.(2). ri(e1, N2) = n− 1.

Proof. Recall that a player i ∈ N2 optimally plays action 1 only against e3
−i. For any other

action profile, 0 is the unique best response. Thus any sample against which i can optimally

choose 1 must contain at least one e3
−i. If i is a first exitor, each 1 in e3

−i (there are n − 1 of

them) is a mistake. Thus ri(e1, N2) ≥ n− 1. To show the reverse inequality, consider a sample

taken by player i ∈ N2 that contains the action profile e1
−i for k − 1 times and an e3

−i. 1 is a

best response against the sample if and only if

ai + (k − 1)ci ≥ kdi, (A.2)

which is equivalent to

1 ≥ k(di − ci)
ai − ci

=
kεi

ai − di + εi
.

This inequality holds for sufficiently small εi. Therefore ri(e1, N2) ≤ n− 1.

Lemma A.1.(3). ri(e2, N1) = k.

Proof. Recall that a player i ∈ N1 optimally plays action 1 either against the action profile e2
−i

or against e3
−i. For any other action profile, 0 is the unique best response. Consider a sample

taken by player i ∈ N1 that contains the action profile e3
−i for t times, e2

−i for k − t− s times,

and s others. For i to optimally play 0 against this sample, there must be sufficient number of

“other” profiles. In fact, let us show that s = k. 0 is a best response against the sample if and

only if

kdi ≥ (k − t− s)ai + ta′i + sci,

where a′i = ui(C, n1 + n2 − 1). Since a′i ≥ ai, it is necessary that

kdi ≥ (k − s)ai + sci,

which is equivalent to

s ≥ k(ai − di)
ai − ci

=
k(ai − di)
ai − di + εi

.

When εi is sufficiently small, this implies that s ≥ k. Thus in order to optimally choose 0,

i ∈ N1 has to have a sample that consists entirely of “other” profiles. If i ∈ N1 is a first

exitor, any profile that is neither e2
−i nor e3

−i must contain at least one mistake. Therefore

ri(e2, N1) = k.
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Lemma A.1.(4). If n2 is large to exit from e2 for player i, then ri(e2, N2) > k for any

sufficiently small εi.

Proof. Recall that a player i ∈ N2 optimally plays action 1 only against e3
−i. For any other

action profile, 0 is the unique best response. Thus any sample against which i can optimally

choose 1 must contain a sufficient number of e3
−i. If i is a first exitor, each 1 in e3

−i played by a

member in N2 is a mistake (there are n2−1 of them), and each of the “other s” profiles contains

at least one mistake. Consider a sample taken by player i ∈ N2 that contains the action profile

e3
−i for t times, e2

−i for k− t− s times, and s others. One can evaluate the minimum number of

mistakes by solving the following integer program. Note that 1 is a best response against this

sample if and only if the constraint of the following program is satisfied:

min (n2 − 1)t+ s, subject to tai + (k − t)ci ≥ (k − t− s)fi + (t+ s)di. (A.3)

The exact value of ri(e2, N2) is given by program (A.3) with integer constraint. Ignoring integer

constraint, the optimal value of (A.3) is less than or equal to ri(e2, N2). Thus it suffices to show

that the optimal value of (A.3) exceeds k. Note that when the objective function passes through

an optimal solution of (A.3), its intercept on s axis gives the optimum value of (A.3).

The constraint in (A.3) is equivalent to

s ≥ k(fi − ci)
fi − di

−
(
ai − di + fi − ci

fi − di

)
t.

Draw a horizontal t axis and a vertical s axis. In this coordinate, the boundary of constraint

(A.3) is a line that has a negative slope steeper than −1 and its intercept on s axis is above k.

See Figure 5. On the other hand, the slope of the objective function is −(n2− 1). Now assume

that n2 is large to exit from e2 for player i. There are two cases to consider.

(Figure 5 appears about here.)

Case 1 . n2 − 2 > ηi.

In this case,

n2 − 1 >
ai − di + fi − di

fi − di
.

Thus for any sufficiently small εi,

n2 − 1 ≥ ai − di + fi − ci
fi − di

,
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where ci = di − εi. Therefore the objective function is (weakly) steeper than the constraint

boundary. Thus (t, s) in Figure 5 is an optimum solution. Clearly, when the objective function

passes through (t, s), the intercept is above s, which in turn strictly exceeds k. Therefore

ri(e2, N2) > k.

Case 2 . n2 − 2 = ηi.

In this case,

n2 − 1 <
ai − di + fi − ci

fi − di
for any εi > 0. Therefore the objective function is flatter than the constraint boundary. Thus

(αik, 0) in Figure 5 is the unique solution of (A.3), where

αik =
k(fi − ci)

ai − di + fi − ci
.

When the objective function passes through (αik, 0), its equation is given by

s = −(n2 − 1)(t− αik) = −(n2 − 1)t+ (n2 − 1)αik.

Therefore it suffices to show that (n2 − 1)αi > 1. Since n2 − 2 = ηi, we have

(n2 − 1)(fi − di)
ai − di + fi − di

= 1.

On the other hand, it follows from ai − di > 0 that

αi =
fi − ci

ai − di + fi − ci
>

fi − di
ai − di + fi − di

for any εi > 0, where ci = di − εi. Hence (n2 − 1)αi > 1.

Lemma A.1.(5). If n2 is small to exit from e2 for player i, then for sufficiently large k,

(n2 − 1)αik ≤ ri(e2, N2) ≤ (n2 − 1) dαike < k.

Proof. Assume that n2 is small to exit from e2 for player i. Then,

n2 − 1 <
ai − di + fi − ci

fi − di

for every εi > 0. Thus the slope of the objective function in (A.3) is flatter than that of the

constraint boundary. Similarly to Lemma A.1.(4), it suffices to evaluate program (A.3). Ignoring

integer constraint, the optimum solution is the intersection of the best response constraint and
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t (horizontal) axis. In Figure 5, it is denoted by (αik, 0). Thus the optimal value with integer

constraint is at least (n2 − 1)αik. Rounding αik gives dαike. Since dαike is an integer, the

optimal value with integer constraint is at most (n2 − 1) dαike.

By assumption,

(n2 − 1)
(

fi − di
ai − di + fi − di

)
< 1.

Therefore for sufficiently small εi and sufficiently large k,

(n2 − 1)
(

fi − ci
ai − di + fi − ci

)
+
n2 − 1
k

= (n2 − 1)αi +
n2 − 1
k

< 1,

from which it follows that (n2 − 1) dαike < k.

Lemma A.1.(6). ri(e3, N1) = k.

Proof. Consider a sample taken by player i ∈ N1 that contains the action profile e2
−i for t

times, e3
−i for k− t− s times, and s others. Analogously to Lemma A.1.(3), one can show that

in order for an i ∈ N1 to optimally choose 0 against this sample it must consist entirely of

“other” profiles.

Lemma A.1.(7). If n2 is large to exit from e3 for player i, then ri(e3, N2) = k.

Proof. Recall that a player i ∈ N2 optimally plays action 1 only against e3
−i. For any other

action profile, 0 is the unique best response. Consider a sample taken by player i ∈ N2 that

contains the action profile e2
−i for t times, e3

−i for k − t − s times, and s others. If i is a first

exitor, each 0 in e2
−i played by a member in N2 is a mistake (there are n2 − 1 of them), and

each of the “other s” profiles contains at least one mistake. One can evaluate the minimum

number of mistakes by solving the following integer program. Note that 0 is a best response

against this sample if and only if the constraint of the following program is satisfied:

min (n2 − 1)t+ s, subject to tfi + (k − t)di ≥ (k − t− s)ai + (t+ s)ci. (A.4)

The constraint in (A.4) is equivalent to

s ≥ k(ai − di)
ai − ci

−
(
ai − di + fi − ci

ai − ci

)
t.

(Figure 6 appears about here.)
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In the t-s coordinate, the boundary of constraint (A.4) is a line that has a negative slope steeper

than −1 and its intercept on s-axis is below k. See Figure 6. On the other hand, the slope of

the objective function is −(n2− 1). Now assume that n2 is large to exit from e3. Then we have

n2 − 1 ≥ ai − di + fi − di
ai − di

.

Noting that fi − di > 0, it follows that

n2 − 1 >
ai − di + fi − ci

ai − ci
for any εi > 0. Thus the objective function is steeper than the constraint boundary. Ignoring

integer constraint, the optimum solution is the intersection of the best response constraint and

the s (vertical) axis. Its s coordinate s is given by

s =
k(ai − di)
ai − ci

=
k(ai − di)
ai − di + εi

.

For sufficiently small εi, rounding s gives ri(e3, N2) = k.

Lemma A.1.(8). If n2 is small to exit from e3 for player i, then for sufficiently large k,

(n2 − 1)βik ≤ ri(e3, N2) ≤ (n2 − 1) dβike < k.

Proof. Similarly to Lemma A.1.(7), it suffices to evaluate program (A.4). Assume that n2 is

small to exit from e3 for i ∈ N2. Then

n2 − 1 <
ai − di + fi − di

ai − di
.

Therefore the objective function is flatter than the constraint boundary for sufficiently small

εi. Ignoring integer constraint, the optimum solution is the intersection of the best response

constraint and t (horizontal) axis. Its t coordinate is given by

βik =
k(ai − di)

ai − di + fi − ci
.

Thus the optimal value with integer constraint is at least (n2−1)βik. Rounding βik gives dβike.

Since dβike is an integer, the optimal value with integer constraint is at most (n2 − 1) dβike.

By assumption,

(n2 − 1)
(

ai − di
ai − di + fi − di

)
< 1.

Therefore for sufficiently large k,

(n2 − 1)
(

ai − di
ai − di + fi − ci

)
+
n2 − 1
k

< 1,

from which it follows that (n2 − 1) dβike < k.
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Proof of Lemma 5.2

Lemma 5.2.(1). r(e1, e2) ≤ n1 and r(e1, e2) < r(e1, e3).

Proof. One can construct a path from e1 to e2 that has exactly n1 mistakes as follows. See

Figure 3. In the path depicted in the figure, players i = 1, . . . , n1 simultaneously choose action

1 by mistake on, say, date 1. On date 1 players i = n1 + 1, . . . , n1 + n2 optimally choose 0.

From date 2 on, every player samples the most recent k profiles, and plays optimally against

it. Clearly, the path moves into h(e2). Thus r(e1, e2) ≤ n1.

(Figure 7 appears about here.)

It remains to show that r(e1, e3) > r(e1, e2). If n1 = 2, Figure 7 shows that r(e1, e2) = 1.

In this case, it is clear that r(e1, e3) > 1. Thus we can assume that n1 ≥ 3. For the remaining

cases, it suffices to show that r(e1, e3) > n1, since we know by the preceding paragraph that

n1 ≥ r(e1, e2). Assume first that n2 ≥ 3, and consider a path from e1 to e3. If there is a first

exitor in N2, then by Lemma A.1.(2) the path contains at least n1 + n2 − 1 mistakes. Thus we

can assume that j ∈ N1 is a first exitor of the path, and that there is no first exitor in N2.

Assume that player i ∈ N2 optimally chooses 1 for the first time during the path on date τ ,

and that any other i′ ∈ N2 (i′ 6= i) optimally chooses 1 for the first time during the path no

earlier than date τ . Prior to date τ , there must be a date τ∗ on which e3
−i is played. Every 1

chosen by i′ ∈ N2 (i′ 6= i) on date τ∗ is a mistake. There are n2 − 1 of them. On the other

hand, since j ∈ N1 is a first exitor, prior to date τ there is a date τ∗∗ on which e2
−j or e3

−j is

played. On date τ∗∗, every 1 chosen by j′ ∈ N1 (j′ 6= j) is a mistake. There are at least n1 − 1

of them. Thus, prior to date τ the path contains at least n1 +n2− 2 mistakes. This shows that

r(e1, e3) > n1 when n2 ≥ 3. Thus it remains to consider the case that n1 ≥ 3 and n2 = 2. To

deal with this case, we show the following.

Claim. Assume that n1 ≥ 3. Let σ be an action profile in which σi = 1 for every

i ∈ N1. Consider a path from e1 to σ such that each 1 chosen by i ∈ N1 in the “most

recent” σ is not a mistake. This path contains at least n1 mistakes by members of

N1.

For each i ∈ N1, let τi be the date on which i chooses 1 as a best response for

the first time during the path. Every 1 chosen by i prior to date τi is a mistake.
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Prior to date τi, there must be a date τ∗i on which either e2
−i or e3

−i is played. If

there are more than one such dates for i, let τ∗i be the earliest date. Now there are

two cases to consider. Assume first that there are two different players in N1, say i1

and i2, such that dates τ∗i1 and τ∗i2 are actually the same date, τ∗. In this case, the

play of date τ∗ is either e2 or e3, thus the path contains at least n1 mistakes. The

remaining case is that dates τ∗1 , . . . , τ
∗
n1

are all different. Assume that they appear

as τ∗1 < · · · < τ∗n1
. On date τ∗1 , there are at least n1 − 1 mistakes. On date τ∗2 , 1 by

player 1 may be a best response, but 1 by player 3, who exists since n1 ≥ 3, must

be a mistake. Thus the path contains at least n1 mistakes. This concludes the proof

of the claim.

Assume that n1 ≥ 3 and n2 = 2. We show that r(e1, e3) > n1. Assume that player n1 + 1 ∈

N2 = {n1 + 1, n1 + 2} optimally chooses 1 for the first time during the path on date τ , and

that n1 + 2 optimally chooses 1 for the first time during the path no earlier than date τ . Prior

to date τ , there must be a date τ∗ on which e3
−(n1+1) is played. Then 1 chosen by n1 + 2 on

date τ∗ is a mistake. Thus there is at least one mistake by members of N2. On date τ∗, every

i ∈ N1 chooses 1. Let γ be the number of best responses among 1s chosen by i ∈ N1 on date

τ∗. There are three cases to consider. First, if γ = 0, then date τ∗ contains n1 mistakes by

members of N1. Together with the mistake by n1 +2, date τ∗ contains n1 +1 mistakes. Second,

let n1 > γ ≥ 1. Then date τ∗ contains n1 − γ mistakes by members of N1. Since γ ≥ 1, prior

to date τ∗ there are at least n1 − 1 mistakes by members of N1. Hence, up to date τ∗, there

are at least n1 − γ + n1 − 1 mistakes by members of N1. Together with the mistake by n1 + 2,

the path contains at least n1 − γ + n1 > n1 mistakes. Finally, let γ = n1. In this case, Claim

1 implies that the path contains at least n1 mistakes by members of N1. Together with the

mistake by n1 + 2, the path contains at least n1 + 1 mistakes.

Lemma 5.2.(2). r(e2, e1) = r(e2).

Proof. Assume first that n2 is large to exit from e2. In this case, r(e2) = k by Lemma 5.1.(1).

In addition, n2 ≥ 3. Consider the following path from e2. The path consists of phases 1 and 2.

Denote the date τ action of player i by στi . See Figure 8.

(Figure 8 appears about here.)
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Phase 1 (τ = 1, . . . , k): Every player samples e2
−i k times from h(e2). Every player i 6= n1 + 1

optimally responds to the sample. Let στn1+1 = 1 for τ = 1, . . . , k.

Phase 2 (τ = k + 1, . . . , 2k): Every player samples (σ1
−i, . . . , σ

k
−i), and optimally responds to

it. Then στi = 0 for every i ∈ N . Note, in particular, that στi = 0 for every i = n1 +

2, . . . , n1 + n2 since n2 ≥ 3.

Clearly, the path moves into h(e1). During this path, mistakes are those 1s by player n1 + 1 in

phase 1. There are k of them. Thus r(e2, e1) = k.

Assume next that n2 is small to exit from e2. Then we have r(e2) = mini∈N2 ri(e
2, N2) by

Lemma 5.1.(2). Assume that r(e2) = rn1+1(e2, N2). Recall from the proof of Lemma A.1.(5)

that rn1+1(e2, N2) is the optimal value of program (A.3) with integer constraints. Let (t∗, s∗)

be an optimal solution of (A.3).5 By the construction of (A.3), it follows that when player

n1 + 1 samples e3
−n1+1 for t∗ times, e2

−n1+1 for k − t∗ − s∗ times, and others for s∗ times, her

best response is 1. Assume for the moment that n2 ≥ 3, and consider the following path from

e2. See Figure 9.

(Figure 9 appears about here.)

Phase 1 (τ = 1, . . . , k): Every player samples e2
−i k times from h(e2). From τ = 1 to k− t∗−s∗,

every player optimally responds to the sample. From τ = k − t∗ − s∗ + 1 to k − t∗, every

player i 6= n1 + 2 continues to respond to the sample optimally. Let στn1+2 = 1. From

τ = k− t∗ + 1 to k, every player i = 1, . . . , n1, n1 + 1 continues to respond to the sample

optimally. For player i = n1 + 2, . . . , n1 + n2, let στi = 1.

Phase 2 (τ = k + 1, . . . , 2k): Every player samples (σ1
−i, . . . , σ

k
−i), and optimally responds to

it. Then στi = 1 for i = 1, . . . , n1. By construction, στi = 0 for i = n1 + 2, . . . , n1 +n2 and

στn1+1 = 1.

Phase 3 (τ = 2k + 1, . . . , 3k): Every player samples (σk+1
−i , . . . , σ

2k
−i), and optimally responds

to it. Then στi = 0 for every i = 1, . . . , n1 + 1. Since n2 ≥ 3, στi = 0 for every i =

n1 + 2, . . . , n1 + n2 as well.

Clearly, the path moves into h(e1). During this path, mistakes are those 1s by players i = n1 +

2, . . . , n1 +n2 in phase 1. There are (n2−1)t∗+s∗ of them. Therefore r(e2, e1) = (n2−1)t∗+s∗.
5That is, (n2 − 1)t∗ + s∗ = rn1+1(e2, N2) = r(e2), and both t∗ and s∗ are nonnegative integers.
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Finally, let n2 = 2. Consider the path in Figure 9 again. In phase 3, if n2 = 2 then στn1+2 = 1

and στi = 0 for every i 6= n2 + 2. Add phase 4 in which everyone samples (σ2k+1
−i , . . . , σ3k

−i), to

which everyone optimally responds. In this way, the path moves into h(e1).

Lemma 5.2.(3). r(e3, e1) = r(e3).

Proof. Assume first that n2 is large to exit from e3. Then r(e3) = k by Lemma 5.1.(3). In

addition, n2 ≥ 3. In this case, the path in Figure 10 shows that r(e3, e1) = k. Thus assume that

n2 is small to exit from e3. Then we have r(e3) = mini∈N2 ri(e
3, N2) by Lemma 5.1.(4). Assume

that r(e3) = rn1+1(e3, N2). Recall from the proof of Lemma A.1.(8) that rn1+1(e3, N2) is the

optimal value of program (A.4) with integer constraints. Let (t∗, s∗) be an optimal solution of

(A.4). By the construction of (A.4), it follows that when player n1 + 1 samples e2
−n1+1 for t∗

times, e3
−n1+1 for k − t∗ − s∗ times, and others for s∗ times, her best response is 0. Consider

the following path that starts from e3. See Figure 11.

(Figure 10 appears about here.)

(Figure 11 appears about here.)

Phase 1 (τ = 1, . . . , k): Every player samples e3
−i k times from h(e3). From τ = 1 to k− t∗−s∗,

every player optimally responds to the sample. From τ = k − t∗ − s∗ + 1 to k − t∗, every

player i 6= n1 + 2 continues to respond to the sample optimally. For player i = n1 + 2, let

στi = 0. From τ = k − t∗ + 1 to k, every player i = 1, . . . , n1, n1 + 1 continues to respond

to the sample optimally. For player i = n1 + 2, . . . , n1 + n2, let στi = 0.

Phase 2 (τ = k + 1, . . . , 2k): Every player samples (σ1
−i, . . . , σ

k
−i), and optimally responds to

it. Then στi = 1 for every i = 1, . . . , n1. By construction, στ1 = 1 for every i = n1 +

2, . . . , n1 + n2 and στn1+1 = 0.

Phase 3 (τ = 2k + 1, . . . , 3k): Every player samples (σk+1
−i , . . . , σ

2k
−i), and optimally responds to

it. Then στi = 0 for every i 6= n1 + 1 and στn1+1 = 1.

Phase 4 (τ = 3k + 1, . . . , 4k): Every player samples (σ2k+1
−i , . . . , σ3k

−i), and optimally responds

to it. Then στi = 0 for every i ∈ N (Phase 4 is not depicted in Figure 11).

Clearly, the path moves into h(e1). During this path, mistakes are those 0s by players i =

n1 + 2, . . . , n1 + n2 in phase 1. There are (n2 − 1)t∗ + s∗ of them. Therefore r(e3, e1) = (n2 −

1)t∗+s∗ = rn1+1(e3, N2) = r(e3). Note that the path in Figure 11 does work even if n2 = 2.
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Lemma 5.2.(4). If n2 is large to exit from e2, then r(e2, e3) > k.

Proof. Assume that n2 is large to exit from e2. Thus n2 ≥ 3. Take any exiting path from e2 to

e3. If there is an i ∈ N2 who is a first exitor of this path, then this path contains more than

k mistakes by Lemma A.1.(4). Thus assume that there is no first exitor in N2. Let i∗ ∈ N2 be

a first player in N2 who chooses 1 as a best response during the path. Prior to the date, say

date τ , on which i∗ optimally chooses 1 for the first time, at least one e3
−i∗ appears in the path.

Fix such an e3
−i∗ , denote the date on which this e3

−i∗ occurs by τ ′. By the choice of i∗, every

1 chosen by i ∈ N2 (i 6= i∗) in this e3
−i∗ is a mistake. There are n2 − 1 of them. On the other

hand, since i∗ is not a first exitor, prior to date τ there is an i∗∗ ∈ N1 who chooses 0 as a best

response. It follows from Lemma A.1.(3) (and its proof) that prior to date τ there are k dates

on each of which at least one mistake is made. If date τ ′ is not one of these “k dates,” then the

path contains at least k + n2 − 1 mistakes prior to date τ . If date τ ′ is one of these “k dates,”

one of the n2 − 1 mistakes may be counted as one of k mistakes, but still at least k + n2 − 2

mistakes has been made prior to date τ . In either case, the number of mistakes exceeds k since

n2 ≥ 3.

Proof of Theorem 5.3

To prove Theorem 5.3, we need the following lemma.

Lemma A.2.

(1) If n2 is small to exit from e2, then k > (n2 − 1) dαke+ n2 for sufficiently large k.

(2) r(e1, e3) ≤ r(e1, e2) + n2.

(3) r(e3, e1) ≤ (n2 − 1) dβke.

Proof. (1) By Lemma 5.1.(2), 1 > (n2 − 1)α. Therefore for sufficiently large k,

1 > (n2 − 1)α+
2n2 − 1

k
,

or equivalently, k > (n2−1)(αk+1)+n2. The right hand side is larger than (n2−1) dαke+n2.

(2) Assume first that n1 ≥ 3. Then r(e1, e2) = n1 by the Claim in the proof of Lemma

5.2.(1) and Figure 3. Figure 12 shows that r(e1, e3) ≤ n1 +n2. Assume next that n1 = 2. Then

we know by Figure 7 that r(e1, e2) = 1. Now Figure 13 shows that r(e1, e3) ≤ 1 + n2.
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(Figure 12 appears about here.)

(Figure 13 appears about here.)

(3) If n2 is small to exit from e3, the conclusion follows from Lemma 5.1.(4) and 5.2.(3). If n2

is large to exit from e3, r(e3, e1) = k by Lemma 5.1.(3) and 5.2.(3). Thus it suffices to show that

(n2−1) dβke ≥ k. Let βi = β. If n2 is large to exit from e3, then, in the program (A.4) without

integer constraint, (0, s) is an optimal solution and (βik, 0) is a feasible solution (see Figure 6).

Therefore (n2−1)βik ≥ k(ai−di)/(ai−ci). Since dβike ≥ βik, (n2−1) dβike ≥ k(ai−di)/(ai−ci).

By monotonicity of d·e,

d(n2 − 1) dβikee ≥
⌈
k(ai − di)
ai − ci

⌉
.

For sufficiently small εi, the right hand side is equal to k. It is clear that the left hand side is

equal to (n2 − 1) dβike.

Proof of Theorem 5.3. For (1), assume that mini ηi/(1 + ηi) > mini 1/(1 + ηi), or equivalently

min
i∈N2

ai − di
ai − di + fi − di

> min
i∈N2

fi − di
ai − di + fi − di

.

For sufficiently large k and sufficiently small εi, we have

min
i∈N2

ai − di
ai − di + fi − ci

> min
i∈N2

fi − ci
ai − di + fi − ci

+
1
k

(
1 +

n2

n2 − 1

)
,

where ci = di − εi. This implies β > α+ (1 + n2
n2−1)/k, and thus βk > dαke+ n2/(n2 − 1). We

are going to show that this inequality and Lemma A.2.(1) constitute a sufficient condition for

e3 to be stochastically stable.

Since n2 is small to exit from e2, r(e2, e1) ≤ (n2 − 1) dαke by Lemma 5.1.(2) and 5.2.(2).

On the other hand, r(e1, e3) ≤ r(e1, e2) + n2 by Lemma A.2.(2). Therefore

ρ(T8) ≤ r(e1, e2) + (n2 − 1) dαke+ n2.

By Lemma 5.4, it suffices to show that T8 dominates T5. Assume first that n2 is small to exit

from e3. Then by Lemma 5.1.(4), r(e3, e1) ≥ (n2 − 1)βk. Thus

ρ(T5) ≥ r(e1, e2) + (n2 − 1)βk.

Therefore e3 is uniquely stochastically stable if

ρ(T5)− ρ(T8) ≥ r(e1, e2) + (n2 − 1)βk − (r(e1, e2) + (n2 − 1) dαke+ n2)
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= (n2 − 1)βk − (n2 − 1) dαke − n2 > 0.

The last inequality is equivalent to βk > dαke + n2/(n2 − 1). Assume next that n2 is large

to exit from e3. Then by Lemma 5.1.(3), r(e3, e1) ≥ k. Similarly to the above, e3 is uniquely

stochastically stable if k − (n2 − 1) dαke − n2 > 0, which is equivalent to Lemma A.2.(1).

For (2), assume that mini 1/(1 + ηi) > mini ηi/(1 + ηi). Then, similarly to (1), αk > dβke

for small εi and large k. Thus it suffices to show that the last inequality is a sufficient condition

for e2 to be stochastically stable.

By Lemma A.2.(3), r(e3, e1) ≤ (n2 − 1) dβke. Thus

ρ(T5) ≤ r(e1, e2) + (n2 − 1) dβke .

By Lemma 5.4, it suffices to show that T5 dominates T7 and T8. Since n2 is small to exit

from e2, Lemma 5.1.(2) implies that r(e2, ej) ≥ (n2 − 1)αk for j = 1, 3. On the other hand,

r(e1, e3) > r(e1, e2) by Lemma 5.2.(1). Thus

min{ρ(T7), ρ(T8)} ≥ r(e1, e2) + (n2 − 1)αk.

Therefore e2 is uniquely stochastically stable if

min{ρ(T7), ρ(T8)} − ρ(T5) ≥ r(e1, e2) + (n2 − 1)αk − r(e1, e2)− (n2 − 1) dβke

= (n2 − 1)(αk − dβke) > 0.
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Figures

m︷ ︸︸ ︷ k−t∗︷ ︸︸ ︷ t∗︷ ︸︸ ︷
σ1 1 · · · 1 1 · · · 1 1 · · · 1 1 · · ·
...

... · · ·
...

... · · ·
...

... · · ·
...

... · · ·

σn1 1 · · · 1 1 · · · 1 1 · · · 1 1 · · ·

σn1+1 0 · · · 0 0 · · · 0 0 · · · 0 1 · · ·

σn1+2 0 · · · 0 0 · · · 0 1∗ · · · 1∗ 0 · · ·
...

... · · ·
...

... · · ·
...

... · · ·
...

...

σn1+n2 0 · · · 0 0 · · · 0 1∗ · · · 1∗ 0 · · ·

Figure 1: An exit from e2 via direct transition.

m︷ ︸︸ ︷ k−1︷ ︸︸ ︷
σ1 1 · · · 1 1 1 · · · 1 0 · · ·
...

... · · ·
...

...
... · · ·

...
... · · ·

σn1−1 1 · · · 1 1 1 · · · 1 0 · · ·

σn1 1 · · · 1 1 0∗ · · · 0∗ 0 · · ·

σn1+1 0 · · · 0 0 0 · · · 0 1 · · ·

σn1+2 0 · · · 0 1∗ 0 · · · 0 0 · · ·
...

... · · ·
...

...
... · · ·

...
... · · ·

σn1+n2 0 · · · 0 1∗ 0 · · · 0 0 · · ·

Figure 2: An exit from e2 via indirect transition.
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m︷ ︸︸ ︷ k︷ ︸︸ ︷
σ1 0 · · · 0 1∗ 1 · · · 1
...

... · · ·
...

...
... · · ·

...

σn1 0 · · · 0 1∗ 1 · · · 1

σn1+1 0 · · · 0 0 0 · · · 0
...

... · · ·
...

...
... · · ·

...

σn1+n2 0 · · · 0 0 0 · · · 0

Figure 3: A path from e1 to e2 with n1 mistakes.
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e2-trees.
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T7 T8 T9

e1 e1 e1
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e3-trees.

Figure 4: Trees in the group formation game.
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s = k(fi−ci)
fi−di

−
(
ai−di+fi−ci

fi−di

)
t

t = k(di−ci)
ai−ci s = k(ai−di)

ai−ci

αik = k(fi−ci)
ai−di+fi−ci s = k(fi−ci)

fi−di

Figure 5: Program for ri(e2, N2).
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s = k(ai−di)
ai−ci −

(
ai−di+fi−ci

ai−ci

)
t

βik = k(ai−di)
ai−di+fi−ci s = k(ai−di)

ai−ci

Figure 6: Program ri(e3, N2).

m︷ ︸︸ ︷ k︷ ︸︸ ︷
σ1 0 · · · 0 1∗ 0 1 · · · 1

σ2 0 · · · 0 0 1 1 · · · 1

σ2+1 0 · · · 0 0 0 0 · · · 0
...

... · · ·
...

...
...

... · · ·
...

σ2+n2 0 · · · 0 0 0 0 · · · 0

Figure 7: A path from e1 to e2 when n1 = 2.
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h(e2) Phase 1 Phase 2
m︷ ︸︸ ︷ k︷ ︸︸ ︷ k︷ ︸︸ ︷

σ1 1 · · · 1 1 · · · 1 0 · · · 0
...

... · · ·
...

... · · ·
...

... · · ·
...

σn1 1 · · · 1 1 · · · 1 0 · · · 0

σn1+1 0 · · · 0 1∗ · · · 1∗ 0 · · · 0

σn1+2 0 · · · 0 0 · · · 0 0 · · · 0
...

... · · ·
...

... · · ·
...

... · · ·
...

σn1+n2 0 · · · 0 0 · · · 0 0 · · · 0

Figure 8: A path from e2 to e1 when n2 is large to exit from e2.

h(e2)
Phase 1︷ ︸︸ ︷ Phase 2 Phase 3

m︷ ︸︸ ︷ k−t∗−s∗︷ ︸︸ ︷ s∗︷ ︸︸ ︷ t∗︷ ︸︸ ︷ k︷ ︸︸ ︷ k︷ ︸︸ ︷
σ1 1 · · · 1 1 · · · 1 1 · · · 1 1 · · · 1 1 · · · 1 0 · · · 0
...

... · · ·
...

... · · ·
...

... · · ·
...

... · · ·
...

... · · ·
...

... · · ·
...

σn1 1 · · · 1 1 · · · 1 1 · · · 1 1 · · · 1 1 · · · 1 0 · · · 0

σn1+1 0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0 1 · · · 1 0 · · · 0

σn1+2 0 · · · 0 0 · · · 0 1∗ · · · 1∗ 1∗ · · · 1∗ 0 · · · 0 0 · · · 0

σn1+3 0 · · · 0 0 · · · 0 0 · · · 0 1∗ · · · 1∗ 0 · · · 0 0 · · · 0
...

... · · ·
...

... · · ·
...

... · · ·
...

... · · ·
...

... · · ·
...

... · · ·
...

σn1+n2 0 · · · 0 0 · · · 0 0 · · · 0 1∗ · · · 1∗ 0 · · · 0 0 · · · 0

Figure 9: A path from e2 to e1 when n2 is small to exit from e2.
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h(e3) Phase 1 Phase 2 Phase 3
m︷ ︸︸ ︷ k︷ ︸︸ ︷ k︷ ︸︸ ︷ k︷ ︸︸ ︷

σ1 1 · · · 1 1 · · · 1 0 · · · 0 0 · · · 0
...

... · · ·
...

... · · ·
...

... · · ·
...

... · · ·
...

σn1 1 · · · 1 1 · · · 1 0 · · · 0 0 · · · 0

σn1+1 1 · · · 1 0∗ · · · 0∗ 1 · · · 1 0 · · · 0

σn1+2 1 · · · 1 1 · · · 1 0 · · · 0 0 · · · 0
...

... · · ·
...

... · · ·
...

... · · ·
...

... · · ·
...

σn1+n2 1 · · · 1 1 · · · 1 0 · · · 0 0 · · · 0

Figure 10: A path from e3 to e1 when n2 is large to exit from e3.

h(e3)
Phase 1︷ ︸︸ ︷ Phase 2 Phase 3

m︷ ︸︸ ︷ k−t∗−s∗︷ ︸︸ ︷ s∗︷ ︸︸ ︷ t∗︷ ︸︸ ︷ k︷ ︸︸ ︷ k︷ ︸︸ ︷
σ1 1 · · · 1 1 · · · 1 1 · · · 1 1 · · · 1 1 · · · 1 0 · · · 0
...

... · · ·
...

... · · ·
...

... · · ·
...

... · · ·
...

... · · ·
...

... · · ·
...

σn1 1 · · · 1 1 · · · 1 1 · · · 1 1 · · · 1 1 · · · 1 0 · · · 0

σn1+1 1 · · · 1 1 · · · 1 1 · · · 1 1 · · · 1 0 · · · 0 1 · · · 1

σn1+2 1 · · · 1 1 · · · 1 0∗ · · · 0∗ 0∗ · · · 0∗ 1 · · · 1 0 · · · 0

σn1+3 1 · · · 1 1 · · · 1 1 · · · 1 0∗ · · · 0∗ 1 · · · 1 0 · · · 0
...

... · · ·
...

... · · ·
...

... · · ·
...

... · · ·
...

... · · ·
...

... · · ·
...

σn1+n2 1 · · · 1 1 · · · 1 1 · · · 1 0∗ · · · 0∗ 1 · · · 1 0 · · · 0

Figure 11: A path from e3 to e1 when n2 is small to exit from e3.
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m︷ ︸︸ ︷ k︷ ︸︸ ︷
σ1 0 · · · 0 1∗ 1 · · · 1
...

... · · ·
...

...
... · · ·

...

σn1 0 · · · 0 1∗ 1 · · · 1

σn1+1 0 · · · 0 1∗ 1 · · · 1
...

... · · ·
...

...
... · · ·

...

σn1+n2 0 · · · 0 1∗ 1 · · · 1

Figure 12: A path from e1 to e3 with n1 + n2 mistakes.

m︷ ︸︸ ︷ k︷ ︸︸ ︷
σ1 0 · · · 0 1∗ 0 1 1 · · · 1

σ2 0 · · · 0 0 1 1 1 · · · 1

σ2+1 0 · · · 0 0 0 1∗ 1 · · · 1
...

... · · ·
...

...
...

...
... · · ·

...

σ2+n2 0 · · · 0 0 0 1∗ 1 · · · 1

Figure 13: A path from e1 to e3 when n1 = 2.
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