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Abstract

Maximum likelihood factor analysis of time series is possible even when
some series are quarterly and others are monthly. Treating quarterly series
as monthly series with missing observations and replacing them with artificial
observations independent of the model parameters, one can apply the Kalman
filter to a state-space representation of a factor model and evaluate the likeli-
hood function. An application to quarterly real GDP and monthly coincident
business cycle indicators gives a new coincident index of business cycles. The
new index is essentially the smoothed estimate of latent monthly real GDP
and should improve upon the Stock–Watson index.
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1 Introduction

There is no doubt that, as a measure of the aggregate state of an economy, real

GDP is one of the most important coincident business cycle indicators (BCI). Pop-

ular U.S. coincident indices of business cycles, however, do not use real GDP, e.g.,

the composite index (CI), currently published by the Conference Board, and the

Experimental Coincident Index (XCI) by Stock and Watson (1989). This is pre-

sumably because real GDP is quarterly. Without a statistically rigorous method to

construct a monthly index from monthly and quarterly series, they ignore quarterly

BCIs. The Japanese coincident CI uses a quarterly BCI (operating profits), but

they simply transform it into a monthly series by linear interpolation.

This paper proposes a new coincident index of business cycles based on monthly

and quarterly BCIs. Applying maximum likelihood factor analysis (ML-FA) to a

one-factor model for the four monthly coincident BCIs that make up the CI, Stock

and Watson (1991) obtain an index known as the Stock–Watson index (SWI). We

extend the SWI by including quarterly real GDP.

Technically, we consider ML-FA of time series when some series are quarterly

and others are monthly. Treating quarterly series as monthly series with missing

observations, we obtain a state-space representation of a factor model with missing

observations. Following Brockwell and Davis (1991, sec. 12.3) and Brockwell, Davis,

and Salehi (1991), we replace missing observations with artificial observations from

the standard normal distribution independent of the model parameters and rewrite

the state-space model accordingly, so that we can apply the standard Kalman filter

(KF) to evaluate the likelihood function. Numerical maximization of the likelihood

function is straightforward. Shumway and Stoffer (1982) apply the EM algorithm;

see also Shumway and Stoffer (2000, sec. 4.4). The resulting index should improve

upon the SWI because it uses the most important coincident BCI that the SWI

does not use, namely, real GDP.
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The SWI is essentially the updated estimate of the common factor in the BCIs.

We use the smoothed estimate instead, not only for more accurate estimation but

also for the following reason. Let yt be a vector of BCIs (usually the first differences

of their logs) and ft be the common factor in yt. Let for t ≥ 1, Yt := (y1, . . . , yt).

To be precise, the SWI is the updated estimate of the cumulative common factor.

Notice that for t > 1,

E

 t∑
j=1

fj

∣∣∣∣∣Yt
 6= t∑

j=1

E(fj |Yj),

i.e., the updated estimate of the cumulative common factor is not equal to the sum

of the updated estimates of the common factor. To obtain the former, Stock and

Watson (1991) include the cumulative common factor in the state vector. Among

recent extensions of the SWI that introduce regime-switching, Kim and Yoo (1995)

and Chauvet (1998) obtain the former in the same way, but Kim and Nelson (1998)

obtain only the latter. Obviously, this problem does not occur to the smoothed

estimate.

Another benefit of including real GDP in one-factor models for coincident BCIs

is a new interpretation of the common factor as the monthly growth rate (to be

precise, the first difference of the log) of latent monthly real GDP. This interpre-

tation leads to natural identification of the mean and the variance of the common

factor; we identify the mean of the common factor as the mean monthly growth

rate of quarterly real GDP, and assume that the factor loading of latent monthly

real GDP is 1. Stock and Watson (1991), on the other hand, identify the mean of

the common factor as a weighted average of the mean growth rates of the monthly

BCIs, and normalize the variance of the common factor to be 1. As a result, the

economic (not statistical) meaning of the common factor, and hence of the SWI, is

unclear.

The plan of the paper is as follows. Section 2 sets up a static one-factor model

for monthly series, including latent series underlying quarterly series, and derives a
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state-space model for monthly and quarterly series. Section 3 explains estimation

of state-space models with missing observations and fixed-interval smoothing given

the model parameters. Section 4 applies the method to the U.S. quarterly real GDP

and monthly coincident BCIs to obtain a new coincident index of business cycles.

Section 5 contains some concluding remarks.

2 The Model

2.1 One-Factor Model

Let {Y1,t}∞t=−∞ be an N1 × 1 random sequence of quarterly BCIs observable every

third month and {Y2,t}∞t=−∞ be an N2 × 1 random sequence of monthly BCIs. Let

N := N1 +N2. Let {Y ∗1,t}∞t=−∞ be an N1 × 1 latent random sequence such that for

all t,

lnY1,t =
1
3
(
lnY ∗1,t + lnY ∗1,t−1 + lnY ∗1,t−2

)
, (1)

i.e., Y1,t is the geometric mean of Y ∗1,t, Y
∗
1,t−1, and Y ∗1,t−2. Taking the three-period

differences, for all t,

lnY1,t − lnY1,t−3 =
1
3
(
lnY ∗1,t − lnY ∗1,t−3

)
+

1
3
(
lnY ∗1,t−1 − lnY ∗1,t−4

)
+

1
3
(
lnY ∗1,t−2 − lnY ∗1,t−5

)
,

or

y1,t =
1
3
(
y∗1,t + y∗1,t−1 + y∗1,t−2

)
+

1
3
(
y∗1,t−1 + y∗1,t−2 + y∗1,t−3

)
+

1
3
(
y∗1,t−2 + y∗1,t−3 + y∗1,t−4

)
=

1
3
y∗1,t +

2
3
y∗1,t−1 + y∗1,t−2 +

2
3
y∗1,t−3 +

1
3
y∗1,t−4, (2)

where y1,t := ∆3 lnY1,t and y∗1,t := ∆ lnY ∗1,t. We observe y1,t every third month,

and never observe y∗1,t.

Let for all t,

yt :=
(
y1,t
y2,t

)
, y∗t :=

(
y∗1,t
y2,t

)
,
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where y2,t := ∆ lnY2,t. Assume a static one-factor structure for {y∗t }∞t=−∞ such

that for all t, (
y∗1,t
y2,t

)
=

(
µ∗1
µ2

)
+ βft + ut, (3)

φf (L)ft = v1,t,

Φu(L)ut = v2,t,(
v1,t
v2,t

)
∼ NID

(
0,
[
σ2

1 0
0 Σ22

])
,

where β ∈ <N is a factor loading vector, {ft}∞t=−∞ is a scalar stationary sequence

of common factors, {ut}∞t=−∞ is an N × 1 stationary sequence of specific factors, L

is the lag operator, φf (.) is a pth-order polynomial on <, and Φu(.) is a qth-order

polynomial on <N×N . For identification, assume that (i) the first element of β is 1

and (ii) Φu(.) and Σ22 are diagonal.

Since we never observe y∗1,t, we consider the associated dynamic one-factor model

for {yt}∞t=−∞ such that for all t,(
y1,t
y2,t

)
=

(
µ1

µ2

)
+
(
β1

(
1
3ft + 2

3ft−1 + ft−2 + 2
3ft−3 + 1

3ft−4

)
β2ft

)
+
(

1
3u1,t + 2

3u1,t−1 + u1,t−2 + 2
3u1,t−3 + 1

3u1,t−4

u2,t

)
, (4)

where µ1 = 3µ∗1.

2.2 A State-Space Representation

Assuming that p, q ≤ 4, a state-space representation of (4) is

st = Fst−1 +Gvt, (5)

yt = µ+Hst, (6)

where

st :=



ft
...

ft−4

ut
...

ut−4


,
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vt :=
(
v1,t
v2,t

)
,

F :=



φf,1 . . . φf,p o′5−p
1 0 0

. . .
...

0 1 0

O5×5N

O5N×5

Φu,1 . . . Φu,q ON×(5−q)N
IN 0 ON×N

. . .
...

0 IN ON×N


,

G :=



1 o′N
0 o′N
...

...
oN IN
oN ON×N
...

...


,

H :=
[
β1
3

2β1
3 β1

2β1
3

β1
3

1
3IN1 ON1×N2

2
3IN1 ON1×N2 . . .

β2 ON2×4 ON2×N1 IN2 ON2×N . . .

]
,

where on is the n× 1 zero vector and Om×n is the m× n zero matrix.

3 Estimation

3.1 Likelihood Function

Let θ be the parameter vector. Let
{
y+
1,t

}∞
t=−∞ be such that for all t,

y+
1,t :=

{
y1,t if y1,t is observable
zt otherwise

,

where zt ∼ NID(0, IN1) does not depend on θ. Let for t ≥ 1, Yt := (y1, . . . , yt) and

Y +
t :=

(
y+
1 , . . . , y

+
t

)
. Then the maximum likelihood (ML) estimator of θ given YT

and that given Y +
T are equivalent. Indeed, by the prediction error decomposition of

a joint pdf of Y +
T ,

f
(
Y +
T ; θ

)
=

T∏
t=1

f
(
y+
t |Y +

t−1; θ
)

=
T∏
t=1

f
(
y+
t |Yt−1; θ

)
=

∏
t∈A

f(yt|Yt−1; θ)
∏
t6∈A

f(zt, y2,t|Yt−1; θ)

=
∏
t∈A

f(yt|Yt−1; θ)
∏
t6∈A

f(zt)f(y2,t|Yt−1; θ)
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=
∏
t∈A

f(yt|Yt−1; θ)
∏
t6∈A

f(y2,t|Yt−1; θ)
∏
t6∈A

f(zt)

=
T∏
t=1

f(yt|Yt−1; θ)
∏
t6∈A

f(zt)

= f(YT ; θ)
∏
t6∈A

f(zt),

where y1,t is observable for t ∈ A ⊂ {1, . . . , T}. Thus the log-likelihood function

of θ given YT and that given Y +
T are different only by a constant. Since the ML

estimator of θ does not depend on zt, we can set zt = 0 for its realization without

loss of generality. Now that we observe y+
t every month, we can apply the standard

KF to evaluate the likelihood function of θ given Y +
T .

Write (6) as (
y1,t
y2,t

)
=
(
µ1

µ2

)
+
[
H1

H2

]
st.

Then we have for all t,(
y+
1,t

y2,t

)
=
(
µ1,t

µ2

)
+
[
H1,t

H2

]
st +

(
w1,t

0

)
,

where

µ1,t :=
{
µ1 if y1,t is observable
0 otherwise

,

H1,t :=
{
H1 if y1,t is observable
0 otherwise

,

w1,t :=
{

0 if y1,t is observable
zt otherwise

.

We consider a state-space model for
{
y+
t

}∞
t=−∞ such that for all t,

st = Fst−1 +Gvt, (7)

y+
t = µt +Htst + wt, (8)

where

µt :=
(
µ1,t

µ2

)
, Ht :=

[
H1,t

H2

]
, wt :=

(
w1,t

0

)
.

Let for t ≥ 1,

µt|t−1(θ) := E
(
y+
t |Y +

t−1; θ
)
,

Σt|t−1(θ) := var
(
y+
t |Y +

t−1; θ
)
,
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where Y +
0 = ∅. Then for t ≥ 1,

f
(
y+
t |Y +

t−1; θ
)

= (2π)−N/2 det
(
Σt|t−1(θ)

)−1/2

exp
(
−1

2
(
y+
t − µt|t−1(θ)

)′
Σt|t−1(θ)−1

(
y+
t − µt|t−1(θ)

))
.

The log-likelihood function of θ given Y +
T is

lnL
(
θ;Y +

T

)
= −NT

2
ln 2π − 1

2

T∑
t=1

ln det
(
Σt|t−1(θ)

)
−1

2

T∑
t=1

(
y+
t − µt|t−1(θ)

)′
Σt|t−1(θ)−1

(
y+
t − µt|t−1(θ)

)
.

To evaluate this, we must evaluate
{
µt|t−1(θ),Σt|t−1(θ)

}T
t=1

. Let for t, s ≥ 0,

ŝt|s := E
(
st|Y +

s ; θ
)
,

Pt|s := var
(
st|Y +

s ; θ
)
.

From (8), for t ≥ 1,

µt|t−1(θ) = µt +Htŝt|t−1,

Σt|t−1(θ) = HtPt|t−1H
′
t + Σww,t,

where

Σww,t :=


ON×N if y1,t is observable[

IN1 ON1×N1

ON1×N2 ON2×N2

]
otherwise .

Given θ, we can evaluate
{
ŝt|t−1, Pt|t−1

}T
t=1

using the KF.

3.2 Kalman Filter

3.2.1 Initial State

To start the KF, we must specify ŝ1|0 and P1|0. For the exact ML estimator, we set

ŝ1|0 = µs,

P1|0 = Γss(0),

where µs := E(s1) and Γss(0) := var(s1). Since {st}∞t=−∞ is stationary, taking

expectations on both sides of (7),

µs = Fµs.
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Assuming that I5+5N − F is nonsingular,

µs = 0.

From (7), we also get

Γss(0) = FΓss(1)′ +GΣvvG′,

Γss(1) = FΓss(0),

where Γss(1) := cov(s1, s0). Eliminating Γss(1),

Γss(0) = FΓss(0)F ′ +GΣvvG′,

or

vec(Γss(0)) = vec(FΓss(0)T ′) + vec(GΣvvG′)

= (F ⊗ F )vec(Γss(0)) + vec(GΣvvG′)

=
(
I(5+5N)2 − F ⊗ F

)−1 vec(GΣvvG′).

Alternatively, we can simply set

ŝ0|0 = 0,

P0|0 = 0,

which implies that

ŝ1|0 = 0,

P1|0 = GΣvvG′.

The resulting estimator is asymptotically equivalent to the ML estimator.

3.2.2 Updating

Notice that for t ≥ 1,

st|Y +
t−1 ∼ N

(
ŝt|t−1, Pt|t−1

)
.
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We have for t ≥ 1,

y+
t − ŷ+

t|t−1 = Ht

(
st − ŝt|t−1

)
+ wt,

where ŷ+
t|t−1 := E

(
y+
t |Y +

t−1

)
. Thus for t ≥ 1,

(
st
y+
t

)
|Y +
t−1 ∼ N

((
ŝt|t−1

ŷ+
t|t−1

)
,

[
Pt|t−1 Pt|t−1H

′
t

HtPt|t−1 HtPt|t−1H
′
t + Σww,t

])
.

The Kalman gain matrix is for t ≥ 1,

Bt := Pt|t−1H
′
t

(
HtPt|t−1H

′
t + Σww,t

)−1
. (9)

The updating equations for the state vector and its variance–covariance matrix are

for t ≥ 1,

ŝt|t = ŝt|t−1 +Bt
(
y+
t − µt −Htŝt|t−1

)
, (10)

Pt|t = Pt|t−1 −BtHtPt|t−1. (11)

3.2.3 Prediction

From (7), the prediction equations for the state vector and its variance–covariance

matrix are for t ≥ 1,

ŝt|t−1 = F ŝt−1|t−1, (12)

Pt|t−1 = FPt−1|t−1F
′ +GΣvvG′. (13)

Combining the updating and prediction equations, we get
{
ŝt|t−1, Pt|t−1

}T
t=1

.

3.3 Fixed-Interval Smoothing

Sometimes we want
{
ŝt|T

}T
t=1

. Hamilton (1994, sec. 13.6) gives the following simple

derivation of the smoothing equation for the state vector. We have for t ≥ 1,

(
st
st+1

)
|Y +
t ∼ N

((
ŝt|t
ŝt+1|t

)
,

[
Pt|t Pt|tF

′

FPt|t Pt+1|t

])
.

Hence for t ≥ 1,

E
(
st|st+1, Y

+
t

)
= ŝt|t + Pt|tF

′P−1
t+1|t

(
st+1 − ŝt+1|t

)
.
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We can write for all t and for j ≥ 1,

y+
t+j = µt+j +Htst+j + wt+j

= µt+j +Ht(Fst+j−1 +Gvt+j) + wt+j

= . . .

= µt+j +Ht

(
Gvt+j + · · ·+Gj−2vt+2 + F j−1st+1

)
+ wt+j .

Notice that for all t and for j ≥ 1, yt+j is independent of st given st+1. Hence for

t = 1, . . . , T ,

E
(
st|st+1, Y

+
T

)
= E

(
st|st+1, Y

+
t

)
= ŝt|t + Pt|tF

′P−1
t+1|t

(
st+1 − ŝt+1|t

)
.

Taking conditional expectations given Y +
T on both sides and applying the law of

iterated expectations (LIE), we obtain the smoothing equation for the state vector

such that for t = 1, . . . , T ,

ŝt|T = ŝt|t + Pt|tF
′P−1
t+1|t

(
ŝt+1|T − ŝt+1|t

)
. (14)

In practice, it may be difficult to take the inverse of Pt+1|t when its dimension

is large. The following algorithm by de Jong (1988, 1989) is useful in such cases;

see also Koopman (1998). Let for t = 1, . . . , T + 1,

rt := P−1
t|t−1

(
ŝt|T − ŝt|t−1

)
,

so that

ŝt|T = ŝt|t−1 + Pt|t−1rt.

Plugging (10) into (14), for t = 1, . . . , T ,

ŝt|T = ŝt|t−1 +Bt
(
y+
t − µt −Htŝt|t−1

)
+ Pt|tF

′P−1
t+1|t

(
ŝt+1|T − ŝt+1|t

)
.

Comparing the previous two equations, for t = 1, . . . , T ,

Pt|t−1rt = Bt
(
y+
t − µt −Htŝt|t−1

)
+ Pt|tF

′P−1
t+1|t

(
ŝt+1|T − ŝt+1|t

)
= Bt

(
y+
t − µt −Htŝt|t−1

)
+ Pt|tF

′rt+1,
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Table 1: U.S. Coincident Business Cycle Indicators

BCI Description
Quarterly

GDP Real gross domestic product (billions of chained 1992 $, SA, AR)
Monthly

EMP Employees on nonagricultural payrolls (thousands, SA)
INC Personal income less transfer payments (billions of chained 1992 $,

SA, AR)
IIP Index of industrial production (1992 = 100, SA)
SLS Manufacturing and trade sales (millions of chained 1992 $, SA)

NOTE: SA means “seasonally-adjusted,” and AR means “annual rate.”

or using (9) and (11),

rt = P−1
t|t−1Bt

(
y+
t − µt −Htŝt|t−1

)
+ P−1

t|t−1Pt|tF
′rt+1

= H ′t
(
HtPt|t−1H

′
t + Σww,t

)−1 (
y+
t − µt −Htŝt|t−1

)
+ (I −H ′tB′t)F ′rt+1.

The algorithm starts from rT+1 := 0 and iterates for t = T, . . . , 1,

rt = H ′t
(
HtPt|t−1H

′
t + Σww,t

)−1 (
y+
t − µt −Htŝt|t−1

)
+ (I −H ′tB′t)F ′rt+1,

ŝt|T = ŝt|t−1 + Pt|t−1rt.

4 New Coincident Index

4.1 Data

We apply the method to U.S. coincident BCIs to obtain a new coincident index of

business cycles. The BCIs are quarterly real GDP and the four monthly coincident

BCIs that currently make up the CI; see Table 1. The data are from CITIBASE.

The sample period is 1959:1–1998:12. To stationarize the series, we take the first

difference of the log of each series and multiply it by 100, which is approximately

equal to the monthly or quarterly percentage growth rate series.

Table 2 summarizes descriptive statistics of the series. We see that EMP has

substantially lower monthly mean than the others including GDP, and that EMP

and INC have smaller standard deviations (s.d.) than IIP and SLS. The low mean

and the small s.d. of EMP strongly pulls the growth rate of the CI downward,
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Table 2: Descriptive Statistics of the Business Cycle Indicators

BCI Mean S.D. Min. Max.
Quarterly

GDP 0.80 0.92 −2.43 3.73
Monthly

EMP 0.19 0.24 −0.86 1.23
INC 0.26 0.42 −1.27 1.68
IIP 0.28 0.89 −4.25 6.00
SLS 0.29 1.05 −3.27 3.55
CI 0.23 0.37 −1.47 1.89

because the CI weights the growth rates of the BCIs according to the inverses of

their s.d.’s.

To reduce the number of parameters, we estimate the dynamic factor model (4)

without the constant term for the demeaned series. We apply the approximate ML

estimator instead of the exact one, because the two are asymptotically equivalent.

We use Ox 2.20 for computation; see Doornik (1999).

4.2 Lag-Order Selection

Before estimation, we must determine p and q, the orders of autoregressive (AR)

models for the common and specific factors respectively. We use a model selection

criterion for that purpose; in particular, we check Akaike’s information criterion

(AIC) and Schwartz’s Bayesian information criterion (SBIC). In our case,

AIC :=
1
T

{
lnL

(
θ̂
)
− [(N − 1) + p+Nq + 1 +N ]

}
,

SBIC :=
1
T

{
lnL

(
θ̂
)
− lnT

2
[(N − 1) + p+Nq + 1 +N ]

}
,

where θ̂ is the ML estimator of θ.

Table 3 shows AIC and SBIC for various p and q. AIC selects (p, q) = (1, 3) and

SBIC selects (p, q) = (1, 2). We follow SBIC here, preferring the simpler model.
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Table 3: Lag-Order Selection for the Factor Model With Real GDP

(p, q) Log-likelihood AIC SBIC
(0,0) −1, 710.32 −3.5915 −3.6350
(0,1) −1, 661.58 −3.5002 −3.5655
(0,2) −1, 615.65 −3.4147 −3.5018
(0,3) −1, 601.91 −3.3965 −3.5053
(0,4) −1, 597.40 −3.3975 −3.5281
(1,0) −1, 641.27 −3.4494 −3.4973
(1,1) −1, 602.98 −3.3799 −3.4496
(1,2) −1, 561.66 −3.3041 −3.3955
(1,3) −1, 548.40 −3.2868 −3.4001
(1,4) −1, 544.13 −3.2884 −3.4234
(2,0) −1, 638.67 −3.4461 −3.4983
(2,1) −1, 600.97 −3.3778 −3.4518
(2,2) −1, 560.79 −3.3044 −3.4002
(2,3) −1, 547.85 −3.2878 −3.4054
(2,4) −1, 543.18 −3.2885 −3.4278
(3,0) −1, 638.36 −3.4475 −3.5041
(3,1) −1, 600.86 −3.3797 −3.4580
(3,2) −1, 560.17 −3.3052 −3.4053
(3,3) −1, 547.42 −3.2890 −3.4109
(3,4) −1, 543.06 −3.2903 −3.4340

Table 4: Estimation Result for the Factor Model With Real GDP

Parameter GDP EMP INC IIP SLS
β 1.00 0.48 0.83 2.10 1.71

(0.04) (0.06) (0.13) (0.11)
φf 0.56

(0.05)
σ2

1 0.08
(0.01)

φu,1 −0.02 0.11 −0.04 −0.03 −0.44
(0.12) (0.05) (0.05) (0.07) (0.05)

φu,2 −0.78 0.45 0.02 −0.06 −0.22
(0.12) (0.05) (0.05) (0.06) (0.05)

Σ22 0.19 0.02 0.10 0.26 0.60
(0.05) (0.00) (0.01) (0.03) (0.04)

NOTE: Numbers in parentheses are asymptotic standard errors (s.e.).
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4.3 Estimation Result

Table 4 summarizes the estimation result. Since the BCIs have different s.d.’s, we

should compare factor loadings for the standardized BCIs, i.e., factor loadings di-

vided by the s.d.’s of the corresponding BCIs. After this normalization, IIP has

the largest factor loading, while SLS has the smallest. Since we cannot estimate

the monthly s.d. of GDP, we cannot compare its factor loading with others. The

common factor has substantial positive autocorrelation. The specific factors have

different time series properties: those of GDP and SLS have negative autocorre-

lation, that of EMP has positive autocorrelation, and those of INC and IIP have

almost no autocorrelation.

Fixed-interval smoothing gives a sequence of the smoothed estimates of the

common factor associated with the ML estimator of the model parameters. From

this, we construct our new coincident index of business cycles as follows:

1. Add the monthly mean of GDP to the smoothed estimates of the common

factor and divide them by 100. This gives the first difference series of the log

of the new index, or latent monthly GDP.

2. Construct the level series by taking the partial sums and their exponentials.

Figure 1 plots the new index. We see that it captures the NBER business cycle

reference dates very well.

4.4 Comparison with Other Indices

We compare our new index with the CI and the SWI, both of which do not use

GDP. First, we construct the CI and the SWI from our data.

In the U.S., the Conference Board calculates the coincident CI in the following

five steps:

1. Construct the monthly symmetric growth rate series of each BCI.
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Figure 1: New Coincident Index of Business Cycles

2. Compute the s.d. of each series, excluding outliers.

3. Take a weighted cross-section average of the series using weights proportional

to the inverses of their s.d.’s. This gives the monthly symmetric growth rate

series of the CI.

4. Construct the level series from the symmetric growth rate series.

5. Rebase the level series to average 100 in the base year.

See the December 1996 issue of Business Cycle Indicators for details. For compari-

son, we take the difference in log instead of the symmetric growth rate, and do not

exclude outliers when computing the s.d.’s.

ML-FA of the four monthly coincident BCIs gives the SWI. For comparison, we

estimate the factor model (3) without the constant term for the demeaned series.

For identification, we follow Stock and Watson (1991) and normalize the variance

of the common factor to be 1 instead of restricting the factor loading vector. Before

estimation, we must determine p and q. Table 5 shows AIC and SBIC for various
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Table 5: Lag-Order Selection for the Factor Model Without Real GDP

(p, q) Log-likelihood AIC SBIC
(0,0) −1, 279.44 −2.6878 −2.7226
(0,1) −1, 246.57 −2.6275 −2.6798
(0,2) −1, 201.01 −2.5407 −2.6104
(0,3) −1, 190.17 −2.5264 −2.6135
(0,4) −1, 186.34 −2.5268 −2.6313
(1,0) −1, 206.08 −2.5367 −2.5759
(1,1) −1, 183.11 −2.4971 −2.5537
(1,2) −1, 145.17 −2.4262 −2.5003
(1,3) −1, 134.24 −2.4118 −2.5032
(1,4) −1, 130.60 −2.4125 −2.5214
(2,0) −1, 201.40 −2.5290 −2.5726
(2,1) −1, 180.18 −2.4931 −2.5540
(2,2) −1, 144.24 −2.4264 −2.5048
(2,3) −1, 133.76 −2.4129 −2.5087
(2,4) −1, 129.98 −2.4133 −2.5265
(3,0) −1, 200.91 −2.5301 −2.5780
(3,1) −1, 179.72 −2.4942 −2.5595
(3,2) −1, 143.68 −2.4273 −2.5101
(3,3) −1, 133.42 −2.4142 −2.5144
(3,4) −1, 129.63 −2.4147 −2.5323

Table 6: Estimation Result for the Factor Model Without Real GDP

Parameter EMP INC IIP SLS
β 0.14 0.23 0.60 0.48

(0.01) (0.02) (0.03) (0.03)
φf 0.57

(0.05)
φu,1 0.10 −0.02 −0.08 −0.42

(0.05) (0.05) (0.07) (0.05)
φu,2 0.45 0.04 −0.09 −0.21

(0.05) (0.05) (0.07) (0.05)
σ2
v 0.02 0.10 0.25 0.61

(0.00) (0.01) (0.03) (0.05)

NOTE: Numbers in parentheses are asymptotic s.e.’s.
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Table 7: Correlations Between Alternative Indices

CI SWI New
CI 1.000
SWI 0.970 1.000
New 0.960 0.984 1.000

p and q. Following SBIC again, we select (p, q) = (1, 2). Table 6 summarizes the

estimation result, which is essentially the same as that in Table 4 except that we

do not have GDP here and that we estimate different sets of parameters because of

different identification restrictions.

As a by-product, we obtain a sequence of the updated estimates of the common

factor associated with the ML estimator of the model parameters. For comparison,

we construct our version of the SWI simply by adding the mean of the common

factor defined below to this sequence and converting it to the level series. In fact,

Kim and Nelson (1999, sec. 3.5) define the SWI in this way. Note that the SWI

here is not the updated estimate of the cumulative common factor.

Stock and Watson (1991) identify the mean of the common factor as follows.

Combining the updating equation (10) and the prediction equation (12),

ŝt|t = F ŝt−1|t−1 +Bt(yt − µ−HFŝt−1|t−1)

= (I −BtH)FLŝt|t +Bt(yt − µ)

= [I − (I −BtH)FL]−1Bt(yt − µ),

where I is the identity matrix and L is the lag operator. Without quarterly series,

µ and H are time-independent. The first element of ŝt|t, i.e., the updated estimate

of the common factor, is a linear combination of the current and past yt’s. Thus

it is natural to define the mean of the common factor as the first row of [I − (I −

BH)F ]−1B times E(yt), where B is the steady-state Kalman gain matrix.

Table 7 shows correlations between alternative indices. The SWI and the new

index have the highest correlation, while the CI and the new index have the lowest.
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Table 8: Business Cycle Turning Points Determined by Alternative Indices

NBER CI SWI New
Peaks

1960/4 0 −2 −2
1969/12 −2 −2 −2
1973/11 0 0 0
1980/1 0 0 0
1981/7 0 0 0
1990/7 −1 −1 −1

Troughs
1961/2 0 0 −2
1970/11 0 0 0
1975/3 0 0 0
1980/7 0 0 0
1982/11 +1 +1 −1
1991/3 0 0 0

Table 8 compares business cycle turning points determined by alternative indices

with the NBER business cycle reference dates. The CI captures the NBER reference

dates best among the three. We do not conclude that the CI is the best index,

however, because the NBER reference dates may not be “correct.” Indeed, the

result suggests that the NBER peak in December 1969 may be two months late,

and the peak in July 1990 may be a month late. The new index does not agree

with the NBER reference dates at three peaks and two troughs. Interestingly, the

NBER peaks and troughs are always late at these turning points.

5 Concluding Remarks

One cannot claim that turning points determined by any procedure is better than

the NBER business cycle reference dates without knowing the details of how the

NBER Business Cycle Dating Committee determines the reference dates. On one

hand, their procedure seems to lack rigorous statistical foundations; on the other

hand, they look at more BCIs, both monthly and quarterly, than those used in this

paper. The line of research initiated by Hamilton (1989) and Stock and Watson

(1989, 1991) propose several objective procedures for determining business cycle
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turning points. To the best of our knowledge, however, none of them use monthly

and quarterly BCIs together. To mimic or defeat the NBER procedure, it seems

crucial to use quarterly BCIs as well as monthly BCIs. This paper makes the first

step in that direction.
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