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Abstract

In the problems of choosing “aspirations” for coalitional games, we
study two axioms, “MW-consistency” and “converse MW-consistency”,
introduced by Moldovanu and Winter (1994). We mainly consider
two domains: the domain of all NTU games and the domain of all
TU games. In particular, we study which subsolutions of the aspi-
ration correspondence satisfy MW-consistency and/or converse MW-
consistency. We also provide axiomatic characterizations of the aspi-
ration kernel and the aspiration nucleolus on the domain of all TU
games.
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1 Introduction

A “coalitional game” associates with each coalition of agents a set of feasible
payoft vectors. The interpretation is that if the members of a coalition coop-
erate, they can achieve any payoff vector in their feasible set. The analysis
of coalitional games aims at answering two questions:

(i) Which coalitions form?

(ii) What is the payoff of each member of a coalition that forms?

Most of the studies of coalitional games have been carried out under the
assumption that the grand coalition (i.e. the set of all agents) eventually
forms. Then, the analysis reduces to determining payoffs for the agents
subject to feasibility for the grand coalition.

In this paper, we consider the problems of choosing “aspirations” for
coalitional games (Bennett [2], [3], [4]; Bennett and Zame [5]; Cross [7];
Moldovanu and Winter [14]; Sharkey [26]). Unlike the standard approach,
the “aspiration approach” does not impose the assumption that the grand
coalition eventually forms. Given a set of agents NV and a coalitional game for
N, an “aspiration” is a payoff vector @ = (1;),en that satisfies the following
two conditions. The first condition, individual feasibility, is that for each
agent 7, there is at least one coalition S for which agent i’s payoft z; is jointly
compatible with those of other members, namely, 7 € S and (z;);es is feasible
for S. Note that individual feasibility is weaker than the feasibility condition
of the standard approach.! The second condition, coalitional rationality,
is that no coalition can improve upon its component of the payoft vector,
namely, for each coalition S, there is no payoft vector y that is feasible for S
and for all : € S, y; > z;. Coalitional rationality is part of the definition of
the core (Gillies [9]).?

An aspiration summarizes predictions about which coalitions are likely to
form and what the resulting payoffs of their members will be. An aspiration
x can be interpreted as follows: for each agent i, z; is the payoff that she
asks in return for her cooperation (i.e. the price of her cooperation). A
coalition S forms only if the prices of its members’ cooperation are jointly

'In the standard approach, a payoff vector is feasible if it is feasible for the grand
coalition.

2Given a game, a payoff vector is in the core of the game if it is feasible for the grand
coalition and satisfies coalitional rationality.



compatible, namely, (x;);cs is feasible for S. The studies of the aspirations
have revealed that the set of aspirations is closely related to the outcomes
obtained from two alternative approaches: “multi-coalitional bargaining ap-
proach” and “noncooperative approach”.?

A “bargaining problem” consists of a set of agents, a set of feasible payoft
vectors for the grand coalition, and an element of it called the “disagree-
ment point.” The interpretation is that the agents can obtain any payoff
vector in the feasible set if they unanimously agree upon it. In the case of
disagreement, however, they receive their disagreement payoffs. Note that
a bargaining problem can be considered as a coalitional game. A “bargain-
ing solution” assigns to each bargaining problem a feasible payoft vector. In
the literature, many interesting bargaining solutions have been proposed, the
Nash solution, the Kalai-Smorodinsky solution, and the egalitarian solution
being three well-known examples.* The “multi-coalitional bargaining ap-
proach” to study coalitional games involves constructing a bargaining prob-
lem and specifying a bargaining solution for each coalition. Consider a game
for the set of agents N. For each coalition, while its feasible set is specified
by the game, the disagreement point is determined endogenously. Roughly
speaking, given a payoff vector, the disagreement point for each coalition is
determined as a list of “outside options” for the members of the coalition.
Given a bargaining solution assigned to each coalition, a payoff vector z is a
“multi-coalitional bargaining outcome” if for each coalition S, (z;);es is cho-
sen by the assigned bargaining solution for the bargaining problem with the
disagreement associated with z.> It so happens that every multi-coalitional
bargaining outcome is an aspiration. Conversely, each aspiration can be ob-
tained as a multi-coalitional bargaining outcome for some initial specification
of bargaining solutions.

The “non-cooperative approach” analyzes the following coalition forma-
tion game: a randomly chosen agent proposes a coalition to be formed and
a feasible payoff distribution for its members. The proposal is accepted if
every member of the coalition agrees upon it. Otherwise, in the next period
the first agent who rejected the proposal makes a new proposal. The game

3See Bennett [3].

4See Thomson [29] for a compact exposition of the axiomatic studies of bargaining
problems.

®Such a payoff vector turns out to be a fixed point of a dynamic process in which
conjectures about agreement and disagreement outcomes in each coalition are determined
endogenously.



ends when a proposal is accepted. It turns out that the set of aspirations
of the original coalitional game is equal to the set of stationary subgame
perfect equilibrium proposals of this noncooperative game. More precisely, a
payoff vector x is an aspiration if and only if it is a stationary subgame per-
fect strategy for each agent ¢ to propose a coalition S and the payoft vector
(2;)ies such that (x;),es is feasible for S, and to accept any proposal that
offers her at least x;.%

The observations in the above two paragraphs strongly suggest that the
set of aspirations is an appropriate object to focus on if one wants to analyze
coalitional games without imposing the assumption that the grand coalition
eventually forms. As the set of aspirations might be very large in general,
we are also interested in possible refinements of it. Our approach to study
these refinements is axiomatic. Given a class of coalitional games, a “so-
lution” is a correspondence that associates with every game in the class a
non-empty set of payoff vectors. The main objective of the axiomatic study
of coalitional games is to explore the implications of desirable properties of
solutions. We focus on the implications of two properties: consistency and
converse consistency.”

Consistency deduces from the desirability of a payoff vector in a game
the desirability of its restrictions to all subgroups of agents in the associated
“reduced games.” Suppose that a set of agents N is facing a game and a
payoff vector = is agreed upon. Suppose then that some agents leave. Then
let us reevaluate the situation from the viewpoint of the remaining agents N'.
Namely, for each coalition S C N’ let us identify what S can obtain without
any help from other agents in N'. In this context, since any agent ¢ in N\ N’
has agreed upon x, it is natural to assume that she is willing to cooperate
with S if offered x;. Additionally, suppose that S can choose such “partners”
from N\N'. The revised feasible set for § would be the set of payoff vectors
that S can obtain in this manner. This operation defines a game in which
the set of agents is N'. We refer to this game as a “MW-reduced game” since
it is introduced by Moldovanu and Winter [14].* MW-consistency states that
in this reduced game, the original agreement should be confirmed, namely,

5The particular strategic game described here is due to Selten [23]. The literature
following the paper includes Chatterjee, Dutta, Ray, and Sengupta [6], Perry and Reny [21],
and Moldovanu and Winter [15, 16].

"See Thomson [30] for an extensive survey of studies on these properties applied to
various models of game theory and economics.

8For TU games, it is originally introduced by Bennett [2, 3] and Winter [31].



(2;)ien' should be agreed upon.

Converse consistency deduces the desirability of a payoff vector in a game
from the desirability of its restrictions to all pairs of agents in the associated
two-agent reduced games. Consider a coalitional game for N and a pay-
off vector x under evaluation. Suppose that for each pair of agents {i,;}
in N, (x;,2;) is chosen for the MW-reduced game associated with 2 and
{1,7}. Then, converse MW-consistency states that x should be chosen for
the original game.

In the standard approach, the way of reevaluating the situation of the
remaining agents we described above was first introduced by Davis and
Maschler [8] for TU games® and by Greenberg [10] and Peleg [19] for NTU
games. For each strict subset of the remaining agents, the revised feasible sets
in the standard approach and the aspiration approach coincide. However, for
the coalition of all remaining agents (i.e. the revised grand coalition), the
revised feasible set in the standard approach is the “slice” of the feasible set
for the original grand coalition at the payoff vector chosen for the original
game.'?

On the domain of all NTU games, the aspiration correspondence satis-
fies both MW-consistency and converse MW-consistency (Moldovanu and
Winter [14]). This result holds even on the domain of all TU games. The
studies of the aspiration correspondence have revealed that it admits several
interesting “subsolutions.” On the domain of all NTU games, the partnered
aspiration solution, the balanced aspiration solution, and the equal gains
aspiration solution are such examples. On the domain of all TU games, in
addition to the above three solutions, the aspiration kernel and the aspiration
nucleolus are studied. On the domain of all NTU games, the partnered aspi-
ration solution satisfies both M W-consistency and converse MW-consistency
(Moldovanu and Winter [14]). In this paper, we analyze which of other sub-
solutions of the aspiration correspondence satisfy MW-consistency and/or
converse MW-consistency. As byproducts of this exercise, we obtain inter-
esting axiomatic characterizations of the aspiration kernel and the aspiration
nucleolus on the domain of all TU games.

The paper is organized as follows. In Section 2, we introduce NTU games
and examples of solutions. In Section 3, we introduce TU games and ex-

°In a transferable utility (TU) coalitional game, the set of feasible payoff vectors for
each coalition is represented by a real number representing what the coalition can achieve
on its own, its “worth.”

10Gee Section 4 for the formal definition.



amples of solutions. In Section 4, we study MW-consistency and converse
MW-consistency in NTU games and TU games. In Section 5, we provide
axiomatic characterizations of the aspiration kernel and the aspiration nu-
cleolus. In Section 6, we briefly discuss whether the aspiration kernel can be
extended to NTU games so that the resulting extension is M W-consistent.

2 NTU games and solutions

There is an infinite set of “potential” agents, indexed by the natural num-
bers N. Let AN denote the set of non-empty and finite subsets of N. Given
a countable set A, let R* denote the Cartesian product of |A| copies of the
set of real numbers R, indexed by the members of A. We use C for strict
set inclusion and C for weak set inclusion. To simplify the notation, given
NeN,zeRY and S C N, we often write z5 = (7i);eg and 2 (5) = > g 2.

Given N € N, a non-transferable utility (NTU) coalitional game
for N is a list V. = (V(5))gcn such that for all § C N, V(S) is a non-
empty subset of RS that is comprehensive and bounded from above, namely,
it satisfies (i) for all # € V(S), if y € R” is such that for all 7 € S, z; > i,
then y € V(S), and (ii) there exist p € R}, and 7 € R such that for all
€V (S),p-a<p-T. Forall N € N, let WY, denote the class of all NTU
games for N, and Wi = Uyen wh.

Let N € NV and V € WY,. A payoff vector € RY is individually
feasible in V if for all ¢« € N, there exists S C N such that ¢ € S and
s € V(S). It is coalitionally rational in V if for all S C N, there is no
y € V(9) such that for all + € S, y; > x;. An aspiration for V is a payoff
vector in RV satisfying individual feasibility and coalitional rationality.

Let W be an arbitrary class of NTU games. A solution on W is a
correspondence from (Jy ¢ Y to Unen RY that associates with each N €
N and each V € W a non-empty set of payoff vectors satisfying individual
feasibility. We use ¢ to denote a generic solution.

The aspiration correspondence (Albers [1]; Bennett [3]; Cross [7]) is a
solution that selects for each game its set of aspirations.

Aspiration correspondence, Asp: For all N € A and all V € WV,
Asp(V) is the set of aspirations for V.

On the domain of all NTU games, the aspiration correspondence is well-
defined, namely, it is nonempty-valued (Bennett and Zame [5]).
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Figure 1: Aspirations for two-agent NTU games: In panel (a), the set of as-
pirations is indicated by the thick curve. In panel (b), it consists of a single point

(maxV({1}), maxV ({2})).

T2 T2

Tl Tl

z3 (a) z3 (b)

Figure 2: Aspirations for three-agent NTU games: In the picture, N = {1,2,3},
V{1}) =V({2}) = V({3}) = —R4, and V(N) = —R,. The set of aspiration for

V' is the union of three thick curves in panel (b).



We are mainly interested in “subsolutions” of the aspiration correspon-
dence. On the domain of all NTU games, well-known examples of such solu-
tions are the partnered aspiration solution (Albers [1]), the equal gains aspi-
ration solution (Bennett [3]), and the balanced aspiration solution (Cross [7]).
Next, we define these solutions.

Given N € N, V € WY, and = € RV, the set of generating coalitions
for V and z is defined by

GC(V,2) = {SC N |aseV(S)}.

Given a game and a payoff vector for it, generating coalitions are those
coalitions whose members’ payoffs are jointly compatible. Thus, if each agent
demands her component of the payoft vector, the generating coalitions are the
only coalitions that are likely to form. For an aspiration for the game, each
agent is a member of at least one generating coalition and each generating
coalition distributes payoffs efficiently among its members.

Consider a game V., an aspiration x, a generating coalition 5, and two
agents ¢ and j in S. Suppose that agent ¢’s payoft z; is so high that while
agent j has an alternative coalition where she can attain her payoft x;, agent
1 needs agent j in order to attain z;. In such a situation, agent j might
insist that she should receive more and agent ¢ should receive less. In this
sense, the aspiration x is “unstable.” In order for x to be “stable,” if agent j
has an alternative coalition in GC(V, x) without agent ¢, then agent i should
also have an alternative coalition in GC(V, x) without agent j. This idea is
formalized in the definition of the following solution:

Partnered aspiration solution, ParAsp: Forall N € N andallV € WV,

for all S € GC(V,z) and all i, € S, if there
ParAsp(V)=<x € Asp(V)| isT € GC(V,z)st. 1 €T and j ¢ T, then
there is T € GC(V,x) s.t. j € T and ¢ ¢ T’

On the domain of all NTU games, the partnered aspiration solution is

well-defined (Bennett and Zame [5]; Sharkey [26]).*

The next refinement is based on the premise that agents when bargaining
tend to share the gains equally. In our context, by forming a coalition, the
agents forego the payofts that they could have attained by forming alternative

"Bennett and Zame [5] prove the non-emptiness of the set ParAsp(V) on the domain
of strictly comprehensive NTU games.



coalitions. Therefore, each agent’s largest payoft from alternative coalitions
serves as an “outside option.” Formally, given N € N, V € WY, = € RV,
S € gGC(V,x), and i € S, the outside option for ¢ relative to V, ¢, and
S is defined by

df(V,:z;) = n%glx{y, eR ‘ (yiafl?T\{i}) € V(T)}'
T#£S

On the domain of all NTU games, the solution that selects those aspi-
rations such that in each generating coalition the agents equally share the
gains from their outside options is well-defined (Bennett and Zame [5]).

Equal gains aspiration solution, EqAsp: Forall N € N andallV € WV,

forall S € GC(V,z) and all ¢,5 € S, }

EqAsp (V) = {:1; € ASp(V)‘ i — d5(V.a) = 2, — d5(V, 2)
k3 3 bl 7 bl

The next refinement we introduce is based on the idea that competition
among the coalitions for “scarce” agents drives up the payoff demands of
these agents, and drives down the payoff demands of other agents. Cross [7]
and Bennett [3] argue that this competition leads to a “balanced” structure
of generating coalitions.

Given N € N, a collection of coalitions B C 2V is strictly balanced on
N if there is § = (05) 4.5 € R, such that for all i € N,

255:1.

SeB
S31

It is weakly balanced on N if there is § = (d5)g.5 € RS such that for all

1 €N,
Y ds=1.

SeB
S31

On the domain of all NTU games, the solution that selects those aspira-
tions such that the associated collections of generating coalitions are weakly

balanced is well-defined (Cross [7]; Sharkey [26]).'?
Balanced aspiration solution, BalAsp: Forall N € N and allV € WV,

BalAsp (V) = {:1; € Asp (V) ‘ GC(V,x) is weakly balanced}.

12Cross [7] considers TU games only.




For each game, the core (Gillies [9]) selects the set of payoff vectors that
are feasible for the grand coalition and coalitionally rational. It is well-known
that the core may assign an empty set so that it is not a well-defined solution
on W.i.

Core, C: For all N €¢ N and all V € WY,

cC(V)= {:1; € V(N) ‘ x is coalitionally rational in V}.

3 TU games and solutions

Given N € N, a transferable utility (TU) coalitional game for N is
a vector v € R¥"M? For cach § C N, the number v(S) represents what
coalition S can obtain on its own, its “worth”. Let VX, denote the class of
all TU games for N, and Vay = Uyen V.

As before, given N € N and v € V), an aspiration for v is a payoff
vector z € R satisfying individual feasibility and coalitional rationality. For
TU games, the definitions of these two conditions are simplified as follows:

(i) (individual feasibility) for all © € N, there exists S C N such that ¢ € S
and z (5) < v (5);

(ii) (coalitional rationality) for all S C N, x(S5) > v (S).

Let V be an arbitrary class of TU games. A solution on V is a correspon-
dence that associates with each N € A" and each v € V¥ a non-empty set of
payoff vectors x € R satisfying individual feasibility.

On the domain of all TU games, the partnered aspiration solution, the
balanced aspiration solution, and the equal gains aspiration solution are de-
fined in the same way as on the domain of all NTU games. Here we just
point out that the definitions of the outside options are simplified as follows:

given Ne N, ve VN zeRN, SeGC(v,z),and i € S,

d; (v, 2) = max[v(T) — (T \ {i})].
T£5
On the domain of all TU games, the aspiration correspondence, the part-
nered aspiration solution, and the equal gains aspiration are well-defined
(Bennett [3]). On this domain, in addition to these solutions, the aspiration

10



nucleolus and the aspiration kernel (Bennett [2]) have been studied. Now,
we define these solutions.

Given v € VN and z € RY, let e(v,z) be the vector in R2" M defined
by setting for all $ € 2V \ {0}, es(v, ) = v(S) — 2(S). The number es(v, z)
represents the “dissatisfaction of S in v at z.”

Given N € N and 7 € RZN\{@}, let 6(z) € R2V'-1 be obtained by rear-
ranging the coordinates of z in non-increasing order. For all z, 2" € R2V\O},
z is lexicographically smaller than 2z’ if either (i) 61(z) < 61(2) or
(ii) there is k > 1 such that 65 (2) < 6i(2’) and for all &' < k, O (2) = O (27).

Given N € N, v € VN and » € RY, z is an preimputation for v if
#(N) =v(N). Let Prel(v) denote the set of preimputations for v. We refer
to the mapping Prel as the “preimputation correspondence”.

For each TU game, the prenucleolus (Schmeidler [22]) selects a payoff
vector that lexicographically minimizes the dissatisfactions of the coalitions
over the set of preimputations.

Prenucleolus, PreNwuc: For all N € A and all v € V'V,

for all y € Prel(v)\{x}, } )

e(v, x) is lexicographically smaller than e(v,y)

PreNue(v) = {:1; € Prel(v)

On the domain of all TU games, the prenucleolus is single-valued (Schmei-

dler [22]).

Similarly, for each TU game, the aspiration nucleolus (Bennett [2]) selects
a payoff vector that “lexicographically minimizes” the dissatisfactions of the
coalitions over the set of aspirations.

Aspiration nucleolus, AspNuc: For all N € A and all v € V¥,
for all y € Asp(v)\{z}, }

e(v,x) is lexicographically smaller than e(v,y)

AspNuc(v) = {:1; € Asp(v)

On the domain of all TU games, the aspiration nucleolus is single-valued
(Bennett [2]; Sharkey [26]). So, we write © = AspNuc(v) instead of {a} =
AspNuc(v).

Given N € N, v e VY, € RV, and 4,7 € N with 1 # j, let

sij(v, ) = rglglx[v(S) — U(S)].
5335

11
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v({1,2}) v({1,2})
o2} [N

v({2})
0

0 v({i}) o
v({1,2})

(a) (b)

Figure 3: The aspiration nucleolus and the aspiration kernel in two-agent TU
games. (a) If v({1,2}) > v({1}) + v({2}), then the aspiration nucleolus selects the
“standard solution” payoff vector: each agent is given first her individual worth, and
then what remains is divided equally. (b) Otherwise, it selects (v({1}),v({2})). It
is easy to see that the aspiration nucleolus and the aspiration kernel coincide for the
two-agent case.

The number s;;(v, ) represents maximum payoff that agent ¢ can obtain
without cooperation of agent j, supposing that other agents agree upon =z.

The prekernel (Davis and Maschler [8]) is defined as follows:
Prekernel, PreKer: For all N € A and all v € V7,

PreKer(v) = {:1; € Prel(v) ‘ foralli,j € N, s;5(v,2) = S]‘,'(U,l')}.

It is well-known that the prenucleolus is a subsolution of the prekernel. Since
the prenucleolus is a well-defined solution on the domain of all TU games, so
is the prekernel. (See Figures 3 and 4.)

Similarly, the aspiration kernel (Bennett [2]) is defined as follows:
Aspiration kernel, AspKer: For all N € N and all v € V'V,
forall S € GC(v,x) and alli,57 € S }

sij(v,x) = s4i(v, )

AspKer (v) = {:1; € Asp(v)

The following lemma reveals a relation among the aspiration nucleolus,
the aspiration kernel, and the balanced aspiration solution.

Lemma 3.1 (Sharkey [26]) For all N € N and all v € VY,
AspNuc(v) € AspKer(v)N Bal Asp(v).

Since the aspiration nucleolus is well-defined on the domain of all TU games,
so 1s the aspiration kernel.

12
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Figure 4: The aspiration nucleolus and the aspiration kernel in three-agent TU
games. In both panels, V' ({1,2,3}) = —Ril’2’3} and the payoff vector chosen by the
aspiration nucleolus is indicated as z*. It can be shown that for the three-agent case,
the aspiration kernel is single-valued so that it coincides with the aspiration nucleolus.

4 Consistency and converse consistency

Given N e N, V e WV, 2 € RY, and N’ C N, the MW-reduced game
of V relative to x and N’, denoted r§, (V), is defined by setting for all
S C N,

rt(VY(S) = U {y € R®|(y,27) €V (SUT)}.

TCN\N'

MW-consistency (Moldovanu and Winter [14]) says that if a payoff vector
is chosen for a game, then the restriction of it to any subgroup should be
chosen for the associated MW-reduced game.

MW-consistency: For all N € N, all V € WV, all 2 € ¢(V), and all
N' C N, we have #%,(V) € WY and 2y € ¢ (r%,(V)).

Converse MW-consistency (Moldovanu and Winter [14]) says that if a
payoff vector for a game is such that its restriction to any pair of agents is
chosen for the associated two-agent MW-reduced game, then it should be
chosen for the original game.

13
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Converse MW-consistency: Forall N € A/, all V € WV, and all z € R",
if for all N’ C N with |N'| = 2, we have %,(V) € WY and 2x0 € o (1%, (V)),
then = € ¢ (V).

For TU games, the definitions of MW-reduced games are simplified as
follows: given N € A, v € VNV, z € RY, and N’ C N, the MW-reduced
game of v relative to  and N’, denoted %, (v), is defined by setting for
all S C N/,

() = mas R(SUT) — (T,

As mentioned in the introduction, most of studies on coalitional games
are carried out under the assumption that in each game, the grand coalition
eventually forms. In this “standard approach,” a definition of reduced games
was first introduced by Davis and Maschler [8] for TU games and by Green-
berg [10] and Peleg [18] for NTU games. Let us provide the formal definition
of it and review some interesting results concerning it.

Given N € N, V. € WV, = € V(z), and N' C N, the DM-reduced
game of V relative to ¢ and N’ denoted 7%.(V), is defined by setting
for all § C N/,

{y e RY | (y,z3\nvv) € V(N)} it S =N,
P (V)(S) = U {y € R ‘ (y,xr) € V(S U T)} otherwise.
TCN\N

Given N e N, v € VN, 2 € RY, and N’ C N, the DM-reduced game
of v relative to @ and IN' is simplified as follows: for all S C N’,
v(N)—a(N\N') if S =N,
(0)(5) =

AT

T max [v(SUT)—a(T)] otherwise.

TCN\N'

DM-consistency: For all N € N, all v € WV, all € ¢(V), and all
N’ C N, we have 7%,(V) € WY and an € cp(ffw(V)).

Given N € N and V e WV, let
Prel(V) = {:1; € V(N) ‘ there is no y € V() such that for all t € N, y; > @, }

Converse DM-consistency: For all N € N, all V € WV, and all = €
Prel(V), if for all N' ¢ N with [N’| = 2, we have #%,(V) € WV and
TN € c,o(ffw(V)), then x € p(V).

14



On the domain of strictly comprehensive NTU games with a non-empty
core, the core is DM-consistent and conversely DM-consistent (Peleg [19]).
On the domain of all TU games, the prekernel is DM-consistent and con-
versely DM-consistent (Davis and Maschler [8]; Peleg [19]). On the same
domain, the prenucleolus is DM-consistent (Sobolev [28]).

4.1 NTU games

On the domain of all NTU games, the aspiration correspondence and the
partnered aspiration solution are M W-consistent and conversely MW-consistent.
It follows from this result that each of these two solutions is the unique MW-
consistent and conversely MW-consistent extension of its two-agent version
to the n-agent case (Theorems 4.5 and 4.6 in Moldovanu and Winter [14]).

In this section, we analyze whether other subsolutions of the aspiration
correspondence satisfy these properties.

As the following example shows, even on the domain of all TU games,
the equal gains aspiration solution violates MW-consistency and converse
MW-consistency.

Example 4.1 Let N = {1,2,3}. Consider the following TU game: for all

SCN, ‘
U(S):{ 6 if 5 e {{1,2,3}.{1,2}},

~ | 0 otherwise.

Let @ = (4,2,0) and y = (3,3,0). Then « € Asp(v) and
GC(v,x) = GC(v,y) = {{3}, {1,2}, {1,2,3}}.

It can be also shown that @ € EgAsp(v). (See the appendix for the proof.)
Note that

rigy (0) ({1 = max{v({1}),v({1,3}) — 23} = max{0,0—-0} = 0,
rigy (0) ({2 = max{v({2}),v({2,3}) — 23} = max{0,0-0} = 0,
{12} (v)({1,2}) = max{v({1,2}),v({1,2,3}) — 23} = max{6,6 —0} =
Note also that Equp(rsz} (v)) ={(3,3)} # (21, 22). Thus, the equal gains

aspiration solution violates MW-consistency.

As shown in the appendix, y satisfies the hypothesis of converse MW-
consistency with respect to the equal gains aspiration solution; namely, for all
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i,7 € N with i # 7, (yi,y;) € Equp(rgm}(v)). However, we have {1,2,3} €
GC(v,y),

max [0(S)—y(S)] = max{0—-0, 0—-3, 6-3} = 3,
S£{12.3)

max [0(S)—y(S)] = max{0—-3, 0-0, 0-3} =0,
S£{12.3)

so that y ¢ EqAsp(v). Thus, the equal gains aspiration solution violates
converse MW-consistency. U

Next, we analyze properties of the balanced aspiration solution.

Proposition 4.1 On the domain of all NTU games, the balanced aspiration
solution 1s MW-consistent.

Proof. Let N € N,V € WY, « € BalAsp(V), and B = GC(V,x). Then
there exists a list of non-negative weights (ds)ses such that for all € N,

255:1.

SeB
S31

Let N' C N and B' = GC(r}/(V),xns). For all S € B, let

)\S = Z 5SUT-

TCN\N'
s.t. SUTEB

Note that
B’:{SEQN\{@}‘forsomeTQN\N’,SUTEB}.

Thus, for all 7 € N’,

dAs=> D> bsur=) ér=1

SeB’ SeB’ TCN\N' ReB
531 531 ¢ “suTeB R

This means that B’ is weakly balanced on N'. Thus, zx/ € BalAsp(ri.(V)).

The following example shows that even on the domain of all TU games,
the balanced aspiration solution violates converse MW-consistency.
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Domain: W 4y Asp | ParAsp | EqAsp BalAsp
MW-CONSISTENCY Yes | Yes No (ex. 4.1) | Yes (prop. 4.1)
CONVERSE MW-CONSISTENCY | Yes | Yes No (ex. 4.1) | NO (ex. 2.2

Table 1: MW-consistency and converse MW-consistency on the domain of all
NTU games.

Example 4.2 Let N = {1,2,3}. Consider the following TU game: for all
SCN,
1 if|S =2,

v(5) = { 0 otherwise.
Let + = (1,1,0). Then z € Asp(v) and GC(v,z) = {{1,3},{2,3},{3}}.
Note that for two-agent case, the aspiration correspondence and the bal-
anced aspiration solution coincide. Therefore, as the aspiration correspon-
dence is MW-consistent, for all N' C N with |N'| =2, an: € Asp(ri.(v)) =
BalAsp(r¥,(v)). However, since GC(v, x) is not weakly balanced, « & Bal Asp(v).

Thus, the balanced aspiration solution violates converse MW-consistency. [

Table 1 summarizes our results for NTU games.

4.2 TU games

Next, we focus on TU games.
Given Ne N, v e VN, 2 € RY, and a € R, let

Sa(v,z) = {S C N |es(v,z) > a}.

The following lemma plays an essential role in the proof of the character-
ization of the prenucleolus in Sobolev [28].

Lemma 4.1 (Kohlberg [12]) For all N € N, all v € VN, and all « €
Prel(v), we have x = PreNuc(v) if and only if for all o € R with Sy (v, x) #
0, Sa(v,x) is strictly balanced on N.

A similar lemma for the aspiration nucleolus is available.

Lemma 4.2 (Sharkey [26]) For all N € N, allv € V¥, and all z € Asp(v),
we have x = AspNuc(v) if and only if for all a € R with So(v,z) # 0,
Sa(v, x) is strictly balanced on N.

17



Now, we use Lemma 4.2 to prove the following result:

Proposition 4.2 On the domain of all TU games, the aspiration nucleolus
15 MW-consistent.

Proof. Let N € N, v € Vai, * = AspNuc(v), and N’ C N. Let
a € R be such that S,(r¥.(v),zn7) # 0. By the definition of r%,(v), for all
S € Sa(rf(v),xn), there exists T C N \ N’, which may be empty, such
that r%,(v)(S) =v(SUT) — 2(T). Since v(SUT) — 2(T) > a, Sa(v,z) £ 0.
To simplify the notation, let B = S,(v,2) and B' = S,(rk/(v),zn). By
Lemma 4.2, B is strictly balanced on N. Thus, there exists a list of positive
weights (ds)ses such that for all t € N,

255:1.

SeB
S31

)\S = Z 5SUT-

TCN\N'
s.t. SUTEB

For all S € B/, let

Note that
B’:{SEQN\{@}‘forsomeTQN\N’,SUTEB}.
Thus, for all 7 € N’,

dAs=> D> bsur=) ér=1

SeB! SeB’ TCN\N' ReB
531 531 g ¢ “suTeB R

This means that B’ is strictly balanced on N'.
Thus, for all @ € R with S, (r¥.(v),zn7) # 0, Sa(ri.(v), xn) is strictly
balanced on N’. By Lemma 4.2, xn = AspNue(ri.(v)). [ |

As the following example shows, the aspiration nucleolus violates converse
MW-consistency.

Example 4.3 Let N = {1,2,3,4}. Consider the following TU game for N:
forall S C N,

_ 6 ifSe{{1,2,3},{1,2,4}},
v(§) = { (0 otherwise.

18



Let © = (3,3,0,0) and y = (2,2,2,2). It can be shown that € AspKer(v),
y € Asp(v), and e(v,y) is lexicographically smaller than e(v,x). Thus, = #
AspNuc(v). Since the aspiration kernel is MW-consistent and it coincides
with the aspiration nucleolus for the two-agent case, for all 7,5 € N with
LF s
(x,2;) € Aspfx”er(rfi7j}(v)) = {AspNuc(rfm}(v))}.

Thus, = satisfies the hypothesis of converse MW-consistency for the aspi-
ration nucleolus. Since @ # AspNuc(v), we concludes that the aspiration
nucleolus violates converse MW-consistency. 0

The following lemma essentially implies that on the domain of all TU
games, the aspiration kernel is MW-consistent and conversely MW-consistent.

Lemma 4.3 (Peleg [19]) For all N € N, all v € V), all 2 € RY, all
N'C N, and all 1,5 € N" with 1 # j, we have Sij(rfv,(v),x]\n) = s;j(v, x).

Proposition 4.3 On the domain of all TU games, the aspiration kernel is
MW-consistent and conversely MW-consistent.

Proof.  (MW-consistency) Let N € N, v € VN, » € AspKer(v), and
N’ C N. Since the aspiration correspondence is MW-consistent, xy: €
Asp(ri.(v)). Let S € GC(ri (v),zn) and i,7 € S with ¢ # j. Then, by
the definition of r%,(v)(S), there exists T C N \ N’, which may be empty,
such that x(S) < r{,(v)(S) = v(SUT) — 2(T). Since x € AspKer(v),
SUT € GC(v,x), and 1,5 € SUT, s;j(v,2) = sji(v,z). By Lemma 4.3,
sij(ry(v), wn) = 8i(ri(0), o).

(Converse MW-consistency) Let N € N, v € VI, and z € RY be such
that for all N' C N with |[N'| = 2, ay € AspKer(r{,(v)). Since the
aspiration correspondence is conversely MW-consistent and the aspiration
kernel is its subsolution, © € Asp(v). Let S € GC(v,x) and ¢,j € S with
0 # J. Then @ 4+ a; < () —2(S\ {i,7}) <rf; ;,(0)({i,5}) so that {i, 5} €
gC(TfiJ}(U),J},',J}]‘). Since (x;,x;) € Aspfx”er(rfi7j}(v)), Sij (rfi7j}(v),xi,xj) =
Sji(rf,»J}(U),II?i,II?]‘)- By Lemma 4.3, s;;(v,x) = sj;(v, ©). [ |

5 Two axiomatic characterizations

In this section, we focus on the domain of all TU games, and analyze the
implications of MW-consistency, converse MW-consistency, and the following
three basic axioms:
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Domain: Vg Prel | PreKer | PreNuc
equal treatment of equals No Yes Yes
anonymity Yes Yes Yes
zero-independence Yes Yes Yes
single-valuedness No No Yes
DM-CONSISTENCY Yes Yes Yes
CONVERSE DM-CONSISTENCY | Yes Yes No

Table 2: Properties of subsolutions of the preimputation correspondence on
the domain of all TU games.

Domain: V,y Asp | ParAsp | EqAsp BalAsp AspKer AspNuc
equal treatment of equals No | No Yes No Yes Yes
anonymity Yes | Yes Yes Yes Yes Yes
zero-independence Yes | Yes Yes Yes Yes Yes
single-valuedness No | No No No No Yes
MW-CONSISTENCY Yes | Yes No (ex. 4.1) | Yes (prop. 4.1) | Yes (prop. 4.3) | Yes (prop. 4.2)
CONVERSE MW-CONSISTENCY | Yes | Yes No (ex. 4.1) | NO (ex. 4.2) Yes (prop. 4.3) | NO (ex. 4.3)

Table 3: Properties of subsolutions of the aspiration correspondence on the
domain of all TU games.

Equal treatment of equals: For all N € N, allv eV, and all 1,5 € N, if
for all S C N\ {s,5}, v(SU{i}) = v(SU{s}), then for all € p(v), z; = z;.

Anonymity: For all N,N' ¢ N with |N| = |[N’|, all v,v' € V¥, and all
bijections b: N — N, if for all S C N', v'(S) = v ({b(¢)|i € S}), then

e(v') = {:L' e RY ‘ there exists y € ¢(v) such that for alli € N, x; = yb(i)}.

Zero-independence: For all N € N, v,w € V, and all z € R, if for all
SCN,w(S)=v(5)+ > i then for all y € p(v), 4+ y € p(w).

On the domain of all TU games, the prekernel is the only subsolution of
the preimputation correspondence satisfying equal treatment of equals, zero-
independence, DM-consistency, and converse DM-consistency (Peleg [19]).
(See Table 2.) It so happens that a similar result holds for the aspiration
kernel.

Theorem 5.1 On the domain of all TU games, the aspiration kernel is
the only subsolution of the aspiration correspondence satisfying equal treat-
ment of equals, zero-independence, MW-consistency, and converse MW-
consistency.
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Proof.  Clearly, the aspiration kernel is a subsolution of the aspiration
correspondence satisfying equal treatment of equals and zero-independence.
By Proposition 4.3, it also satisfies MW-consistency and converse MW-
consistency.

Conversely, let o be a subsolution of the aspiration correspondence sat-
isfying these four axioms. Clearly, ¢ coincides with the aspiration kernel for
the two-agent case. Let N € A with |N| > 3, and v € V. First, we show
that ¢(v) C AspKer(v). Let @ € p(v). By MW-consistency of ¢, for all
N’ C N with |N'| = 2, we have an/ € ¢(rk./(v)) = AspKer(ri.(v)). By
converse MW-consistency of the aspiration kernel, x € AspKer(v).

Next, we show that AspKer(v) C ¢(v). Let y € AspKer(v). Since the
aspiration kernel is MW-consistent, for all N’ C N with |N'| = 2,

ynt € (ri(v)) = AspKer(ry,(v)).
By converse MW-consistency of ¢, y € p(v). Thus, p(v) = AspKer(v). R

On the domain of all TU games, the prenucleolus is the only subsolution
of the preimputation correspondence satisfying single-valuedness, anonymity,
zero-independence, and DM-consistency (Sobolev [28]). (See Table 2.)

It turns out that, by using Lemma 4.2 and by following the argument
in Sobolev [28], one can obtain a similar axiomatic characterization of the
aspiration nucleolus. (Since the proof is very long, we provide it in the
appendix.)

Theorem 5.2 On the domain of all TU games, the aspiration nucleolus
s the only subsolution of the aspiration correspondence satisfying single-
valuedness, anonymity, zero-independence, and MW-consistency.

6 Bilateral bargaining and NTU aspiration
kernels

In this section, we consider two correspondences based on the idea of bilat-
eral bargaining. Consider an NTU game and an aspiration for it. Let S be
a generating coalition and ¢,j two members of it. We determine agent :’s
outside option as the largest payoff she can obtain without cooperating with
agent j. Doing the same for agent j, we require their payoffs to be an out-
come of a bilateral bargaining problem in which the disagreement point is
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the vector of the outside options. Based on this idea, we propose two gener-
alizations of the aspiration kernel to NTU games. In the first generalization,
the “egalitarian bargaining solution” (Kalai [11]) is used to solve each bilat-
eral bargaining problem. In the second generalization, the “Nash bargaining
solution” (Nash [17]) is used to solve each bilateral bargaining problem."
Formally, the disagreement outcome for each pair of agents is defined as

follows: for all N € M, all V € Wy, all 2 € RV, and all 7,5 € N with i # 5,

C/l\i]‘(V,fE) = I%lca]%f{yi eR ‘ (yi, x1\(iy) € V(T)}.
TSi
73,

Egalitarian aspiration kernel, Egal-AspKer: For all N € A and all
Vew?,

for all dallz 7
Egal-AspKer(v) = {:1; € Asp(V) ‘ or aAS € gC(V,x) and all i, j € S, } ‘

Ty — d,](v,l') =x; — d],(v,l')

Nash aspiration kernel, Nash-AspKer: Forall N € N and allV € WV,

forall S € GC(V,x) and all 1,5 € S, (x;, ;)
maximizes (y,' —Ac/l\,'j(V, :1;)) (yj —Ac/l\j,'(V, :L'))
subject to y; > d;;(V,2), y; > d;i(V, ), and
(Yir Y5> ws\(i.q}) € VI(5)

Nash-AspKer(v)= ¢ x € Asp(V)

The following lemma generalizes Lemma 4.3. It says that the disagree-
ment point is invariant under the MW-reduction operation.

Lemma 6.1 For all N€ N, all V € WY, all x € RJ_IY, all N' C N, and all
i, € N with « # j, we have d;;(V,2) = d;;(r.(V), xn0).
Proof: Let N ¢ N,V e W, 2 e RV, N' C N, S € GC (r%,(v), xn/), and

13Gimilar generalizations of the prekernel for NTU games are studied by Moldovanu [13],
Serrano [24], and Serrano and Shimomura [25].
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i,7 € S with 7 # j. Then

dij(ry(V),an) = %ﬂcfﬂ}@f{y
T2

T3y

= max {y,'
TCN'
T5i
T35
RCN\N'

(yi»tm\iy) € TfV/(V)(T)}

(yi, xr\iy, or) € V(T U R)}

= Imnax ;
QCN{y’
Qi
QF5

o~

= d,](v,l') .

(yi»zo\y) € V(Q)}

On the domain of strictly comprehensive NTU games, there is no subsolu-
tion of the preimputation correspondence that satisfies DM-consistency and
coincides with the prekernel for the two-agent TU games (Moldovanu [13];
Serrano [24]).

By using Lemma 6.1, it can be shown that on the domain of strictly
comprehensive NTU games, the egalitarian aspiration kernel and the Nash
aspiration kernel are MW-consistent and conversely MW-consistent, if they
are well-defined. Unfortunately, it so happens that they are not.

Example 1 Let N = {1,2,3} and V € WY, be defined as follows: for all
i€ N,VH{i}) ={z e R| 2, <0} V({1,2}) = {x e R ‘ xy < =221 +4};
V({1,3}) = {« € RU ‘ xp < =223+ 4}; V({2,3}) = {2 € RES ‘ z3 <
—225 4+ 4} ; V(N) = {z e RIS ‘ x1 + 22 + 23 < 6.

It can be shown that for V', both the egalitarian aspiration kernel and the
Nash aspiration kernel assign an empty set.! O

The above example leads us to the following conjecture:

Conjecture 6.1 On the domain of strictly comprehensive NTU games, there
s no solution that satisfies MW-consistency and coincides with the aspiration
kernel for the two-agent TU games.

Proving or disproving Conjecture 6.1 seems to be an important next step
towards the full understanding of MW-consistency for NTU games.

MThe proof of this claim is available from authors on request.
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Appendix

Proofs of the claims used in example 4.1: First, we show that x €
EqAsp(v). Note that

rmax [0(S)—2(9) = max{0—-4,0-4,6—-6} =0,

s£01,2)

rmax [0(S)—2(9) = max{0—-2,0—-2,6—-6} =0,

s£01.2)

max [0(S)—2(9) = max{0—4,6—-6,0—4} =0,
S#{1,2,3}

max [v(S)—2(9) = max{0—-2,6—-6,0—2} =0,
S#{1,2,3}

max [v(S)—2(5) = max{0—-0,0—-4,0-3}=0.
S#{1,2,3}

Thus, € EqAsp (v).
Next, we show that for all ¢,j € N with ¢ # j, (v;,y,) € Equp(r?i j}(v)).
For coalition {1,2},

{1 »(){1}) = max{v({1}),0({1,3}) —ys} = max{0,0-0} = 0,
ran ({2} = max{v({2}),v({2,3}) —ys} = max{0,0-0} = 0,
{1 2}( )({1 }) = max{v({l,Q}),v({1,2,3})—y3} = max{6,6 — 0} = 6,
and (y1,y2) = (3,3) € EqAsp(r? o 2}(v)).

For coalition {1, 3},

{13}(”)({1}) = max{v({1}),o({1,2}) — o} = max{0,6 -3} = 3,
raa ({3} = max{v({3}),v({2,3}) =y} = max{0,0-3} =0,
{13}( )({1 }) = maX{U({l,g}),U({l,Q,g})—yz} = max{0,6 — 3} = 3,
and (y1,y3) = (3,0) € Equp(r?m}(v)).

For coalition {2, 3},

rha ({20 = max{v({2}),v({1,2}) =y} = max{0,6 -3} = 3,
rha ({31 = max{v({3}),v({1,3}) —yi} = max{0,0-3} =0,
{23}( )({2 }) = maX{U({Q,g}),U({l,Q,g})—yl} = max{0,6 — 3} = 3,
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and (y2,y3) = (3,0) € EqAsp(r{ "2, 3}(”))' u

Next, we provide the proof of Theorem 5.2. As mentioned before, the
proof is similar to the proof of a theorem in Sobolev [28], which is written
in Russian. The proof of Sobolev’s theorem (in English) can be found in
Peleg [20]. Essential parts of Peleg’s proof is reproduced in Snijders [27].
Here, we provide a complete proof.

Proof of Theorem 5.2: Clearly, the aspiration nucleolus is a subsolution of
the aspiration correspondence satisfying anonymity and zero-independence.
It is also single-valued (Bennett [2]; Sharkey [26]) and, by Proposition 4.2,
MW-consistent.

Conversely, let ¢ be a subsolution of the aspiration correspondence satis-
fying the four axioms. Let N € N, v € V&, and z = AspNuc(v). We show,
in seven steps, that = = ¢(v).

Let A={a € R | for some § C N, a =eg(v,z)}and (a1, 0y, -+ ,a14)) €
R4 be an enumeration of A with a; > ay > -+ > ajy|- To simplify the
notation, for each k € {1,2,...,|Al}, we write S = S,, (v, ).

Given k € {1,2,...,]A|} and 1 € N, let S, = {S € S |i € S}. By
Lemma 4.2, 8 is strictly balanced on N. Moreover, the associated weights
can be chosen to be rational. Thus, there exist a natural number p; and a
list of natural numbers (114)ses, such that for alli € N, ZSGS;; [y = . Let
By, be the partition of N such that for all B € By and all 7,5 € N, we have
i,7 € Bif and only if S} = S}. Let 8, = maxpeg, |B|, 7, = > ses, Ms» and
M = (’Yk)

Hy,

Step 1: Given k € {1,2,..., K}, we construct My € N and T C 2™\ {0}
that satisfy the following conditions:

(i) N C My;

(ii) |Mi| = By - Ae;

(iii) for all S € Sy, there exists T € T, with TN N = S

(iv) for all S € 2V \ {N,0} and all T € T, if TN N = S, then S € Ty;
)

(v) for all i € My, we have |T}| = p, and ‘{]EMk|T]_T’} = By,

where i ={SeTi|ieStand T/ ={S e Ti | je S}
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Let (By, By, ..., Bjg,|) be an enumeration of By. Foreach h € {1,2,..., A},
we construct a set D, of agents as follows: For each h € {1,2,...,|Bk|},
if |By| = B4, then let Dy = By; if |By| < B, then choose 3, — | By
agents from N\ N, and add them to Bj to define D,. For each h €
{IBx| + 1,|Bi| +2,..., A}, choose 3, agents from N\ N to define D;,. Since
the set of potential agents is countably infinite, it is clear that, in the above
constructions of Dj’s, we can make them mutually exclusive. Then, let

MkED1UD2U"'UD)\k.

Note that {Dq, D, ..., Dy, } is a partition of M. By construction, My sat-
isfies conditions (i) and (ii).

Next, imagine that there are v, empty “rooms.” We will fill these rooms
with (appropriately replicated) groups in {D1, Dy, ..., Dy, }, and each room
will correspond to an element of T;. For each S € Sy, create p1g copies of the

set Uneqt,... |8,y Dr- The total number of these copies being v, = Esesk L,
s.t. DhﬂS;ﬁ@
we can put them into different rooms. Recall that for each s € N, > ¢ i s =
k

tp- This implies that for each h € {1,...,|Bk|}, group Dy, belongs to exactly
 rooms. Next, for each h € {|Bg| + 1,..., A}, create p; copies of Dy.
Since Ay = (Z:), we can allocate them so that all v, rooms are distinct and
contain the same number of groups. It is easy to see that Ty thus constructed
satisfies conditions (iii), (iv), and (v). (The above construction of M} and
Tk is illustrated in Figure 5 for a “simple” case.)

Step 2: Given k € {1,2,...,|A|}, let Dy = {D1,Ds,..., Dy}, My, and Ty
be as constructed in Step 1. We show that for all ¢,5 € M, with ¢ # j,
there exists a permutation myy, : My — My, such that my, (1) = 7 and for all
TeTe, nm,(T) €Ty

Let 7,7 € My with i # j. By condition (v) of Ty in Step 1, |T| = ‘7;]‘ =
tr. Thus, there exists a permutation mg: Tp — Ti such that mg (7;’) = 7?.
Note that 7; has a property that if u, distinct coalitions in 7T are chosen,
then there exists exactly one group in Dy that is a subset of all of these y,

coalitions. Thus, my induces a permutation on Dy, denoted mp,. Formally,
mp, : Dy — Dy is defined by setting for all D € Dy,

mp,(D) = [ mo(T).

TeTy,
TDOD
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-Dl -D2 -D3 -D4 -D5 -D34-D35

1 1156|719 -~ |67]69
213 |4 213 (4(81]10] --- |68]|70
B, B, Bs

Skl {1,2,3} {1,2} {3.,4} {3} {4}
Pz =1 | Hpuy =2 | b =1 k=1 | py =2

115|7]|9(11 1179|1113 5|6|7 (1523 519 (17|27|29 6 [11{19(23|27]
2(3]8[10]12 2|8 |10]12|14 3]4]8|16|24 3 J10(18|28(30 4 ]12|20(24|28
13(15[17|19|21 33|35(37|39(41 25(33[41|43(45 35|41(47|49(53 31|37|43[47|51
14{16(18[20]22 34(36|38|40(42 26(34(42|44[46 36(42]48|50(54 32(38]|44[48|52
23|25|27|29|31 43|45(47|149(51 53|55|57|65(67 59/61|65|67|69) 55|59(63(65(69
24|26[28|30(32 44|46]48|50(52 54|56|58|66|68 60|62|66/68|70 56|60]|64/66|70

T
1 |15|17|19|21 6 [13|21|25|29
2 |16[18]|20|22 4 |14]22|26|30
23(35|37|39|53| 31(39|4549|51
34(36|38|40(54] 32(40]46[50(52
55|57|59|61|63| 57/61|63/67|69
56|58|60|62|64 58|62|64/68|70

Figure 5: Step 1 of the proof of Theorem 5.2: In the above example, N =

{1727374}1 Sk = {{17273}7{172}7{374}7{3}7{4}}1 Py = 3, H{123y = K34} =
sy =1 figr 0y = pyay = 2. Thus, B =max{2,1} =2, 7, =14+1+14+24+2=7,
and A, = (Z:) = (;) = 35.
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Note that each coalition in T; can be viewed as a coalition of groups. For
each T' € Ty, its image under mp, can be defined by

ﬂ-Dk(T) = U 7T’Dk(_D).
DEDk
DCT
Now, we show that for all T' € T, mp, (T) € Ty. Let T € Ti. Then, by the
definition of mp,, for all D € Dy with D C T, we have 7p, (D) C mo(T).
Thus,
w5,(T) = | m0.(D) C molT).

DEDk
DCT

Since both 7p, (T') and 7o(T) consist of the same number of groups, we have
mp, (1) = mo(T). Thus, 7p, (T) € T.

Note that if D € Dy and ¢ € D, then j € mp, (D). Note also that for all
T € Tg, mp, (T) € Ti. By construction, each group in Dy contains exactly 3,
agents. For each D € Dy with ¢ € D, choose a bijection bp: D — 7p, (D)
with bp(¢) = j. For each D € Dy with ¢ € D, choose an arbitrary bijection
bp: D — 7p (D). Given the list (bp)pep, of such bijections, define the
permutation maz, ¢ My — My by setting for all D € Dy and all b € D,
7, (h) = bp(h). Since Dy, is a partition of My, myy, is well-defined. Clearly,
7, (1) = j. Let T € Ti. Then

o (T) = mu ()= | Jbo(h) = |J 70,(D) = 7p,(T) € Tr.
DCT DCT

Thus, mpy, 1s a desired permutation on Mj.

Step 3: Forall k € {1,2,...,|Al|}, let M} and T be as constructed in Step 1.
Here, we construct a set M and a partition of 2\ { M, 0}.

Let
M = M; x My x -+ X M.

Forall k € {1,2,...,]A|}, let

B for some T € T,

Finally, let
$|A|+1 = 2M\ <{M7 0y u (ULA:|1 Sk))
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In order to stress that fact that M is a Cartesian product of the sets of
agents, we write its subsets and its elements in bold faces. Note that, since
the set of potential agents is countably infinite, in the presence of anonymity,
M can be viewed as an element in .

Stet 4: We show that for all 2, 7 € M, there exists a permutation wp: M —
M such that (i) mp(2) = 5 and (ii) for all & € {1,2,...,]A| 4+ 1} and all
S &, we have Tu(S) € S,

Let ¢ = (i1,22,...,04) € M and 3 = (j1,J2,.-.,74)) € M. By Step 2,
for all k € {1,2,...,|A]}, there exists a permutation mas, : My — M such
that mas, (ix) = Jr and for all T € Ty, mar, (T) € Ti. Let mpr: M — M be
the permutation defined by setting for all b = (hy, ha, ..., hj4) € M,

mu(h) = <7er (h1), oty (ha),s - leAl(mm)) .

Clearly, mp(2) = 3. Moreover, for all k € {1,2,...,|A|} and all § € &, we
have m3(S) € & .. Thus, 7 induces a permutation on ULA:H & .. Therefore,
forall § € $|A|+1, Tu(S) € $|A|+1.

Step 5: Let w € VM he defined as follows: (i) w(M) = v(N) — z(N);
(ii) for all £ € {1,2,...,]A|} and all S € &, w(S) = ay; and (iii) for all
S €& a1, w(S) = min{aja, v(N) — 2(N)}. We show that for all 2 € M,
pi(w) =0.

Let 2,5 € M. By Step 4, there exists a permutation mp: M — M
such that ma(2) = 3, and for all &k € {1,2,...,|A] + 1} and all § € &4,
we have m(S) € &. Let w’ € VM be defined by setting for all § C M,
w'(S) = w((rm)~'(S)). By anonymity, p;(w) = pi{w’). Let § C M.
Since U}j‘:'flsk = 2M\ IM 0}, there exists k € {1,2,...,]A| + 1} such
that § € & . Since (7)1 (S) € &4, by the definitions of w and ',
w'(S) = w(8S). Clearly, w' (M) = w(M). Thus, w’ = w. Therefore, p,(w) =
@ (w') = p;(w). This holds for all 2,5 € M.

Since @ € Asp(v), x is individually feasible and coalitionally rational.
By coalitional rationality, for all & € {1,2,... |A|}, ax < 0. Together with
individual feasibility, we have either oy = 0 or v(N) = 2(N). Thus, we have
(1) for all S C M, w(S) < 0, and (ii) there exists T C M such that T' # ()
and w(T) = 0. Let ¢ € T. Then, since p(w) € Asp(w),

0=w(T) =Y @jw)=|T| ¢w).

JjerT
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Since |T'| > 0, ¢;(w) = 0. Thus, for all 2 € M, ¢,(w) = 0.
Step 6: Let
M' = {(i,i,...,0) e M |i € N}.

Clearly, |[M'| = |[N|. Let b: N — M’ be the bijection defined by setting for
all i € N, b(i) = (i,4,...,i). We show that for all § C N, r£(w)(b(S)) =
v(S) — x(9).

Let S C N. Then for some k € {1,2,...,]|A|}, v(§) — 2(S) = a,. By
property (iii) of Ty in Step 1, there exists T' € T such that TN N = 5. Let

R=M x X Mgy XT X Mgy X+ X My
Then b(S) C R. Moreover, since TN N =S5, R\ b(S) C M\ M'. Thus,

i ()(b(S)) = max w(b($)UQ) > w(b($)U(R\B(S)) = w(R)

Since R € &, w(R) = ay. Thus,

rel () (B(S)) = w(R) = ay, = v(S) — (5).

Now, we claim that the opposite (weak) inequality also holds. Let @ C
M\M' Ifb(SuQ € $|A|+1, then w(b(S)UQ) = apa) < ap = v(S5)—z(S5).
If there exists &’ < |A| such that b(S) U Q € & 1/, then there exists T" € T
such that

b(S)UQ:M1X"'XMk/_1XT/XMk/+1X"'XM|A|.

Since @ C M\ M' and S CT', we have "N N = S. Thus, by property (iv)
of Ty in Step 1, we have S € Sy, so that w(b(S) U Q) = ap < v(S) — x(S).
So, in both of above cases, for all @ C M\ M', w(b(S)UQ) < v(S)—z(9).
This implies that

Aw(w)(w)(b(g)) = max w(b(S)UQ) < v(S)—x(9).

Tap
M QCM\M

By definition, w(M) = v(N)—x(N). Note that for all k € {1,2,...,|A|},
N & T. Thus, for all § O M’ we have S € $|A|+1 and, therefore,

w(S) = min{aa), v(N) — 2(N)} <v(N) —z(N).
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Thus,

e(w) _ _ g ‘
)bV = s w(b(N)UQ) = o(N) — a(N)

Altogether, for all § C N,

2 (w)(B(S)) = v(S) — 2(S).

Step 7: By maz consistency, for all 2 € M, c,oi(fﬁfu)(w)) = p;(w) =0.
Finally, by anonymity and zero-independence of ¢, we deduce that for all
1 €N,
p;(v) = ‘Pb(i)(fﬁ}u)(w)) +a, =0+, =2z,
Thus, ¢(v) = AspNue(v). [ |
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