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Abstract

Minimum distance factor analysis (MD-FA) is applicable to stationary er-
godic sequences. The estimated common factors, or factor scores, are weighted
averages of the current observable variables, i.e., more informative variables
receive larger weights. MD-FA of the U.S. coincident business cycle indicators
(BCI) gives a new U.S. coincident composite index (CI) of business cycles. The
weights on the BCIs for the new CI are similar to those for the Stock–Watson
Experimental Coincident Index (XCI).

Keywords: Covariance structure; Time series; Generalized method of moments;
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1 Introduction

The traditional composite indices (CI) of business cycles, currently published by the

Conference Board in the U.S., are descriptive statistics. No statistical model exists,

at least explicitly, behind the method. So the statistical meaning of the resulting

indices is unclear.

Assuming a linear one-factor structure for the coincident business cycle indica-

tors (BCI), Stock and Watson (1989, 1991) obtain their Experimental Coincident

Index (XCI). The XCI is an estimate of the realization of the common “business

cycle factor.” Their assumption that the factors are linear autoregressive (AR) pro-

cesses with normal errors, however, is inconsistent with the observed asymmetry of

business cycles between expansions and recessions.

Diebold and Rudebusch (1996) suggest to combine the factor model of Stock

and Watson (1989, 1991) and the regime-switching model of Hamilton (1989). They

assume that the mean of the common factor is a two-state first-order Markov chain.

Kim and Yoo (1995), Chauvet (1998), and Kim and Nelson (1998) estimate this type

of models in different ways and propose alternative coincident indices. Although

their models are consistent with the asymmetry of business cycles, they may still be

misspecified. In addition, estimation of the associated nonlinear state-space models

is cumbersome.

In this paper, we assume a linear one-factor structure for the coincident BCIs,

and apply minimum distance factor analysis (MD-FA). We do not assume a para-

metric model for the dynamics of the factors, but only require the observable vari-

ables to be stationary ergodic and square integrable. The advantages of this ap-

proach are (i) the obtained index is an estimate of the realization of the common

“business cycle factor,” (ii) the model is consistent with the asymmetry of business

cycles, (iii) we do not have to worry about misspecification of the dynamics of the

factors, and (iv) estimation is easy.
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The obtained index is essentially a weighted average of the current standardized

growth rates of the BCIs, where more informative BCIs receive larger weights, while

the traditional CI is essentially the simple average. For the U.S. coincident BCIs,

our estimation results show that “employees on nonagricultural payrolls (EMP)”

and “index of industrial production (IIP)” are more informative, i.e., highly corre-

lated with the common “business cycle factor,” than “personal income less transfer

payments (INC)” and “manufacturing and trade sales (SLS),” implying that it is

more efficient to weight them accordingly. The weights for the new CI are similar

to those for the XCI. In a sense, the new CI improves the traditional CI towards

the XCI, although the new CI imposes less assumptions on the factors.

The plan of the paper is as follows. Section 2 defines a factor model and de-

rives the implied autocovariance structure. Section 3 discusses identification of the

model parameters. Section 4 discusses estimation of the model parameters and the

realization of the common factors. Section 5 applies MD-FA to the U.S. coincident

BCIs and proposes a new CI. Section 6 concludes.

2 Factor Model

Let {xt}∞t=−∞ ⊂ L2 be an N ×1 stationary sequence with mean µx and autocovari-

ance matrix function Γxx(.). We observe {xt}Tt=1. Assume a K-factor structure for

{xt}∞t=−∞, where K < N , such that ∀t ∈ Z,

xt = µx +Bft + ut, (1)

where B ∈ <N×K is an unknown factor loading matrix, {ft}∞t=−∞ is an unob-

servable K × 1 stationary sequence of common factor vectors with mean zero and

autocovariance matrix function Γff (.), and {ut}∞t=−∞ is an unobservable N × 1

stationary sequence of specific factor vectors with mean zero and autocovariance

matrix function Γuu(.). Consider estimation of B and the realization of {ft}Tt=1.

In FA, for identification of B, we usually assume that (i) rank(B) = K, (ii)
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Γff (0) is positive definite (p.d.), and (ii) u1,t, . . . , uN,t are uncorrelated with each

other and with ft at all leads and lags. Then we have ∀s ∈ Z,

Γxx(s) = BΓff (s)B′ + Γuu(s), (2)

where Γuu(s) is diagonal.

Assume that we use Γxx(0), . . . , Γxx(S), where S < T , for estimation of B. Let

x̄T :=
1

T − S

T∑
t=S+1

xt,

Γ̂xx,T (s) :=
1

T − S

T∑
t=S+1

(xt − x̄T )(xt−s − x̄T )′, s = 0, . . . , S.

Under certain conditions which we clarify later, ∀s ∈ {0, . . . , S}, Γ̂xx,T (s) is con-

sistent for Γxx(s) as T → ∞. Given this, the first issue is identification of B from

Γxx(0), . . . , Γxx(S). Since (2) still has rotational indeterminacy, we need further

restrictions on the model.

3 Identification

3.1 Principal Factor Model

As additional identification restrictions, we often assume that (i) Γff (0) = IK , (ii)

Γuu(0) is given and p.d., and (iii) B′Γuu(0)−1B is diagonal, i.e., the columns of

Γuu(0)−1/2B are orthogonal. These restrictions relate FA to principal component

analysis (PCA).

Consider identification of B. Since Γuu(0) is given and p.d., rearranging (2),

Γuu(0)−1/2Γxx(0)Γuu(0)−1/2 − IN = Γuu(0)−1/2BB′Γuu(0)−1/2. (3)

Since rank(Γuu(0)) = N and rank(B) = K < N ,

rank
(

Γuu(0)−1/2Γxx(0)Γuu(0)−1/2 − IN
)

= rank
(

Γuu(0)−1/2BB′Γuu(0)−1/2
)

= K.

Let

Λ :=

λ1 0
. . .

0 λK

 , W := [w1 . . . wK ] ,
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where λk is the kth largest eigenvalue of the left-hand side of (3), and wk is the

associated normalized eigenvector. By the eigenvalue decomposition,

Γuu(0)−1/2Γxx(0)Γuu(0)−1/2 − IN = WΛW ′. (4)

Since the columns of Γuu(0)−1/2B are orthogonal, comparing (3) and (4),

Γuu(0)−1/2B = WΛ1/2,

or

B = Γuu(0)1/2WΛ1/2.

Next, consider identification of the realization of {ft}Tt=1. Notice that, given B,

(1) is a generalized linear regression model for each t. Given µx, the GLS estimator

of ft is,

f̂t =
(
B′Γuu(0)−1B

)−1
B′Γuu(0)−1(xt − µx)

=
(

Λ1/2W ′WΛ1/2
)−1

Λ1/2W ′Γuu(0)−1/2(xt − µx)

= Λ−1/2W ′Γuu(0)−1/2(xt − µx).

Notice that if we normalize xt by Γuu(0)−1/2, then FA and PCA are equivalent up

to scale. Let x̃t := Γuu(0)−1/2(xt−µx), t = 1, . . . , T , and Γx̃x̃(0) := var(x̃1). Let λ̃k

be the kth largest eigenvalue of Γx̃x̃(0) − IN and w̃k be the associated normalized

eigenvector, k = 1, . . . ,K. The kth principal component of x̃t is w̃′kx̃t. The GLS

estimator, which is now equivalent to the OLS estimator, of the realization of the

kth common factor of x̃t is w̃′kx̃t/
√
λ̃k.

Unfortunately, this approach has some problems. First, Γuu(0) is usually un-

known in practice. Second, since the restriction on B is not explicit, it is difficult

to derive the asymptotic distribution of an estimator of B. Third, it does not use

Γxx(1), . . . , Γxx(S), which may contain some information.

5



3.2 Multivariate Errors-in-Variables Model

Alternatively, we can simply assume that B = [IK , B′2]′. This restriction relates FA

to multivariate errors-in-variables models (EVM).

Let ∀t ∈ Z,

f̃t :=

 x1,t − µx,1
...

xK,t − µx,K

 , vt :=

 u1,t

...
uK,t

 .

Then we can write (1) as

f̃t = ft + vt,

xK+1,t − µx,K+1 = β′K+1ft + uK+1,t,

...

xN,t − µx,N = β′Nft + uN,t,

where β′i is the ith row of B. Eliminating ft, we have ∀t ∈ Z,

xi,t − µx,i = β′if̃t − β′ivt + ui,t, i = K + 1, . . . , N.

Consider the equation for xK+1,t. Suppose that ∀s ∈ {1, . . . , S}, Γff (s) 6= 0. Then

∀i ∈ {K + 2, . . . , N}, ∀s ∈ {0, . . . , S}, xi,t−s is correlated with f̃t through ft and

ft−s, but uncorrelated with −β′K+1vt + uK+1,t by our assumption. So we can use

them as instrumental variables for estimation of βK+1. By the order condition, we

need (N −K − 1)(S + 1) ≥ K, or K ≤ (N − 1)(S + 1)/(S + 2), to identify βK+1.

The same argument applies to the other equations.

Notice that serial correlation in {ft}∞t=−∞ helps identification of B. Without

serial correlation (S = 0), the order condition requires that K ≤ (N − 1)/2. With

sufficient serial correlation (S → ∞), the order condition requires only that K <

N − 1.
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4 Estimation

4.1 Autocovariance Matrices

4.1.1 Consistency

Let

γ0 :=


vech(Γxx(0))
vec(Γxx(1))

...
vec(Γxx(S))

 , γ̂T :=


vech

(
Γ̂xx,T (0)

)
vec
(

Γ̂xx,T (1)
)

...
vec
(

Γ̂xx,T (S)
)

 .

We can write

Γ̂xx,T (s) :=
1

T − S

T∑
t=S+1

(xt − x̄T )(xt−s − x̄T )′

=
1

T − S

T∑
t=S+1

[(xt − µx)− (x̄T − µx)][(xt−s − µx)− (x̄T − µx)]′

=
1

T − S

T∑
t=S+1

(xt − µx)(xt−s − µx)′

−(x̄T − µx)
1

T − S

T∑
t=S+1

(xt−s − µx)′, s = 0, . . . , S.

Let ∀t ∈ Z,

zt :=


vech((xt − µx)(xt − µx)′)
vec((xt − µx)(xt−1 − µx)′)

...
vec((xt − µx)(xt−S − µx)′)

 .

If {xt}∞t=−∞ is stationary ergodic, then {zt}∞t=−∞ is stationary ergodic; see Durrett

(1996, pp. 336, 340). Note that E(z1) = γ0.

Theorem 1 Suppose that

1. {xt}∞t=−∞ is stationary ergodic,

2. x1 ∈ L2.

Then

lim
T→∞

γ̂T = γ0 a.s.

Proof. Applying the ergodic theorem to {xt}∞t=−∞, we can write

γ̂T =
1

T − S

T∑
t=S+1

zt + oas(1).
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The second term is asymptotically irrelevant. The result follows by applying the

ergodic theorem to {zt}∞t=−∞. 2

4.1.2 Asymptotic Distribution

Let (Ω,F , P (.)) be the probability space under consideration. Let {Ft}∞t=−∞ be a

filtration on (Ω,F). We use the notion of mixingale to simplify our discussion; see

Davidson (1994, ch. 16).

Definition 1 We say that {Xt}∞t=−∞ is an Lp-mixingale with respect to {Ft}∞t=−∞

if ∃{ct}∞t=−∞, {ψs}∞s=0 ⊂ <+, where lims→∞ ψs = 0, such that ∀t ∈ Z, ∀s ≥ 0,

‖E(Xt|Ft−s)‖Lp ≤ ctψs, (5)

‖Xt − E(Xt|Ft+s)‖Lp
≤ ctψs+1. (6)

The second inequality holds trivially if {Ft}∞t=−∞ is adapted to {Xt}∞t=−∞. We

say that a vector or matrix random sequence is an Lp-mixingale if each element is

an Lp-mixingale. Note that if {Xt}∞t=−∞ is a mixingale, then ∀t ∈ Z, E(Xt) = 0.

The rate of convergence of the coefficient measures the degree of serial depen-

dence. We say that {as}∞s=0 ⊂ <+ is of size −q if
∑∞
s=0 a

1/q
s <∞. If as = O(s−r),

where r > q, then it is of size −q; see Davidson (1994, p. 210). If a sequence is of

size −q, then ∀q′ < q, it is also of size −q′. We say that an Lp-mixingale is of size

−q if {ψs}∞s=0 is of size −q.

With the notion of mixingale, we can state Gordin’s central limit theorem (CLT)

for stationary sequences in Durrett (1996, pp. 418–421) as follows.

Theorem 2 (Gordin’s CLT) Suppose that

1. {Xt}∞t=−∞ is a stationary ergodic L2-mixingale with respect to {Ft}∞t=−∞ of

size −1,

2. {Ft}∞t=−∞ is adapted to {Xt}∞t=−∞.
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Then

s2 := lim
T→∞

var

(
1√
T

T∑
t=1

Xt

)
<∞,

and

1√
T

T∑
t=1

Xt
d−→ N

(
0, s2

)
.

If E(X1) 6= 0, then the CLT applies to {Xt − E(Xt)}∞t=−∞ even if E(X1) is

unknown, because {Ft}∞t=−∞ is adapted to {Xt−E(Xt)}∞t=−∞. The following result

is now immediate.

Theorem 3 Suppose that

1. {xt}∞t=−∞ is stationary ergodic,

2. {Ft}∞t=−∞ is adapted to {xt}∞t=−∞,

3. {xt−µx}∞t=−∞ and {zt−γ0}∞t=−∞ are L2-mixingales with respect to {Ft}∞t=−∞

of size −1.

Then

Σ := lim
T→∞

var

(
1√
T − S

T∑
t=S+1

zt

)
<∞,

and

√
T − S(γ̂T − γ0) d−→ N(0,Σ).

Proof. Applying Gordin’s CLT to {xt − µx}∞t=−∞, we can write

√
T − Sγ̂T =

1√
T − S

T∑
t=S+1

zt + op(1).

By asymptotic equivalence, the second term is asymptotically irrelevant. Notice

that ∀a ∈ <N(N+1)/2+SN2
, (i) {a′zt}∞t=−∞ is stationary ergodic, (ii) {Ft}∞t=−∞

is adapted to {a′(zt − γ0)}∞t=−∞, and (iii) {a′(zt − γ0)}∞t=−∞ is an L2-mixingale

with respect to {Ft}∞t=−∞ of size −1. The result follows by Gordin’s CLT and the

Crámer–Wold device. 2
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Since a transformation of a mixingale is not a mixingale in general, we need

separate mixingale conditions on {xt − µx}∞t=−∞ and {zt − γ0}∞t=−∞. Using the

notion of mixing, we can give sufficient conditions on {xt}∞t=−∞ for the mixingale

conditions to hold.

Definition 2 The sth-order α-mixing and φ-mixing coefficients of {Xt}∞t=−∞ are

αs := sup
t∈Z

sup
A∈Ft

−∞,B∈F
∞
t+s

|P (A ∩B)− P (A)P (B)|,

φs := sup
t∈Z

sup
A∈Ft

−∞,B∈F
∞
t+s

;P (A)>0

|P (B|A)− P (B)|,

where ∀t ∈ Z, ∀s ≥ 0, F t+st := σ(Xt, . . . , Xt+s).

Definition 3 We say that {Xt}∞t=−∞ is α-mixing [φ-mixing] if lims→∞ αs[φs] = 0.

Since P (A ∩ B) = P (B|A)P (A), φ-mixing implies α-mixing. As before, we say

that a mixing sequence is of size −q if the mixing coefficient is of size −q.

Mixing inequalities give the following relations between mixing sequences and

mixingales; see Davidson (1994, sec. 14.2).

Theorem 4 Suppose that

1. {Xt}∞t=−∞ is stationary,

2. X1 ∈ Lp, where p > 1,

3. E(X1) = 0,

4. {Ft}∞t=−∞ is adapted to {Xt}∞t=−∞.

Then

1. if {Xt}∞t=−∞ is α-mixing of size −q, where q > 0, then ∀p′ ∈ [1, p), {Xt}∞t=−∞

is an Lp′-mixingale with respect to {Ft}∞t=−∞ of size −q(1/p′ − 1/p),

2. if {Xt}∞t=−∞ is φ-mixing of size −q, where q > 0, then ∀p′ ∈ [1, p], {Xt}∞t=−∞

is an Lp′-mixingale with respect to {Ft}∞t=−∞ of size −q(1− 1/p).
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Proof. Since {Ft}∞t=−∞ is adapted to {Xt}∞t=−∞, (6) holds trivially. It remains

to show that (5) also holds.

1. By Theorem 14.2 in Davidson (1994), ∀p′ ∈ [1, p), ∀t ∈ Z, ∀s ≥ 0,

‖E(Xt|Ft−s)‖Lp′ ≤ 2
(

21/p′ + 1
)
‖Xt+s‖Lpα

1/p′−1/p
s

= cψs,

where c := 2
(

21/p′ + 1
)
‖X1‖Lp and ψs := α

1/p′−1/p
s . Since {αs}∞s=0 is of size

−q, {ψs}∞s=0 is of size −q(1/p′ − 1/p).

2. By Theorem 14.4 in Davidson (1994), ∀p′ ∈ [1, p], ∀t ∈ Z, ∀s ≥ 0,

‖E(Xt|Ft−s)‖Lp′ ≤ 2‖Xt+s‖Lp
φ1−1/p
s

= cψs,

where c := 2‖X1‖Lp and ψs := φ
1−1/p
s . Since {φs}∞s=0 is of size −q, {ψs}∞s=0

is of size −q(1− 1/p).

2

Next corollary gives sufficient conditions on {xt}∞t=−∞ for {zt − γ0}∞t=−∞ to be

an L2-mixingale with respect to {Ft}∞t=−∞ of size −1.

Corollary 1 Suppose that

1. {xt}∞t=−∞ is stationary,

2. x1 ∈ Lp, where p > 2,

3. {Ft}∞t=−∞ is adapted to {xt}∞t=−∞.

Then

1. if {xt}∞t=−∞ is α-mixing of size −q, where q > 0, then ∀p′ ∈ [1, p/2), {zt −

γ0}∞t=−∞ is an Lp′-mixingale with respect to {Ft}∞t=−∞ of size −q(1/p′−2/p),
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2. if {xt}∞t=−∞ is φ-mixing of size −q, where q > 0, then ∀p′ ∈ [1, p/2], {zt −

γ0}∞t=−∞ is an Lp′-mixingale with respect to {Ft}∞t=−∞ of size −q(1− 2/p).

Proof. By Theorem 14.1 in Davidson (1994), if {xt}∞t=−∞ is α-mixing [φ-mixing]

of size −q, then {zt−γ0}∞t=−∞ is α-mixing [φ-mixing] of size −q. We have z1−γ0 ∈

Lp/2, where p > 2, and E(z1− γ0) = 0. The result follows by applying the previous

theorem to {zt − γ0}∞t=−∞. 2

So if (i) x1 ∈ Lp, where p > 4, and {xt}∞t=−∞ is α-mixing of size −2p/(p − 4),

or (ii) x1 ∈ Lp, where p ≥ 4, and {xt}∞t=−∞ is φ-mixing of size −p/(p − 2), then

{xt − µx}∞t=−∞ and {zt − γ0}∞t=−∞ are L2-mixingales with respect to {Ft}∞t=−∞ of

size −1.

4.1.3 Covariance Matrix Estimation

Consider estimation of Σ. If we observe {zt}Tt=S+1, then we can apply various het-

eroskedasticity and autocorrelation consistent (HAC) covariance matrix estimators.

Let Γzz(.) be the autocovariance matrix function for {zt}∞t=−∞. Then

Σ := lim
T→∞

var

(
1√
T − S

T∑
t=S+1

zt

)

= lim
T→∞

1
T − S

var

(
T∑

t=S+1

zt

)

= lim
T→∞

1
T − S

T−S−1∑
s=−(T−S−1)

(T − S − |s|)Γzz(s)

=
∞∑

s=−∞
Γzz(s)

= Γzz(0) +
∞∑
s=1

(Γzz(s) + Γzz(s)′).

Let

z̄∗T :=
1

T − S

T∑
t=S+1

zt,

Γ̂∗zz,T (s) :=
1

T − S

T∑
t=s+S+1

(zt − z̄T )(zt−s − z̄T )′, s = 0, . . . , T − S − 1.
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A kernel estimator of Σ is

Σ̂∗T := Γ̂∗zz,T (s) +
l(T )∑
s=1

k(s)
(

Γ̂∗zz,T (s) + Γ̂∗zz,T (s)′
)
.

where k(.) is a kernel function and l(.) is a bandwidth function. Since we do not

observe {zt}Tt=S+1, this estimator is infeasible.

Let

zT,t :=


vech((xt − x̄T )(xt − x̄T )′)
vec((xt − x̄T )(xt−1 − x̄T )′)

...
vec((xt − x̄T )(xt−S − x̄T )′)

 , t = S + 1, . . . , T,

z̄T :=
1

T − S

T∑
t=S+1

zT,t,

Γ̂zz,T (s) :=
1

T − S

T∑
t=s+S+1

(zT,t − z̄T )(zT,t−s − z̄T )′, s = 0, . . . , T − S − 1.

Then

zT,t = zt + op(1),

z̄T =
1

T − S

T∑
t=S+1

zt + op(1)

= E(zt) + op(1),

Γ̂zz,T (s) =
1

T − S

T∑
t=s+S+1

(zt − E(zt) + op(1))(zt − E(zt) + op(1))′

= Γzz(s) + op(1).

So we can apply a kernel estimator to {zT,t}Tt=S+1 to estimate Σ.

4.2 Parameters

4.2.1 Minimum Distance Estimator

Assume that B = [IK , B′2]′. Then we can write (2) as ∀s ∈ Z,

Γxx(s) =
[
IK
B2

]
Γff (s) [ IK B′2 ] + Γuu(s). (7)
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Let

θ0 :=



vec(B2)
vech(Γff (0))
diag(Γuu(0))
vec(Γff (1))
diag(Γuu(1))

...
vec(Γff (S))
diag(Γuu(S))


.

Let Θ ⊂ <(N−K)K+K(K+1)/2+N+S(K2+N) be the parameter space and g : Θ →

<N(N+1)/2+SN2
be such that ∀θ ∈ Θ,

g(θ) :=



vech
([

IK
B2

]
Γff (0) [ IK B′2 ] + Γuu(0)

)
vec
([

IK
B2

]
Γff (1) [ IK B′2 ] + Γuu(1)

)
...

vec
([

IK
B2

]
Γff (S) [ IK B′2 ] + Γuu(S)

)


.

Then we have

γ0 = g(θ0). (8)

An MD estimator of θ0 is

θ̂T := arg min
θ∈Θ

(γ̂T − g(θ))′WT (γ̂T − g(θ)), (9)

where WT is a weighting matrix that is finite, p.d., and plimT→∞WT = W , where

W is fixed, finite, and p.d.

Different weighting matrices give different MD estimators of θ0. If WT is the

identity matrix, then we have the equally-weighted MD (EMD) estimator. If WT

is such that W = Σ−1, then we have an optimal MD (OMD) estimator, i.e., its

asymptotic variance-covariance matrix is the smallest among the MD estimators.

4.2.2 Consistency

Let {QT : Ω×Θ→ <}∞T=S+1 be a sequence of random criterion functions such that

∀T ≥ S + 1, ∀θ ∈ Θ,

QT (θ) := (γ̂T − g(θ))′WT (γ̂T − g(θ)).
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By definition, ∀T ≥ S + 1,

θ̂T = arg min
θ∈Θ

QT (θ).

Let Q : Θ→ < be such that ∀θ ∈ Θ,

Q(θ) := (γ0 − g(θ))′W (γ0 − g(θ)).

Since γ0 = g(θ0) and W is p.d., given the identification restrictions,

θ0 = arg min
θ∈Θ

Q(θ).

To prove consistency of θ̂T , it suffices to check conditions (A)–(C) for Theorem 4.1.1

in Amemiya (1985). The only nontrivial part is in condition (C), where we have

to show that QT (.) converges in probability to Q(.) uniformly on Θ. Next lemma

gives sufficient conditions for this to hold.

Lemma 1 Suppose that

1. Θ is compact,

2. plimT→∞ γ̂T = γ0.

Then

plim
T→∞

sup
θ∈Θ
|QT (θ)−Q(θ)| = 0.

Proof. By the triangle inequality, ∀T ≥ S + 1, ∀θ ∈ Θ,

|QT (θ)−Q(θ)| = |(γ̂T − g(θ))′WT (γ̂T − g(θ))− (γ0 − g(θ))′W (γ0 − g(θ))|

= |[(γ̂T − γ0) + (γ0 − g(θ))]′(WT −W )[(γ̂T − γ0) + (γ0 − g(θ))]

+[(γ̂T − γ0) + (γ0 − g(θ))]′W [(γ̂T − γ0) + (γ0 − g(θ))]

−(γ0 − g(θ))′W (γ0 − g(θ))|

= |(γ̂T − γ0)′(WT −W )(γ̂T − γ0)

+2(γ̂T − γ0)′(WT −W )(γ0 − g(θ))

+(γ0 − g(θ))′(WT −W )(γ0 − g(θ))

15



+(γ̂T − γ0)′W (γ̂T − γ0) + 2(γ̂T − γ0)′W (γ0 − g(θ))|

≤ |γ̂T − γ0|′|WT −W ||γ̂T − γ0|

+2|γ̂T − γ0|′|WT −W ||γ0 − g(θ)|

+|γ0 − g(θ)|′|WT −W ||γ0 − g(θ)|

+|γ̂T − γ0|′|W ||γ̂T − γ0|+ 2|γ̂T − γ0|′|W ||γ0 − g(θ)|.

Since Θ is compact and g(.) ∈ C0, ∃M < ∞ such that supθ∈Θ |γ0 − g(θ)| ≤ M .

Taking the supremum on both sides, ∀T ≥ S + 1,

sup
θ∈Θ
|QT (θ)−Q(θ)| ≤ |γ̂T − γ0|′|WT −W ||γ̂T − γ0|

+2|γ̂T − γ0|′|WT −W |M +M ′|WT −W |M

+|γ̂T − γ0|′|W ||γ̂T − γ0|+ 2|γ̂T − γ0|′|W |M.

The result follows by taking the probability limit on both sides and applying Slut-

sky’s theorem. 2

Consistency of θ̂T is now immediate.

Theorem 5 Suppose that

1. Θ is compact,

2. plimT→∞ γ̂T = γ0.

Then

plim
T→∞

θ̂T = θ0.

Proof. Verify the conditions for Theorem 4.1.1 in Amemiya (1985). 2

4.2.3 Asymptotic Distribution

To prove asymptotic normality of θ̂T , redefine QT (.) and Q(.) as ∀θ ∈ Θ,

QT (θ) :=
1
2

(γ̂T − g(θ))′WT (γ̂T − g(θ)),

Q(θ) :=
1
2

(γ0 − g(θ))′W (γ0 − g(θ)).

16



By differentiation, ∀θ ∈ Θ,

∂QT
∂θi

(θ) = − ∂g
∂θi

(θ)′WT (γ̂T − g(θ)),

∂Q

∂θi
(θ) = − ∂g

∂θi
(θ)′W (γ0 − g(θ)),

i = 1, . . . , (N −K)K +K(K + 1)/2 +N + S
(
K2 +N

)
,

and

∂2QT
∂θi∂θj

(θ) = − ∂2g

∂θi∂θj
(θ)′WT (γ̂T − g(θ)) +

∂g

∂θi
(θ)′WT

∂g

∂θj
(θ),

∂2Q

∂θi∂θj
(θ) = − ∂2g

∂θi∂θj
(θ)′W (γ0 − g(θ)) +

∂g

∂θi
(θ)′W

∂g

∂θj
(θ),

i, j = 1, . . . , (N −K)K +K(K + 1)/2 +N + S
(
K2 +N

)
.

We need the following lemma first.

Lemma 2 Suppose that plimT→∞ θ̂T = θ0. Then

plim
T→∞

sup
θ∈K(θ0)

∣∣∇2QT (θ)−∇2Q(θ)
∣∣ = 0,

where K(θ0) is a compact neighborhood of θ0.

Proof. The proof is similar to that of Lemma 1. 2

Given this, the proof of asymptotic normality of θ̂T is standard.

Theorem 6 Suppose that

1. plimT→∞ θ̂T = θ0,

2.
√
T − S(γ̂T − γ0) d−→ N(0,Σ), where Σ <∞.

Then

√
T − S

(
θ̂T − θ0

)
d−→ N(0, V ),

where

V := (GWG′)−1GWΣWG′(GWG′)−1,

G := ∇g(θ0).

17



Proof. By the mean value theorem, ∀T ≥ S + 1, ∃θ̄T ∈
[
θ̂T , θ0

]
such that

∇QT
(
θ̂T

)
= ∇QT (θ0) +∇2QT

(
θ̄T
) (
θ̂T − θ0

)
.

By the first-order condition, ∀T ≥ S + 1,

∇QT (θ0) +∇2QT
(
θ̄T
) (
θ̂T − θ0

)
= 0,

or

√
T − S

(
θ̂T − θ0

)
= −∇2QT

(
θ̄T
)−1√

T − S∇QT (θ0)

= ∇2QT
(
θ̄T
)−1

GWT

√
T − S(γ̂T − γ0)

= (GWG′)−1GW
√
T − S(γ̂T − γ0)

+
[
∇2QT

(
θ̄T
)−1

GWT − (GWG′)−1GW
]
Op(1).

By asymptotic equivalence, it suffices to show that the second term is op(1). We

can write ∀T ≥ S + 1,

∇2QT
(
θ̄T
)
−GWG′ =

(
∇2QT

(
θ̄T
)
−∇2Q

(
θ̄T
))

+
(
∇2Q

(
θ̄T
)
−GWG′

)
.

Since θ̄T is consistent for θ0, the first term is op(1) by the previous lemma, and the

second term is op(1) by Slutsky’s theorem. 2

Note that if W = Σ−1, then V =
(
GΣ−1G′

)−1.

4.3 Factor Scores

Consider estimation of the realization of {ft}Tt=1. Stacking (1) for t = 1, . . . , T , and

taking B and µx as given, we have a seemingly unrelated regressions (SUR) model

such that

x1 − µx = Bf1 + u1,

...

xT − µx = BfT + uT .

18



Let

x :=

 x1
...
xT

 , f :=

 f1
...
fT

 , u :=

 u1
...
uT

 ,

Γuu :=

 Γuu(0) . . . Γuu(T − 1)
...

. . .
...

Γuu(T − 1) . . . Γuu(0)

 .
Let lT := (1, . . . , 1)′. Then we have

x− lT ⊗ µx = (IT ⊗B)f + u,

where E(u) = 0 and var(u) = Γuu. The infeasible GLS estimator of f is

f̂GLS ,T =
[
(IT ⊗B)′Γ−1

uu (IT ⊗B)
]−1

(IT ⊗B)′Γ−1
uu (x− lT ⊗ µx).

By the Gauss–Markov theorem, f̂GLS ,T is the BLUE of f .

To make the GLS estimator feasible, we need a consistent estimator of the whole

Γuu, which requires a parametric model for the dynamics of {ut}∞t=−∞. Alterna-

tively, we may give up system estimation and apply a feasible single-equation GLS

estimator, i.e.,

f̂T,t =
(
B̂′T Γ̂uu,T (0)−1B̂T

)−1

B̂′T Γ̂uu,T (0)−1(xt − x̄T ), t = 1, . . . , T, (10)

where B̂T and Γ̂uu,T (0) are consistent estimators of B and Γuu(0) respectively.

Although estimation errors in B̂T and Γ̂uu,T (0) cause a measurement-error bias in

f̂T,t, it disappears as T →∞. Note that if {ut}∞t=−∞ is serially uncorrelated, then

Γuu is block-diagonal. So the full-equation GLS estimator and the single-equation

GLS estimator are equivalent.

5 New Composite Index

5.1 Data

5.1.1 Business Cycle Indicators

We analyze the four BCIs in Table 1 that currently make up the U.S. coincident

CI of business cycles. Our data are from CITIBASE. The sample period is 1959:1–

1998:12 (480 observations). We take the first difference of the log of each series and

19



Table 1: Components of the U.S. Coincident Composite Index

BCI Description
EMP Employees on nonagricultural payrolls (thousands, SA)
INC Personal income less transfer payments (billions of chained $, SA, AR)
IIP Index of industrial production (1992 = 100, SA)
SLS Manufacturing and trade sales (millions of chained $, SA)

Note: SA means “seasonally-adjusted,” and AR means “annual rate.”

Table 2: Descriptive Statistics of the Business Cycle Indicators

BCI Mean S.D. Min. Max.
EMP 0.19 0.24 −0.86 1.23
INC 0.26 0.42 −1.27 1.68
IIP 0.28 0.89 −4.25 6.00
SLS 0.29 1.05 −3.27 3.55

multiply it by 100, which is approximately equal to the monthly percentage growth

rate series.

Table 2 and 3 summarize some descriptive statistics of the transformed series.

We see that they have significantly different means and standard deviations (s.d.):

EMP has lower mean than the others, and EMP and INC are much smoother than

the other two (Table 2). We eliminate these differences by standardizing each series

so that the sample mean is 0 and the sample s.d. is 1. We also see that all variables

are positively correlated. In particular, EMP and IIP have the highest correlation,

while INC and SLS have the lowest correlation (Table 3).

Figure 1 shows the sample autocorrelation functions of the BCIs. We see that

they have different autocorrelation structures: EMP has persistent autocorrelation,

Table 3: Sample Correlation Coefficients of the Business Cycle Indicators

EMP INC IIP SLS
EMP 1.00
INC 0.57 1.00
IIP 0.64 0.50 1.00
SLS 0.44 0.36 0.53 1.00
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Figure 1: Sample Autocorrelation Functions of the Business Cycle Indicators

while SLS has almost no serial correlation.

5.1.2 Composite Indices

The leading, coincident, and lagging CIs of business cycles are summary statistics

of the selected leading, coincident, and lagging BCIs respectively. In the U.S., the

Conference Board calculates the coincident CI in the following five steps:

1. Calculate the monthly symmetric growth rate series of the BCIs.

2. Exclude outliers and normalize each symmetric growth rate series so that the

sample standard deviation is 1.

3. Take the simple cross-section average of the normalized symmetric growth

rate series. This is the monthly symmetric growth rate series of the CI.

4. Calculate the level series from the symmetric growth rate series.

5. Rebase the level series to average 100 in the base year.

See the December 1996 issue of Business Cycle Indicators for more details.
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Table 4: Principal Component Analysis of the Business Cycle Indicators

Principal Component
1st 2nd 3rd 4th

Eigenvalue 2.52 0.67 0.46 0.34
Proportion 0.63 0.17 0.12 0.09
Eigenvector
EMP 0.53 −0.25 0.40 0.70
INC 0.48 −0.57 −0.64 −0.20
IIP 0.53 0.11 0.52 −0.66
SLS 0.45 0.78 −0.41 0.17

Note that it could be a weighted average in Step 3. For example, if we apply

PCA, then the first principal component is a weighted average, where the weight

vector is proportional to the normalized eigenvector associated with the largest

eigenvalue of the sample correlation coefficient matrix.

Table 4 is the result of PCA of the U.S. coincident BCIs (in terms of the stan-

dardized first differences of their logs). The weight vector for the first principal

component, which accounts for 63% of the total variation, is (0.27, 0.24, 0.27, 0.22)′.

The weights on EMP and IIP are larger than those on INC and SLS.

PCA is still a descriptive method that reduces the dimension of a multivariate

sample without assuming a statistical model. We apply FA because it is a statistical

method that estimates the realization of the latent common factors underlying the

observable variables.

5.2 Estimation Results

5.2.1 Parameters

We apply MD estimators to estimate a one-factor model for the standardized first

differences of the logs of the U.S. coincident BCIs. Let x1,t, . . . , x4,t be EMP, INC,

IIP, and SLS respectively.

First, we have to set S, the highest order of the autocovariances included. Un-

fortunately, we do not have a criterion for selecting an optimal S given T . So we

simply try S = 0, 1. Second, we have to choose WT , a weighting matrix for the MD
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Table 5: Results of Minimum Distance Estimation of the Factor Model

Parameter EMD OMD
S = 0 S = 1 S = 0 S = 1

β1 1.00 1.00 1.00 1.00

β2 0.81 0.86 0.89 1.08
(0.07) (0.08) (0.08) (0.12)

β3 1.01 0.99 1.11 1.17
(0.08) (0.08) (0.08) (0.12)

β4 0.73 0.67 0.81 0.97
(0.06) (0.05) (0.07) (0.10)

γff (0) 0.65 0.65 0.55 0.27
(0.14) (0.14) (0.13) (0.07)

γuu,1(0) 0.35 0.35 0.35 0.25
(0.05) (0.06) (0.05) (0.04)

γuu,2(0) 0.57 0.52 0.58 0.46
(0.08) (0.07) (0.08) (0.05)

γuu,3(0) 0.35 0.35 0.32 0.27
(0.06) (0.05) (0.06) (0.05)

γuu,4(0) 0.66 0.70 0.63 0.61
(0.06) (0.07) (0.06) (0.05)

Note: Numbers in parentheses are asymptotic s.e.’s.

estimator. Although OMD estimators are asymptotically more efficient than the

EMD estimator, they have small-sample bias in analysis of covariance structures;

see Altonji and Segal (1996) and Clark (1996). So we try both EMD and OMD

estimators. To estimate Σ, we apply a HAC covariance matrix estimator proposed

by Newey and West (1994). (To implement the Newey–West estimator, we use a

GAUSS code written by Ka-fu Wong, which is available from the GAUSS Sourse

Code Archive at American University).

Table 5 summarizes the estimation results. Although the estimates are a little

sensitive to the choice of S and WT , EMP and IIP seem to have larger factor

loadings and smaller specific-factor variances than INC and SLS. In other words,

EMP and IIP are more informative about the common “business cycle factor” than

INC and SLS. Hence, it is more efficient to weight them accordingly to construct a

CI.
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Table 6: Weights for the New Composite Index

BCI EMD OMD PCA CI
S = 0 S = 1 S = 0 S = 1

EMP 0.34 0.35 0.31 0.32 0.27 0.25
(0.04) (0.04) (0.03) (0.04)

INC 0.17 0.20 0.17 0.19 0.24 0.25
(0.03) (0.02) (0.03) (0.02)

IIP 0.35 0.34 0.38 0.36 0.27 0.25
(0.04) (0.04) (0.05) (0.04)

SLS 0.13 0.12 0.14 0.13 0.22 0.25
(0.02) (0.02) (0.02) (0.02)

Note: Numbers in parentheses are asymptotic s.e.’s.

5.2.2 Weights for the New Composite Index

In this application, (1) becomes

xt = βft + ut. (11)

Given the model parameters, the single-equation GLS estimator of ft is

f̂t =
(
β′Γuu(0)−1β

)−1
β′Γuu(0)−1xt

∝
4∑
i=1

βi
γuu,i(0)

xi,t,

i.e., f̂t is essentially a weighted average of x1,t, . . . , x4,t. Since the weight on xi,t is

βi/γuu,i(0), more “informative” variables receive larger weights.

Table 6 summarizes estimates of the weight vector. The weights are not equal

but larger on EMP and IIP than on INC and SLS. We call the CI associated with

one of these weight vectors the “new CI.”

5.3 Comparison with Other Indices

5.3.1 Stock–Watson Experimental Coincident Index

The Stock–Watson XCI assumes that ∀t ∈ Z,

φf (L)ft = vt,

Φu(L)ut = wt,(
vt
wt

)
∼ NID

(
0,
[
σ2
v 0

0 Σww

])
,
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where L is the lag operator, φf (.) is a pth-order polynomial on <, and Φu(.) is a

qth-order polynomial on <N×N . For identification, we assume that (i) β = (1, β′2)′

and (ii) Φu(.) and Σww are diagonal.

To obtain the maximum likelihood (ML) estimator of the model parameters,

we rewrite the model into a state-space form, and apply the Kalman filter (KF) to

evaluate the likelihood function; see Appendix. The XCI, obtained as a by-product

of the KF, is the conditional expectation of ft given (y1, . . . , yt) associated with the

ML estimate of the model parameters.

To determine p and q, we use a model selection criterion such as Akaike’s infor-

mation criterion (AIC) or Schwartz’s Bayesian information criterion (BIC). In our

case, AIC and BIC are defined as

AIC :=
1

T − q

{
lnL

(
θ̂ML

)
−
[
(N −K)K +K2p+Nq

]}
,

BIC :=
1

T − q

{
lnL

(
θ̂ML

)
− ln(T − q)

2
[
(N −K)K +K2p+Nq

]}
,

where N = 4, K = 1, and T = 479. As shown in Table 7, AIC selects (p, q) =

(1, 2) while BIC selects (p, q) = (1, 0). Although AIC selects too large models with

positive probability as T → ∞, selecting too large models may be less harmful

than selecting too small models. The likelihood ratio (LR) test statistic for testing

H0 : (p, q) = (1, 0) against H1 : (p, q) = (1, 2) is 33.90. The asymptotic distribution

of the LR test statistic under H0 is χ2(8). Since the test strongly rejects H0 in favor

of H1, we select (p, q) = (1, 2).

Table 8 presents the ML estimates of the model parameters for (p, q) = (1, 2).

Not surprisingly, the ML estimate of the factor loading vector is close to the MD

estimates in Table 5.

Table 9 shows the implicit weights on the coincident BCIs for the XCI associated

with the steady state KF. The weights on the current coincident BCIs for the XCI

are close to those for the new CI in Table 6. The difference is that the XCI puts
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Table 7: Lag-Order Selection for the Factor Model

(p, q) lnL
(
θ̂ML

)
AIC BIC

(0,1) −592.74 −1.265 −1.317
(0,2) −580.26 −1.250 −1.320
(0,3) −576.16 −1.252 −1.340
(1,0) −584.01 −1.238 −1.277
(1,1) −577.24 −1.235 −1.292
(1,2) −567.06 −1.224 −1.299
(1,3) −562.90 −1.227 −1.319
(2,0) −582.84 −1.238 −1.281
(2,1) −576.48 −1.235 −1.296
(2,2) −566.78 −1.226 −1.305
(2,3) −562.71 −1.228 −1.325
(3,0) −582.72 −1.239 −1.287
(3,1) −576.37 −1.237 −1.303
(3,2) −566.56 −1.228 −1.311
(3,3) −562.50 −1.230 −1.331

Table 8: Result of Maximum Likelihood Estimation of the Factor Model

Parameter EMP INC IIP SLS
β 1.00 0.94 1.17 0.79

(0.07) (0.08) (0.06)
φf 0.56

(0.05)
σ2
f 0.33

(0.04)
φu,1 0.10 −0.02 −0.05 −0.42

(0.05) (0.05) (0.07) (0.05)
φu,2 0.45 0.04 −0.06 −0.21

(0.05) (0.05) (0.06) (0.05)
σ2
w 0.32 0.57 0.32 0.56

(0.03) (0.04) (0.03) (0.04)

Note: Numbers in parentheses are asymptotic s.e.’s.
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Table 9: Weights for the Stock–Watson Index

Lag EMP INC IIP SLS
(0) 0.27 0.15 0.32 0.13
(−1) 0.00 0.02 0.05 0.07
(−2) −0.10 0.01 0.04 0.04
(−3) −0.01 0.00 0.01 0.01
(−4) −0.01 0.00 0.00 0.00

Table 10: Sample Correlation Coefficients of the Indices

New CI CI XCI
New CI 1.000
CI 0.986 1.000
XCI 0.985 0.971 1.000

nonzero weights on the lagged coincident BCIs.

5.3.2 Comparison

Table 10 shows the sample correlation coefficient matrix of the three indices. Since

the new CI has a higher correlation with the XCI than the traditional CI, the new

CI improves the traditional CI towards the XCI.

A difficulty in comparing alternative indices is absence of a criterion for “good”

indices. If we agree that real GDP is the most important coincident BCI, then a

possible criterion is correlation with real GDP in quarterly growth rates. Table 11

shows the sample correlations of the three indices with real GDP. The XCI has the

highest correlation with real GDP, while the new CI has the lowest. Moreover, the

new CI hardly improves the traditional CI towards the XCI in quarterly series.

Table 11: Sample Correlation Coefficients of the Indices with Real GDP

New CI CI XCI Real GDP
New CI 1.0000
CI 0.9945 1.0000
XCI 0.9899 0.9898 1.0000
Real GDP 0.7981 0.8126 0.8148 1.0000

27



This criterion implicitly assumes that a coincident index is an estimate of un-

observable “monthly real GDP.” For this purpose, however, we can obtain a better

index by combining monthly coincident BCIs and quarterly real GDP using state-

space models. This seems to be an interesting topic for future research.

6 Discussion

We applied MD-FA to the U.S. coincident BCIs and obtained a new CI of business

cycles. The new CI, as well as the XCI, puts larger weights on more informative

BCIs (EMP and IIP) and smaller weights on others (INC and SLS). So it is more

efficient than the traditional CI, which simply puts equal weights.

One drawback of the new CI is that it is not unique for two reasons. First,

we do not know how to choose S, the highest order of the autocovariance matrices

included, in finite samples. Second, we do not know which MD estimator to use in

finite samples. OMD estimators are asymptotically more efficient than the EMD

estimator, but feasible OMD estimators are biased in small samples. Recently,

Kitamura and Stutzer (1997) proposed an estimator that avoids the small-sample

bias of feasible optimal GMM estimators. Their estimator seems to be applicable

to our problem.
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A Stock–Watson Experimental Coincident Index

A.1 State-Space Representation

Premultiplying both sides of (11) by Φu(L), ∀t ∈ Z,

yt = Φu(L)Bft + wt,

where yt := Φu(L)xt. When p ≥ q, a state-space model for {yt}∞t=−∞ is ∀t ∈ Z, ft
...

ft−p

 =
[

Φf,1 . . . Φf,p OK×K
IpK OpK×K

] ft−1

...
ft−(p+1)

+
(

IK
OpK×K

)
vt,

yt = [B −Φu,1B . . . −Φu,qB ON×(p−q)K ]

 ft
...

ft−p

+ wt,

where on is the n× 1 zero vector and Om×n is the m×n zero matrix. When p ≤ q,

a state-space model for {yt}∞t=−∞ is ∀t ∈ Z, ft
...

ft−q

 =
[

Φf,1 . . . Φf,p OK×(q−p+1)K

IqK OqK×K

] ft−1

...
ft−(q+1)

+
(

IK
OqK×K

)
vt,

yt = [B −Φu,1B . . . −Φu,qB ]

 ft
...

ft−q

+ wt.

In either case, we can write ∀t ∈ Z,

st = Fst−1 +Gvt, (12)

yt = Hst + wt, (13)

where st, F , G, and H are defined appropriately.

A.2 Likelihood Function

Let Θ be the parameter space. Let f(.; θ), θ ∈ Θ, be a pdf of (y1, . . . , yT ). Then

f(y1, . . . , yT ; θ) =
T∏
t=1

ft|t−1(yt|y1, . . . , yt−1; θ),

where ∀t ≥ 2, ft|t−1(.|y1, . . . , yt−1; θ) is a conditional pdf of yt given (y1, . . . , yt−1)

(for t = 1, it is a marginal pdf). Let F0 := {∅,Ω} and ∀t ≥ 1, Ft := σ(y1, . . . , yt).
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Let ∀t ≥ 1,

µt|t−1(θ) := Eθ(yt|Ft−1),

Σt|t−1(θ) := varθ(yt|Ft−1).

Then ∀t ≥ 1,

yt|y1, . . . , yt−1 ∼ N
(
µt|t−1(θ),Σt|t−1(θ)

)
.

So ∀t ≥ 1,

ft|t−1(yt|y1, . . . , yt−1; θ)

= (2π)−N/2 det
(
Σt|t−1(θ)

)−1/2

exp
(
−1

2
(
yt − µt|t−1(θ)

)′Σt|t−1(θ)−1
(
yt − µt|t−1(θ)

))
.

The log-likelihood function for θ given (y1, . . . , yT ) is

lnL(θ; y1, . . . , yT ) = −NT
2

ln 2π − 1
2

T∑
t=1

ln det
(
Σt|t−1(θ)

)
−1

2

T∑
t=1

(
yt − µt|t−1(θ)

)′Σt|t−1(θ)−1
(
yt − µt|t−1(θ)

)
.

To evaluate the log-likelihood function, we must evaluate
{
µt|t−1(θ),Σt|t−1(θ)

}T
t=1

.

Let ∀t, s ≥ 0,

ŝt|s := Eθ(st|Fs),

Pt|s := varθ(st|Fs).

From (13), ∀t ≥ 1,

µt|t−1(θ) = Hŝt|t−1,

Σt|t−1(θ) = HPt|t−1H
′ + Σww.

Given θ, we can apply the KF to evaluate
{
ŝt|t−1, Pt|t−1

}T
t=1

.
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A.3 Kalman Filter

A.3.1 Initial State

First, we must specify ŝ1|0 and P1|0. To obtain the exact ML estimator, we set

ŝ1|0 = µs,

P1|0 = Γss(0),

where µs := E(s1) and Γss(0) := var(s1). Since {st}∞t=1 is stationary, taking expec-

tations on both sides of (12),

µs = Fµs.

Assuming that I(max{p,q}+1)K − F is nonsingular,

µs = 0.

From (12), we also get

Γss(0) = FΓss(1)′ +GΣuuG′,

Γss(1) = FΓss(0).

Eliminating Γss(1),

Γss(0) = FΓss(0)F ′ +GΣuuG′,

or

vec(Γss(0)) = vec(FΓss(0)T ′) + vec(GΣuuG′)

= (F ⊗ F )vec(Γss(0)) + vec(GΣuuG′)

=
(
I[(max{p,q}+1)K]2 − F ⊗ F

)−1 vec(GΣuuG′).

In practice, we can simply set

ŝ0|0 = 0,

P0|0 = 0,
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which implies that

ŝ1|0 = 0,

P1|0 = GΣvvG′.

The resulting estimator is asymptotically equivalent to the ML estimator.

A.3.2 Updating

Since (s′0, u
′
1)′ is joint normal, s1 is normal. Similarly, s2, s3, . . . are also normal.

So ∀t ≥ 1,

st|y1, . . . , yt−1 ∼ N
(
ŝt|t−1, Pt|t−1

)
.

We have ∀t ≥ 1,

yt − ŷt|t−1 = H
(
st − ŝt|t−1

)
+ vt,

where ŷt|t−1 := E(yt|Ft−1). So ∀t ≥ 1,

(
st
yt

)
|y1, . . . , yt−1 ∼ N

((
ŝt|t−1

ŷt|t−1

)
,

[
Pt|t−1 Pt|t−1H

′

HPt|t−1 HPt|t−1H
′ + Σvv

])
.

Let ∀t ≥ 1,

Bt := Pt|t−1H
′ (HPt|t−1H

′ + Σvv
)−1

.

The updating equations for ŝt|t and Pt|t given ŝt|t−1 and Pt|t−1 are ∀t ≥ 1,

ŝt|t = ŝt|t−1 +Bt
(
yt −Hŝt|t−1

)
,

Pt|t = Pt|t−1 −BtHPt|t−1.

A.3.3 Prediction

From (12), the prediction equations for ŝt|t−1 and Pt|t−1 given ŝt−1|t−1 and Pt−1|t−1

are ∀t ≥ 1,

ŝt|t−1 = F ŝt−1|t−1,

Pt|t−1 = FPt−1|t−1F
′ +GΣuuG′.

Combining the updating and prediction equations, we get
{
ŝt|t−1, Pt|t−1

}T
t=1

.
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