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Abstract 

 

Modelling, monitoring and forecasting volatility are indispensible to sensible portfolio risk 

management. The volatility of an asset of composite index can be traded by using volatility 

derivatives, such as volatility and variance swaps, options and futures. The most popular 

volatility index is VIX, which is a key measure of market expectations of volatility, and hence 

also an important barometer of investor sentiment and market volatility. Investors interpret the 

VIX cash index as a “fear” index, and of VIX options and VIX futures as derivatives of the 

“fear” index. VIX is based on S&P500 call and put options over a wide range of strike prices, 

and hence is not model based. Speculators can trade on volatility risk with VIX derivatives, 

with views on whether volatility will increase or decrease in the future, while hedgers can use 

volatility derivatives to avoid exposure to volatility risk. VIX and its options and futures 

derivatives has been widely analysed in recent years. An alternative volatility derivative to 

VIX is the S&P500 variance futures, which is an expectation of the variance of the S&P500 

cash index. Variance futures are futures contracts written on realized variance, or standardized 

variance swaps. The S&P500 variance futures are not model based, so the assumptions 

underlying the index do not seem to have been clearly understood. As variance futures are 

typically thinly traded, their returns and volatility are not easy to model accurately using a 

variety of model specifications. This paper analyses the volatility in S&P500 3-month 

variance futures before, during and after the GFC, as well as for the full data period, for each 

of three alternative conditional volatility models and three densities, in order to determine 

whether exposure to risk can be incorporated into a financial portfolio without taking 

positions on the S&P500 index itself. 

 

 

Keywords: Risk management, financial derivatives, futures, options, swaps, 3-month 

variance futures, 12-month variance futures, risk exposure, volatility. 

 

JEL Classifications: C22, G32, G01.
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1. Introduction 

  

An accurate assessment of volatility is an indispensible component of sensible portfolio risk 

management. As such, significant research has been undertaken in the conditional, stochastic and 

realized volatility literature to model and forecast various types of volatility, where the choice of 

model is frequently based on the data frequency used. The volatility of an asset of composite index 

can be traded by using volatility derivatives, such as volatility and variance swaps, options and 

futures. As swaps are traded over-the-counter rather than exchange traded, they have much lower 

liquidity and associated limitations in data availability.  

  

The most widely-used volatility index is VIX (see Whaley (1993)), which is a key measure of 

market expectations of volatility, and hence also an important barometer of investor sentiment and 

market volatility. VIX is presently based on S&P500 call and put options over a wide range of 

strike prices, and hence is not model based. The original CBOE volatility index, VXO, is based on 

the Black-Scholes implied volatilities from S&P100 index, and hence is model based, though the 

Black-Scholes model assumes normality, which is typically unrealistic for financial market data. 

In 2003, together with Goldman Sachs, CBOE updated and reformulated VIX to reflect a model-

free method of measuring expected volatility, one that continues to be widely used by financial 

theorists. The Chicago Board Options Exchange (CBOE) introduced VIX futures on 26 March 

2004, and VIX options on 24 February 2006. Both VIX options and futures are very highly traded. 

  

As discussed in Chang et al. (2011), the volatility index data are closing daily prices (settlement 

prices) for the 30-day maturity CBOE VIX futures (ticker name VX), which may be obtained from 

the Thomson Reuters-Data Stream Database. The settlement price is calculated by the CBOE as 

the average of the closing bid and ask quote so as to reduce the noise due to any microstructure 

effects. The contracts are cash settled on the Wednesday 30 days prior to the third Friday on the 

calendar month immediately following the month in which the contract expires. The underlying 

asset is the VIX index that was originally introduced by Whaley (1993) as an index of implied 

volatility on the S&P100.  

 

In 2003 the updated VIX was introduced based on the S&P500 index. VIX is a measure of the 

implied volatility of 30-day S&P500 options. Its calculation is independent of an option pricing 

model and is calculated from the prices of the front month and next-to-front month S&P500 at-
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the-money and out-the-money call and put options. The level of VIX represents a measure of the 

implied volatilities of the entire smile for a constant 30-day to maturity option chain. In order to 

invest in VIX, an investor can take a position in VIX futures or VIX options.  

 

Chicago Board Options Exchange (2003) define VIX as a measure of the expected volatility of the 

S&P500 over the next 30-days, with the prices of VIX futures being based on the current 

expectation of what the expected 30-day volatility will be at a particular time in the future (on the 

expiration date). Although the VIX futures should converge to the spot at expiration, it is possible 

to have significant disparities between the spot VIX and VIX futures prior to expiration. 

 

Speculators can trade on volatility risk with VIX derivatives, with views on whether volatility will 

increase or decrease in the future, while hedgers can use volatility derivatives to avoid exposure to 

volatility risk. Thus, exposure to risk can be incorporated into a financial portfolio without taking 

positions on the S&P500 index itself. Volatility risk can occur for a long trading position, which is 

exposed to the risk of falling market prices, or for a short trading position, which is exposed to the 

risk of rising market prices. Value-at-Risk (VaR) forecasts typically focus on losses due to falling 

market prices, whereby investors are assumed to have long positions.  

 

VIX is a cash index and hence is not traded, much like the various S&P indexes, but VIX futures 

and options lead to indirect trading in VIX. VIX futures can be hedged using VIX futures of 

different maturities, while VIX options can be hedged using VIX futures (see, for example, Sepp 

(2008)). Optimal hedge ratios can be calculated using consistently estimated dynamic conditional 

correlations (see, for example, Caporin and McAleer (2011)). 

 

VIX and its options and futures derivatives has been widely analysed in recent years. For example, 

Brenner et al. (2006) derive an approximate analytical VIX futures pricing formula and analyse 

VIX futures. Sepp (2008) analyses the skewness in the implied volatilities of VIX options. Huskaj 

(2009) calculates the VaR of VIX futures, and shows that long memory, heavy tails and 

asymmetry are important in modelling VIX futures returns. McAleer and Wiphatthanananthakul 

(2010) examine the empirical behaviour of alternative simple expected volatility indexes, and 

compare them with VIX. Chang et al. (2011) analyse the VaR of VIX futures under the Basel 

Accord before, during and after the GFC, and also for the full sample period. Ishida et al. (2011) 

propose a new method for estimating continuous-time stochastic volatility (SV) models for the 
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S&P 500 stock index process using intraday high-frequency observations of both the S&P 500 

index and VIX.  

 

An alternative volatility derivative to VIX is the S&P500 variance futures, which is an expectation 

of the variance of the S&P500 cash index. Variance futures are futures contracts written on 

realized variance, or standardized variance swaps, and may alternatively be interpreted as dynamic 

Bayesian priors. The CBOE Futures Exchange (CFE) introduced the S&P500 3-month variance 

futures on 18 May 2004, and the S&P500 12-month variance futures on 23 March 2006, the 

difference between the 3-month and 12-month variance futures being the data period for 

calculating the variance. The S&P500 12-month variance futures were delisted as of 17 March 

2011. As contract values are available until 18 March 2011, S&P500 12-month variance futures 

did not reach its fifth anniversary. 

 

Investors clearly understand the meaning and value of the VIX cash index as a “fear” index, and 

of VIX options and VIX futures as derivatives of a “fear” index. These are the most popular 

financial derivatives traded in financial markets worldwide. On the other hand, S&P500 3-month 

and 12-month variance futures do not seem to have been understood clearly as derivative 

measures of market volatility or risk, especially as they are, in effect, dynamic Bayesian priors that 

are neither easy to specify nor interpret. It is, therefore, not surprising that S&P500 3-month and 

12-month variance options have not been created or listed. 

  

The S&P500 variance futures are not model based, so the assumptions underlying the index do not 

seem to have been clearly understood. As these two variance futures are thinly traded, their returns 

and volatility are not easy to model accurately using a variety of risk models. As standard risk 

models cannot be applied easily to model the risks and dynamic correlations of these two S&P500 

variance futures, optimal hedge ratios would also be difficult to calculate. Therefore, S&P500 

variance futures might be difficult to use for hedging purposes. 

 

In comparison with substantial empirical analyses of the VIX cash index, VIX futures and VIX 

options, the empirical assessment of S&P variance futures has been virtually non-existent. Zhang 

and Huang (2010) analyse the CBOE S&P500 3-month variance futures. The authors use a mean-

reverting stochastic volatility model for the S&P500 index and present a linear relation between 

the price of variance futures and the square of the VIX cash index. They analyse the relationship 

for 3-month, 6-month and 9-month fixed time-to-maturity variance futures.  
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To date, there seems to have been no analysis of S&P500 12-month variance futures, or volatility 

modeling of variance futures of any maturity. This paper aims to fill the gap by modeling the 

volatility in S&P500 3-month variance futures.  

 

The remainder of the paper is organized as follows. Section 2 reviews some of the most widely-

used univariate models of conditional volatility for analysing and forecasting risk. In Section 3 the 

data used for empirical analysis are presented, and the S&P500 3-month variance futures for the 

full sample period, as well as before, during and after the GFC, are analysed for three conditional 

volatility models and three alternative probability densities. Section 4 presents some concluding 

remarks. 

 

 

2. Univariate Models of Conditional Volatility 

 

McAleer et al. (2010) and Chang et al. (2011), among others, discuss how Authorized Deposit-

taking Institutions (ADIs) can use internal models to determine their Value-at-Risk (VaR) 

thresholds by using alternative univariate time series models for estimating conditional volatility. 

In what follows, we present several well-known conditional volatility models that can be used to 

evaluate strategic market risk disclosure, namely GARCH, GJR and EGARCH, with Gaussian, 

Student-t (with estimated degrees of freedom), and Generalized Normal distribution errors, where 

the parameters are estimated.  

 

These conditional volatility models are chosen as they are widely used in the literature. For an 

extensive discussion of the theoretical properties of several of these models see, for example, Ling 

and McAleer (2002a, 2002b, 2003a), Li et al. (2002), McAleer (2005), and Caporin and McAleer 

(2010). We include a section on these models to present them in a unified framework and notation, 

and to make explicit the specific versions we are using.  

 

2.1 GARCH 

 

For a wide range of financial data series, time-varying conditional variances can be explained 

empirically through the autoregressive conditional heteroskedasticity (ARCH) model, which was 
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proposed by Engle (1982). When the time-varying conditional variance has both autoregressive 

and moving average components, this leads to the generalized ARCH(p,q), or GARCH(p,q), 

model of Bollerslev (1986). It is very common in practice to impose the widely estimated 

GARCH(1,1) specification in advance.  

 

Consider the stationary AR(1)-GARCH(1,1) model for daily returns, ty :   

 

 t 1 2 t-1 t 2y = φ +φ y +ε , φ <1  (1) 

 

for nt ,...,1 , where the shocks to returns are given by:  

 

 
t t t t

2

t t-1 t-1

ε = η h , η ~ iid(0,1)

h =ω+αε + βh ,
 (2)  

 

and 0, 0, 0      are sufficient conditions to ensure that the conditional variance 0th , 

while  +   < 1 is sufficient for a finite unconditional variance which, in turn, is sufficient to 

establish asymptotic properties. The stationary AR(1)-GARCH(1,1) model can be modified to 

incorporate a non-stationary ARMA(p,q) conditional mean and a stationary GARCH(r,s) 

conditional variance, as in Ling and McAleer (2003b). 

 

2.2 GJR 

 

In the symmetric GARCH model, the effects of positive shocks (or upward movements in daily 

returns) on the conditional variance, th , are assumed to be the same as the effect of negative 

shocks (or downward movements in daily returns) of equal magnitude. In order to accommodate 

asymmetric behaviour, Glosten, Jagannathan and Runkle (1992) proposed a model (hereafter GJR), 

for which GJR(1,1) is defined as follows:  

 

 
2

t t-1 t-1 t-1h =ω+(α+γI(η ))ε + βh ,  (3)  
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where 0,0,0,0    are sufficient conditions for ,0th   +  +  /2 < 1 is 

sufficient for a finite unconditional variance which, in turn, is sufficient to establish asymptotic 

properties, and )( tI   is an indicator variable defined by: 

 

  
1, 0

0, 0

t

t

t

I






 


 (4)  

 

where t  has the same sign as t . The indicator variable differentiates between positive and 

negative shocks, so that asymmetric effects in the data are captured by the coefficient  . For 

financial data, it is hypothesized that 0  because negative shocks are expected to have a 

greater impact on risk than do positive shocks of similar magnitude. The asymmetric effect, ,  

measures the contribution of shocks to both short run persistence, 2  , and to long run 

persistence, 2    .  

 

Although GJR permits asymmetric effects of positive and negative shocks of equal magnitude on 

conditional volatility, the special case of leverage, whereby negative shocks increase volatility 

while positive shocks decrease volatility (see Black (1976) for an argument using the debt/equity 

ratio), cannot be accommodated, in practice (for further details on asymmetry versus leverage in 

the GJR model, see Caporin and McAleer (2010)). The reason why leverage does not exist in the 

GJR model is that restriction on the ARCH parameter arising from positive shocks, namely < 0, 

is not consistent with the interpretation of the model. Moreover, a negative and significant 

estímate of   is not found in practice. 

 

2.3 EGARCH 

 

An alternative model to capture asymmetric behaviour in the conditional variance is the 

Exponential GARCH, or EGARCH(1,1), model of Nelson (1991), namely:  

 

 
t -1 t-1

t t-1

t-1 t-1

ε ε
logh =ω+α +γ + βlogh , | β |<1

h h
 (5)  
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where the parameters ,    and   have different interpretations from those in the GARCH(1,1) 

and GJR(1,1) models discussed above.  

 

EGARCH captures asymmetries differently from GJR. The parameters   and   in EGARCH(1,1) 

represent the magnitude (or size) and sign effects of the standardized residuals, respectively, on 

the conditional variance, whereas   and    represent the effects of positive and negative 

shocks, respectively, on the conditional variance in GJR(1,1). Unlike GJR, EGARCH can 

accommodate leverage, namely   < 0 and   <   < -  , depending on the restrictions imposed 

on the size and sign parameters, though leverage is not guaranteed (for further details, see Caporin 

and McAleer (2010)).  

 

As noted in McAleer et al. (2007), there are some important differences between EGARCH and 

the previous two models, as follows: (i) EGARCH is a model of the logarithm of the conditional 

variance, which implies that no restrictions on the parameters are required to ensure 0th ; (ii) 

moment conditions are required for the GARCH and GJR models as they are dependent on lagged 

unconditional shocks, whereas EGARCH does not require moment conditions to be established as 

it depends on lagged conditional shocks (or standardized residuals); (iii) Shephard (1996) 

observed that 1||   is likely to be a sufficient condition for consistency of QMLE for 

EGARCH(1,1); (iv) as the standardized residuals appear in equation (7), 1||   would seem to 

be a sufficient condition for the existence of moments; and (v) in addition to being a sufficient 

condition for consistency, 1||   is also likely to be sufficient for asymptotic normality of the 

QMLE of EGARCH(1,1).   

 

 

3. Data and Empirical Results 

 

According to Datastream, from which the data are obtained. variance futures are cash settled, 

exchange traded futures contracts based on the realized variance of the S&P500 index. Daily data 

on S&P500 3-month variance futures, with 3 month maturity, are obtained for the period 18 May 

2004 to 1 April 2011, while daily data on S&P500 12-month variance futures, with 3 month 

maturity, are obtained for the period 24 March 2006 to 17 March 2011. 
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The three conditional volatility models discussed in the previous section are estimated under the 

following distributional assumptions on the conditional shocks: (1) Gaussian, (2) Student-t, with 

estimated degrees of freedom, and (3) Generalized Normal. As the models that incorporate the t 

distributed errors are estimated by QMLE, the resulting estimators are consistent and 

asymptotically normal, so they can be used for estimation, inference and forecasting. 

 

Figures 1-4 plot the S&P500 3-month and 12-month variance futures, and S&P500 3-month and 

12-month variance futures returns. In Figure 1, there is little evidence of volatility in 3-month 

variance futures until the impact of the Global Financial Crisis (GFC) in the third quarter of 2008, 

with a substantial reduction in 2009. In Figure 2, the high volatility for 12-month variance futures 

persists toward the end of 2009, well after the GFC had been presumed to have ended, after which 

there is much lower volatility. The 3-month variance futures returns in Figure 3 show that positive 

returns were far more numerous, and of greater magnitude, than negative returns. The 12-month 

variance futures returns in Figure 4 also show that positive returns were far more numerous than 

negative returns, but the most extreme return is a single negative return toward the end of 2009.  

 

For the reasons given above, only the 3-month variance futures returns will be used to estimate 

volatility in the empirical analysis. 

 

Tables 1-2 show the price and returns correlations for the 3-month and 12-month variance futures. 

Not surprisingly, the 3-month and 12-month variance futures prices are more highly correlated at 

0.64 than are the corresponding 3-month and 12-month variance futures returns correlations at 

0.52. Neither of these correlations is particularly high. 

 

The GARCH volatility estimates for the 3-month variance futures are presented in Table 3 for 

three probability densities for the full sample (“All”), as well as the subsamples given as Before, 

During and After the GFC. The estimates for All and Before GFC are very similar, with the After 

GFC estimates being quite different from remaining estimates, especially for   and  , and hence 

  +  . Negative estimates of   are obtained for the normal and Student-t distributions, which is 

uncommon for financial data. The estimates of   and   are similar across the three distributions 

only for the During GFC subperiod. The estimate of   +   exceeds unity for the All and Before 

GFC subperiod under the Student-t density.  
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The GJR volatility estimates for the 3-month variance futures are presented in Table 4 for three 

probability densities for the full sample and the three subsamples, namely Before, During and 

After the GFC. Depending on the probability density and the sample period, negative estimates of 

 ,   and   are obtained, which is uncommon for financial data. Asymmetry seems to be 

significant, but whether it is positive or negative, as well as its magnitude, depends on the 

probability density and the sample period considered. Apart from the results for the normal density, 

the estimates seem closest for the All and Before GFC subperiod. The estimate of  +  + /2 

exceeds unity for all three densities for at least one subperiod. 

  

Table 5 gives the EGARCH volatility estimates for the 3-month variance futures for the three 

probability densities for the full sample and the three subsamples. The estimates of  ,   and   

are substantially different between the normal density, on the one hand, and the Student-t and 

generalized normal densities, on the other. As the estímate of   is negative, and the estímate of   

is bounded by  , there is leverage for All, as well as Before and After GFC subperiods for the 

normal density, but there is no leverage for the Student-t and generalized normal densities. For the 

normal density and After GFC subperiod, the estímate of   exceeds unity. 

 

Recursive estimates of the parameters for the full sample period are given in Figures 5, 6 and 7 for 

the GARCH, GJR and EGARCH models, respectively, for the normal, Student-t and generalized 

normal densities. Consistent with the results presented in Tables 3-5 above, the estimates are 

highly variable, and differ according to the probability density. For the GARCH and GJR models, 

the results for the Student-t density seem to be the least variable, with some semblance of 

persistence rather than randomness. The estimates for the EGARCH model display some 

similarity under the Student-t and generalized normal densities. 

 

 

4. Concluding Remarks  

 

Modelling, monitoring and forecasting volatility are indispensible to sensible portfolio risk 

management. The volatility of an asset of composite index can be traded by using volatility 

derivatives, such as volatility and variance swaps, options and futures. The most popular volatility 

index is VIX, with VIX and its options and futures derivatives having been widely analysed in 

recent years.  
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An alternative volatility derivative to VIX is the S&P500 variance futures, which is an expectation 

of the variance of the S&P500 cash index. Variance futures are futures contracts written on 

realized variance, or standardized variance swaps. The S&P500 variance futures are not model 

based, so the assumptions underlying the index do not seem to have been clearly understood. As 

variance futures are typically thinly traded, their returns and volatility are not easy to model 

accurately using a variety of model specifications.  

 

This paper modelled the volatility in S&P500 3-month variance futures before, during and after 

the GFC, as well as for the full data period from 18 May 2004 to 1 April 2011, for each of three 

widely-used conditional volatility models and three alternative densities, in order to determine 

whether exposure to risk can be incorporated into a financial portfolio without taking positions on 

the S&P500 index itself. 

 

The estimates typically differed according to the estimated conditional volatility model, the 

normal, Student-t and generalized normal densities used for estimation, and the data subset. 

Asymmetry and leverage were found to exist in some cases. Recursive estimates of the parameters 

for the full sample period for the GARCH, GJR and EGARCH models for the normal, Student-t 

and generalized normal densities showed the estimates to be highly variable, especially with 

respect to the choice of probability density.  

 

It was shown that S&P500 3-month variance futures could be factored into a financial portfolio as 

a risk component without taking a direct position on the S&P500 cash index. Further research will 

show whether this relationship is generally stable under significant changes in market volatility of 

the underlying S&P500 cash index.  
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Figure 1  

 

S&P500 3-Month Variance Futures  

(18/05/2004 – 01/04/2011) 
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Figure 2  

 

S&P500 12-Month Variance Futures  

(24/03/2006 – 01/04/2011) 
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Figure 3  

 

S&P500 3-Month Variance Futures Returns 

(18/05/2004 – 01/04/2011) 
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Figure 4  

 

S&P500 12-Month Variance Futures Returns 

(24/03/2006 – 01/04/2011) 
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Table 1  

Price Correlations  

 

Variable 3-Month VF 12-Month VF 

3-Month VF 1 0.64 

12-Month VF 0.64 1 

Note: VF denotes variance futures.  

 

 

 

 

Table 2  

Returns Correlations 

 

Variable 3-Month VF 

returns 

12-Month VF 

returns 

3-Month VF 

returns 
1 0.52 

12-Month VF 

returns 
0.52 1 

  Note: VF denotes variance futures.  
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Table 3 

 

GARCH Estimates for 3-month VF Before, During and After GFC 

 

Density Parameter All Before During After 

Normal 

  -0.0030 -0.0044 0.0099 -0.0110 

  0.978 0.9805 0.9224 0.6822 

  +   0.9754 0.9761 0.9321 0.6712 

 

Density Parameter 
All 

(2.16) 

Before 

(2.15) 

During 

(2.5) 

After 

(11) 

Student-t 

  0.1252 0.1697 0.0906 -0.0128 

  0.8952 0.8838 0.9049 0.4147 

  +   1.0204 1.0535 0.9954 0.4018 

 

Density Parameter All Before During After 

Generalized 

Normal 

  0.0358 0.0329 0.0397 0.0694 

  0.8360 0.8512 0.9102 0.4115 

  +   0.8718 0.8841 0.9499 0.4809 

Notes:  All denotes the full sample period. The entries in parentheses for  

the Student-t distribution are the estimated degrees of freedom.
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Table 4  

 

GJR Estimates for 3-month VF Before, During and After GFC  

 

Density Parameter All Before During After 

Normal 

  -0.0065 0.0726 0.0591** -0.0111 

  0.3488 -0.1642 -0.1396 0.3843 

  -0.1726 0.5808 0.5808** 0.9594 

 +  + /2 -0.0047 0.5715 0.5701 1.1404 

 

Density Parameter 
All 

(2.19) 

Before 

(2.27) 

During 

(17.54) 

After 

(2.16) 

Student-t 

  0.0971** 0.0772 0.0301** 0.5375** 

  0.5382** 0.4568 -0.1269** 0.9899** 

  0.8750 0.8677 0.4826** 0.3151** 

 +  +  /2 1.2412 1.1733 0.4492** 1.3475** 

 

Density Parameter All Before During After 

Generalized 

Normal 

  0.0146 0.0150 0.0514** -0.0012 

  0.1689 0.1942 -0.1191** 0.2790 

  0.8738 0.8468 0.7041** 0.9083 

 +  +  /2 0.9729 0.9589 0.6960** 1.04664 

Notes:  All denotes the full sample period. The entries in parentheses for  

the Student-t distribution are the estimated degrees of freedom.  

** These estimates are not statistically significant. 
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Table 5 

 

EGARCH Estimates for 3-month VF Before, During and After GFC  

 

Density Parameter All Before During After 

Normal 

  0.1192 -0.0321 -0.5012 0.0070 

  -0.1674 -0.1730 0.2580 -0.1318 

  -0.8083 -0.8941 -0.4134** 1.0020 

 

Density Parameter 
All 

(2.29) 

Before 

(2.36) 

During 

(2.9) 

After 

(2.21) 

Student-t 

  0.2315 0.2514 -0.1908 0.2685 

  -0.0314 -0.0571 0.2615 0.0307 

  0.9477 0.9500 0.8921 0.6978 

 

Density Parameter All Before During After 

Generalized 

Normal 

  0.1272 0.1284 -0.1859** 0.1647 

  -0.0161 -0.0207 0.2142 0.0013 

  0.9282 0.9241 0.9019 0.7463 

Notes:  All denotes the full sample period. The entries in parenthesis for  

the Student-t distribution are the estimated degrees of freedom.  

** These estimates are not statistically significant.  
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Figure 5 

 

  and   Estimates: GARCH 
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Figure 6  

 

 ,   and   Estimates: GJR 
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Figure 7  

 

 ,   and   Estimates: EGARCH 
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