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1. Introduction

It is difficult to precisely forecast what will happen in the future since we have

insufficient information about the state of the world. Such “uncertainty” affects

the behavior of a decision maker (DM). Further, obtaining new information affects

a DM’s behaviors in a dynamic choice environment. For example, investors faced

with portfolio allocation problems must consider what will happen in the future,

which will affect stock prices and the returns on their portfolios. Moreover, they

will update their beliefs if they obtain some information that affects individual stock

prices or stock markets. Under “uncertainty,” how will a DM update her beliefs

after obtaining new information and how will a DM’s preferences be formulated?

What properties should be taken into account in a dynamic choice environment?

To analyze such situations, particularly in a dynamic environment, we should pay

attention to at least two properties. Dynamic consistency and consequentialism play

significant roles in the literature. However, as explained by Example 2 later in this

section, these two properties cannot be retained simultaneously. The purpose of

this paper is therefore to explore the extent to which dynamic consistency should

be weakened with retaining consequentialism for axiomatizing three updating rules

(the Dempster-Shafer updating rule, naive Bayes’ updating rule, and Fagin-Halpern

updating rule) under Knightian uncertainty or ambiguity,1 particularly within the

framework of Choquet expected utility (CEU).

The importance of the distinction between risk and Knightian uncertainty or

ambiguity has been recognized in the literature since Ellsberg (1961). While risk

is situations described by known probabilities, ambiguity or Knightian uncertainty

is situations where probabilities are neither given nor calculable. To overcome the

shortcoming of subjective expected utility (SEU) (Savage (1954)) raised by Ellsberg

(1961), several works have been proposed in the literature.2 We provide the following

examples to explain how dynamic consistency and consequentialism are violated. To

put it simply, dynamic consistency states that for any acts3 f and g and for any

event A, when a DM prefers f to g without observing A, and f and g coincide on Ac,

she should prefer f to g after observing that A occurred. Consequentialism means

that for any event A, conditional preferences on A only depend on the outcomes

inside the observed event A, but are not affected by the outcomes on Ac.

1Throughout this paper, ambiguity and Knightian uncertainty are used interchangeably.
2For an axiomatization of CEU, see Schmeidler (1989). For an axiomatization of max-min

expected utility (MEU), see Gilboa and Schmeidler (1989).
3For the definition of acts or lotteries, see subsection 2.1.
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Example 1 (Ellsberg (1961)). Suppose that an urn contains 90 balls. The number

of red balls is 30 and the number of black and yellow balls is 60. Consider a bet

(or a lottery) on drawing a ball from this urn. We get $100 depending on the color.

The DM has to choose between two bets (f, f ′) and (g, g′):

f =

 100 if ω ∈ R
0 if ω ∈ B
0 if ω ∈ Y

 f ′ =

 0 if ω ∈ R
100 if ω ∈ B
0 if ω ∈ Y



g =

 100 if ω ∈ R
0 if ω ∈ B
100 if ω ∈ Y

 g′ =

 0 if ω ∈ R
100 if ω ∈ B
100 if ω ∈ Y


For example, bet f ′ states that we obtain $100 if we draw a black ball and nothing

otherwise. Many respondents prefer f to f ′ and g′ to g, denoted by f ≻ f ′ and g′ ≻ g,

respectively. However, these choices cannot be explained within the framework of

SEU, which is called Ellsberg’s paradox.

In the following example, we consider a dynamic version of Ellsberg (1961), which

is based on Dominiak and Lefort (2011).

Example 2. We consider two stages, the ex-ante stage and the interim stage. The

ex-ante stage (t = 0) corresponds to Example 1 in which the DM has no infor-

mation. Then, many respondents prefer f to f ′ and g′ to g, denoted by f ≻ f ′

and g′ ≻ g, respectively. In the interim stage (t = 1), one ball is drawn from the

urn at random and the DM is informed that the ball is not yellow, i.e., {R,B}.
We denote the conditional preferences by ≻{R,B}. On the one hand, since f ≻ f ′

and f |{R,B}c = f ′|{R,B}c , dynamic consistency implies f ≻{R,B} f ′. Similarly, since

g′ ≻ g and g′|{R,B}c = g|{R,B}c , dynamic consistency implies g′ ≻{R,B} g. On the

other hand, since f |{R,B} = g|{R,B}, consequentialism implies f ∼{R,B} g. Similarly,

since f ′|{R,B} = g′|{R,B}, consequentialism implies f ′ ∼{R,B} g
′. Furthermore, conse-

quentialism implies that if f ≻{R,B} f ′, then g ≻{R,B} g′ and vice versa. Similarly,

consequentialism implies that if g′ ≻{R,B} g, then f ′ ≻{R,B} f and vice versa. There-

fore, if conditional preferences respect dynamic consistency, then consequentialism

is violated. On the contrary, if conditional preferences respect consequentialism,

then dynamic consistency is violated.

As pointed out in Dominiak and Lefort (2011), when we consider updating rules

under ambiguity, we must relax either the property of dynamic consistency or the

property of consequentialism. Dominiak et al. (2012) experimentally find that a
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significant majority of subjects violate dynamic consistency rather than consequen-

tialism. However, as they state, whether one property is more plausible than another

remains to be solved. At least, three approaches to this problem exist in the liter-

ature. The first approach is to retain both properties. Restricting some domains

of acts and events, under MEU, Sarin and Wakker (1998) and Epstein and Schnei-

der (2003) maintain these two properties. The second and third approaches are

to drop one of the properties. While Gilboa and Schmeidler (1993), Pires (2002),

Eichberger et al. (2007), and Siniscalchi (2011) maintain consequentialism and drop

dynamic consistency,4 Machina (1989) and Hanany and Klibanoff (2007) maintain

dynamic consistency and drop consequentialism.5 This paper proposes a fourth ap-

proach. That is, by retaining the property of consequentialism and some kinds of

dynamic consistency that are weaker than dynamic consistency, we axiomatize the

Dempster-Shafer updating rule and naive Bayes’ updating rule under CEU. For this

purpose, based on the notion of conditional comonotonicity,6 this paper also provides

an axiomatization of consequentialism under CEU.

The effects of obtaining new information on individual decision making are worth

investigating within the frameworks of CEU and MEU as well as SEU. Ghirardato

(2002) provides a simple axiomatization for conditional preferences within the frame-

work of the Savage acts in which a DM’s beliefs are updated by the Bayesian up-

dating rule. On the one hand, from the viewpoint of statistics, some updating

rules have been proposed by Dempster (1967, 1968), Shafer (1976), and Fagin and

Halpern (1991). On the other hand, from the viewpoint of decision theory, axiomati-

zations of conditional preferences within the framework of CEU have been proposed

by Gilboa and Schmeidler (1993), Pires (2002), and Wang (2003).7 As mentioned in

subsection 2.2, while a DM whose preferences are represented by SEU satisfies both

dynamic consistency and consequentialism, updating rules in CEU do not necessar-

ily satisfy dynamic consistency; in particular, the three updating rules for capacities

(the Dempster-Shafer, naive Bayes’, and Fagin-Halpern updating rules) do not sat-

4Gilboa and Schmeidler (1993), Pires (2002), and Eichberger et al. (2007) consider updating
rules within the framework of CEU. Siniscalchi (2011) analyzes a general framework that does not
restrict attention to any specific model, for example, CEU or MEU.

5Machina (1989) considers a broader class of non-expected utilities than Hanany and Klibanoff
(2007) that analyze updating rules for MEU. Epstein and Le Breton (1993) show that under some
assumptions, dynamic consistency for CEU implies that the DM’s beliefs must be additive.

6The notion of conditional comonotonicity is an extension of comonotonicity. See Section 3.
7Wang (2003) considers a complicated framework and provides a set of axioms that endoge-

nize information filtration. Epstein and Schneider (2003) propose a set of axioms of conditional
preferences within the framework of MEU. Ghirardato et al. (2008) and Hanany and Klibanoff
(2007, 2009) propose a set of axioms of conditional preferences under more general frameworks
than MEU.
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isfy dynamic consistency, but satisfy consequentialism. On the one hand, Dominiak

et al. (2012) experimentally find that a significant majority of subjects violate

dynamic consistency rather than consequentialism. On the other hand, dynamic

consistency plays an important role in intertemporal decision making within the

framework of not only the standard expected utility theory but also non-expected

utility theories. Machina (1989) points out the case in which some kind of incon-

sistency emerges if the DM in intertemporal choice situations does not satisfy dy-

namic consistency. Therefore, the following viewpoints are worth investigating. To

what extent do updating rules for capacities with consequentialism satisfy dynamic

consistency? What kinds of axioms are satisfied by updating rules with consequen-

tialism within the framework of CEU? For the former viewpoint, by proposing the

notions of upper-constrained dynamic consistency and lower-constrained dynamic

consistency (see Section 4 for the definitions) that are weaker axioms than dy-

namic consistency, this paper axiomatizes the Dempster-Shafer and naive Bayes’

updating rules under CEU. For the latter viewpoint, by proposing the notions of

conditional comonotonicity and consequentialism-capacity (see subsection 2.2 for the

definition), we provide an axiomatization of the consequentialism-capacities under

CEU. Furthermore, we characterize the three updating rules for capacities based on

consequentialism-capacities. In addition, based on the notion of the mean preserv-

ing rule (MPR) (see Section 5 for the definition), we characterize the Fagin-Halpern

updating rule together with the Dempster-Shafer and naive Bayes’ updating rules

under CEU. As a related paper, based on consequentialism, Eichberger et al. (2007)

axiomatize the Fagin-Halpern updating rule. In the spirit of their paper, this paper

provides a unified approach for distinguishing capacity updating rules according to

the degree of dynamic consistency. The notion of the MPR enables us to illuminate

the properties of these three updating rules from a consistent viewpoint.

The organization of this paper is as follows. Section 2 provides the notions of

the updating rules and the definitions of Choquet integrals. It also presents the

notions of dynamic consistency and consequentialism. Section 3 provides an axiom-

atization of consequentialism-capacities. Section 4 provides the notions of upper-

constrained dynamic consistency and lower-constrained dynamic consistency and

characterizes the Dempster-Shafer updating rule and naive Bayes’ updating rule by

upper-constrained dynamic consistency and lower-constrained dynamic consistency,

respectively. Section 5 characterizes not only these two updating rules but also the

Fagin-Halpern updating rule based on the MPR. Section 6 concludes this paper.

Some proofs are relegated to the Appendix.
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2. Updating Rules, Consequentialism, and Dynamic Consistency

In this section, we present the notions of the updating rules for probabilities and

capacities and the definitions of Choquet integrals. Furthermore, we present the

notions of dynamic consistency and consequentialism.

2.1 Preliminaries and Updating Rules

Let Ω be a finite state space whose generic element is denoted by ω. A subset

E ⊆ Ω is called an event. Let 2Ω be the power set of Ω and F ⊆ 2Ω be an algebra

of Ω. Let (Ω,F) be a measurable space. A function p : F → [0, 1] is called a

probability if (i) p(A ∪ B) = p(A) + p(B) for all A, B ∈ F with A ∩ B = ∅ and

(ii) p(Ω) = 1, p(∅) = 0. A capacity is an extension of probabilities that requires

only monotonicity instead of additivity (i). That is, a function v : F → [0, 1] is

said to be a capacity if (iii) v(A) ≤ v(B) for all A, B ∈ F with A ⊆ B, and (iv)

v(Ω) = 1, v(∅) = 0. Let X be the non-empty set of all deterministic outcomes and

Y be the set of all distributions over X with finite supports, that is, Y = {y : X →
[0, 1] | y(x) ̸= 0 for finitely many x ∈ X and

∑
x∈X y(x) = 1}, which is a mixture

space.8 Following Anscombe and Aumann (1963), define a lottery act or act as a Y -

valued function on Ω whose range is a finite subset of Y . For notational simplicity,

we identify x ∈ X with the Dirac measure δx ∈ Y , i.e., δx is the probability measure

that assigns probability one to {x}. The set of all functions from Ω to Y is denoted

by L0. The set of all constant functions in L0 is denoted by Lc, and the elements of

Lc are called constant acts. For all f, g ∈ L0 and α ∈ [0, 1], the compound lottery is

defined by (αf +(1−α)g)(ω) ≡ αf(ω)+ (1−α)g(ω) for all ω ∈ Ω. We assume that

the DM has a binary relation ⪰ on L0, which is called an unconditional preference,

and the conditional preferences of the DM who observes an event A are denoted by

a binary relation ⪰A on L0 for each A ∈ F . Throughout this paper, we identify ⪰Ω

with ⪰. We denote by (g, A; f, Ac) the function that coincides with g on A and with

f on Ac. Furthermore, let f |A denote the restriction of an act f to a set A. Let

u : Y → R be a utility function and f : Ω → Y be an act. SEU states that under a

set of axioms, the DM’s preference ⪰ is represented by a probability measure p and

a utility function u, that is, f ⪰ g ⇔
∫
Ω
u(f)dp ≥

∫
Ω
u(g)dp, where the integrals are

in the sense of the Lebesgue integrals. Let v(T ) be the number which DM assigns

8Let Y be the set of all distributions over X with finite supports. Define a mixing operation as
follows. For all y, y′ ∈ Y and all α ∈ [0, 1], αy + (1 − α)y′ ∈ Y is given by (αy + (1 − α)y′)(x) =
αy(x)+ (1−α)y′(x). Then, the set Y with this mixing operation is a mixture space. For example,
see Gilboa (2009).
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to an event T . Example 1 in the Introduction implies that

v(R) > v(B) and v(R ∪ Y ) < v(B ∪ Y ). (1)

If v is additive (i.e., a probability measure), these inequalities do not hold simultane-

ously. By replacing the additivity with the non-additivity, Schmeidler (1989) intends

to explain Ellsberg’s paradox. Schmeidler (1989) proposes CEU, which states that

under a set of axioms, the DM’s preference ⪰ is represented by a capacity v and a

utility function u, that is, f ⪰ g ⇔
∫
Ω
u(f)dv ≥

∫
Ω
u(g)dv, where the integrals are in

the sense of the Choquet integrals. The definition of Choquet integrals is as follows.

Let RΩ = {x|x : Ω → R} be the set of all real-valued functions on Ω. Let 1E be the

indicator function of a set E ∈ 2Ω. For x ∈ RΩ and a capacity v, the Choquet integral

of x with respect to v is defined as
∫
Ω
xdv =

∫∞
0

v(x ≥ α)dα+
∫ 0

−∞(v(x ≥ α)−1)dα,

where v(x ≥ α) = v({ω ∈ Ω|x(ω) ≥ α}). Let E1, E2, . . . , En be a partition of Ω

and f =
∑n

i=1 xi1Ei
with x1 ≥ x2 ≥ · · · ≥ xn be a step function. Then, the Choquet

integral can be written as follows:∫
Ω

fdv =
n−1∑
j=1

(xj − xj+1)v(∪j
i=1Ei) + xn.

Under CEU, it follows from Inequality (1) that
∫
Ω
u(f)dv = (u(100)−u(0))v(R)+

u(0) > (u(100)−u(0))v(B)+u(0) =
∫
Ω
u(f ′)dv and

∫
Ω
u(g)dv = (u(100)−u(0))v(R∪

Y ) + u(0) < (u(100)− u(0))v(B ∪ Y ) + u(0) =
∫
Ω
u(g′)dv, which resolves Ellsberg’s

paradox. Contrary to the case of SEU, these two inequalities hold simultaneously

due to v’s non-additivity.

To investigate the effects of obtaining new information on individual decision

making, we consider the following updating rules. In probability theory, it is common

to consider the Bayes’ rule as the unique updating rule. Let p be a probability on

(Ω,F), and let p(A) > 0 for A ∈ F . Observing such an event A, the Bayes’ rule

(the conditional probability) is defined by

pA(S) =
p(A ∩ S)

p(A)
.

In contrast to probability theory, the theory of capacities proposes various up-

dating rules. Among them, the Dempster-Shafer updating rule (Dempster (1968),

Shafer (1976)), naive Bayes’ updating rule (Gilboa and Schmeidler (1993)), and

Fagin-Halpern updating rule or generalized Bayesian updating rule (Dempster (1967),

Fagin and Halpern (1991)) are well known. Let A ∈ F\{Ω, ∅} be an event. Let v
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be a capacity on (Ω,F). The Dempster-Shafer updating rule is defined by

vDS
A (S) =

v(S ∪ Ac)− v(Ac)

1− v(Ac)
,

the naive Bayes’ updating rule is defined by

vNB
A (S) =

v(S ∩ A)

v(A)
,

and the Fagin-Halpern updating rule is defined by

vFH
A (S) =

v(S ∩ A)

v(S ∩ A) + 1− v(S ∪ Ac)
,

where all the denominators are assumed to be non-zero.

Throughout this paper, for ease of notation, we denote the three updating rules for

capacities, vDS
A , vNB

A , and vFH
A by v∗A for a given event A ∈ F , where ∗ corresponds to

the Dempster-Shafer updating rule, naive Bayes’ updating rule, and Fagin-Halpern

updating rule. In subsection 2.2, we mention the rationale for these three updating

rules in detail. The following two lemmas hold for the three updating rules.

Lemma 1. Let v∗A be the three updating rules for a capacity v. If v is additive, then

for any S ∈ F , v∗A(S) coincides with v(A ∩ S)/v(A).

This lemma states that if a capacity v is additive, then the three updating rules

for v are equal to the Bayes’ rule for a probability measure p.

Lemma 2. Let v be a capacity and v∗A be the three updating rules for v. Then, for

any S ∈ F ,

v∗A(A ∩ S) = v∗A(S).

2.2 Consequentialism and Dynamic Consistency

In this subsection, we investigate whether CEU satisfies consequentialism and

dynamic consistency.

Definition 1. Let A ∈ F be an event, vA be a capacity, and u : X → R be a utility

function. An unconditional or conditional preferences, ⪰A, are said to be captured

by a capacity vA and a utility function u if f ⪰A g ⇔
∫
Ω
u(f)dvA ≥

∫
Ω
u(g)dvA.

For simplicity, in the following, we say that a conditional preference ⪰A is cap-

tured by a capacity vA. To consider the updating rules under SEU and CEU, we

should analyze consequentialism and dynamic consistency. The following definition

is based on Hammond (1988, 1989).
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Definition 2 (Consequentialism). Let A ∈ F\{Ω, ∅} be an event. A conditional

preference ⪰A is said to satisfy consequentialism if the following condition holds:

For any f, g ∈ L0, if f |A = g|A, then f ∼A g.

Consequentialism means that the conditional preferences on A only depend on

the outcomes inside the observed event A, but are not affected by the outcomes on

Ac. Next, we propose the notion of consequentialism-capacity (C-capacity), which

plays a significant role in this paper.

Definition 3 (Consequentialism-Capacity). Let A ∈ F\{Ω, ∅} be an event. Sup-

pose that a conditional preference ⪰A is captured by a capacity vA. Such a capacity

vA is said to be a consequentialism-capacity (C-capacity) if ⪰A satisfies consequen-

tialism.

Now, the following proposition provides a necessary and sufficient condition for

C-capacities.

Proposition 1. Let A ∈ F\{Ω, ∅} be an event. Suppose that a conditional pref-

erence ⪰A is captured by a capacity vA. Then, vA is a C-capacity if and only if

vA(S) = vA(S ∩ A) for all S ∈ F .

Proof. See the Appendix.

The following corollary immediately follows from Lemma 2 and Proposition 1.

Corollary 1. Let A ∈ F\{Ω, ∅} be an event. Then, vDS
A , vNB

A , and vFH
A are all

C-capacities.

Next, the definition of dynamic consistency is in order.

Definition 4 (Dynamic Consistency). Let A ∈ F\{Ω, ∅} be an event. A conditional

preference ⪰A is said to satisfy dynamic consistency if the following condition holds:

For any f, g ∈ L0, if f ⪰ g and f |Ac = g|Ac , then f ⪰A g.

Dynamic consistency means that for any acts f and g, when the DM prefers f

to g without observing A, and f and g coincide on Ac, she should prefer f to g

after observing that A occurred. It is well known that under SEU, both dynamic

consistency and consequentialism are satisfied (e.g. see Dominiak and Lefort (2011)).

It is also well known that contrary to the Bayes’ updating rule for probabilities, the

three updating rules for capacities do not satisfy dynamic consistency.

Lemma 3. The Dempster-Shafer, naive Bayes’, and Fagin-Halpern updating rules

do not necessarily satisfy dynamic consistency.
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Recall Example 2 in the Introduction. Recall also that v∗A corresponds to the three

updating rules (the Dempster-Shafer, naive Bayes’, and Fagin-Halpern updating

rules) for a capacity v given A. Let A = {R,B}. If the DM’s preferences are

captured by a capacity v and the choices in Example 2 are consistent with dynamic

consistency, then the following inequalities hold:

v∗A(R) > v∗A(B), and (2)

v∗A(R ∪ Y ) < v∗A(B ∪ Y ). (3)

From Lemma 2, it follows that

v∗A(R) = v∗A(R ∪ Y ), and (4)

v∗A(B) = v∗A(B ∪ Y ). (5)

From Example 2, we find that if both Equalities (4) and (5) hold, then either

Inequality (2) or Inequality (3) is violated, which proves Lemma 3 in an informal

way. Moreover, from simple calculations, we can also find which updating rules

violate Inequality (2) or Inequality (3). If the DM’s beliefs are updated by the

Dempster-Shafer updating rule, it follows that

vDS
A (R) = vDS

A (R ∪ Y ) =
v(R ∪ Y )− v(Y )

1− v(Y )

<
v(B ∪ Y )− v(Y )

1− v(Y )
= vDS

A (B) = vDS
A (B ∪ Y ),

where the inequality holds by Inequality (1). Thus, the Dempster-Shafer updating

rule satisfies Inequality (3), but does not satisfy Inequality (2).

If the DM’s beliefs are updated by the naive Bayes’ updating rule, it follows that

vNB
A (R) = vNB

A (R ∪ Y ) =
v(R)

v(R ∪B)
>

v(B)

v(R ∪B)
= vNB

A (B) = vNB
A (B ∪ Y ),

where the inequality holds by Inequality (1). Thus, the naive Bayes’ updating rule

satisfies Inequality (2), but does not satisfy Inequality (3).

If the DM’s beliefs are updated by the Fagin-Halpern updating rule, it follows

that

vFH
A (R) = vFH

A (R ∪ Y ) =
v(R)

v(R) + 1− v(R ∪ Y )
and

vFH
A (B) = vFH

A (B ∪ Y ) =
v(B)

v(B) + 1− v(B ∪ Y )
.
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Thus, there exist two possibilities that Inequality (2) is satisfied and Inequality (3)

is violated, and vice versa.

The above discussions lead to the following observations:

1. While the three updating rules for capacities satisfy consequentialism, the three

updating rules do not satisfy dynamic consistency.

2. While the three updating rules for capacities do not fully satisfy dynamic consis-

tency, the three updating rules partially satisfy dynamic consistency.

Therefore, the following viewpoints are worth investigating:

1. What kinds of axioms are satisfied by the updating rules with consequentialism

under CEU?

2. To what extent do the updating rules for capacities with consequentialism satisfy

dynamic consistency?

The former viewpoint is discussed in Section 3. We discuss the latter viewpoint

as follows. Keeping in mind that while the Dempster-Shafer updating rule satisfies

Inequality (3), it does not satisfy Inequality (2), we focus on the difference between

Inequalities (2) and (3). As in the discussion above, let A = {R,B}. While acts f

and f ′ do not take the maximum value on Ac = {Y }, g and g′ take the maximum

value on Ac. From this observation, we propose the notion of upper-constrained

dynamic consistency in Section 4.

Similar to the above argument, while acts f and f ′ take the minimum value on

{R,B}c = {Y }, g and g′ do not take the minimum value on {R,B}c = {Y }. From
this observation, we propose the notion of lower-constrained dynamic consistency in

Section 4.

3. An Axiomatization of C-Capacities

In this section, we provide an axiomatization of C-capacities within the framework

of Schmeidler (1989). First, we introduce the A-conditional comonotonicity that

extends the notion of comonotonicity.

Definition 5. Let x, y ∈ RΩ. Two functions x and y are comonotonic if (x(ω) −
x(ω′))(y(ω)− y(ω′)) ≥ 0 for all ω, ω′ ∈ Ω.

Definition 6. Let x, y ∈ RΩ and A ∈ F . Two functions x and y are A-conditionally

comonotonic if (x(ω)− x(ω′))(y(ω)− y(ω′)) ≥ 0 for all ω, ω′ ∈ A.9

9Jouini and Napp (2004) propose the notion of conditionally comonotonic random variables
with respect to some σ-algebra G. However, our notion of conditional comonotonicity is different
from that of Jouini and Napp (2004).
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Schmeidler (1989) extends the notion of comonotonicity to L0 and considers the

DM’s preference orders on L0 as follows.

Definition 7 (Schmeidler (1989)). Let f, g ∈ L0. Two acts f and g are said to be

comonotonic if there are no ω, ω′ ∈ Ω such that f(ω) ≻ f(ω′) and g(ω′) ≻ g(ω).

Based on Definition 7, we propose the following notion. The notion ofA-conditional

comonotonicity of lotteries requires that two lotteries in L0 should be comonotonic

on a set A.

Definition 8. Let f, g ∈ L0 and A ∈ F . Two acts f and g are said to be A-

conditionally comonotonic if there are no ω, ω′ ∈ A such that f(ω) ≻ f(ω′) and

g(ω′) ≻ g(ω).

For the axiomatization of C-capacities under CEU, the following axioms are in

order. In the following arguments, fix an event A ∈ F\{Ω, ∅}.

Axiom 1 (Weak Order). (a) For all T ∈ {Ω, A} and all f, g in L0, f ⪰T g or

g ⪰T f .

(b) For all T ∈ {Ω, A} and all f, g, h in L0, if f ⪰T g and g ⪰T h, then f ⪰T h.10

Axiom 2 (Conditionally Comonotonic Independence). For all T ∈ {Ω, A} and

every pairwise T -conditionally comonotonic (i.e., comonotonic or A-conditionally

comonotonic) f, g, h ∈ L0 and α ∈ (0, 1), f ⪰T g implies αf + (1 − α)h ⪰T

αg + (1− α)h.

Axiom 3 (Continuity). For all T ∈ {Ω, A} and all f, g, h in L0, if f ⪰T g and

g ⪰T h, then there exist α and β ∈ (0, 1) such that αf + (1 − α)h ⪰T g and

g ⪰T βf + (1− β)h.

Axiom 4 (Monotonicity). For all T ∈ {Ω, A} and all f , g in L0, if f(ω) ⪰T g(ω)

on Ω, then f ⪰T g.

Axiom 5 (Non-degeneracy). There exist f, g ∈ Lc such that f ≻Ω g.

Axiom 6 (Consistency for Lotteries). For all y1, y2 in Lc; y1 ⪰A y2 ⇔ y1 ⪰Ω y2.

Axiom 7 (Singleton Consequentialism Principle). For all ω ∈ Ac and

all y1, y2, y3 ∈ Lc, (y1, {ω}; y3,Ω\{ω}) ∼A (y2, {ω}; y3,Ω\{ω}).
10A binary relation ⪰T is a weak order if and only if ≻T is asymmetric and negatively transitive,

whereas a binary relation ≻T is asymmetric if for all f, g ∈ L0, f ≻T g ⇒ g ⊁T f and it is
negatively transitive if for all f, g, h ∈ L0, f ⊁T g and g ⊁T h ⇒ f ⊁T h. For example, see Kreps
(1988, p.9).
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Some comments are in order. Axioms 1, 3, 4, and 5 are standard in the litera-

ture. Axiom 2 is a restriction of the Comonotonic Independence Axiom (Schmeidler

(1989)) on a certain event A. This axiom leads to A-conditionally comonotonic ad-

ditivity (see the Appendix for the definition) in the representation. Axioms 6 and

7 should be mentioned in detail. Axiom 6 states that the unconditional preference

⪰ and conditional preference ⪰A coincide on the set of all constant acts Lc. Ax-

iom 6 plays a key role in deriving the utility function u for ⪰ and ⪰A. Axiom 7

is the axiom that imposes consequentialism on the singleton set contained in the

complementary set of a certain realized event A. In the case of SEU, this axiom

guarantees that for every event contained in the complementary set, its probability

measure is equal to zero. However, in the case of CEU, this statement does not gen-

erally hold true. For example, if vA is a capacity, then neither vA({ω1, ω2}) = 0 nor

vA({ω1, ω3}) = vA({ω3}) for ω1, ω2 ∈ Ac and ω3 ∈ A is guaranteed by only Axiom

7. In our paper, Axiom 2 permits the DM’s representation to be A-conditionally

comonotonic additive. Then, Axiom 7 together with Axiom 2 guarantees that for

every event contained in the complementary set, its capacity is equal to zero.

To compare our result with Schmeidler (1989), we present Schmeidler’s (1989)

axiomatization theorem.

Theorem 1. (Schmeidler (1989)) A binary relation ⪰ defined on L0 satisfies Weak

Order, Comonotonic Independence, Continuity, Monotonicity, and Non-degeneracy

if and only if there exist a unique capacity v on F and a non-constant affine real-

valued function u on Y such that for all f and g in L0,

f ⪰ g ⇔
∫
Ω

u(f(ω))dv(ω) ≥
∫
Ω

u(g(ω))dv(ω).

Now, we can provide an axiomatization of C-capacities.

Theorem 2. Binary relations ⪰ and ⪰A defined on L0 satisfy Axioms 1-7 if and

only if there exist capacities v and vA on F and a non-constant affine real-valued

function u on Y such that for all f and g in L0,

f ⪰ g ⇔
∫
Ω

u(f(ω))dv(ω) ≥
∫
Ω

u(g(ω))dv(ω) and

f ⪰A g ⇔
∫
Ω

u(f(ω))dvA(ω) ≥
∫
Ω

u(g(ω))dvA(ω),

where vA(S) = vA(S ∩ A) for all S ∈ F .

Proof. (If part) See the Appendix.
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The only if part is proved in the Appendix using Lemmas 4 and 5 with Lemmas

11-14. In the following, we present only Lemmas 4 and 5. Lemmas 11-14 are

presented in the Appendix.

Lemma 4. Let ⪰ and ⪰A on L0 satisfy Axioms 1-7. Then, there exist capacities

v and vA on F and a non-constant affine real-valued function u on Y such that for

all f and g in L0,

f ⪰ g ⇔
∫
Ω

u(f(ω))dv(ω) ≥
∫
Ω

u(g(ω))dv(ω) and

f ⪰A g ⇔
∫
Ω

u(f(ω))dvA(ω) ≥
∫
Ω

u(g(ω))dvA(ω).

Proof. See the Appendix.

Lemma 5. Let vA be the capacity in Lemma 4. Let a, b ∈ RΩ be any real-valued

functions on Ω. If a and b are A-conditionally comonotonic, then
∫
Ω
(a + b)dvA =∫

Ω
advA +

∫
Ω
bdvA.

Proof. See the Appendix.

For Lemmas 4 and 5, two papers should be mentioned. Ghirardato et al. (2004,

Lemma 1) provide an axiomatization of the invariant biseparable preference based

on five axioms. Among these five axioms, four (Weak Order, Archimedean Axiom,

Monotonicity, and Non-degeneracy) coincide with Axioms 1, 3, 4, and 5 in this

paper. Axiom 2 (Certainty Independence) in Ghirardato et al. (2004) differs from

Axiom 2 in this paper.11 Ghirardato et al. (2004) propose Comonotonic Ambiguity

Neutrality, which states that for all f, g ∈ L0 with f ∼ g, if f and g are comonotonic,

then (1/2)f + (1/2)g ∼ g. Ghirardato et al. (2004, Proposition 2) also show that

if invariant biseparable preferences satisfy Comonotonic Ambiguity Neutrality, then

the DM’s preferences are represented by CEU. Note that Axiom 2 in this paper

implies both Certainty Independence and Comonotonic Ambiguity Neutrality in

Ghirardato et al. (2004). Thus, following the result of Ghirardato et al. (2004,

Proposition 2), Lemma 4 in this paper holds.

Asano and Kojima (2015) provide an axiomatization theorem, which states that

under a set of axioms, the DM’s preferences are represented by some functional

11Ghirardato et al. (2004) show that if the above-mentioned five axioms are satisfied, then the
DM’s preferences are represented by a monotonic, constant linear functional. For the definition of
monotonicity and constant linearity of functionals, see Ghirardato et al. (2004, p.141).
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satisfying E-cominimum additivity.12 Set E = 2A in Asano and Kojima (2015).

Then, Axiom 6 (E-Cominimum Independence) in Asano and Kojima (2015) coincides

with Axiom 2 (Conditionally Comonotonic Independence) in this paper. Moreover,

Axioms 1, 3, 4, 5, and 6 in Asano and Kojima (2015) correspond to Axioms 1-5 in

this paper. Therefore, it follows from Theorem 2 in Asano and Kojima (2015) that

Lemma 4 in this paper and Lemma 2 in Asano and Kojima (2015) imply Lemma 5

in this paper.

4. Constrained Dynamic Consistency

In this section, by proposing the notions of lower-constrained dynamic consistency

and upper-constrained dynamic consistency, we investigate the extent to which the

updating rules for capacities with consequentialism satisfy dynamic consistency.

As pointed out in Section 2, the Dempster-Shafer and naive Bayes’ updating

rules do not satisfy dynamic consistency. According to Machina (1989), dynamic

consistency should be satisfied but it is a strong requirement. Thus, by proposing

weaker axioms than dynamic consistency, we investigate the extent to which the

Dempster-Shafer and naive Bayes’ updating rules satisfy dynamic consistency. We

first consider the Dempster-Shafer updating rule. Let f, g ∈ L0 and A ∈ F\{Ω, ∅}.
Define the subset ΩUC(f, g;A) of Ω by

ΩUC(f, g;A) = Ac ∪ {ω ∈ A|(∃ω′ ∈ Ac, f(ω) ≻ f(ω′)) or

(∃ω′ ∈ Ac, g(ω) ≻ g(ω′))}.

That is, this set ΩUC(f, g;A) is defined by the union of Ac and the states in A

such that at least either f or g takes values strictly preferred to the minimal values

of f or g on Ac. Applying this notion to Example 2 in the Introduction, we obtain

the following:

ΩUC(f, f ′; {R,B}) = {R,B, Y } and ΩUC(g, g′; {R,B}) = {Y }.

Based on ΩUC , we propose the following axiom.

Axiom 8 (Upper-Constrained Dynamic Consistency (UCDC)). Let

A ∈ F\{Ω, ∅} be an event. For all f and g such that f(ω) = g(ω) for all ω ∈
ΩUC(f, g;A), f ⪰ g ⇔ f ⪰A g.

12Let E ⊆ 2Ω be a collection of the subsets of Ω. Two functions on Ω are E-cominimum if,
for each E ∈ E , the set of minimizers of x on E and that of y on E have a common element.
A functional I on the set of functions of Ω is E-cominimum additive if I(x + y) = I(x) + I(y)
whenever two functions x and y are E-cominimum. The notion of E-cominimum additivity was
first proposed by Kajii et al. (2007).
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Applying this axiom to Example 2 in the Introduction, it follows that g′ ≻A g

because g′ ≻ g and g = g′ on ΩUC(g, g′;A), where A = {R,B}. However, Axiom

8 does not require f ′ ≻A f . The following lemma shows that the Dempster-Shafer

updating rule satisfies Axiom 8.

Lemma 6. Let A ∈ F\{Ω, ∅} be an event. Suppose that unconditional and condi-

tional preferences, ⪰ and ⪰A on L0, are captured by a capacity v and its Dempster-

Shafer updating rule vDS
A , respectively. Moreover, suppose that v(Ac) ̸= 1. Then,

such preferences, ⪰ and ⪰A, satisfy Axiom 8.

Proof. See the Appendix.

Conversely, if the DM’s preferences are captured by a C-capacity and satisfy

Axiom 8, her conditional capacity is equal to the Dempster-Shafer updating rule.

Lemma 7. Let A ∈ F\{Ω, ∅} be an event. Suppose that unconditional and condi-

tional preferences, ⪰ and ⪰A on L0, are captured by a capacity v and its C-capacity

vA, respectively. Moreover, suppose that v(Ac) ̸= 1. Then, if ⪰ and ⪰A satisfy

Axiom 8, vA = vDS
A .

The next corollary follows from Lemma 7 and Theorem 2.

Corollary 2. Let A ∈ F\{Ω, ∅} be an event. Suppose that unconditional and con-

ditional preferences, ⪰ and ⪰A on L0, satisfy Axioms 1-7, and Axiom 8. For the

derived capacity v, if v(A) ̸= 1, the derived conditional C-capacity vA is equal to

vDS
A .

Lemma 7 can be shown by Axiom 8 and the following axiom (Axiom GS1). Gilboa

and Schmeidler (1993) provide a choice-theoretic foundation with the Dempster-

Shafer updating rule.

Axiom GS1 (Gilboa and Schmeidler (1993)).

f ⪰A g ⇔ (f, A; y∗, Ac) ⪰ (g, A; y∗, Ac), where y∗ is the maximal outcome.

If the DM satisfies Axiom GS1, she is assumed to consider that the maximal

(or the best) outcome would have followed if an event A had not occurred. That

is, she considers that the maximal outcome has occurred in Ac. In this sense, the

Dempster-Shafer updating rule is a pessimistic inference.

Axiom GS1 is a superior axiom in that it fully captures the characteristics of the

Dempster-Shafer updating rule by only one axiom. However, from the viewpoint
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of dynamic consistency, there exists some room for improvement. First, in Axiom

GS1, the DM’s conditional preferences are assumed to compare two acts in which

the outcomes are constant, y∗, in Ac, which is considered to be a strong require-

ment. Second, the relation between dynamic consistency and Axiom GS1 is blurred

because the acts in the DM’s preferences with respect to the conditional preferences

⪰A are different from those with respect to the unconditional preferences ⪰. By

introducing upper-constrained dynamic consistency, we can clarify that Axiom GS1

simultaneously captures two behavioral features; that is, Axiom GS1 holds if and

only if both consequentialism and Axiom 8 (UCDC) hold.

First, we assume consequentialism and Axiom 8. We define two acts F and G

by F = (f, A; y∗, Ac) and G = (g, A; y∗, Ac), respectively. Suppose that F ⪰ G.

Because ΩUC(F,G;A) = Ac, F (ω) = G(ω) for all ω ∈ ΩUC(F,G;A). It follows from

Axiom 8 that F ⪰ G ⇔ F ⪰A G. It also follows from consequentialism that F ∼A f

and G ∼A g. Then, F ⪰ G ⇔ f ⪰A g, which is exactly GS1. We show the converse

in Section 5.

Now, we turn to the naive Bayes’ updating rule. Let f, g ∈ L0 and A ∈ F\{Ω, ∅}.
Define the subset ΩLC(f, g;A) of Ω by

ΩLC(f, g;A) = Ac ∪ {ω ∈ A|(∃ω′ ∈ Ac, f(ω′) ≻ f(ω)) or

(∃ω′ ∈ Ac, g(ω′) ≻ g(ω))}.

That is, this set ΩLC(f, g;A) is defined by the union of Ac and the states in A

such that at least either f or g takes values strictly less preferred to the maximal

values of f or g on Ac. Applying this notion to Example 2 in the Introduction, we

obtain the following:

ΩLC(f, f ′; {R,B}) = {Y } and ΩLC(g, g′; {R,B}) = {R,B, Y }.

Based on ΩLC , we propose the following axiom.

Axiom 9 (Lower-Constrained Dynamic Consistency (LCDC)). Let

A ∈ F\{Ω, ∅} be an event. For all f and g such that f(ω) = g(ω) for all ω ∈
ΩLC(f, g;A), f ⪰ g ⇔ f ⪰A g.

Applying this axiom to Example 2 in the Introduction, it follows that f ≻A f ′

because f ≻ f ′ and f = f ′ on ΩLC(f, f ′;A), where A = {R,B}. However, Axiom 9

does not require g ≻A g′. The following lemma shows that the naive Bayes’ updating

rule satisfies Axiom 9.
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Lemma 8. Let A ∈ F\{Ω, ∅} be an event. Suppose that unconditional and con-

ditional preferences, ⪰ and ⪰A on L0, are captured by a capacity v and its naive

Bayes’ updating rule vNB
A , respectively. Moreover, suppose that v(A) ̸= 0. Then,

such preferences, ⪰ and ⪰A, satisfy Axiom 9.

Proof. We omit the proof because this lemma can be shown in a similar way to the

proof of Lemma 6.

Conversely, if the DM’s preferences are captured by a C-capacity and satisfy

Axiom 9, her conditional capacity is equal to the naive Bayes’ updating rule.

Lemma 9. Let A ∈ F\{Ω, ∅} be an event. Suppose that unconditional and condi-

tional preferences, ⪰ and ⪰A on L0, are captured by a capacity v and its C-capacity

vA, respectively. Moreover, suppose that v(A) ̸= 0. Then, if ⪰ and ⪰A satisfy Axiom

9, vA = vNB
A .

The next corollary follows from Lemma 9 and Theorem 2.

Corollary 3. Let A ∈ F\{Ω, ∅} be an event. Suppose that unconditional and con-

ditional preferences, ⪰ and ⪰A on L0, satisfy Axioms 1-7, and Axiom 9. For the

derived capacity v, if v(A) ̸= 0, then the derived conditional C-capacity vA is equal

to vNB
A .

It is worth investigating the relationship between Axiom 9 and the following

axiom proposed by Gilboa and Schmeidler (1993). Gilboa and Schmeidler (1993)

provide a choice-theoretic foundation with the naive Bayes’ updating rule.

Axiom GS2 (Gilboa and Schmeidler (1993)).

f ⪰A g ⇔ (f, A; y∗, A
c) ⪰ (g, A; y∗, A

c), where y∗ is the minimal outcome.13

An argument similar to Axiom GS1 can be applied to Axiom GS2, and it can be

shown that both consequentialism and Axiom 9 (LCDC) imply Axiom GS2; hence,

the results in Section 5 show the converse. As a result, we can show that Axiom

GS2 holds if and only if both consequentialism and Axiom 9 hold.

5. Mean-Preserving Axiom and Three Updating Rules

13If the DM satisfies Axiom GS2, she is assumed to consider that the minimal (or the worst)
outcome would have followed if an event A had not occurred. That is, she considers that the
minimal outcome has occurred in Ac. In this sense, the naive Bayes’ updating rule is an optimistic
one.
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In Sections 3 and 4, C-capacities played a significant role in axiomatizations.

Section 3 provided an axiomatization of C-capacities. Based on C-capacities, Sec-

tion 4 provided axiomatizations of the Dempster-Shafer and naive Bayes’ updating

rules by UCDC and LCDC. In a related paper, Eichberger et al. (2007) provide an

axiomatization of the Fagin-Halpern updating rule based on consequentialism. In

the spirit of Eichberger et al. (2007), this section provides a unified approach for

distinguishing capacity updating rules according to the degree of dynamic consis-

tency. For this purpose, we introduce the notion of the mean-preserving rule (MPR)

as axioms.

The purpose of introducing the MPR is threefold. First, through the MPR, we can

show that Axiom GS1 implies Axiom 8 (UCDC) and consequentialism, which shows

that Axiom GS1 holds if and only if both Axiom 8 (UCDC) and consequentialism

hold. Similarly, through the MPR, we can show that Axiom GS2 implies Axiom

9 (LCDC) and consequentialism, which shows that Axiom GS2 holds if and only

if both Axiom 9 (LCDC) and consequentialism.14 Second, we can also axiomatize

the Fagin-Halpern updating rule. Finally, we can characterize the three updating

rules for capacities within the same framework (i.e., the MPR), which enables us to

illuminate the properties of the three updating rules from a consistent viewpoint.

First, to introduce the MPR, we present the following lemma, which is easily

shown. Therefore, the proof is omitted.

Lemma 10. Let A ∈ F\{Ω, ∅} be an event. Let ⪰ and ⪰A be captured by a prob-

ability p, its conditional probability pA, and a common utility function u. Suppose

that p(A) ̸= 0. Then, for any f ∈ L0 and any m ∈ Lc,

f ∼ (m,A; f, Ac) ⇔ f ∼A (m,A; f, Ac).

Furthermore, it holds that

u(m) =

∫
A

u(f |A)dpA. (6)

We call this property, including Equation (6), the MPR. This rule states that

for unconditional and conditional preferences, we can take any constant act m that

makes f indifferent on an event A, which can be interpreted as some kind of aver-

aging. The MPR, which holds for SEU, does not necessarily hold under CEU. This

is because the rank-dependent property of CEU makes CEU violate the sure-thing

14Recall that in Section 4, we showed that Axiom 8 and consequentialism imply Axiom GS1 and
that Axiom 9 and consequentialism imply Axiom GS2.
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principle. However, by restricting acts extremely, a slightly modified MPR holds for

the three updating rules for capacities, and these updating rules are axiomatized

under the MPR.

First, we axiomatize the Dempster-Shafer updating rule. Let y∗ and y∗ be the

maximal and minimal outcomes, respectively. Let A ∈ F\{Ω, ∅} be an event. Define

the set of acts, L2
y∗,Ac ⊂ L0, whose elements satisfy the following:

f(ω) =

{
y∗ or y∗ if ω ∈ A

y∗ if ω ∈ Ac.

For axiomatizing the Dempster-Shafer updating rule, we propose the following

axiom that imposes the MPR only on L2
y∗,Ac .

Axiom 10. Let A ∈ F\{Ω, ∅} be an event. For all f ∈ L2
y∗,Ac , and all m ∈ Lc,

f ∼ (m,A; f, Ac) ⇔ f ∼A (m,A; f, Ac).

Based on Axiom 10, the Dempster-Shafer updating rule can be axiomatized as

follows.

Theorem 3. Let A ∈ F\{Ω, ∅} be an event. Let ⪰ and ⪰A be captured by a capacity

v, its C-capacity vA, and a common utility function u. Suppose that v(Ac) ̸= 1.

Then, the following are equivalent.

(i) A conditional preference ⪰A satisfies Axiom 10.

(ii) vA = vDS
A .

Proof. Note that 1− v(Ac) ̸= 0. Take any S ∈ F , and define fS ∈ L2
y∗,Ac as follows:

fS(ω) =

{
y∗ if ω ∈ S ∪ Ac

y∗ if ω ∈ Sc ∩ A.

Then, it follows that

fS ∼ (m,A; fS, A
c)

⇔ (u(y∗)− u(y∗))v(S ∪ Ac) + u(y∗) = (u(y∗)− u(m))v(Ac) + u(m)

⇔ (u(y∗)− u(y∗))v(S ∪ Ac)− (u(y∗)− u(y∗))v(A
c) + u(y∗)

= (u(y∗)− u(m))v(Ac)− (u(y∗)− u(y∗))v(A
c) + u(m)

⇔ (u(y∗)− u(y∗))(v(S ∪ Ac)− v(Ac)) = (u(m)− u(y∗))(1− v(Ac))

⇔ u(m)− u(y∗)

u(y∗)− u(y∗)
=

v(S ∪ Ac)− v(Ac)

1− v(Ac)
= vDS

A (S). (7)
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Similarly, it follows that

fS ∼A (m,A; fS, A
c)

⇔ u(m)− u(y∗)

u(y∗)− u(y∗)
=

vA(S ∪ Ac)− vA(A
c)

1− vA(Ac)
= vA(S), (8)

where the last equality holds by vA(S∪Ac) = vA((S∪Ac)∩A) = vA(S∩A) = vA(S)

and vA(A
c) = vA(A

c ∩A) = 0 since vA is a C-capacity. If Axiom 10 holds, vA = vDS
A

by Equations (7) and (8). Conversely, suppose that vA = vDS
A . Take any f ∈ L2

y∗,Ac .

Let S = {ω ∈ A|f(ω) = y∗}. Then, fS coincides with f . Since vA = vDS
A , Axiom 10

holds by Equations (7) and (8).

We next investigate the relationship between Axiom GS1 and Axiom 10. First,

we can check that Axiom GS1 implies Axiom 10 and consequentialism as follows.

Axiom GS1 implies Axiom 10 because fS(ω) = y∗ on Ac. Next, let f, g ∈ L0 with

f |A = g|A. Then, (f, A; y∗, Ac) ∼ (g, A; y∗, Ac) since (f, A; y∗, Ac) = (g, A; y∗, Ac). If

Axiom GS1 holds, f ∼A g, which shows that Axiom GS1 implies consequentialism.

Then, we know the following implications:

the Dempster-Shafer updating rule ⇒ Axiom 8 (UCDC) + consequentialism ⇒ Ax-

iom GS1 ⇒ Axiom 10 + consequentialism ⇒ the Dempster-Shafer updating rule.

The first and second implications follow from the argument in Section 4, the third

implication follows from the above argument, and the fourth implication (indeed,

the equivalence) follows from Theorem 3. Therefore, we obtain the following equiv-

alences:

the Dempster-Shafer updating rule ⇔ Axiom 8 (UCDC) + consequentialism ⇔ GS1

⇔ Axiom 10 + consequentialism.

Next, we axiomatize the naive Bayes’ updating rule. Let y∗ and y∗ be the maximal

and minimal outcomes, respectively. Let A ∈ F\{Ω, ∅} be an event. Define the set

of acts, L2
y∗,Ac ⊂ L0, whose elements satisfy the following:

f(ω) =

{
y∗ or y∗ if ω ∈ A

y∗ if ω ∈ Ac.

For axiomatizing the naive Bayes’ updating rule, we propose the following axiom

that imposes the MPR only on L2
y∗,Ac .

Axiom 11. Let A ∈ F\{Ω, ∅} be an event. For all f ∈ L2
y∗,Ac , and all m ∈ Lc,

f ∼ (m,A; f, Ac) ⇔ f ∼A (m,A; f, Ac).

Based on Axiom 11, the naive Bayes’ updating rule can be axiomatized as follows.
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Theorem 4. Let A ∈ F\{Ω, ∅} be an event. Let ⪰ and ⪰A be captured by a capacity

v, its C-capacity vA, and a common utility function u. Suppose that v(A) ̸= 0. Then,

the following are equivalent.

(i) A conditional preference ⪰A satisfies Axiom 11.

(ii) vA = vNB
A .

Proof. Note that v(A) ̸= 0. Take any S ∈ F , and define fS ∈ L2
y∗,Ac as follows:

fS(ω) =

{
y∗ if ω ∈ S ∩ A
y∗ otherwise.

Then, it follows that

fS ∼ (m,A; fS, A
c) ⇔ u(m)− u(y∗)

u(y∗)− u(y∗)
=

v(S ∩ A)

v(A)
= vNB

A (S).

Furthermore, similarly, it follows that

fS ∼A (m,A; fS, A
c) ⇔ u(m)− u(y∗)

u(y∗)− u(y∗)
= vA(S).

Therefore, if Axiom 11 holds, vA = vNB
A . Similar to the proof of Theorem 3, the

converse can be proved.

As with the Dempster-Shafer updating rule, we can show that Axiom GS2 implies

both Axiom 11 and consequentialism.15 Then, we know the following implications:

the naive Bayes’ updating rule ⇒ Axiom 9 (LCDC) + consequentialism ⇒ Axiom

GS2 ⇒ Axiom 11 + consequentialism ⇒ the naive Bayes’ updating rule.

The first and second implications follow from the argument in Section 4, the third

implication follows from the above argument, and the fourth implication (indeed,

the equivalence) follows from Theorem 4. Therefore, we obtain the following equiv-

alences:

the naive Bayes’ updating rule ⇔ Axiom 9 (LCDC) + consequentialism ⇔ GS2 ⇔
Axiom 11 + consequentialism.

Finally, based on C-capacities, we axiomatize the Fagin-Halpern updating rule as

well as the Dempster-Shafer and naive Bayes’ updating rules. Let m ∈ Lc such that

y∗ ≻ m ≻ y∗, where y∗ and y∗ be the maximal and minimal outcomes, respectively.

Let A ∈ F\{Ω, ∅} be an event. Define the set of acts, L3
m,Ac ⊂ L0, whose elements

satisfy the following:

f(ω) =

{
y∗ or y∗ if ω ∈ A

m if ω ∈ Ac.
15Note that Axiom GS2 implies Axiom 11 because fS(ω) = y∗ on Ac. Next, let f, g ∈ L0 with

f |A = g|A. Then, (f,A; y∗, A
c) ∼ (g,A; y∗, A

c) since (f,A; y∗, A
c) = (g,A; y∗, A

c).
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For axiomatizing the Fagin-Halpern updating rule, we propose the following ax-

iom that imposes the MPR only on L3
m,Ac .

Axiom 12. Let A ∈ F\{Ω, ∅} be an event. For all m ∈ Lc such that y∗ ≻ m ≻ y∗,

and all f ∈ L3
m,Ac ,

f ∼ (m,A; f, Ac) ⇔ f ∼A (m,A; f, Ac).

Note that (m,A; f, Ac) = (m,A;m,Ac) = m. Therefore, Axiom 12 states that

f ∼ m ⇔ f ∼A m. Based on Axiom 12, the Fagin-Halpern updating rule can be

axiomatized as follows.

Theorem 5. Let A ∈ F\{Ω, ∅} be an event. Let ⪰ and ⪰A be captured by a capacity

v, its C-capacity vA, and a common utility function u. Suppose that v(S ∩A) + 1−
v(S ∪ Ac) ̸= 0 for all S ∈ F . Then, the following are equivalent.

(i) A conditional preference ⪰A satisfies Axiom 12.

(ii) vA = vFH
A .

Proof. Note that v(S ∩A) + 1− v(S ∪Ac) ̸= 0. Take any S ∈ F\{Ω, ∅}, and define

fS ∈ L3
m,Ac as follows:

fS(ω) =


y∗ if ω ∈ S ∩ A
y∗ if ω ∈ Sc ∩ A
m if ω ∈ Ac.

Then, it follows that

fS ∼ m

⇔ (u(y∗)− u(m))v(S ∩ A) + (u(m)− u(y∗))v(S ∪ Ac) + u(y∗) = u(m)

⇔ u(y∗)v(S ∩ A)− u(y∗)v(S ∪ Ac) + u(y∗)

= u(m)(v(S ∩ A) + 1− v(S ∪ Ac))

⇔ (u(y∗)− u(y∗))v(S ∩ A)

= (u(m)− u(y∗))(v(S ∩ A) + 1− v(S ∪ Ac))

⇔ u(m)− u(y∗)

u(y∗)− u(y∗)
=

v(S ∩ A)

v(S ∩ A) + 1− v(S ∪ Ac)
= vFH

A (S).

Since vA(S) = vA(S ∩ A) by the assumption that vA is a C-capacity, similar to the

above, it follows that

fS ∼A m
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⇔ u(m)− u(y∗)

u(y∗)− u(y∗)

=
vA(S ∩ A)

vA(S ∩ A) + 1− vA(S ∪ Ac)

=
vA(S)

vA(S) + 1− vA(S)
= vA(S).

Therefore, if Axiom 12 holds, vA = vFH
A . Similar to the proof of Theorem 3, the

converse can be proved.

It is worth mentioning the relationship between Eichberger et al. (2007) and

this paper. Based on three axioms (Consequentialism, State Independence, and

Conditional Certainty Equivalent Consistency (CCEC)), Eichberger et al. (2007)

showed that the DM’s conditional preferences are captured by the Fagin-Halpern

updating rule. Since the axiom restricting sets of acts F to L3
Ac,m and x = m in

CCEC corresponds to Axiom 12, it holds that CCEC implies Axiom 12. Thus,

the implication (i) ⇒ (ii) of Theorem 1 in Eichberger et al. (2007) is obtained

from Theorem 5. However, as pointed out by Horie (2013), the DM’s conditional

preferences captured by the Fagin-Halpern updating rule do not satisfy CCEC.

By restricting the acts16 to f ∈ F2 for which CCEC holds, Horie (2013) showed

that the converse also holds. Contrary to Horie (2013), this paper obtained the

equivalence by restricting the acts to f ∈ L3
Ac,m and x = m. Our contribution

to the literature is threefold. First, this paper provided an axiomatization of the

Fagin-Halpern updating rule within the framework of dynamic consistency. Sec-

ond, this paper provided a unified approach for the three capacity updating rules

(the Dempster-Shafer updating rule, naive Bayes’ updating rule, and Fagin-Halpern

updating rule) according to the degree of dynamic consistency. Finally, the con-

stant act m was defined endogenously. Additionally, by considering the condition

(f, A;µ,Ac) ∼ (m,A;µ,Ac) ⇔ (f, A;µ,Ac) ∼A (m,A;µ,Ac) with f(ω) = y∗ or y∗

and µ ∈ {y∗,m, y∗} as a condition of dynamic consistency restricted to particular

sets of acts f ,17 we can provide axiomatizations of the Fagin-Halpern updating rule,

Dempster-Shafer updating rule, and naive Bayes’ updating rule by some kind of

constrained dynamic consistency.

6. Conclusion

16Horie (2013) defines the set of binary acts F2 by {(b, A;ω,Ac)|b, w ∈ X such that b ≥ w andA ∈
2Ω}.

17We acknowledge an anonymous reviewer who points out this condition.
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By proposing the notions of upper-constrained dynamic consistency and lower-

constrained dynamic consistency that are weaker axioms than dynamic consistency,

this paper axiomatized the Dempster-Shafer updating rule and naive Bayes’ up-

dating rule under CEU. Based on the notion of conditional comonotonicity, this

paper also provided an axiomatization of consequentialism under CEU. Further-

more, based on the notion of the MPR, this paper provided a unified approach for

distinguishing capacity updating rules (the Dempster-Shafer updating rule, naive

Bayes’ updating rule, and Fagin-Halpern updating rule) according to the degree of

dynamic consistency.
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Appendix

Definition 9. An operator I : RΩ → R is comonotonic additive if I(x + y) =

I(x) + I(y) whenever x and y are comonotonic.

It is well known that Choquet integrals satisfy comonotonic additivity. Further-

more, Schmeidler (1986) shows that if an operator I : RΩ → R satisfies comonotonic

additivity and monotonicity (i.e., x ≥ y on Ω implies I(x) ≥ I(y) for all x, y ∈ RΩ),

then I is a Choquet integral. As mentioned in Schmeidler (1986), if an operator

I : RΩ → R satisfies comonotonic additivity and monotonicity, then it satisfies pos-

itive homogeneity of degree 1 (that is, I(tx) = tI(x) for all t ≥ 0). Moreover, it is

shown that if an operator I : RΩ → R satisfies comonotonic additivity and positive

homogeneity of degree 1, then I is a Choquet integral.

Definition 10. Choquet integrals with respect to a capacity v are said to be A-

conditionally comonotonic additive if
∫
Ω
(x+y)dv =

∫
Ω
xdv+

∫
Ω
ydv whenever x and

y are A-conditionally comonotonic.

For A-conditional comonotonicity, we can show the following proposition.

Proposition 2. Let A ∈ F . Let v be a capacity such that v(S ∩A) = v(S) for any

S ∈ F . Then, the Choquet integral of x with respect to such a capacity v,
∫
Ω
xdv, is

A-conditionally comonotonic additive. That is,
∫
Ω
(x + y)dv =

∫
Ω
xdv +

∫
Ω
ydv if x

and y are A-conditionally comonotonic. Moreover,
∫
Ω
xdv =

∫
A
x|Adv|A where x|A

and v|A are the restriction of a function x and the restriction of a capacity v on a

set A, respectively.

Proof. Let ⟨ω1, ω2, · · · , ωn⟩ be a permutation of all the elements of Ω satisfying

x(ω1) ≥ x(ω2) ≥ · · · ≥ x(ωn). Moreover, let A = {ωi(1), ωi(2), · · · , ωi(k)}, where
{i(1), i(2), · · · , i(k)} ⊆ {1, 2, · · ·n} and i(1) < i(2) < · · · < i(k) for k = |A|. Then,∫

Ω

x(ω)dv

=
∑

1≤p≤n−1

(x(ωp)− x(ωp+1))v({ω1, . . . , ωp}) + x(ωn)v(Ω)

=
∑

1≤p≤n−1

(x(ωp)− x(ωp+1))v({ω1, . . . , ωp} ∩ A) + x(ωn)v(Ω ∩ A)

=
∑

1≤p<i(1)

(x(ωp)− x(ωp+1))v(∅)

+
∑

1≤q≤k−1

 ∑
i(q)≤p<i(q+1)

(x(ωp)− x(ωp+1))

 v({ωi(1), . . . , ωi(q)})
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+

 ∑
i(k)≤p≤n−1

(x(ωp)− x(ωp+1))

 v(A) + x(ωn)v(A)

=
∑

1≤q≤k−1

(x(ωi(q))− x(ωi(q+1)))v({ωi(1), . . . , ωi(q)}) + x(ωi(k))v(A)

=

∫
A

x|Adv|A.

The last formula is the Choquet integral on A. Thus, the proposition is shown

since the Choquet integral on A is A-conditionally comonotonic additive.

Proof of Proposition 1

Proof. Suppose that f |A = g|A. Then, by Proposition 2,∫
Ω

u(f)dvA =

∫
A

u(f |A)dvA|A =

∫
A

u(g|A)dvA|A =

∫
Ω

u(g)dvA.

Next, we show the converse. Note that 1S|A = 1S∩A|A. Thus, by consequential-

ism, 1S ∼A 1S∩A. So, vA(S) =
∫
Ω
1SdvA =

∫
Ω
1S∩AdvA = vA(S ∩ A).

Proof of Theorem 2

Proof. (If part) We assume that there exist capacities v and vA on F and a non-

constant affine real-valued function u on Y such that for all f and g in L0, f ⪰A

g ⇔
∫
Ω
u(f(ω))dvA(ω) ≥

∫
Ω
u(g(ω))dvA(ω), where it holds that vA(S) = vA(S ∩A)

for all S ∈ F .

Clearly, Axiom 5 holds since u is non-constant. Axiom 6 holds since u does

not depend on a certain event A. Axioms 1, 3, and 4 hold by Theorem 1. More-

over, to show Axiom 7, note that (y1, {ω}; y3,Ω\{ω}) = y11{ω} + y31Ω\{ω}. Here,

by ω ∈ Ac, 1{ω} and 1Ω\{ω} are A-conditionally comonotonic. Therefore, by Propo-

sition 2,
∫
Ω
u(y1, {ω}; y3,Ω\{ω})dvA = u(y1)vA({ω}) + u(y3)vA(Ω\{ω}). Similarly,∫

Ω
u(y2, {ω}; y3,Ω\{ω})dvA = u(y2)vA({ω}) + u(y3)vA(Ω\{ω}). On the other hand,

vA({ω}) = vA({ω} ∩ A) = 0. Hence, Axiom 7 holds.

Finally, suppose that f, g, h ∈ L0 are pairwise A-conditionally comonotonic and

that
∫
Ω
u(f)dvA ≥

∫
Ω
u(g)dvA. Then,∫

Ω

u(αf + (1− α)h)dvA −
∫
Ω

u(αg + (1− α)h)dvA

= α

∫
Ω

u(f)dvA + (1− α)

∫
Ω

u(h)dvA − α

∫
Ω

u(g)dvA − (1− α)

∫
Ω

u(h)dvA
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= α

(∫
Ω

u(f)dvA −
∫
Ω

u(g)dvA

)
≥ 0,

from the A-conditionally comonotonic additivity of vA shown in Proposition 2. Thus,

Axiom 2 holds.

Now, by showing Lemmas 4, 5, and 11-14, we prove the only if part of Theorem

2. In the following, if the proofs for the unconditional preference ⪰ are the same as

those for the conditional preferences ⪰A, we omit them.

Proof of Lemma 4

Proof. If f, g ∈ L0 are comonotonic, then f and g are A-conditionally comonotonic.

Thus, Axiom 2 implies Comonotonic Independence Axiom. By Theorem 1, Comono-

tonic Independence Axiom together with Axioms 1, 3, 4, 5 implies that there exist

a capacity vA on F and an affine real-valued function uA on Y such that for all f

and g in L0,

f ⪰A g ⇔
∫
Ω

uA(f(ω))dvA(ω) ≥
∫
Ω

uA(g(ω))dvA(ω).

Moreover, by Axiom 6, for A and Ω, we can show the existence of the common

utility function u such that it represents ⪰ and ⪰A on Lc since u is determined by

the preference on Lc. Moreover, by Axiom 5, u is non-constant.

Proof of Lemma 5

Proof. We prove this lemma by mimicking the arguments of Schmeidler (1986, 1989).

Let I(a) =
∫
Ω
a(s)dvA. Let a, b ∈ RΩ be A-conditionally comonotonic. By Axiom

2, for all pairwise A-conditionally comonotonic functions a, b, c, it holds that I(a) ≥
I(b) implies I(αa + (1 − α)c) ≥ I(αb + (1 − α)c). First, let us prove the following

claim: if x, y ∈ RΩ are A-conditionally comonotonic, then I(αx + (1 − α)y) =

αI(x) + (1− α)I(y) for all α ∈ [0, 1].

Indeed, for any ε > 0, (I(x) + ε)1Ω satisfies I((I(x) + ε)1Ω) > I(x) and (I(y) +

ε)1Ω satisfies I((I(y) + ε)1Ω) > I(y) since I(λ1Ω) = λ. Hence,

αI(x) + (1− α)I(y) + ε

= I(α(I(x) + ε)1Ω + (1− α)(I(y) + ε)1Ω)

> I(αx+ (1− α)(I(y) + ε)1Ω)

> I(αx+ (1− α)y).
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The first inequality holds since α(I(x)+ε)1Ω, x, and (1−α)(I(y)+ε)1Ω are pairwise

A-conditionally comonotonic. The second inequality holds since x, y, and (1 −
α)(I(y) + ε)1Ω are pairwise A-conditionally comonotonic.

Since ε is any positive number, we obtain that

αI(x) + (1− α)I(y) ≥ I(αx+ (1− α)y).

Furthermore, the converse inequality can be shown by using a similar argument

for ε < 0. Therefore, it is proved that

I(αx+ (1− α)y) = αI(x) + (1− α)I(y).

Then, our claim is proved.

Next, let us use this claim twice. First, let α = 1/2, x = 2a, and y = 0.

Then, I(a) = (1/2)I(2a). Similarly, let α = 1/2, x = 0, and y = 2b. Then,

I(b) = (1/2)I(2b). Second, let α = 1/2, x = 2a, and y = 2b. Then,

I(a+ b) =
1

2
I(2a) +

1

2
I(2b) = I(a) + I(b).

Lemma 11. Let vA be the capacity in Lemma 4. Then, vA(S) = vA(S∩A)+vA(S∩
Ac) for all S ∈ F .

Proof. Note that 1S∩A and 1S∩Ac are A-conditionally comonotonic. By Lemma 5, it

holds that
∫
Ω
1S∩A + 1S∩AcdvA =

∫
Ω
1S∩AdvA +

∫
Ω
1S∩AcdvA. This equation implies

that vA(S) = vA(S ∩ A) + vA(S ∩ Ac).

Lemma 12. Let vA be the capacity in Lemma 4. Then, vA(S) =
∑

ω∈S vA({ω}) for
every S with S ⊆ Ac.

Proof. Let T1 ⊆ Ac and T2 ⊆ Ac satisfy T1 ∩ T2 = ∅. Then, 1T1 and 1T2 are A-

conditionally comonotonic. Hence, by Lemma 5,
∫
(1T1 + 1T2)dvA =

∫
1T1dvA +∫

1T2dvA, which implies vA(T1 ∪ T2) = vA(T1) + vA(T2). Therefore, for every S with

S ⊆ Ac, it holds that vA(S) =
∑

ω∈S vA({ω}) since Ω is finite.

Lemma 13. Let vA be the capacity in Lemma 4. Then, vA(S) = 0 for every S ⊆ Ac.

Proof. Take an arbitrary y with y∗ ≻A y ≻A y∗. Indeed, such y∗, y, and y∗ exist by

A3, A5, and A6. And let f = (y∗, {ω}; y∗,Ω\{ω}), g = (y, {ω}; y∗,Ω\{ω}). By A7,

it holds that f ∼A g. Hence,
∫
Ω
u(f(ω))dvA(ω) =

∫
Ω
u(g(ω))dvA(ω), which leads

that (u(y∗) − u(y∗))vA({ω}) + u(y∗) = (u(y) − u(y∗))vA({ω}) + u(y∗). Therefore,

vA({ω}) = 0 since u(y∗) − u(y) > 0. This result together with Lemma 12 proves

the claim.
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The following lemma is shown from Lemmas 11, 12, and 13, immediately.

Lemma 14. Let vA be the capacity in Lemma 4. Then, vA(S) = vA(S ∩ A) for all

S ∈ F .

Proof of Lemma 6

Proof. Let f, g ∈ L0 and A ∈ F\{Ω, ∅} with v(Ac) ̸= 1. For ease of notation, let

Ω1 = ΩUC(f, g;A). Note that for all ω ∈ Ω1 and for all ω′ ∈ Ωc
1, f(ω) ⪰ f(ω′)

and g(ω) ⪰ g(ω′). Let ⟨ωf
1 , ω

f
2 , . . . , ω

f
n⟩ be a permutation of Ω satisfying u(f(ωf

1 )) ≥
u(f(ωf

2 )) ≥ · · · ≥ u(f(ωf
n)). Similarly, let ⟨ωg

1 , ω
g
2 , . . . , ω

g
n⟩ be a permutation of

Ω satisfying u(g(ωg
1)) ≥ u(g(ωg

2)) ≥ · · · ≥ u(g(ωg
n)). Let Ω1 = {ωf

1 , . . . , ω
f
k} =

{ωg
1 , . . . , ω

g
k}. Then, by Axiom 8, it is possible to set ωf

i = ωg
i for all i ∈ {1, . . . , k}.

Note that∫
Ω

u(f)dvDS
A =

n∑
i=1

(u(f(ωf
i ))− u(f(ωf

i+1)))v
DS
A ({ωf

1 , . . . , ω
f
i })

and

∫
Ω

u(g)dvDS
A =

n∑
i=1

(u(g(ωg
i ))− u(g(ωg

i+1)))v
DS
A ({ωg

1 , . . . , ω
g
i }),

where u(f(ωf
n+1)) = u(g(ωg

n+1)) = 0. Then, it follows that

f ⪰A g ⇔
∫
Ω

u(f)dvDS
A ≥

∫
Ω

u(g)dvDS
A

⇔
n∑

i=1

(u(f(ωf
i ))− u(f(ωf

i+1)))(v({ω
f
1 , . . . , ω

f
i } ∪ Ac)− v(Ac))

≥
n∑

i=1

(u(g(ωg
i ))− u(g(ωg

i+1)))(v({ω
g
1 , . . . , ω

g
i } ∪ Ac)− v(Ac))

⇔
n∑

i=1

(u(f(ωf
i ))− u(f(ωf

i+1)))v({ω
f
1 , . . . , ω

f
i } ∪ Ac)− u(f(ωf

1 ))v(A
c)

≥
n∑

i=1

(u(g(ωg
i ))− u(g(ωg

i+1)))v({ω
g
1 , . . . , ω

g
i } ∪ Ac)− u(g(ωg

1))v(A
c),

where the second equivalence holds by telescoping sums. Furthermore, by Ax-

iom 8, the summation from i = 1 to k − 1 of the first term on the left-hand

side of the inequality is equal to that 0n the right-hand side of the inequality and

u(f(ωf
1 ))v(A

c) = u(g(ωg
1))v(A

c). Moreover, by Ac ⊆ {ωf
1 , . . . , ω

f
k} = {ωg

1 , . . . , ω
g
k},

it follows that

f ⪰A g
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⇔
n∑

i=k

(u(f(ωf
i ))− u(f(ωf

i+1)))v({ω
f
1 , . . . , ω

f
i })

≥
n∑

i=k

(u(g(ωg
i ))− u(g(ωg

i+1)))v({ω
g
1 , . . . , ω

g
i }).

Note that by Axiom 8,

k−1∑
i=1

(u(f(ωf
i ))− u(f(ωf

i+1)))v({ω
f
1 , . . . , ω

f
i })

=
k−1∑
i=1

(u(g(ωg
i ))− u(g(ωg

i+1)))v({ω
g
1 , . . . , ω

g
i }).

By adding this to both sides of the above inequality, it follows that

f ⪰A g ⇔
∫
Ω

u(f)dv ≥
∫
Ω

u(g)dv ⇔ f ⪰ g.
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