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Abstract

We propose a rate optimal specification test for instrumental variable regression
models based on the nearest neighbor observation with respect to instruments. The
proposed test has uniform power against a set of non-smooth alternatives. The
optimal minimax rate is n−1/4 for any dimension of instruments, where n is sample
size. This rate coincides with the fastest possible rate achievable by any tests under
the local alternative setting when the alternative is constructed by a non-smooth
function and/or the dimension of the instrument is large. Since such local alternative
belongs to the set of alternatives considered in this study, our test is preferable
in a large dimension setting. In the simulation and empirical applications with a
large dimension of instruments, we observe that the test works well and the power
approaches one reasonably fast as the sample size increase.

Keywords: instrumental variable model; specification test; minimax approach; k-
nearest neighbor method

JEL Classification: C12; C14

1 Introduction

The instrumental variable (IV) model is one of the most important tools in a variety of
fields of applied economics, and a large number of analytical techniques for it has been
developed in econometrics. Another growing field is the literature on specification tests
for IV regression models, which is based on and an extension of earlier development
of tests for regression models. The earlier development seems to place much emphasis
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on the power of tests, because it is an important statistical feature that is a good
measure to compare properties of tests. Thus, it is natural that most existing tests are
constructed so that they perform well in terms of power, especially, when the dimension
of exogenous variables (instruments) is small. In economics, however, the number of
instruments could be large because instruments often consist of cross-terms between
exogenous variables in the model and instruments from outside of the model, or they
include lags of exogenous variables. A well-known example is the return of education
investigated in Angrist and Krueger (1991), in which quarter of birth and the cross-
terms with all exogenous variables in the model give a total of 240 IVs. In a large
dimension setting like this, asymptotic behavior, such as size and power performance of
tests, has not been investigated sufficiently. Existing tests might not have good power
performance, and the high computational burden can even make these tests inapplicable
in praxis.

This study fills this gap in the literature by proposing a specification test that is
powerful in the sense that it is rate optimal even when the dimension of instruments
is large. In general, the fastest possible rate of a local alternative against which a test
can show non-trivial power depends on smoothness of the alternative and dimension of
instruments. By contrast, this study shows a set of alternatives against which no tests
have non-trivial uniform power when it approaches the null at a rate, say o(ρn), that is
independent of the dimension of instruments. The rate is ρn = n−1/4, where n is sample
size. This is the fastest rate achievable by any tests under the local alternative setting
when the alternative is constructed by a non-smooth function and/or the dimension of
the instrument is large. The rate optimality of the proposed test indicates that the test
has uniform power against the set of alternatives and is the most powerful under the
large dimension setting.

The proposed test is constructed based on the nearest neighbor method. It can be
interpreted as a K-nearest neighbor test with uniform K-nearest neighbor weights and
fixed K = 1. The rate optimality of the simple fixed neighbor test may be surprising,
because increasing the number of neighbors is likely to improve the power of the test.
Intuitively, our test captures high frequency misspecification well when it appears at the
nearest neighbor points. Since the set of alternatives we consider includes non-smooth
ones, the simple nearest neighbor test performs quite well.

An important implication of our results is that power performance of K-nearest
neighbor tests does not always improve as the number of neighbors K increases. This
finding contradicts the results that a K-nearest neighbor test performs better against
Pitman local alternatives when K grows with sample size. Indeed, Jun and Pinkse
(2009) show that K-nearest neighbor tests detect such alternatives approaching the null
at a rate of (nK)−1/4, while our minimax result shows the set of functions against which
the fastest achievable rate is n−1/4. The existing results also indicate that the nearest
neighbor tests for IV regression models can detect Pitman local alternatives converging
to the null at a rate equal to n−1/4. Thus, our results complement the existing result by
figuring out the detectable set of alternatives while keeping uniform power.

In the minimax approach, the alternative hypothesis is a set of functions belong-
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ing to a smoothness class. The set of alternatives is separated from the null model
by L2-distance but the distance approaches zero at a specific rate. The literature on
optimal minimax rates is developed in to test the presence of a signal in the Gaussian
white noise model. Ermakov (1991), Y. I. Ingster (1993), and Lepski and Tsybakov
(2000) show the optimal minimax rates against alternatives within a Hölder class, while
Spokoiny (1996) and Lepski and Spokoiny (1999) do so against alternatives within a
Besov class. Y. I. Ingster and Sapatinas (2009) extend these results to test a multivari-
ate non-parametric regression model with Gaussian noise against alternatives within an
ellipsoid in the Hilbert space with respect to the tensor product Fourier basis. Another
line of literature, such as Abramovich, Feis, Italia, and Theofanis (2009), shows the opti-
mal minimax rate of testing for the additivity assumption of a response function against
alternatives within a Besov class.

In econometrics, optimal minimax rates are established in testing for regression func-
tion. Guerre and Lavergne (2002) provide the optimal minimax rates of specification
testing for a non-linear parametric regression model against alternatives within a Hölder
class. For now, let us denote the dimension of regressor by l and smoothness index of
a Hölder class by s. Then, the optimal minimax rates of Guerre and Lavergne (2002)
are n−2s/(l+4s) if s > l/4 and ρ̃n = n−1/4 if s ≤ l/4. Using this result, Horowitz and
Spokoiny (2001) show that their test for parametric regression models achieves the op-
timal rate in their adaptive framework when s ≥ max(2, l/4). Another rate optimal test
is K-nearest neighbor tests proposed by H. Li, Li, and Liu (2016) when s > l/4. Their
specification test for regression function without endogeneity is based on the K-nearest
neighbor estimator for the residual of the regression function, and is the most related
to our test in its construction. Their test is no longer rate optimal when the number of
neighbors K is fixed. This study extends the literature by considering the different set
of alternatives and expanding the model to linear and non-linear IV regression models.1

Unlike existing works, this study analyzes optimal minimax rates against alternatives
within a cone set of a Hölder class with some normalization. To the best of our knowl-
edge, this is the first study that investigates the optimal minimax rate against the set
of alternatives defined in this class.

Technically, deriving optimal minimax rates against alternatives within a cone set
of a Hölder class is not obvious. To find the lower bounds for optimal minimax rates,
it is necessary to find an example of a function that is difficult to detect (even by op-
timal Bayesian test) but still belongs to the set of alternatives. Guerre and Lavergne
(2002) construct an example of a function within their Hölder class by using an idea
from a Fourier series. However, this function does not belong to our alternatives. Since
orthogonality seems to play an important role in constructing an example of such func-
tions within our alternatives, we make use of wavelets instead of a Fourier series. Since
wavelet methods are known to have good properties and are a useful technical tool in the

1Allowing models to be linear and non-linear generates some difficulties by producing asymptotic
results compared to non-linear models only. This is because boundedness of derivatives of the parametric
function is incompatible with allowing models to be linear. Without boundedness of derivatives, some
bothersome steps are required to show the asymptotic features of testing, which requires calculating the
upper or lower bounds of some statistics that include derivatives.
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general Besov function classes (see, e.g., Daubechies, 1988, Meyer, 1992, and Y. Ingster
& Suslina, 2003), rate optimal specification testing against alternatives within a Besov
class also use the wavelet techniques (see, Spokoiny, 1996 and Lepski & Spokoiny, 1999).

The rest of the paper proceeds as follows. Section 2 reviews specification tests for IV
models. Section 3 describes our testing framework and test statistic. Section 4 derives
asymptotic normality of our test statistic under the null hypothesis. The main results,
including the optimal minimax rate of the specification test for IV models and rate
optimality, are shown in Section 5. Section 6 presents the Monte Carlo experiments.
Section 7 applies our test to the return to education of Angrist and Krueger (1991) and
Engel curve specifications. Section 8 concludes. The proofs of the primary results are
in the Appendix.

2 Literature Review

The review of literature is focused on specification tests for IV models. Such tests were
first developed by Donald, Imbens, and Newey (2003) and Tripathi and Kitamura (2003)
as general tests of conditional moment restrictions in which conditional mean regressions
are a special case. For example, Tripathi and Kitamura (2003) propose a smoothed
empirical likelihood ratio-based test that detects Pitman linear local alternatives that
converge to the null at rates slower than the parametric rate. Holzmann (2008) extends
the specification test for the conditional mean regression proposed by Aı̈t-Sahalia, Bickel,
and Stoker (2001) to the IV setting. His test is based on the weighted distance between
the smoothed parametric estimator and non-parametric kernel estimator of the IV model.
This test can detect the Pitman linear local alternatives approaching the null at rate
n−1/2h−l/4, where h is bandwidth and l is the dimension of the conditioning variables.
Horowitz’s (2006) test takes a form resembling the integrated conditional moment test
developed by Bierens (1982, 1990), and Bierens and Ploberger (1997) and includes the
non-parametric kernel density estimator as weighting. His test detects Pitman linear
local alternatives approaching the null at the rate n−1/2, making it the best specification
test for IV models in terms of power performance. Gørgens and Würtz (2012) propose
a test based on a sequence of Lagrange multiplier (LM) statistics. Because the LM
statistic requires no estimation under the alternative, their test statistic involves no non-
parametric estimation. However, the number of LM statistics to be calculated extends
to infinity as the sample size increases. Our proposed test entails no kernel smoothing
and no integration while maintaining consistency against all departures from the null
hypothesis. Accordingly, it is easily implemented, requires less calculation time, and has
no bandwidth choices. The test statistic can be obtained via straightforward calculation
that requires only parametric model estimation under the null hypothesis and locating
the neighbors nearest to each observation.
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3 Framework and Test Statistic

Let {Yi, Xi}ni=1 be a random sample from (Y,X) ∈ R× Rlx . The model is as follows:

Yi = g(Xi, θ) + ui, (1)

where g(Xi, θ) is a known function up to parameters θ ∈ Θ, Θ is a compact subset of
Rlx , and ui is an error term. Endogeneity of regressors often appears in many economic
models, which complicates the estimation of parameters by violating the moment con-
dition, which is essential for basic econometric estimation strategies, such as ordinary
least squares methods.

In this study, we denote E(Y |Z) as IV regression, where Zi ∈ Rl is a vector of a
random sample that consists of exogenous variables in X and exogenous variables from
outside the model, so that conditional moment restriction E(ui|Zi) = 0 holds. The
conditional moment restriction is equivalent to saying that a value of θ ∈ Θ exists such
that E(Yi|Zi) = E[g(Xi, θ)|Zi] for all i. Therefore, we refer to E[g(Xi, θ)|Zi] as the IV
regression model. The IV regression model or conditional moment restrictions are often
derived by economic theory. However, since economic models often aim to capture a
simple and specific aspect of complex economic events, conditional moment restrictions
derived by economic theory may not be satisfied in reality. Under this circumstance of
model misspecification, estimation results obtained by using observed data may induce
misleading interpretation.

Thus, we test the specification of the IV regression model. The null and alternative
hypotheses are

H0 : E(ui|Zi) = 0,

H1 : E(ui|Zi) = h(Zi) 6= 0,

respectively, where h(·) is an unknown function. Since the null hypothesis implies that
the parametric specification of the IV regression is correct, testing the null directly tests
the fit of the parametric model to the true IV regression. The testing framework we
consider can be interpreted as an extension of the specification test for the regression
model by allowing the conditioning variable to contain variables from outside the model,
which is not considered in the regression framework. Note that we aim to test the
specification of IV regression rather than the functional form of g(·, θ).

Our test statistic makes use of the feature of the nearest neighbor observations. Let
the subscript i∗ denote the nearest neighbor observation of i in the sense that observation
i∗ satisfies

||Zi − Zi∗ || ≤ ||Zi − Zj || for all j 6= i, (2)

where || · || is the Euclidean norm. Then, Yi∗ and Xi∗ are the concomitant statistic to
Zi∗ , that is, Yi∗ and Xi∗ are the observations of individual i∗, which satisfies (2). We also
define ui∗ = Yi∗ − g(Xi∗ , θ). To propose the test statistic, we first assume that a nearest
neighbor is uniquely assigned to each observation. However, the unique assignment
assumption is not essential to construct the test. When ties exist, we can slightly modify
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the test statistic, and the modified test has the same asymptotic properties with the test
without ties. How to modify the test in the case of ties is discussed in Remark 1.

Let θ̂ be any
√
n-consistent estimator of θ under the null hypothesis, such as gen-

eralized method of moments (GMM) estimator of θ.2 Let ûi ≡ Yi − g(Xi, θ̂) be the
parametric estimator for ui. Then, our test statistic is

Tn =
1

µ̂
√
n

n∑
i=1

ûiûi∗ , (3)

where µ̂2 ≡ n−1
∑n

i=2

∑
j<iW

2
i,j û

2
i û

2
j appears for the standardization. The weighting

term Wi,j is defined as Wi,j = Ki,j + Kj,i, where Ki,j ≡ 1(||Zi − Zj || ≤ ||Zi − Zi∗ ||)
for i 6= j and Ki,j = 0 for i = j. A motivation of the test comes from the difference
between non-parametric and parametric variance estimators with bias correction. To
observe this, we rewrite the test statistic as follows:

µ̂√
n
Tn = σ̂2

p − σ̂2
d +

1

n

n∑
i=1

(ûi + ûi∗)[g(Xi, θ̂)− g(Xi∗ , θ̂)] +
1

2n

n∑
i=1

[g(Xi, θ̂)− g(Xi∗ , θ̂)]
2,

where σ̂2
p ≡ 1

2n

∑n
i=1(û2

i + û2
i∗) is the estimator for the variance of error term in the

parametric model (1) under the null hypothesis and σ̂2
d ≡

1
2n

∑n
i=1(Yi − Yi∗)

2 is the
non-parametric difference-based estimator for the variance of Y − E(Y |Z), denoted as
σ2. The final two terms added to the variance estimators are bias-correction terms for
the non-parametric difference-based estimator.

σ̂2
d − σ2 =

1

2n

n∑
i=1

(Yi − Yi∗)2 − σ2

=

[
1

2n

n∑
i=1

(ui − ui∗)2 − σ2

]
+

1

n

n∑
i=1

(ui − ui∗)[g(Xi, θ)− g(Xi∗ , θ)]

+
1

2n

n∑
i=1

[g(Xi, θ)− g(Xi∗ , θ)]
2,

where 1
2n

∑n
i=1(ui − ui∗)2 can be shown to converge to the true variance σ2 when the

model is true.3 Therefore, our test measures the difference between the variance estima-
tor under the null hypothesis from its true value that is estimated non-parametrically
with bias correction.

To obtain the test statistic, researchers need only estimate the parameters under the
null hypothesis and assign nearest neighbor observations for each observation according

2A detailed discussion on this point is given in Sections 4 and 5 under the null and alternative
hypotheses, respectively.

3See, for example, the proof of Theorem 1 of Yatchew (1988). The difference-based estimator is
first provided by Von Neumann, Kent, Bellinson, and Hart (1941) and developed by Gasser, Sroka,
and Jennen-Steinmetz (1986), P. Hall, Kay, and Titterinton (1990), and Munk, Bissantz, Wagner, and
Freitag (2005), among others.
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to the assignment rule (2). In contrast to existing specifications testing for IV regression
models, such as the integrated conditional moment-type test of Horowitz (2006) and the
kernel-based smoothing type test of Holzmann (2008), our test does not include non-
parametric estimation of, for example, density and regression functions. Thus, our test
is simple, easily implementable, requires less calculation time than alternative tests do,
and needs no bandwidth choices, as non-parametric kernel estimation does.

Our test resembles Yatchew’s (1988) specification test for regression models with-
out endogeneity. Like us, he shows consistency of the non-parametric difference-based
variance estimator and provides a specification test that consists of the difference be-
tween the non-parametric (difference-based) and parametric variance estimator. He also
shows conditions of ordering rules for choosing neighbors in which ordering rule (2) can
be replaced while keeping the asymptotic power results of testing. The primary dif-
ference between the test provided in this study and Yatchew’s (1988) is that our test
can be applied to IV models that allow conditioning variables from outside the model,
which standard regression setting does not allow. In addition, there are some notable
differences that distinguish our test from his. First, we use nearest observations with
respect to instruments, not covariates. Applying an ordering rule to covariates Xi leads
the difference-based estimator to be consistent because, the two bias terms vanish as the
sample size increases (by assuming g(x, ·) is Lipschitz continuous with respect to x). Not
surprisingly, however, the rate of convergence depends on the dimension of covariates,
which makes σ̂2

d non-
√
n-consistent when the dimension is greater than 3. Since our

test does not include the bias terms, no trade-off exists between the rate of convergence
and the dimension. Second, we do not split the sample in two. To establish the joint
distribution of the non-parametric and parametric variance estimators, it is necessary to
estimate their covariance, which may be difficult. To circumvent this problem, Yatchew
(1988) divide the sample in two to make the non-parametric and parametric variance
estimators independent. However, doing so reduces the power of the test. We do not di-
vide the sample because the standardization term µ̂2 in our test statistic can be obtained
easily.

Remark 1. When ties exist, we can modify the test as follows

T tien =
1

µ̂tie
√∑n

i=1

∑
j 6=iKi,j

n∑
i=1

ûiûi∗ , (4)

where (µ̂tie)2 ≡ (
∑n

i=1

∑
j 6=iKi,j)

−1
∑n

i=2

∑
j<iW

2
i,j û

2
i û

2
j . The modified test (4) is pro-

portional to the original test (3), that is, T tien = O(1)Tn, because
∑n

i=1

∑
j 6=iKi,j = O(n).

Thus, the asymptotic properties such as size and power of the modified test are the same
with those of Tn.

Remark 2. The proposed test can be interpreted as the sample analogue of E[uiE(ui|Zi)]
with ui replaced by ûi and conditional expectation replaced by its K-nearest neighbor
estimates with uniform K-nearest neighbor weights and fixed k = 1. Thus, it is possible
to consider a K-nearest neighbor version of testing instead of using just the nearest
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neighbor. Indeed, H. Li et al. (2016) provide a K-nearest neighbor specification test for
the regression function and show that the proposed test is rate optimal. Interestingly,
however, we show later that tests using just a single neighbor, such as ours, are also
rate optimal against alternatives within a certain smoothness functional class. In other
words, tests that utilize K-nearest neighbors with an appropriate K do not improve
power performance against such alternatives.

Remark 3. The proposed test investigates the parametric specification of IV regression
model E[g(X, θ)|Z]. In special cases, however, the null hypothesis implies correct speci-
fication of g(X, θ). For example, under the completeness restriction, our test becomes a
direct test for the functional form of g(·). The completeness restriction is satisfied, for
example, when the conditional distribution of X given Z belongs to exponential families
(see Newey & Powell, 2003). For other sufficient conditions, see, for example Hu and Shiu
(2017). The correct specification of g(·) may be implied under some shape restrictions
on it. For example, under the monotonicity restriction, Theorem 1 in Chetverikov and
Wilhelm (2017) implies that testing the null may imply testing the specification of g(·)
to some extent. Chetverikov and Wilhelm (2017) argues that monotonicity conditions
are plausible in the estimation of Engel curves for normal goods. We test specifications
of Engel curves in Section 7.

4 Asymptotic Distribution under the null hypothesis

Let m(Zi) ≡ E(Yi|Zi) denote the true IV regression, and ωi ≡ Yi − m(Zi) its error.
Variance of ωi conditioned on Zi is denoted by σ2(z) ≡ E(ω2

i |Zi = z). Under the
null hypothesis, conditional variance of parametric error E(u2

i |Zi) is equivalent to σ2(z).
Now, we list all the regularity conditions that are used in the derivation of the asymptotic
distribution of our test statistic under the null hypothesis.

Assumption 1. {Yi, Xi, Zi}ni=1 are a random sample on (Y,X,Z) ∈ R×Rlx×Rl, where
lx and l are finite. For all i, M <∞ exists such that E (|ωi|p|Zi) < M , for p = 8.

Assumption 2. For all x, g(x, θ) is twice continuously differentiable with respect to
θ ∈ Θ, where Θ is a compact subset of Rlx.

Assumption 3. E[supθ∈Θ ‖ ∂∂θg(Xi, θ)‖2] <∞.

Assumption 4. E[supθ∈Θ ‖ ∂
∂θ∂θ′ g(Xi, θ)‖2] <∞.

Assumption 5. For each z and θ ∈ Θ, E{[ ∂∂θg(X, θ)]2|Z} is bounded from above.

Assumption 6. Under the null hypothesis, we have an
√
n-consistent estimator θ̂n ≡ θ̂

of θ0, where θ0 satisfies E(Yi|Zi) = E[g(Xi, θ0)|Zi].

The higher moment restrictions in Assumption 1 are required to guarantee the consis-
tency of µ̂ with respect to the asymptotic variance of the non-standardized test statistic,
which is shown in Lemma 3 in the Appendix. This corresponds to, for example, the
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finite fourth moments condition for the estimation of asymptotic variance of GMM es-
timators. In our setting, it is also possible to reduce the finite eighth moment of error
term in Assumption 1 to its finite fourth moment. However, to keep the consistency
of µ̂, we need a stronger dominance condition, that is, E[supθ∈Θ ‖ ∂∂θg(Xi, θ)‖4] < ∞
instead of Assumption 3. A detailed discussion is given in the proof of Proposition 1 in
the Appendix.

Assumptions 2–5 are all imposed on the family of parametric function g(x, θ), θ ∈ Θ.
Dominance conditions 3 and 4 together with Assumption 2 guarantee uniform conver-

gence of 1
n

∑n
i=1

∥∥ ∂
∂θg(Xi, θ)

∥∥2
and 1

n

∑n
i=1

∥∥ ∂
∂θ∂θ′ g(Xi, θ)

∥∥2
. The dominance condition

for the first derivative is a standard assumption that is also required, for example, for
the asymptotic normality of GMM estimators. In addition, dominance conditions 3 and
4 imply boundedness of expectations of the first and second derivatives of g(·). These
assumptions differ from Guerre and Lavergne (2002), who assume boundedness of the
first and second derivatives of parametric functions and focus on testing the specification
of non-linear parametric regression models.

Assumption 6 requires
√
n-consistent estimators. Under the null hypothesis, such

estimators can be obtained by, for example, local Cressie–Read minimum distance es-
timators proposed by Smith (2007), which include smoothed empirical log-likelihood
estimators (Kitamura, Tripathi, & Ahn, 2004), local exponential tilting (ET) estimators
(see, Kitamura & Stutzer, 1997; Imbens, Spady, & Johnson, 1998 for ET estimators),
and local continuous updating estimators. Estimators that use the continuum of mo-
ment restrictions, such as estimators proposed by Dominguez and Lobato (2004) and
Carrasco and Florens (2000), are also

√
n-consistent.√

n-consistent estimators using unconditional moment restrictions, such as GMM,
two-stage least squares (2SLS), and IV methods, can be also employed, as long as no
identification issues arise. As Dominguez and Lobato (2004) show, estimation procedures
based on unconditional moment restrictions may result in inconsistency, especially for
non-linear models, when a finite number of unconditional moment restrictions is selected
from infinite restrictions implied by conditional moment restrictions. Thus, in this case,
we should be aware that parameter identification is guaranteed.

The following proposition shows that our test statistic converges to the standard
normal distribution under the null hypothesis.4

Proposition 1. Suppose Assumptions 1, 2, 3, 4, 5, and 6 hold. Then, under the null
hypothesis,

Tn
d−→ N(0, 1).

The test is asymptotically one-sided because departures from the null appear with
positive values when the distance between Zi and its nearest neighbor Zi∗ approaches 0 as
the sample size grows.5 To observe this, recall that the test detects the misspecification

4Not that the asymptotic normality of our test in Proposition 1 does not rely on the continuity of
instruments.

5Sufficient conditions are given in Assumption 7 about the density of instruments and the subsequent
discussion about the assumption.
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when E[h(Zi)h(Zi∗)] 6= 0. Roughly, E[h(Zi)h(Zi∗)] ≈ E[h(Zi)
2] when Zi lies close to

Zi∗ and h(·) is continuous. Thus, the departure from the null is asymptotically positive
and the test is asymptotically one-sided, implying that we reject the null when the
test statistic lies above the (1 − α) quantile of the normal distribution, where α is a
significance level.

Remark 4. Proposition 1 is an extension of Theorem 3.1 of H. Li et al. (2016), which
shows asymptotic normality of the K-nearest neighbor test for the regression function, to
the case of IV regression testing. Since H. Li et al. (2016) consider testing E(ui|Xi) = 0,
neighbors in H. Li et al.’s (2016) test are chosen by using covariates Xi. By contrast,
neighbors in our test are chosen by using instruments Zi, which include variables not
only from the model but also from the outside of the model, which makes the derivation
of asymptotic distribution somewhat involved. For example, to show the asymptotic
normality, H. Li et al. (2016) directly employ Lemma B6 of Jun and Pinkse (2012). In
our setting, however, the lemma is applicable only partially without imposing additional
restrictions on parametric function.6 Thus, we require some rearrangements to show the
asymptotic normality.

Remark 5. Using the second or more distant nearest neighbor observations instead of
the first nearest does not change the limiting behavior of the test statistic. The asymp-
totic distribution of the test statistic under the null hypothesis is derived independently
of how far the neighboring observations are located. This can be intuitively understood
when we consider the basic idea of the test, namely, E(uiui∗) = E[E(ui|Zi)E(uj |Zj)] = 0
under the null hypothesis. Since this equation holds for any observation instead of i∗

except i∗ = i, it can be easily shown that the asymptotic distributions of µ̂Tn and of
1√
n

∑n
i=1 ûiûj for any j 6= i are identical. A more detailed discussion is given in the

Appendix.

5 Asymptotic Property under the Alternative Hypothesis

We examine the asymptotic power property of our test by the minimax approach of
Y. I. Ingster (1993), in which the alternative hypothesis is a set of functions belonging to a
smoothness class. The set of alternatives is separated from the null model by L2-distance
but the distance approaches 0 at a specific rate. A test is called rate optimal when it
has prescribed minimax power uniformly against a set of alternatives that approaches
the null hypothesis at a rate faster than any other tests can detect. This rate is then
called the optimal minimax rate.7

The local power property described in the minimax approach differs from that in
more standard approaches, such as Pitman or singular local alternatives. In the Pitman
approach, the distance between the true and parametric functions shrinks toward zero

6Precisely, we need to assume E[‖ ∂
∂θ∂θ′ g(Xi, θ)‖2|Zi] <∞ for all θ ∈ Θ, which we do not assume to

show Proposition 1.
7A formal definition of the optimal minimax rate is given in Definition 1 of Guerre and Lavergne

(2002).
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at a specific rate, which, in our notation, is m(Zi)−E[g(Xi, θ)|Zi] = γnd(Zi), where d(·)
is a square-integrable continuous function and a deterministic sequence γn approaches
zero as the sample size increase. In the singular local alternatives approach, the distance
is expressed as a sequence of continuous functions that approach zero. For example, the
singular local alternative in our notation is m(Zi)−E[g(Xi, θ)|Zi] = rndn(Zi), where rn
is a deterministic sequence and

∫
dn(z)2dz approaches zero as the sample size increases.

In contrast to these approaches, the minimax approach captures the distance as a set
of functions and evaluates the behavior of a test uniformly against such alternatives.
The set of alternatives we consider includes functions that can be treated as Pitman or
singular local alternatives approaching the null hypothesis at rate ρn, as long as they
satisfy our smoothness condition.

Now, we define the smoothness class. Let ML,s,k be a class of map defined on a
compact set Ω such that

ML,s,k =

m :
k∑
j=0

sup
|β|=j

sup
x∈Ω
‖Dβm(x)‖+ sup

|β|=j
sup
x,y∈Ω

‖Dβm(x)−Dβm(y)‖
‖x− y‖s

≤ L

 ,

for some smoothness index s ∈ [0, 1], a non-negative integer k, and a positive constant L.
Dβm(x) indicates |β|-times partial derivatives of m(·), and |β| is the number of partial
derivatives. This class reduces to the Hölder class of functions when smoothness index is
restricted within (0, 1]. A large body of literature, such as Ermakov (1991), Y. I. Ingster
(1993), Lepski and Tsybakov (2000), and Guerre and Lavergne (2002), investigate the
optimal minimax rate of testing against alternatives defined in the Hölder class.

The index s and k represent smoothness of functions belonging to the class ML,s,k.
To observe the relationship between the smoothness of functions and the index, let us
compare the functions in classesML,s1,k andML,s2,k, where s1 > s2. When we focus on
the local variation of functions, say ‖x−y‖ ≤ 1, it is obvious that ‖x−y‖ ≤ ‖x−y‖s1 <
‖x−y‖s2 . This indicates that functions belonging toML,s2,k are allowed to have locally
greater variation than those inML,s1,k. Thus,ML,s2,k includes functions that are locally
less smooth than that in ML,s1,k, such that ML,s1,k ∈ ML,s2,k. This result indicates
that, given a positive constant L, a class with smaller smoothness index s contains locally
less smooth functions.

Guerre and Lavergne (2002) investigate the optimal minimax rate for testing specifi-
cations of the regression function against alternatives defined in the Hölder class. Their
result is that the optimal minimax rate for non-parametric specification testing in non-
linear regression models is n−2s/(l+4s) for s ≥ l/4, and n−1/4 for s < l/4, assuming s is
known a priori. In the adaptive framework, where s is set to be an unknown nuisance
parameter, Horowitz and Spokoiny (2001) propose a uniformly consistent test that uses
kernel smoothing to detect the alternative approaching the null hypothesis at the fastest
rate n−2s/(l+4s)(log log n)s/(l+4s) when s ≥ max(2, l/4).

Our local alternative is defined on a cone set consisting of normalized functions in
smoothness class ML,s,k:

M =
{
anf(·) : f(·) ∈ML,s,k, E[f(·)2] = 1, an 6= 0, an < a

}
,

11



where an is any scalar valued sequence that is bounded from above by a constant a. Let
δθ(Z) ≡ m(Z)−E[g(X, θ)|Z] be the difference between the true and parametric models.
The set of alternatives is

Hn,1 :M(ρn) =

{
δθ(Z) ∈M : inf

θ∈Θ
E
[
δθ(Z)2

]
≥ ρ2

n.

}
,

The minimax approach finds the fastest rate at which ρn approaches 0 while assuring
the test uniformly detects alternatives in M(ρn). To the best of our knowledge, this is
the first study that investigates the optimal minimax rate against the set of alternatives
defined in this class.

The next proposition shows a lower bound ρ̃n for the optimal minimax rate against
which no specification tests for IV models demonstrate non-trivial power.

Proposition 2 (Lower Bound). Suppose {Yi, Xi, Zi}ni=1 are an independent and iden-
tically distributed sample on (Y,X,Z) ∈ R × Rlx × Rl, where lx and l are finite. Let
ρ̃n = n−1/4. If each ωi ≡ Yi − m(Zi) is N(0, 1) conditionally upon Zi and Zi is uni-
formly distributed, for any test tn with supδθ(Z)∈H0

P (tn > zα) ≤ α+ o(1),

sup
δθ(Z)∈M(ρn)

P (tn ≤ zα) ≥ 1− α+ o(1), whenever ρn = o(ρ̃n),

where zα indicate the α level critical value of test tn.

Proposition 2 is proved by replacing the minimax problem with a Bayesian problem.
This is a standard argument to show the lower bound of the optimal minimax rate (see,
e.g., Y. I. Ingster, 1993, Spokoiny, 1996, Lepski & Spokoiny, 1999, Lepski & Tsybakov,
2000, Guerre & Lavergne, 2002, Abramovich et al., 2009, and Y. I. Ingster & Sapatinas,
2009).

Remark 6. Proposition 2 shows the lower bound of specification tests for IV models.
No test has non-trivial uniform power against the set of alternatives M(ρn) when it
approaches the null at a rate faster than n−1/4. This result differs from that of Guerre
and Lavergne (2002), in which the lower bounds depend on the smoothness of alternatives
and the dimension of conditioning variables. The difference mainly arises because the
set of alternatives we consider is constructed based onML,s,k, which includes the Höder
class employed in existing works.8

Finding a lower bound requires an example function that is difficult to detect (even
by the optimal Bayesian test) but still belongs to the set of alternatives. In the proof
of Proposition 2 given in the Appendix, we construct the example function fn,c(Zi) by

8The lower bounds under the IV model setting against the set of alternatives that is the same as
that in Guerre and Lavergne (2002) can be proved when following the proof of Theorem 2 in Guerre and
Lavergne (2002), and the results are exactly the same as those derived under their regression setting.
Thus, the lower bound does not change, even though the model is extended to an IV regression model. By
contrast, the set of alternatives in this study consists of a cone of functions belonging to the smoothness
class ML,s,k, which includes the smoothness class used in Guerre and Lavergne (2002).
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wavelet series, which form like a local alternative function that shrinks toward the null
at the rate of ρn. The example function has a tuning parameter c, which represents
the resolution level of wavelets that determines the frequency of the example function.
Roughly, a small c constructs a low frequency function that is detected easily by a test,
while a large c makes it difficult for tests to detect the example function. We obtain the
following corollary.

Corollary 1. Let ρ̃n = n−2/(4+cl2) if l < 2/
√
c and ρ̃n = n−1/4 if l ≥ 2/

√
c. Suppose the

setting of Proposition 2 holds. No test has non-trivial power against the local alternative
ρnfn,c(Zi) (defined in the proof of Proposition 2), whenever ρn = o(ρ̃n).

Remark 7. Since the dimension of the instruments l is restricted by c, a tradeoff
exists between the achievable testing power and the dimension of instruments. When
an alternative function is smooth so that it can be well approximated by wavelets with
low resolution level (c small), tests can exhibit local power at the rate n−2/(4+cl2) for
moderately small l that satisfies l < 2/

√
c. By contrast, when l is large, no tests achieve

the rate faster than the minimax rate of n−1/4 even against smooth alternatives.

In the following part, we investigate the minimax rate of our test under Hn,1. The
following assumptions are imposed.

Assumption 7. The density of Z, denoted as f(·) : Rl → R, has compact support
(without loss of generality [0, 1]l), satisfies 0 < f ≤ f(z) ≤ f < ∞ for any z ∈ [0, 1]l,

and is continuous on [0, 1]l.

Assumption 8. For each θ ∈ Θ, E[g(X, θ)8|Z] <∞.

Assumption 9. For each θ ∈ Θ, E[g(X, θ)|Z] ∈MLg ,s,k, for some constant Lg ≤ L.

Assumption 10. For each m(·) ∈ M(1+a)L,s,k, a unique pseudo-true value for θ exists
such that

θ∗m ≡ arg min
θ∈Θ

E{[m(Z)− g(X, θ)]Z}′ME{[m(Z)− g(X, θ)]Z},

where M is a symmetric and positive definite l × l weight matrix. Letting θ∗m = θ∗,√
n(θ̂ − θ∗) = Op(1) uniformly with respect to m(·) ∈M(1+a)L,s,k.

As in Assumption 7, we focus on the case in which Z is continuous when investigating
the power property under the alternative, although the continuity is not the essential
assumption. The source of testing power comes from the distance between the true and
the parametric models, that is, δ(Zi)δ(Zi∗) ≈ δ(Zi)

2 + (Zi − Zi∗)∂δ(Zi)/∂Zi under the
alternative. Since the sign of the second term is unknown, our test exhibits better power
property when the second term is zero. The continuity of Z is one of the sufficient
conditions to make Zi∗ approach Zi as sample size increases (see, e.g., Lemma 14.1 of
Q. Li & Racine, 2007). Thus, continuity of Z in Assumption 7 is not necessary and can
be replaced with other assumptions that ensure Zi∗ is close to Zi. For example, the power
property in Proposition 3 below also holds when we assume that f(·) is discrete instead
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of continuous as long as the number of realization points of Z with positive probability
is not large relative to the sample size. In IV regression models, the compactness of the
instruments in Assumption 7 is not restrictive at all because it can be achieved by an
appropriate monotone transformation.

Assumptions 8 and 9 restrict the parametric model of interest. Similar assumptions
are used in existing works, such as Guerre and Lavergne (2002) and H. Li et al. (2016),
to show the minimax power of testing. Assumption 9 is used to replace arguments of
the minimax approach with respect to the uniformity in δθ(Z) with uniformity in m(Z).
Under the local alternative that δθ(Z) ∈ M, a sequence an bounded by a exists and
satisfies m(Z) − E[g(X, θ)|Z] ∈ ManL,s,k ⊂ MaL,s,k, implying m(Zi) ∈ M(1+a)L,s,k

under Assumption 9. Assumption 8 along with the boundedness of the error term in
Assumption 1 guarantees E(u∗pi |Zi) <∞ for p = 8, which is required for the consistency
of µ̂ under the alternative hypothesis. Similar to the consistency of µ̂ under the null, it
is possible to reduce the finite eighth moment of the error term in Assumption 8 to its
finite fourth moment.

Assumption 10 ensures the existence of the pseudo-true values and guarantees its
estimator θ̂ to be

√
n-consistent uniformly in m(Z) ∈M(1+a)L,s,k. Uniform consistency

is essential for developing the minimax approach, because the approach finds the local
power of a test while maintaining a test can detect alternatives, in which the IV function
m(·) belongs to the smoothness class, uniformly. For further discussion, see Guerre and
Lavergne (2002), who give an example of an ordinary least squares estimator for a simple
univariate regression model that satisfies uniform consistency.

The weighting matrix M is arbitrary but researchers should choose carefully. As
A. R. Hall and Inoue (2003) suggest, the probability limit and the limiting distribution
of the GMM estimator depend on the limit of the weighting matrix and the limiting
distribution of the elements of the weighting matrix, respectively, when both parame-
ter over-identification and non-local misspecification are present. Although asymptotic
behavior of GMM estimators under our alternative hypothesis is not trivial, we leave
it for future work, as it exceeds the scope of this study. To circumvent the problem of
asymptotic behavior of GMM estimators, we regard M as an identity matrix throughout
this study.

Proposition 3 shows that our test has non-trivial uniform power against the alter-
natives in Hn,1 that approach the null hypothesis at the rate κn−1/4 for a constant κ.
Together with the the lower bound, this result indicates that our test is rate optimal
and the optimal minimax rate for the specification tests for IV models is n−1/4.

Proposition 3. Suppose Assumptions 1, 2, 3, 4, 5, 7, 8, 9, and 10 hold. Let ρn = n−1/4.
For any prescribed bound β ∈ (0, 1− α), a constant κ exists such that

sup
δθ(Z)∈M(κρn)

P (Tn ≤ zα) ≤ β + o(1).

Remark 8. The power property against Pitman local alternatives is established by Jun
and Pinkse (2009). Their results imply that K-nearest neighbor tests for IV regression
models can detect Pitman local alternatives converging to the null at a rate equal to
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n−1/4 when the number of neighbors is constant. Proposition 3 complements their
results by showing a set of alternatives approaching the null at a rate equal to n−1/4,
against which K-nearest neighbor tests with a fixed number of neighbors have non-trivial
uniform power.

Remark 9. Propositions 2 and 3 along with Corollary 1 imply that power performance
of K-nearest neighbor tests does not always improve as the number of neighbors K
increases. This finding contradicts the results that a K-nearest neighbor test performs
better against Pitman local alternatives when K grows with sample size. Jun and
Pinkse (2009) show K-nearest neighbor tests detect such alternatives approaching the
null at a rate of (nK)−1/4. Increasing power property, however, does not apply against a
wider class of alternatives such as ours, because Pitman local alternatives focus only on
certain departures from the null.9 Indeed, Proposition 2 and Corollary 1 expose the set of
alternatives against which our single nearest neighbor test achieves the fastest possible
rate. Since rate optimality of our test holds even for large l, there are no tests that
perform better in terms of power when the dimension of instruments is large. Therefore,
K-nearest neighbor tests with fixed K neighbors such as ours complement other tests,
because they have computational advantage in the large dimension setting.

6 Monte Carlo Experiments

6.1 Size and Power against Non-smooth Alternative

We conduct Monte Carlo studies to investigate the size and power performance of Tn
under finite samples. We test the null hypothesis that

g(x) = θ0 + θ1x+ θ2w1 + θ3w2 (5)

The data-generating processes (DGP) are

xi = Φ
(
ρv1,i + (1− ρ2)1/2v2,i

)
,

zi = Φ(v1,i),

ui = 0.2Φ
(
ηv2,i + (1− η2)1/2v3,i

)
,

yi = 1 + xi + w1,i + w2,i + βh(w1,i) + ui,

where Φ(·) denotes the standard normal distribution function. We have five random
variables v1,i, v2,i, v3,i, w1,i, and w2,i. The first three variables are driven randomly from
N(0, 1) and the remaining two are random samples from U [0, π].

In this experiment, xi is endogenous, which is instrumented by zi. The endogeneity
accrues via v2, and correlation between xi and ui depends on parameters ρ and η. The
exogeneity of the instruments is guaranteed because ui does not depend on v1 that
generates instruments. Correlation between instruments and the endogenous variable

9For features of Pitman local alternatives compared to others, see, Fan and Li (2000)
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can be gauged by parameter ρ. The DGPs for x, z, and u are adapted from Horowitz
(2006).

The outcome y consists of endogenous variable x, two exogenous variables w1,i and
w2,i, and a function h(·) that generates misspecification under alternatives (when β 6= 0).
To introduce non-smooth alternatives, h(·) is set to be a Haar wavelet function. In
particular, h(x) = 1 if x ∈ (1, 1.5), h(x) = −1 if x ∈ (1.5, 2), and h(x) = 0, otherwise as
illustrated in Figure 1.

The form of the DGP for the outcome resembles the local alternatives considered in
the proof of Proposition 2, where we have fixed parameter β instead of ρn, which shrinks
as sample size increases. The size of the test can be investigated by testing the null
hypothesis (5) under β = 0, while the power can be examined by letting β be non-zero.
According to the results of Propositions 2 and 3, our test has power uniformly as long
as β = O(n−1/4).
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Figure 1: Haar wavelet function.
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Figure 2: Deviation from the null. Notes:
Data are generated by DGP1 and β = 0.1.

We consider three sets of DGPs, called DGP 1, DGP 2, and DGP 3. In each set of
DGPs, different parameter values for ρ and η are assigned: DGP 1: ρ = 0.8, η = 0.1;
DGP 2: ρ = 0.8, η = 0.5; DGP 3: ρ = 0.7, η = 0.1. Figure 2 illustrates the outcome y
under the alternative. The deviations from the 45-degree line show the distance between
the null and alternative models.

Table 1 shows the finite sample size performance of our test. Sample sizes are chosen
to be n = {100, 250, 500, 1000, 5000} and the results are based on M = 1, 000 simulation
runs. The test tends to under-reject the null hypothesis in most cases for all significance
levels, indicating that the test is conservative. However, the estimated sizes get closer
to their nominal sizes for all DGPs as sample size increases.

Figure 3 displays the power functions of the test statistic depending on β. For each
value of β = {0.01, 0.02, · · · , 0.20}, we conduct M = 1, 000 simulation runs to obtain
fractions for rejecting the null hypothesis. The first row of this figure shows the power
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Table 1: Monte Carlo results for size.

GDP1 GDP2 GDP3

n 1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20%

100 0.007 0.032 0.070 0.135 0.001 0.027 0.062 0.131 0.007 0.031 0.072 0.140
250 0.009 0.029 0.066 0.142 0.001 0.029 0.068 0.146 0.009 0.028 0.067 0.141
500 0.007 0.042 0.081 0.177 0.008 0.035 0.071 0.159 0.006 0.043 0.083 0.173

1000 0.012 0.046 0.094 0.175 0.008 0.054 0.092 0.175 0.012 0.047 0.094 0.174
5000 0.008 0.045 0.089 0.192 0.013 0.048 0.088 0.188 0.008 0.045 0.090 0.192

Note: Since the test is one-sided, the null is rejected when the test statistic is larger than 1.64.

functions when zi and two exogenous variables in the model are used as instruments (total
of three instruments). Recall that the value for β determines how far an alternative is
apart from the null model. Figure 3 clearly illustrates the increasing power performance
as β becomes large. In particular, the fractions of rejection become exactly 1 for all
DGPs when β is larger than 0.06, 0.08, and 0.13 for n = 1000, n = 500, and n = 250,
respectively. Figure 3 shows increasing power performance as sample size grows. These
results coincide with those given in Propositions 2 and 3, indicating that our test is
powerful when β is not too small relative to the sample size.

6.2 Power under Many IVs

An interesting set-up for the simulation study is an IV model with many instruments.
In addition to the DGPs described above, we generate instruments as follows:

zi,j = v1,i + v4,i,j , for j = 1, . . . , l,

where v4,i,j is driven randomly from N(0, σ2
j ), and σ2

j is driven randomly from U [0, 0.1].
The second row of Figure 3 illustrates the power functions against non-smooth al-

ternatives when l = 10, that is, the model has a total of 12 instruments, including 2
exogenous variables in the model. For small sample size with n = 100 and n = 250, the
slopes of power functions are gentler compared to the previous simulation results, with
only 3 instruments shown in the first row of Figure 3. In particular, the rejection prob-
abilities are around 0.2 for β = 20 for all DGPs when n = 100, while they are around
0.8 in the previous simulation results. However, the power performance increases as the
sample size grows. In particular, the fractions of rejection become exactly 1 for all DGP
when β is larger than 0.08 and 0.14 for n = 1000 and n = 500, respectively. A similar
tendency is captured for power functions when the model has a total of 27 instruments,
including 2 exogenous variables (the third row of Figure 3). Overall, power declines
as the dimension of instruments increases. Rejection probabilities of around 0.10 are
achieved for β = 20 for all DGPs when n = 100. The fractions of rejection, however,
increase as the sample size grows and the fractions become exactly 1 for all DGPs when
β is larger than 0.09 for n = 1000. It is rather surprising that the test rejects the null
hypotheses of correct model specification with the high probabilities, even the model
includes 27 instruments.

17



0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.05 0.10 0.15 0.20
Beta

P
ro

ba
bi

lit
y 

of
 re

je
ct

io
n

samplesize
100

250

500

1000

GDP1 with 3 IVs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.05 0.10 0.15 0.20
Beta

P
ro

ba
bi

lit
y 

of
 re

je
ct

io
n

samplesize
100

250

500

1000

GDP2 with 3 IVs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.05 0.10 0.15 0.20
Beta

P
ro

ba
bi

lit
y 

of
 re

je
ct

io
n

samplesize
100

250

500

1000

GDP3 with 3 IVs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.05 0.10 0.15 0.20
Beta

P
ro

ba
bi

lit
y 

of
 re

je
ct

io
n

samplesize
100

250

500

1000

GDP1 with 12 IVs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.05 0.10 0.15 0.20
Beta

P
ro

ba
bi

lit
y 

of
 re

je
ct

io
n

samplesize
100

250

500

1000

GDP2 with 12 IVs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.05 0.10 0.15 0.20
Beta

P
ro

ba
bi

lit
y 

of
 re

je
ct

io
n

samplesize
100

250

500

1000

GDP3 with 12 IVs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.05 0.10 0.15 0.20
Beta

P
ro

ba
bi

lit
y 

of
 re

je
ct

io
n

samplesize
100

250

500

1000

GDP1 with 27 IVs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.05 0.10 0.15 0.20
Beta

P
ro

ba
bi

lit
y 

of
 re

je
ct

io
n

samplesize
100

250

500

1000

GDP2 with 27 IVs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.05 0.10 0.15 0.20
Beta

P
ro

ba
bi

lit
y 

of
 re

je
ct

io
n

samplesize
100

250

500

1000

GDP3 with 27 IVs

Figure 3: Power functions against non-smooth alternatives. Notes: Reported are frac-
tions of rejection of the null hypothesis in 1000 simulation runs.

7 Application

This section applies our test to the models for return to schooling and specification
of Engel curves. The empirical application for return to schooling highlights attractive
feature of our test when model include many IVs. The appropriate specification of Engel
curves depends on the source of endogeneity and assumptions set on it. Since the source
is unobserved, researchers need to test the specification of the model. As discussed in
Remark 3, monotonicity condition may hold for Engel curves, indicating that the null
hypothesis implies correct specification of g(·). In the following application, we use the
modified test statistic (4) when ties exist.

7.1 Return to Schooling

A motivating empirical example to apply our test to is return to schooling investigated by
Angrist and Krueger (1991). The sample is the 1980 US census and consists of 329, 509
men born between 1930 and 1939. Angrist and Krueger (1991) estimate the following
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IV regression model:
wage = βeducation + α′X + error,

where wage is the log of weekly wage, education is the year of education, and X is a
vector of exogenous variables, such as 9 year-of-birth (YOB) dummies and 50 state-of-
birth (SOB) dummies. The vector of instruments Z for endogenous education includes
the quarter of birth (QOB) dummies, exogenous variables X, all cross-terms of QOB
and X, and a constant. We use a total of 240 instruments, namely, 3 QOB dummies,
9 YOB dummies, 50 SOB dummies, 27 QOB times YOB interactions, 150 QOB times
SOB interactions, and a constant. The estimation results are given in the second column
of Table VII of Angrist and Krueger (1991). The P-value for Sargan’s statistic is 0.800
(the test value is 163 with 179 degrees of freedom), indicating that the test does not
reject the null of true model specification. The value of our test is −0.29, thereby not
rejecting the null hypothesis. This result amplifies the fact that our test is acceptable in
terms of computational cost and well applicable even when the numbers of instruments
and sample size are quite large.

7.2 Specification of Engel curves

Next, we apply our test to models for Engel curves (or consumer expansion paths).
Engel curves represent the relationship between the shares of expenditure on specific
commodities and total expenditure. Since the shape of the curve determines the elastic-
ity of commodities toward total expenditure and displays whether the good is an inferior,
normal, or luxury good, empirical analyses of Engel curves are important in understand-
ing, for example, consumer responses to policy reform. However, endogeneity arises from
simultaneity and measurement errors in expenditure data, which makes the estimation
of Engel curves cumbersome.

The baseline model is the Working–Leser specification of Engel curves, a structural
model originating in consumer theory. Expenditure shares of a commodity have linear
relationships to the log of total expenditure in the Working–Leser specification, which is
shown to have micro foundations (Muellbauer, 1976, Deaton & Muellbauer, 1980, and
Jorgenson, Lau, & Stoker, 1982). Let yi,j be the expenditure on good j by individual i,
Xi ≡

∑
j yi,j be total expenditures, and W be a vector of exogenous variables. Then,

the Working–Leser specification of Engel curves is

yi,j
Xi

= α0,j + α′1,jWi,j + βj logXi + εi,j , (6)

where ε is unobserved regression error and α0, α1 and β are unknown parameters to be
estimated.

There are at least two plausible ways in which ordinary least squares estimation
can fail to obtain consistent parameter estimates. First, total expenditure seems to be
simultaneously determined with expenditure for each good. Second, expenditure data
may be measured with errors. Since both simultaneity and measurement error can cause
correlation between the error term and total expenditure, X is likely to be endogenous
in equation (6).
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While endogeneity driven by simultaneity can be addressed by employing the con-
ventional IV approach, it fails to obtain consistent parameter estimates when non-linear
measurement errors exist. Measurement errors are non-linear in Engel curves, because
error-ridden expenditure appears on both sides of equation (6). The only exception in
which the IV approach leads to consistent parameter estimates is when errors are multi-
plicative and identical to all goods. To observe this case, let ỹi,j be the real expenditure
for good j and X̃i ≡

∑
j ỹi,j , and assume multiplicative measurement errors yi,j = ỹi,jvi,

where vi is a mean zero random variable independent of ỹi,j and instruments. By sum-
ming up over all goods and taking the logarithm, we obtain logXi = log X̃i + log vi.
Moreover, errors on the left-hand side of equation (6) disappear when errors do not
depend on the type of good so that yi,j/Xi,j = ỹi,j/X̃i. However, homogeneous mea-
surement errors are not realistic in many cases, and thus, it is more plausible to allow
non-linear measurement errors to appear in Engel curves.

We focus on three estimation strategies for Engel curves. They are IV, Lewbel’s
(1996), and Battistin and De Nadai’s (2015) approaches. Lewbel (1996) proposes an es-
timation procedure when measurement error is the only source of endogeneity. Recently,
Battistin and De Nadai (2015) show an identification strategy when both simultaneity
and measurement error are present. Although all of the IV, Lewbel (1996), and Battistin
and De Nadai (2015) approaches aim to estimate the same parameter βj , different as-
sumptions about the source of endogeneity lead to some differences in the specification
of Engel curves.

Let Zi be a vector of IVs that includes exogenous variables Wi,j . In the IV approach,
it is assumed that

E

(
yi,j
Xi

∣∣∣∣Zi) = α0,j + α′1,jWi,j + βjE(logXi|Zi).

The parameters are identified through a 2SLS regression of y/X on constant W and
logX, where logX is instrumented by Z.

When additive measurement errors are assumed such that yi,j = ỹi,j+X̃ivj , equation
(6) turns out to be

yi,j
Xi

=
ỹi,j/X̃i + vj

V
=
α0,j + α′1,jWi,j + βj log X̃i + εi,j + vj

V
, (7)

where V ≡ 1 +
∑

j vj .

Under the assumption that vi is a mean zero random variable independent of X̃i, Wi,
εi,j , and instruments Zi, E(Xi|Zi) 6= 0, and E(εi,j |Zi) = 0 and the fact that Xi = X̃iV ,
it holds that E(Xi|Zi) = E(X̃iV |Zi) = E(X̃i|Zi)E(V ) = E(X̃i|Zi), E(Wi,jXi|Zi) =
E(Wi,jX̃i|Zi), and E(Xi logXi|Zi) = E[X̃iV (log X̃i + log V )|Zi] = E[X̃i log X̃i|Zi] +
E(X̃i|Zi)E(V log V |Zi). Thus, multiplying either side of equation (7) by Xi and taking
conditional expectations with respect to Zi yields

E (yi,j |Zi) = α̃0,jE(Xi|Zi) + α′1,jE(Wi,jXi|Zi) + βjE(Xi logXi|Zi) +E(X̃iεi,j |Zi), (8)
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where α̃0,j ≡ α0,j − βjE(V log V |Zi). In Lewbel’s (1996) approach, it is assumed that
E(εi,j |X̃i) = 0, so that the fourth term of equation (8) is zero. The parameters are
identified through a 2SLS regression of y on X, WX, and X logX without a constant
and Z as instruments.

To address the violation of E(X̃iεi,j |Zi) being zero assumed in Lewbel (1996), Battistin
and De Nadai (2015) use a control function approach. Let ηi be the residual term from
the regression of logXi on the set of instruments Zi and η̃i be the residual using log X̃i

instead of logXi. The authors set a parametric assumption that E(εi,j |Zi, η̃i) = ρiη̃i,
which yields E(X̃iεi,j |Zi) = E[X̃iE(εi,j |Zi, η̃i)|Zi] = ρiE[X̃iη̃i|Zi].

Since E[Xiηi|Zi] = E[X̃iη̃i|Zi] + cov(V, log V ) by using ηi = η̃i + log V − E(log V ),
we obtain

E (yi,j |Zi) = α0,jE(Xi|Zi) + α′1,jE(Wi,jXi|Zi) + βjE(Xi logXi|Zi) + ρiE(Xiηi,j |Zi),

where α0,j ≡ α0,j − βjE(V log V |Zi) − ρicov(V, log V ). By replacing η with its fitted
values η̂, parameters, including ρj , are identified through a 2SLS regression of y on X,
WX, X logX, and Xη̂ without a constant and Z as instruments.

In summary, each of IV, Lewbel’s (1996), and Battistin and De Nadai’s (2015) ap-
proaches has its own econometric specification for Engel curves. They are represented
in the following moment restrictions:

E
(
εIVi,j
∣∣Zi) = 0, E

(
εLi,j
∣∣Zi) = 0, and E

(
εBN
i,j

∣∣Zi) = 0, (9)

where

εIVi,j ≡ yi,j/Xi − α0,j − α′1,jWi,j − βj logXi

εLi,j ≡ yi,j − α̃0,jXi − α′1,jWi,jXi − βjXi logXi

εBN
i,j ≡ yi,j − α0,jXi − α′1,jWi,jXi − βjXi logXi − ρiXiη̂i,j .

When εi,j is exogenous to both Xi and Zi, all moment restrictions in (9) hold. Consider
that the source of endogeneity is only the simultaneous determination (or omitted vari-
ables). Then, moment restriction of the IV approach holds, while that of Battistin and
De Nadai’s (2015) approach holds only if the parametric specification for E(εi,j |Zi, η̃i)
is correct. The moment restriction of Lewbel’s (1996) approach may not hold, since
E(εi,j |X̃i) = E(εi,j |Xi) 6= 0. By contrast, when endogeneity arises only from the mea-
surement error of the form discussed above, moment restrictions of Lewbel’s (1996) and
Battistin and De Nadai’s (2015) approaches hold, while those of the IV approach fail.
When both simultaneity and measurement errors are present, only the moment restric-
tions of Battistin and De Nadai’s (2015) approach hold under the correct parametric
assumption for E(εi,j |Zi, η̃i).

However, in the empirical analysis, we are unaware of the source of endogeneity,
indicating that testing the model specifications (9) enables us to investigate the fitness
of each model. We apply these models to two data sets, and test the model specifications
by employing our test.
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7.2.1 Example 1: Italian Household Survey

This section adapts the application given in Battistin and De Nadai (2015) to test the
Engel curve specifications of IV, Lewbel’s (1996), and Battistin and De Nadai’s (2015)
approaches. The data are the 2010 wave of the Bank of Italy’s Survey on Households’
Income and Wealth (SHIW).

Battistin and De Nadai (2015) focuses on Engel curves for food, the linearity of which
is supported by substantial empirical evidence, and runs separate regressions depending
on the number of children in the household (couples without children, couples with one
child, and couples with more than one child). Exogenous variables are the household
regional variation represented by macro area dummies (North, Center, and South) and
instruments for the total expenditure are the average of male logged wages across areas.
The detailed explanation for data sets and estimation results is given in Battistin and
De Nadai (2015).

Table 2: Test for Engel curve specification. SHIW 2010 data

IV Lewbel (1996) BN (2015)

No children 0.414 (0.339) 5.161 (0.000) 2.230 (0.013)
One child 2.765 (0.003) 3.801 (0.000) 4.929 (0.000)
More than one child 3.193 (0.001) 5.612 (0.000) 5.595 (0.000)

Note: Presented are the test statistics Tn in equation (3). Sample size for groups “No children,” “One
child,” and “More than one child” are 345, 709, and 1257, respectively. P-values are given in parentheses.
BN (2015) denotes Battistin and De Nadai (2015).

Table 2 presents the test statistics for each model specification and household group.
The null hypothesis is that the specification of the model is true. We test each model
specification (IV, Lewbel’s 1996, and Battistin and De Nadai’s 2015 model) in three
populations, that is, households without children, those with one child, and those with
more than one child. Since the test is one-sided, the null hypothesis is rejected when
the P-value (in parentheses) is smaller than the significance level. For households with-
out children (the first row), the test rejects only Lewbel’s (1996) specification at the
1% significance level. Recall that Lewbel’s (1996) approach is appropriate when the
measurement error is the only source of endogeneity. This result coincides with the
suggestion of Battistin and De Nadai (2015) that total expenditure endogeneity caused
by simultaneity might be a more serious problem than measurement error, at least in
these data. For households with one child and more than one child (the second and third
rows, respectively), all model specifications are rejected even at the 1% significance level.
Overall, our results suggest that a model should be chosen carefully, because the source
of endogeneity and thus, model specifications may depend on the population of interest.

7.2.2 Example 2: Japanese Household Survey

We use data from the 2004 wave of the National Survey of Family Income and Expen-
diture (NSFIE). Every 5 years since 1959, the NSFIE gathers detailed information on
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household consumption and income in Japan. We focus on households formed by couples
with and without children, where the household head was 25 to 60 years old in 2004.
Furthermore, we select a subsample of households whose disposable income lies between
the 25th and 75th percentiles of income distribution of all households, resulting in a
sample of 10, 037 households.

Table 3: Descriptive statistics.

No children One child More than one child

Variable Mean Std. dev. Mean Std. dev. Mean Std. dev.

Log expenditure 12.50 0.43 12.50 0.40 12.54 0.35
Log income 12.81 0.17 12.79 0.17 12.81 0.16
Food share 0.22 0.09 0.23 0.08 0.26 0.08
Lisure share 0.09 0.07 0.09 0.07 0.10 0.06

Sample size 1,936 2,716 5,385

Note: The data source is the NSFIE.

We focus on Engel curves for food and leisure, and run separate regressions depending
on the number of children in the household (couples without children, couples with one
child, and couples with more than one child). Total expenditure represents average
monthly living expenditure, which does not include non-living expenditure, such as taxes
and social insurance. Exogenous variables are an urban–rural indicator, which is 1 for
households in one of three metropolitan areas (Tokyo, Chukyo, or Kinki) in Japan, and
gender rate, which is defined as the number of male household members divided by the
number of all household members. Instruments for the total expenditure are disposable
income, which is salary or wage from which non-living expenditure, such as taxes and
social insurance premiums, is deducted. Table 3 documents the means and standard
deviations of key variables for couples with no children, one child, and more than one
child, where the sample sizes are 1, 936, 2, 716, and 5, 385, respectively.

Let X, W , and Z be total expenditure, a vector of exogenous variables (urban–rural
indicator and gender rate), and disposable income, respectively. In the IV approach, the
parameters in Engel curves are identified through a 2SLS regression of outcomes (food
share and leisure share) on W , logX with a constant, where logX is instrumented by Z.
Lewbel’s (1996) approach identifies parameters through a 2SLS regression of outcomes
(log food and leisure expenditure) on X, WX, and X logX without a constant, where all
covariates are instrumented by Z, logZ, Z logZ, and their interactions with W without
a constant in the first stage (for a total of 9 instruments). The first stage in Battistin
and De Nadai’s (2015) approach obtains η̂, which is the residual term of regression logX
on Z, logZ, Z logZ, and their interactions with W without a constant. Parameters are
identified through a 2SLS regression of outcomes (log food and leisure expenditure) on
X, WX, X logX, and Xη̂ without a constant, where all covariates are instrumented by
Z, logZ, Z logZ, and their interactions with W without a constant in the first stage
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(for a total of 9 instruments).

Table 4: Estimation results for Engel curve. NSFIE 2004 data

IV Lewbel (1996) BN (2015)

Results for food share
No children −0.084∗∗∗ (0.013) −0.083∗∗∗ (0.013) −0.075∗∗∗ (0.028)
One child −0.020* (0.012) −0.030∗∗ (0.014) −0.032∗∗∗ (0.013)
More children −0.039∗∗∗ (0.008) −0.052∗∗∗ (0.008) −0.050∗∗∗ (0.008)

Results for leisure share
No children 0.027∗∗ (0.013) 0.008 (0.019) 0.003 (0.020)
One child 0.037∗∗∗ (0.010) 0.020 (0.014) 0.008 (0.021)
More children 0.032∗∗∗ (0.007) 0.017∗∗ (0.008) 0.021 (0.013)

Note: Presented are the estimation results for β in the Engel curve given in equation (6). Standard
errors are given in parentheses. The level of significance are shown by ***, **, and * for 1%, 5%, and
10%, respectively. BN (2015) denotes Battistin and De Nadai (2015).

Table 4 displays estimates for β in equation (6), which is identified by IV, Lewbel’s
(1996), and Battistin and De Nadai’s (2015) approaches. The first and second panels
show results for food and leisure shares in total expenditure as outcomes, respectively,
where separate regressions are run for couples without children, couples with one child,
and couples with more than one child. The results suggest that estimates for β depend
on model identification.

Table 5: Test for Engel curve specification. NSFIE 2004 data

IV Lewbel (1996) BN (2015)

Results for food share
No children 0.503 (0.307) 0.584 (0.280) 0.960 (0.169)
One child 1.208 (0.114) −0.173 (0.569) −0.259 (0.602)
More than one child 0.072 (0.471) 0.885 (0.188) 2.199 (0.014)

Results for leisure share
No children 0.354 (0.362) 0.040 (0.484) −0.280 (0.610)
One child −0.381 (0.649) −0.176 (0.570) 3.593 (0.000)
More than one child 0.068 (0.473) 0.810 (0.188) −0.209 (0.583)

Note: Presented are the test statistics Tn in equation (3). P-values are given in parentheses. BN (2015)
denotes Battistin and De Nadai (2015).

Table 5 reports the test results. The first panel focuses on the Engel curve of food
share. For households without children and with one child, all models are not statisti-
cally different from the true model even at the 10% significance level. For households
with more than one child, the null is rejected for Battistin and De Nadai’s (2015) model
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at the 5% significance level, implying that additional assumptions in their approach,
such as parametric assumptions for E(εi,j |Zi, η̃i), may be inappropriate in this case. For
the Engel curve of leisure share given in the second panel, the null is not rejected for all
models even at the 10% significance level except Battistin and De Nadai’s (2015) model
for households with one child. Overall, similar to the results from SHIW in Example
1, these results indicate that the model should be chosen carefully, because appropri-
ate model specifications might depend on the population of interest. For NSFIE data,
both measurement error and simultaneity might be a serious problem that cause total
expenditure endogeneity, and the test results are likely to be sensitive to the additional
parametric restriction in Battistin and De Nadai’s (2015) model.

8 Conclusion

This study proposes a rate optimal specification test for IV regression models. Our
test is rate optimal against a set of alternatives M(ρn) with ρn = n−1/4, where the
alternative consists of functions belonging to the cone set of the Hölder class with some
normalization. This rate coincides with the fastest possible rate achievable by any tests
under the local alternative setting when the alternative is constructed by a non-smooth
function and/or the dimension of instrument is large. Since the non-smooth function
belongs to M(ρn), our test is preferable in a large dimension setting. Indeed, our
simulation results show that the rejection probability of our test against a misspecified
model with many instruments (l = 27) approaches one reasonably fast with the sample
size. Moreover, we observe that the test works well in the empirical application to the
return of education investigated in Angrist and Krueger (1991), even though their model
includes a total of 240 IVs.

Although the literature for estimation and inference of parameters in linear IV re-
gression models with many or many weak instruments is recently growing (see, e.g.,
Andrews & Stock, 2007, Newey & Windmeijer, 2009, Anatolyev & Gospodinov, 2011,
Lee & Okui, 2012, Chao, Hausman, Newey, Swanson, & Woutersen, 2014, and references
therein), specification testing and its rate optimality are not sufficiently investigated. A
possible extension of this study, on which we are currently working, is rate optimal
specification testing under many weak instruments.
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APPENDIX A

Proof of Proposition 1

Proof of Proposition 1. We define a indicator functionKi,j that takes 1 if the observation
j is the nearest neighbor of observation i. Formally, Ki,j = 1(||Zi − Zj || ≤ ||Zi − Zi∗ ||)
for i 6= j and Ki,j = 0 for i = j. Without loss of generality, we assume that nearest
neighbors are uniquely determined.10 The frequencies that an observation is assigned to
be nearest neighbors are finite because of the boundedness of the kissing number. The
boundedness also holds when we use k-nearest neighbor for any fixed k > 1 instead of the
first nearest neighbor. These features of the boundedness are crucial for the derivation
of asymptotic properties of our test statistic.

Under the null hypothesis, we have

1√
n

n∑
i=1

ûiûi∗ =
1√
n

n∑
i=1

[Yi − g(Xi, θ̂)][Yi∗ − g(Xi∗ , θ̂)]

=
1√
n

n∑
i=1

[g(Xi, θ0)− g(Xi, θ̂) + ui][g(Xi∗ , θ0)− g(Xi∗ , θ̂) + ui∗ ]

=
1√
n

n∑
i=1

[g(Xi, θ0)− g(Xi, θ̂)][g(Xi∗ , θ0)− g(Xi∗ , θ̂)] : A1

+
1√
n

n∑
i=1

[g(Xi, θ0)− g(Xi, θ̂)]ui∗ : A2

+
1√
n

n∑
i=1

[g(Xi∗ , θ0)− g(Xi∗ , θ̂)]ui : A3

+
1√
n

n∑
i=1

uiui∗ . : A4

It can be straightforwardly shown that A1, A2, and A3 are op(1). Under Assumptions
1, 2, 3, and 6, we have A1 = op(1). Intuitively, it comes from the

√
n-consistency of

θ̂, smoothness and finite moment assumption imposed on g(·), and the boundedness of
the number of nearest neighbors,

∑n
i 6=jKi,j ≤ ∞. We can apply Lemma B6 of Jun and

Pinkse (2012) to show the convergences of A2 and A3 in probability under Assumptions
1, 2, 4, 5, and 6. The results for A3 can be shown by replacing Assumption 5 with
Assumption 3 by dividing them into martingale difference sequences with vanishing
variances. We show it in the followings.

Lemma 1. Under Assumptions 1, 2, 3, 4, and 6, we have A3 = op(1).

10Nearest neighbors are uniquely determined when the density of Z is assumed to be continuous.
When Z is discrete, some observations may take exactly the same value and both of them could be
assigned to be the nearest neighbors of a observation. In this case, one can just arbitrary choose one of
them to determine unique neighbors.
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Proof. From the mean value theorem, we obtain

A3 =
√
n(θ̂ − θ0)

1

n

n∑
i=1

µ
i
+
√
n(θ̂ − θ0)

1

n

n∑
i=1

µi +
√
n(θ̂ − θ0)µn

√
n(θ̃ − θ0),

where
√
n(θ̂ − θ0) = Op(1), µ

i
≡
∑

j<iKi,j
∂
∂θg(Xj , θ0)ui, µi ≡

∑
j>iKi,j

∂
∂θg(Xj , θ0)ui,

and µn ≡ 1
n
√
n

∑n
i=1

∑n
j 6=iKi,j

∂
∂θ∂θg(Xj , θ)|θ=˜̃

θ
ui for a interior point

˜̃
θ between θ̂ and θ0.

Note that µ
i
and µi are martingale difference sequences with respect to σ-fields generated

by {X1, X2, . . . , Xi, Z1, Z2, . . . , Zn}, and {Xi, Xi+1, . . . , Xn, Z1, Z2, . . . , Zn}, respectively.
The variances of 1

n

∑n
i=1 µi and 1

n

∑n
j=1 µi can be straightforwardly shown to be O(1/n).

Thus, 1
n

∑n
j=1 µi

p−→ 0 and 1
n

∑n
j=1 µi

p−→ 0 from the Chebyshev’s inequality. We can also

show µn = op(1) by using the bounded second moments for uj and ∂
∂θ∂θg(Xj , θ0).

In Lemma 2, we apply martingale central limit theorem (C.L.T.) to A4.

Lemma 2. Under Assumption 1, we have A4
d−→ N(0, µ2), where µ2 is asymptotic

variance of A4.

Proof. A4 is represented as follows:

A4 =
1√
n

n∑
i=1

uiui∗ =
1√
n

n∑
i=2

i−1∑
j=1

Wi,juiuj =
n∑
i=2

εn,i,

where Wi,j ≡ Ki,j+Kj,i and εn,i ≡ 1√
n

∑i−1
j=1Wi,juiuj . Let Fn,i be a σ-field generated by

{Y1, Y2, . . . , Yi, X1, X2, . . . , Xi, Z1, Z2, . . . , Zn}. It is obvious that Fn,i form a filtration,
that is, Fn,k ⊂ Fn,k+1 holds, and εn,i is a martingale difference with respect to Fn,i. We
employ C.L.T. to prove the asymptotic normality of

∑n
i=2 εn,i. According to Theorem

35.12 of Billingsley (2012),
n∑
i=2

εn,i
d−→ N(0, µ2),

if

µ2 ≡ lim
n→∞

n∑
i=2

E[ε2n,i|Fn,i−1] <∞, (A.1)

and

lim
n→∞

n∑
i=1

E[ε2n,i1{|εn,i| ≥ ε}] = 0 for each ε. (A.2)

Note that Wi,j1Wi,j2 = 0 if j1 6= j2. Then, (A.1) can be shown as follows:

µ2 = lim
n→∞

n∑
i=2

E(ε2n,i|Fn,i−1) = lim
n→∞

1

n

n∑
i=2

i−1∑
j=1

W 2
i,ju

2
jσ

2(Zi) <∞, (A.3)
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because E(u2
i |Fn,i−1) = σ2(Zi) <∞ by Assumption 1 and

∑n
i=1W

2
i,j ≤ ∞. We rewrite

the condition (A.2) as

n∑
i=1

E[ε2n,i1{|εn,i| ≥ ε}] ≤ n sup
i
E

[
|εn,i|3

|εn,i|
1{|εn,i| ≥ ε}

]
≤ n

ε
E
[
|εn,i|3

]
.

By using the Hölder’s inequality. the third absolute moment of εn,i is

E[|εn,i|3] ≤ M

(
√
n)3

E

∣∣∣∣∣∣
i−1∑
j=1

Wi,juj

∣∣∣∣∣∣
3 ≤ M

(
√
n)3

E
E

 i−1∑
j=1

Wi,juj

4∣∣∣∣∣∣Z



3
4

,

for some constant M . The boundedness of E(u4|Z),
∑i−1

j=1W
4
i,j , and

∑i−1
j=1

∑i−1
l 6=j W

2
i,jW

2
i,l

implies E[|εn,i|3] = O(n−3/2), and we obtain
∑n

i=1E[ε2n,i1{|εn,i| ≥ ε}] = O(n−1/2).
Therefore, equations (A.1) and (A.2) hold and we yield

1√
n

n∑
i=1

uiui∗
d−→ N(0, µ2).

Lastly, we show µ̂2 p−→ µ2, where µ̂2 = n−1
∑n

i=1(ûiûi∗)
2, by decomposing µ̂ into

vanishing terms and sum of martingale sequences in the following lemma.

Lemma 3. Under 1, 2, 3, 4, 5, and 6, we have µ̂2 p−→ µ2 under the null hypothesis.

Proof. We show that µ̂2 converges to µ2 defined in equation (A.1) almost surely and µ2

is equivalent to limn→∞
1
n

∑n
i=2

∑i−1
j=1W

2
i,jσ

2(Zj)σ
2(Zi). µ̂

2 is represented as follows:

µ̂2 =
2

n

n∑
i=1

[g(Xi∗ , θ0)− g(Xi∗ , θ̂)]u
2
iui∗ +

1

n

n∑
i=1

u2
iu

2
i∗ +B, (A.4)

where B includes terms that converges to zero in probability. The convergence can
be shown straightforwardly by using the

√
n-consistency of parameter estimates in As-

sumption 6, uniform convergence of the first and the second derivative of g(x, θ) with
respect to θ ∈ Θ under Assumptions 2, 3, and 4, and Assumptions 1 and 5 about the
boundedness.

The absolute value of the first term of equation (A.4) is

2

n

∣∣∣∣∣
n∑
i=1

[g(Xi∗ , θ0)− g(Xi∗ , θ̂)]u
2
iui∗

∣∣∣∣∣ ≤ 2

n

∣∣∣∣∣
n∑
i=1

(θ̂ − θ0)′
∂

∂θ
g(Xi∗ , θ0)ui∗u

2
i

∣∣∣∣∣
+

2

n

∣∣∣∣∣
n∑
i=1

(θ̂ − θ0)′
∂g(Xi∗ , θ)

∂θ∂θ′

∣∣∣∣
θ=θ̃

(θ̂ − θ0)ui∗u
2
i

∣∣∣∣∣
≡ B1 +B2,

31



where θ̃ ∈ Θ is an interior point between θ0 and θ̂. We show that B1 and B2 are op(1).
First, B1 is represented as follows:

B1 ≤ 2‖
√
n(θ̂ − θ0)‖

[
1

n
√
n

n∑
i=1

∥∥∥∥ ∂∂θg(Xi∗ , θ0)

∥∥∥∥2

u4
i

]1/2(
1

n
√
n

n∑
i=1

u2
i∗

)1/2

,

where

1

n
√
n

n∑
i=1

E

[∥∥∥∥∂g(Xi∗ , θ0)

∂θ

∥∥∥∥2

u4
i

]
=

1

n
√
n

n∑
i=1

∑
j 6=i

E

[
Ki,j

∥∥∥∥∂g(Xj , θ0)

∂θ

∥∥∥∥2

E(u4
i |Zi)

]
= o(1),

because E(u4
i |Zi),

∑
i 6=jKi,j , and E[‖ ∂∂θg(Xj , θ0)‖2] are bounded by Assumption 1, the

boundedness of the kissing number, and Assumption 3, respectively. Furthermore,

1

n
√
n

n∑
i=1

u2
i∗ =

1

n
√
n

n∑
i=1

∑
j 6=i

Ki,ju
2
j = O(n−1/2)E

[
σ2(Zj)

]
+ op(1) = op(1).

Thus, we yield B1 = op(1). Second, B2 is represented as follows:

B2 ≤ Op(1)

[
1

n2

n∑
i=1

∥∥∥∥ ∂g(Xi∗ , θ)

∂θ∂θ′

∣∣∣∣
θ=θ̃

∥∥∥∥2
]1/2(

1

n2

n∑
i=1

u4
iu

2
i∗

)1/2

Note that 1
n2

∑n
i=1 ‖

∂g(Xi∗ ,θ)
∂θ∂θ′ |θ=θ̃‖

2 = op(1) by the uniform convergence under Assump-
tions 1, 2, 4, and 6. Furthermore,

1

n2

n∑
i=1

u4
iu

2
i∗ =

1

n2

n∑
i=1

∑
j 6=i

Ki,ju
4
iu

2
j ≤

1

n2

n∑
i=1

n∑
j 6=i

u4
iu

2
j = C + op(1),

for some constant C because E( 1
n2

∑n
i=1

∑n
j 6=i u

4
iu

2
j ) = E(u4

i )E(u2
j ) + o(1) is bounded

and var( 1
n2

∑n
i=1

∑n
j 6=i u

4
iu

2
j ) = o(1), where we need Assumption 1 with p = 8 to show

the vanishing variance.11 Therefore, we yield B2 = op(1).
We apply Theorem 2.17 of P. Hall and Heyde (1980) to show the probability limit

of the second term of equation (A.4). We have

1

n

n∑
i=1

u2
iu

2
i∗ =

1

n

n∑
i=2

i−1∑
j=1

W 2
i,ju

2
iu

2
j + op(1) =

n∑
i=2

νn,i + op(1),

where νn,i ≡ 1
n

∑i−1
j=1W

2
i,ju

2
iu

2
j is a martingale with respect to Fn,i. According to Theo-

rem 2.17 of P. Hall and Heyde (1980),
∑n

i=2 νn,i converges to limn→∞
∑n

i=2E(νn,i|Fn,i−1)

11We can also show B2 = op(1) without assuming the eighth moment of the error term in Assump-
tion 1. This can be done by showing the first and the second moment of the second term of equa-
tion (A.4) approaches to zero instead of showing the absolute value of the second term of equation
(A.4) approaches to zero. For the proof, however, we need stronger dominance condition, that is,
E[supθ∈Θ ‖ ∂∂θ g(Xi, θ)‖4] <∞ instead of Assumption 3.
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almost surely if limn→∞
∑n

i=2E(|νn,i||Fn,i−1) < ∞. Note that the condition holds be-
cause

lim
n→∞

n∑
i=2

E(|νn,i||Fn,i−1) ≤ lim
n→∞

1

n

n∑
i=2

i−1∑
j=1

E
(
W 2
i,ju

2
iu

2
j

∣∣Fn,i−1

)
<∞,

by (A.3). Thus,
∑n

i=2 νn,i converges to limn→∞
∑n

i=2E(νn,i|Fn,i−1) almost surely, which
is equivalent to µ2 in (A.3) because

n∑
i=2

E(νn,i|Fn,i−1) =
1

n

n∑
i=2

i−1∑
j=1

W 2
i,jσ

2(Zi)u
2
j =

1

n

n−1∑
j=1

n∑
i=j+1

W 2
i,jσ

2(Zi)u
2
j =

n−1∑
j=1

vn,j

where vn,j ≡ 1
n

∑n
i=j+1W

2
i,jσ

2(Zi)u
2
j .

Let Fn,j be a σ-field generated by {Yj , Yj+1, . . . , Yn, Xj , Xj+1, . . . , Xn, Z1, Z2, . . . , Zn}.
Then, vn,j is a reversed martingale with respect to Fn,j . According to Theorem 2.17 of
P. Hall and Heyde (1980),

∑n−1
j=1 vn,j converges to limn→∞

∑n
i=2E(vn,j |Fn,j+1) almost

surely if limn→∞
∑n

i=2E(|vn,j ||Fn,j+1) <∞, which can be shown as folllows:

n∑
i=2

E(|vn,j ||Fn,j+1) ≤ 1

n

n∑
i=2

n∑
i=j+1

W 2
i,jσ

2(Zi)σ
2(Zj) <∞.

Therefore, we obtain

n−1∑
j=1

vn,j
a.s.−−→ µ2 = lim

n→∞

1

n

n−1∑
j=1

n∑
i=j+1

W 2
i,jσ

2(Zi)σ
2(Zj).

Remark 10. Lemma 3 shows that µ̂2 converges to limn→∞
1
n

∑n
i=1 σ

2(Zi)σ
2(Zi∗) in

probability. The probability limit of µ̂2 does not change when we use the second or more
distant nearest neighbor observation instead of the first nearest. To avoid complexity,
we assume for now that the density of Z has compact support and is continuous and
σ2(z) is continuously differentiable with respect to Z. Then, there is an interior point z
between Zi and Zi∗ such that

1

n

n∑
i=1

σ2(Zi)σ
2(Zi∗) =

1

n

n∑
i=1

σ2(Zi)

[
σ2(Zi) + (Zi∗ − Zi)′

∂σ2(z)

∂z

]
.

Since E[‖Zi − Zik‖s] = O((k/n)s/l) by Mack and Rosenblatt (1979), the second term
converges to zero in probability. Thus, µ̂2 is the consistent estimator of E{[σ2(Zi)]

2},
and it does not depend on the choice of the nearest observation. That is, using the
k−nearest for any fixed k instead of the first nearest observation does not alter the
limiting behavior of µ̂2.
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Proofs of Proposition 2 and Corollary 1

Proof of Proposition 2.
Let ψj,κ(z) = 2lj/2Ψ(2jz − κ) = 2lj/2ψ(2jz1 − κ1) · · ·ψ(2jzl − κl) for some j ∈ Z and
κ ≡ (κ1, . . . , κl)

′ be a k-times continuously differentiable orthonormal wavelet function
defined on [0, 2p − 1]l for some integer p that satisfies |ψj,κ(z)| ≤ 2−jl/2C for some
constant C. The orthonormality implies that E[ψj,κ(Z)ψj′,κ′(Z)] = 1{j = j′}1{κ = κ′},
when random variable Z is assumed to be uniformly distributed, where 1{j = j′} is an
indicator function taking 1 if j = j′ and zero otherwise.

The wavelet series ψj,κ(z) defined above can be constructed by using, for example,
Daubechies’s (1988) orthonormal wavelets.12 Let ψD(·) be Daubechies’s orthonormal
wavelet with support on [−p+1, p] for some integer p ≥ 1. The wavelet function becomes
ψj,κ(z) = 2lj/2ψD(2jz1 − κ1) · · ·ψD(2jzl − κl). By defining an appropriate collection of
κ for each j, the support of ψj,κ(z) become [0, 2p− 1]l. Let Kj denote the collection of
all possible distinct values for κ such that Kj = {κ ∈ Zl : κι = (p − 1) + c(2p − 1), c =
0, 1, . . . , 2j − 1, ι = 1, 2, . . . , l}. Then, Kj includes 2jl elements for each j. Then dyadic

cubes, Ij,κ ≡
∏l
ι=1((−p+ 1 + κι)2

−j , (κι + p)2−j ], satisfy ∪κ∈KjIj,κ ⊂ [0, 2p− 1]l. Since
ψD(2jzι− κι) is zero if zι lies outside of ((−p+ 1 + κι)2

−j , (κι + p)2−j ], ψj,κ(z) is zero if
z /∈ Ij,κ. Thus, the support of ψj,κ(z) with κ ∈ Kj is [0, 2p− 1]l. Any intersection of two
different cubes are always empty, i.e. Ij,κ ∩ Ij,κ′ = ∅ for any κ, κ′ ∈ Kj (κ 6= κ′), which
implies ψj,κ(z)ψj,κ′(z) = 0. Our wavelet function is orthonormal, because it is the tensor
product of Daubechies’s wavelets. Furthermore, Daubechies’s wavelets is known to be νp
times continuously differentiable, where ν ≈ 0.2. Thus, ψj,κ(·) can be constructed to be
k-times continuously differentiable by taking p large enough and satisfy |ψj,κ(z)| ≤ 2jl/2C
for some constant C. This implies that we are able to construct ψj,κ(z) so that Ψ(z)
belongs to MLψ ,s,k for some constant Lψ and any s ∈ [0, 1] and integer k ≥ 0 by taking
p large enough.

Let Bκ be a sequence with |Bκ| = 1. We define for a positive constant λ that

δn,θ0(·) ≡ mn(·)− E[g(X, θ0)|·], mn(·) = E[g(X, θ0)|·] + λρn2−jl/2
∑
κ∈Kj

Bκψj,κ(·).

Let the resolution revel of wavelets j depend on sample size so that it increase as sample

size grows. Specifically, j =∞ for s+ k = 0 and j = b− log(ρ
1/(s+k)
n )/ log(2)c otherwise,

where bzc is the floor functions such that bzc = max{z ∈ Z|z ≤ x}, implying 2−j =

O(ρ
1/(s+k)
n ).

Lemma 4. δn,θ0(Zi) belongs to the class of alternative M(ρn) when λ ≥ 1.

Proof. It is enough to show (i) δn,θ0(Zi) ∈M and (ii) E[δn,θ0(Zi)
2] ≥ ρ2

n.

12Construction of a wavelet function with support [0, 1] is also possible by using, for example, the
method proposed by Cohen, Daubechies, and Vial (1993).
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(i) Since ψj,κ(z) is orthonormal and Ij includes 2jl location shifts, we obtain

E[δn,θ0(Zi)
2] = λ2ρ2

n2−jlE

∑
κ∈Kj

B2
κψj,κ(Zi)

2

 = λ2ρ2
n2−jl

∑
κ∈Kj

E
[
ψj,κ(Zi)

2
]

= ρ2
nλ

2. (A.5)

Then, it is enough to show that fn(z) ≡ 2−jl/2
∑

κ∈Kj Bκψj,κ(z) belongs toML,s,k

for some L <∞, s ∈ [0, 1], and k ≥ 0 uniformly in n.

For any z ∈ Ij,κ′ , we obtain

∣∣∣Dkfn(z)
∣∣∣ =

∣∣∣∣∣∣2−jl/2
∑
κ∈Kj

Bκ2jl/2DkΨ(2jz − κ)

∣∣∣∣∣∣ =
∣∣∣Bκ′2jkΨ(k)(2jz − κ′)

∣∣∣ ,
where Ψ(k)(·) indicates k-times partial derivative of Ψ(·). By using this and fact
that Ψ(z) ∈MLψ ,s,k for some constant Lψ and any s ∈ [0, 1] and k ≥ 0, we obtain
for any z, y ∈ Ij,κ′ ,∣∣∣Dkfn(z)−Dkfn(y)

∣∣∣ =
∣∣∣2jkBκ′ [Ψ(k)(2jz − κ′)−Ψ(k)(2jy − κ′)]

∣∣∣
≤ 2j(s+k)

∣∣Ψ(k)(2jz − κ′)−Ψ(k)(2jy − κ′)
∣∣

2js‖z − y‖s
‖z − y‖s

≤ 2j(s+k)Lψ‖z − y‖s. (A.6)

When z ∈ Ij,κz and y ∈ Ij,κy for κz 6= κy,∣∣∣Dkfn(z)−Dkfn(y)
∣∣∣ =

∣∣∣2jk[BκzΨ(k)(2jz − κz)−BκyΨ(k)(2jy − κy)]
∣∣∣

≤ 2jk
∣∣∣Ψ(k)(2jz − κz)−Ψ(k)(2jy − κz)

∣∣∣+ 2jk
∣∣∣Ψ(k)(2jz − κy)−Ψ(k)(2jz − κy)

∣∣∣
≤ 22j(s+k)Lψ‖z − y‖s. (A.7)

Equations (A.6), and (A.7) imply fn(z) ∈ M2j(s+k)3Lψ ,s,k
. Focusing on a wide

smoothness class with s + k = 0 eliminates the dependency of the class with
sample size through j, so that fn(z) ∈ ML,s,k for any L larger than 3Lψ. This
concludes the proof of δn,θ0(Zi) ∈M.

(ii) It immediately holds from equation (A.5) that E[δn,θ0(Zi)
2] − ρ2

n = ρ2
n[λ2 − 1].

Thus, E[δn,θ0(Zi)
2] ≥ ρ2

n when λ ≥ 1.

Remark 11. The fact that fn(z) ∈ML,0,0 uniformly in n implies that δn,θ0(·) is one of
the least smooth function that belongs to the set of alternative. Thus, the constructed
function δn,θ0(·) represents an element in the alternative that is difficult to detect.
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In what follows we construct a Bayesian a priori measure by using the result of Lemma
4 and show even the optimal Bayesian test that has the smallest errors of testing does
not have non-trivial power. Replacing the minimax problem by a Bayesian problem
is standard arguments to show the lower bound of testing power (see, for example,
Y. I. Ingster, 1993; Spokoiny, 1996; Lepski & Spokoiny, 1999; Lepski & Tsybakov, 2000;
Guerre & Lavergne, 2002; Abramovich et al., 2009; Y. I. Ingster & Sapatinas, 2009). To
prove Proposition 2, it suffices to show that

sup
δθ(Z)∈M(ρ̃n)

P (tn ≤ zα) + sup
δθ(Z)∈H0

P (tn > zα) ≥ 1 + o(1). (A.8)

To give a lower bound of the left hand side of (A.8), we consider a Bayesian a priori
measure over H0 and Hn,1 by considering δθ(·) as a random variable defined on H0∪Hn,1.

First, let Π0 be the priori distribution defined on H0 that has Dirac mass:

Π0[δθ0(·) = 0] = Π0{m(·) = E[g(X, θ0)|·]} = 1.

Second, let Bκ be an i.i.d. Rademacher random variable independent of the observations
with P (Bκ = 1) = P (Bκ = −1) = 1/2. Let Πn,1 be the priori distribution defined on
Hn,1:

Πn,1

δθ0(·) = λρn2−jl/2
∑
κ∈Kj

bκψj,κ(·)

 =
∏
κ∈Kj

P (Bκ = bκ) , bκ ∈ {−1, 1},

where Lemma 4 guarantees Πn,1 to be an a priori measure over Hn,1. Then, Πn =
Π0 + Πn,1 is an a priori Bayesian measure over H0 ∪Hn,1. This gives the lower bound

sup
δθ(Z)∈M(ρ̃n)

P (tn ≤ zα) + sup
δθ(Z)∈H0

P (tn > zα) ≥
∫
P (tn ≤ zα)dΠn,1 +

∫
P (tn > zα)dΠ0.

The right hand side of the above equation is the Bayes error of the test tn that is the
sum of type I and type II errors of testing. It is known that the optimal Bayesian test
based on the likelihood ratio has the smallest error, which we now introduce.

Let Y and Z be the set of observations Y and Z, respectively, where the joint
distribution of Y and Z (specifically, the conditional mean of Y given Z) is described
by m(·), which suggests that the relation between Y and Z depends on δθ(·). Then, we
denote by pδ(Y,Z) the joint density of Y and Z. Average densities under the null and
alternative hypotheses are p0(Y,Z) ≡

∫
pδ(Y,Z)dΠ0 and pn,1(Y,Z) ≡

∫
pδ(Y,Z)dΠn,1,

respectively. Let Ln denotes the likelihood ratio of the optimal Bayesian test, which is

Ln =
pn,1(Y,Z)

p0(Y,Z)
=

∫
pδ(Y|Z)dΠn,1∫
pδ(Y|Z)dΠ0

≡ pn,1(Y|Z)

p0(Y|Z)
.

By using the The Bayesian error of the optimal Bayes test (see, Theorem 13.3.1 of
Lehmann & Romano, 2005, p.528), Guerre and Lavergne (2002) show that (A.8) holds
if ∫

L2
np0(Y|Z)dY ≡ E0(L2

n|Z)
p−→ 1, (A.9)
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where E0 is the expectation under p0.
By assumption, each ωi is standard normal conditionally upon Zi, where ωi = Yi −

m(Zi). We define ωi,0 = Yi − E[g(Xi, θ0)|Zi]. The conditional density of Y given Z
under Π0 is normal with mean E[g(Xi, θ0)|Zi]. Since we have n observations, ωi = ωi,0
almost surely under Π0, and ωi,0 is measurable with respect to Π0 given Zi,

p0(Y|Z) = (2π)−n/2
∫

exp

(
−1

2

n∑
i=1

ω2
i,0

)
dΠ0 = (2π)−n/2 exp

(
−1

2

n∑
i=1

ω2
i,0

)
.

Since ωi = Yi −m(Zi) = Yi −mn(Zi) and δθ0(Zi) = δn,θ0(Zi) almost surely under Π1,n,
we yield

pn,1(Y|Z) = (2π)−n/2
∫

exp

(
−1

2

n∑
i=1

[Yi −mn(Zi)]
2

)
dΠn,1

= p0(Y|Z)

∫
exp

(
n∑
i=1

ωi,0δn,θ0(Zi)−
1

2

n∑
i=1

δn,θ0(Zi)
2

)
dΠn,1,

where
∑n

i=1 ωi,0δn,θ0(Zi) = λρn2−jl/2
∑n

i=1 ωi,0
∑

κ∈Kj Bκψj,κ(Zi) and
∑n

i=1 δn,θ0(Zi)
2 =

λ2ρ2
n2−jl

∑n
i=1

[∑
κ∈Kj Bκψj,κ(Zi)

]2
= λ2ρ2

n2−jl
∑n

i=1

∑
κ∈Kj ψj,κ(Zi)

2. Thus,

Ln =
pn,1(Y,Z)

p0(Y,Z)
=

∫
exp

(
n∑
i=1

ωiδn,θ0(Zi)

)
exp

(
−1

2

n∑
i=1

δn,θ0(Zi)
2

)
dΠn,1

= exp

−1

2
λ2ρ2

n2−jl
n∑
i=1

∑
κ∈Kj

ψj,κ(Zi)
2


∏
κ∈Kj

1

2

[
exp

(
λρn2−jl/2

n∑
i=1

ωi,0ψj,κ(Zi)

)
+ exp

(
−λρn2−jl/2

n∑
i=1

ωi,0ψj,κ(Zi)

)]
.

Thus,

L2
n = exp

−λ2ρ2
n2−jl

n∑
i=1

∑
κ∈Kj

ψj,κ(Zi)
2


∏
κ∈Kj

1

4

[
exp

(
2λρn2−jl/2

n∑
i=1

ωi,0ψj,κ(Zi)

)
+ 2 + exp

(
−2λρn2−jl/2

n∑
i=1

ωi,0ψj,κ(Zi)

)]
.

Conditionally on Z and under p0, {2λρn2−jl/2ωi,0ψj,κ(Zi)}ni=1 is independent centered
Gaussian with conditional variance given by 4λ2ρ2

n2−jlψj,κ(Zi)
2. Since E[exp(u)] =

exp(σ2/2) for any random variable u that follows centered gaussian with variance σ2,
we get

E0(L2
n|Z) =

∏
κ∈Kj

exp

(
−λ2ρ2

n2−jl
n∑
i=1

ψj,κ(Zi)
2

)
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× 1

4

[
exp

(
2λ2ρ2

n2−jl
n∑
i=1

ψj,κ(Zi)
2

)
+ 2 + exp

(
2λ2ρ2

n2−jl
n∑
i=1

ψj,κ(Zi)
2

)]

=
∏
κ∈Kj

cosh

(
λ2ρ2

n2−jl
n∑
i=1

ψj,κ(Zi)
2

)
,

where cosh(·) is the hyperbolic cosine function. By using 1 ≤ cosh(z) ≤ exp(z2), we
obtain,13

1 ≤ E0(L2
n|Z) ≤ exp

∑
κ∈Kj

[
λ2ρ2

n2−jl
n∑
i=1

ψj,κ(Zi)
2

]2


Then, (A.9) holds if ∑
κ∈Kj

[
λ2ρ2

n2−jl
n∑
i=1

ψj,κ(Zi)
2

]2
p−→ 0. (A.10)

Then, to see (A.10), we consider the expectation of the right hand side positive random
variable:∑
κ∈Kj

E

[
λ4ρ4

n2−2jl
n∑

i1=1

n∑
i2=1

ψj,κ(Zi1)2ψj,κ(Zi2)2

]

= λ4ρ4
n2−2jl

n∑
i=1

∑
κ∈Kj

E
[
ψj,κ(Zi)

4
]

+ λ4ρ4
n2−2jl

n∑
i1=1

∑
i2 6=i1

∑
κ∈Kj

E
[
ψj,κ(Zi1)2

]
E
[
ψj,κ(Zi2)2

]
≤ λ4ρ4

n2−jl
n∑
i=1

∑
κ∈Kj

E
[
ψj,κ(Zi)

2
]

+ λ4ρ4
nn(n− 1)2−2jl2jl

= λ4ρ4
nn2−jl2jl + λ4ρ4

nn(n− 1)2−2jl2jl

= λ4ρ4
nn+ λ4ρ4

nn(n− 1)2−jl, (A.11)

where the last term is equal to O(ρ4
nn) because δn,θ0(·) belongs to the set of alternative

uniformly in n when s+ k = 0, which implies j =∞. Thus, the last term approaches to
zero because ρn = o(ρ̃n) = o(n−1/4).

Proof of Corollary 1. Let us consider a situation in which the resolution revel of wavelets
is set to grow with sample size and depend on the dimension of instruments. Especially,
we set j = (b−cl log(ρn)/ log(2)c ∧ 1) for some positive constant c, where bzc is the
floor functions such that bzc = max{x ∈ Z|x ≤ z}. Then, we have 2−j = O(ρcln ) for
sufficiently large n. Lemma 4 implies that δn,θ0(Zi) belongs to M(ρn) for any constant
c. Thus, for the uniform power in the optimal minimax approach, the lower bound

13cosh(x) = 2−1[exp(x)+exp(−x)]. On the one hand Maclaurin expansion yields cosh(x) = 1+x2/2!+
x4/4!+. . . . On the other hand, Maclaurin expansion of exp(x2/2) yields exp(x2/2) = 1+x2/2!+2x4/4!+
. . . . Therefore, we yield cosh(x) ≤ exp(x2/2) ≤ exp(x2).
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should be determined independently with c. In contrast, when we get rid of uniform
power and regard λρnfn(z) as a sequence of a local alternative, the lower bound of
testing power can depend on it. In the local alternative setting, (A.11) turns out to be
O(ρ4

nn) +O(ρ4+cl2
n n2). Then, we consider the following two cases:

(i) l < 2/
√
c: if ρn = o(ρ̃n) = o(n−2/(4+cl2)), we have ρ4

nn = o(n(−4+cl2)/(4+cl2)) = o(1)
and ρ4+cl2

n n2 = o(1).

(ii) l ≥ 2/
√
c: if ρn = o(ρ̃n) = o(n−1/4), we have ρ4

nn = o(1) and ρ4+cl2
n n2 =

o(n(4−cl2)/4) = o(1).

Proof of Proposition 3

Proof of Proposition 3. We first consider the asymptotic behavior of µ̂ under Hn,1.

Lemma 5. Let Assumptions 1, 2, 3, 4, 5, 8, 9, and 10 hold. Let

µ̄ ≡ lim
n→∞

1

n

n∑
i=2

i−1∑
j=1

W 2
i,jE

(
u∗2i
∣∣Zi)E (u∗2j ∣∣Zj)

where u∗i ≡ Yi − g(Xi, θ
∗). Then, under Hn,1, µ̂2 = µ̄ + op(1) and µ̄ is bounded from

above uniformly in δθ(Z) ∈M(κn−1/4).

Proof. Under the local alternative that δθ(Zi) ∈M, there exists a sequence an < a that
satisfies m(Zi) − E[g(Xi, θ)|Zi] ∈ ManL,s,k ⊂ MaL,s,k. Together with Assumption 9,
this implies m(Zi) ∈ M(1+a)L,s,k. Thus, we have the following relationship: {δθ(Z) ∈
M(κn−1/4)} ⊂ {δθ(Z) ∈M} = {m(Z)−E[g(X, θ)|Z] ∈M} ⊂ {m(Z)−E[g(X, θ)|Z] ∈
MaL,s,k} ⊂ {m(Z) ∈M(1+a)L,s,k}. This implies that it suffices to show the boundedness
of µ̄ uniformly in m(Z) ∈M(1+a)L,s,k. Under the alternative, we can show

E(u∗pi |Zi) <∞, (A.12)

for p ≤ 8 uniformly in m(Z) ∈ M(1+a)L,s,k. Indeed, E(u∗4i |Zi) can be decomposed
into m(Zi)

p, E (ωpi |Zi), E[g(X, θ)p|z], and cross products of them, where m(Zi)
p is

bounded uniformly under the alternative, E (ωpi |Zi) is bounded by Assumption 1, and
E[g(X, θ)p|z] is bounded by Assumption 8. Thus, µ̄ is bounded from above uniformly
in m(Z) ∈M(1+a)L,s,k.

Next, we show the limiting behavior of µ̂2, which is represented as follows:

µ̂2 =
2

n

n∑
i=1

[g(Xi∗ , θ
∗)− g(Xi∗ , θ̂)]u

∗2
i u
∗
i∗ +

1

n

n∑
i=1

u∗2i u
∗2
i∗ +D, (A.13)

where D includes terms that converges to zero in probability. Equation (A.13) is a
version of equation (A.4) in Lemma ?? under the alternative, and differs from (A.4) in

39



points that it has θ∗ instead of θ0 and error term under the pseudo true value u∗i instead
of ui. Thus, the proof for Lemma 5 goes along with that for Lemma ?? except points
which asymptotic behavior of parameter estimates under the alternative affects.

The convergence of D can be shown straightforwardly by using the
√
n-consistency of

parameter estimates in Assumption 10, uniform convergence of the first and the second
derivative of g(x, θ) with respect to θ ∈ Θ under Assumptions 1, 2, 3, 4, and 10, and the
boundedness in Assumptions 3 and 5. The boundedness for the conditional expectation
of error terms is now guaranteed by equation (A.12) under Assumptions 8 and 9.

The absolute value of the first term of equation (A.13) is

2

n

∣∣∣∣∣
n∑
i=1

[g(Xi∗ , θ
∗)− g(Xi∗ , θ̂)]u

∗2
i u
∗
i∗

∣∣∣∣∣ ≤ 2

n

∣∣∣∣∣
n∑
i=1

(θ̂ − θ∗)′ ∂
∂θ
g(Xi∗ , θ

∗)u∗i∗u
∗2
i

∣∣∣∣∣
+

2

n

∣∣∣∣∣
n∑
i=1

(θ̂ − θ∗)′ ∂g(Xi∗ , θ)

∂θ∂θ′

∣∣∣∣
θ=θ̃∗

(θ̂ − θ∗)u∗i∗u∗2i

∣∣∣∣∣
≡ D1 +D2,

where θ̃∗ is an interior point between θ̂ and θ∗. We show that D1 and D2 are op(1).
First, D1 is represented as follows:

D1 ≤ 2‖
√
n(θ̂ − θ∗)‖

[
1

n
√
n

n∑
i=1

∥∥∥∥ ∂∂θg(Xi∗ , θ
∗)

∥∥∥∥2

u∗4i

]1/2(
1

n
√
n

n∑
i=1

u∗2i∗

)1/2

,

where

1

n
√
n

n∑
i=1

E

[∥∥∥∥∂g(Xi∗ , θ
∗)

∂θ

∥∥∥∥2

u∗4i

]
=

1

n
√
n

n∑
i=1

∑
j 6=i

E

[
Ki,j

∥∥∥∥∂g(Xj , θ
∗)

∂θ

∥∥∥∥2

E(u∗4i |Zi)

]
= o(1),

because E(u∗4i |Zi),
∑

i 6=jKi,j , and E[‖ ∂∂θg(Xj , θ
∗)‖2] are bounded by (A.12), the bound-

edness of the kissing number, and Assumption 3. Furthermore,

1

n
√
n

n∑
i=1

u∗2i∗ =
1

n
√
n

n∑
i=1

∑
j 6=i

Ki,ju
∗2
j = O(n−1/2)E

(
u∗2j
)

+ op(1) = op(1),

Thus, we yield D1 = op(1). Second, D2 is represented as follows:

D2 ≤ Op(1)

[
1

n2

n∑
i=1

∥∥∥∥ ∂g(Xi∗ , θ)

∂θ∂θ′

∣∣∣∣
θ=θ̃∗

∥∥∥∥2
]1/2(

1

n2

n∑
i=1

u∗4i u
∗2
i∗

)1/2

Note that 1
n2

∑n
i=1 ‖

∂g(Xi∗ ,θ)
∂θ∂θ′ |θ=θ̃∗‖

2 = op(1) by the uniform convergence under Assump-
tions 1, 2, 4, and 10. Furthermore,

1

n2

n∑
i=1

u∗4i u
∗2
i∗ =

1

n2

n∑
i=1

∑
j 6=i

Ki,ju
∗4
i u
∗2
j ≤

1

n2

n∑
i=1

n∑
j 6=i

u∗4i u
∗2
j = C + op(1),
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for some constant C because E(n−2
∑n

i=1

∑n
j 6=i u

∗4
i u
∗2
j ) = E(u∗4i )E(u∗2j )+o(1) is bounded

and var(n−2
∑n

i=1

∑n
j 6=i u

∗4
i u
∗2
j ) = o(1). Therefore, we yield D7 = op(1).

We apply Theorem 2.17 of P. Hall and Heyde (1980) to show the probability limit
of the second term of equation (A.13) . We have

1

n

n∑
i=1

u∗2i u
∗2
i∗ =

1

n

n∑
i=2

i−1∑
j=1

W 2
i,ju
∗2
i u
∗2
j + op(1) =

n∑
i=2

ν̄n,i + op(1),

where ν̄n,i ≡ 1
n

∑i−1
j=1W

2
i,ju
∗2
i u
∗2
j is a martingale with respect to Fn,i. According to Theo-

rem 2.17 of P. Hall and Heyde (1980),
∑n

i=2 ν̄n,i converges to limn→∞
∑n

i=2E(ν̄n,i|Fn,i−1)
almost surely if limn→∞

∑n
i=2E(|ν̄n,i||Fn,i−1) < ∞. Note that the condition holds be-

cause

n∑
i=2

E(|ν̄n,i||Fn,i−1) =
1

n

n∑
i=2

i−1∑
j=1

W 2
i,jE

(
u∗2i
∣∣Zi)u∗2j = O(1)E(u∗2j ) + op(1).

Thus,
∑n

i=2 ν̄n,i converges to limn→∞
∑n

i=2E(ν̄n,i|Fn,i−1) almost surely. Now we con-
sider the limit of

∑n
i=2E(ν̄n,i|Fn,i−1), which is represented as

∑n−1
j=1 v̄n,j , where v̄n,j ≡

1
n

∑n
i=j+1W

2
i,jE

(
u∗2i
∣∣Zi)u∗2j . Note that v̄n,j is a reversed martingale with respect to

Fn,j . According to Theorem 2.17 of P. Hall and Heyde (1980),
∑n−1

j=1 v̄n,j converges to

limn→∞
∑n

i=2E(v̄n,j |Fn,j+1) almost surely if limn→∞
∑n

i=2E(|v̄n,j ||Fn,j+1) <∞, which
can be shown as folllows:

n∑
i=2

E(|v̄n,j ||Fn,j+1) =
1

n

n∑
i=2

n∑
i=j+1

W 2
i,jE

(
u∗2i
∣∣Zi)E (u∗2j ∣∣Zj) <∞.

Therefore, we obtain

n−1∑
j=1

v̄n,j
a.s.−−→ lim

n→∞

n−1∑
j=1

E(v̄n,j |Fn,j+1) = lim
n→∞

1

n

n−1∑
j=1

n∑
i=j+1

W 2
i,jE

(
u∗2i
∣∣Zi)E (u∗2j ∣∣Zj) ,

and we yield µ̂2 = µ̄ + op(1), where µ̄ is bounded from above uniformly in δθ(Z) ∈
M(κn−1/4).

Next, we consider the asymptotic behavior of the test statistics under the alternative.
µ̂Tn can be decomposed as follows:

µ̂Tn =
1√
n

n∑
i=1

ûiûi∗ =
1√
n

n∑
i=1

[Yi − g(Xi, θ̂)][Yi∗ − g(Xi∗ , θ̂)] = T ∗n − C1 + C2,

where T ∗n ≡ 1√
n

∑n
i=1[Yi − g(Xi, θ

∗)][Yi∗ − g(Xi∗ , θ
∗)], C1 ≡ 1√

n

∑n
i=1 δθ∗(Zi)[g(Xi∗ , θ̂)−

g(Xi∗ , θ
∗)], and C2 includes terms that consists of vanishing term g(Xi∗ , θ̂)− g(Xi∗ , θ

∗)
times a random variable whose expectation conditioned on instruments is zero. It is
straightforward to show that C2 = op(1) uniformly in δθ(Z) ∈ M(κn−1/4). We show
that C1 = Op(1)
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Lemma 6. Under Assumptions 1, 2, 4, 5, and 10, we have supδθ(Z)∈M(κn−1/4)C1 =
Op(1).

Proof. Since
√
n(θ̂ − θ∗) = Op(1) uniformly in m(Z) ∈ M(1+a)L,s,k from Assump-

tion 10, we have C1 = Op(1)(C
′
1 + C

′′
1 ), where C

′
1 ≡ 1

n

∑n
i=1 δθ∗(Zi)

∂
∂θg(Xi∗ , θ

∗) and

C
′′
1 = 1

n
√
n

∑n
i=1 δθ∗(Zi)

∂
∂θ∂θg(Xi∗ , θ)|θ=θ̃∗ . It is obvious to show that C

′′
1 = op(1) by

using the Schwarz inequality, boundedness of E
[
|δθ∗(Zi)|2

]
under Hn,1 and the uniform

convergence of the second moment of the second derivative under Assumptions 1, 2, 4,
and 10. Second, there is a constant c > 0 such that

E(‖C ′1‖) ≤
∑
j 6=i

E

{
Ki,j |δθ∗(Zi)|E

[∥∥∥∥ ∂

∂θ
g(Xj , θ

∗)

∥∥∥∥∣∣∣∣Z]} ≤ cE (|δθ∗(Zi)|) <∞.

From the Markov’s inequality, P (sup ‖C ′1‖ > c) < E(sup |δθ(Zi)|) <∞, which indicates
C
′
1 is stochastically bounded. Therefore, we yield supδθ(Z)∈M(κn−1/4)C

′
1 = Op(1).

There is a constant C > 0 such that P (Tn ≤ zα) ≤ P (T ∗n ≤ z′α + C) + o(1), where
z′α ≡ µ̄zα is bounded uniformly by Lemma 5. Further,

P
(
T ∗n ≤ z′α + C

)
= P

(
−[T ∗n − E(T ∗n)] ≥ E(T ∗n)− z′α − C

)
≤ var(T ∗n)

{E(T ∗n)− z′α − C}
2 ,

if E(T ∗n)− z′α − C > 0. It is then sufficient to show that κ can be chosen so that

E(T ∗n)− z′α − C > 0, (A.14)

var(T ∗
′

n )

{E(T ∗n)− z′α − C}
2 ≤ β, (A.15)

uniformly in δθ(Z) ∈M(κn−1/4). We cam decompose T ∗n as follows:

T ∗n =
1√
n

n∑
i=1

[m(Zi)− g(Xi, θ
∗) + ωi][m(Zi∗)− g(Xi∗ , θ

∗) + ωi∗ ]

=
1√
n

n∑
i=1

[m(Zi)− g(Xi, θ
∗)][m(Zi∗)− g(Xi∗ , θ

∗)] + T̄ ∗n ,

where T̄ ∗n consists of terms that satisfies E(T̄ ∗n) = 0. Then, we have

E(T ∗n) = E

 1√
n

n∑
i=1

n∑
j 6=i

Ki,jδθ∗(Zi)δθ∗(Zj)

 =
√
nE [δθ∗(Zi)δθ∗(Zi∗)] .

Since δθ∗(Z) ∈ M under Hn,1, there exist a positive constant L such that |δθ∗(Zi) −
δθ∗(Zi∗)| ≤ anL‖Zi − Zi∗‖s. Thus, we obtain∣∣√nE [δθ∗(Zi)δθ∗(Zi∗)]

∣∣ ≥ √nE [δθ∗(Zi)2
]
−
√
nE[|δθ∗(Zi)− δ(Zi∗)| |δθ∗(Zi)|]
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≥
√
nE
[
δθ∗(Zi)

2
]{

1− E[|δθ∗(Zi)− δθ∗(Zi∗)|2]1/2

E[|δθ∗(Zi)|2]1/2

}
≥
√
nκ2ρ2

n

[
1−O(n−s/l)

]
,

where the last equality holds because E[‖Zi − Zi∗‖s] = O(n−s/l) under Assumption 7
(see, for example, Lemma 14.1 of Q. Li & Racine, 2007). For large enough n that satisfies[
1−O(n−s/l)

]
> 0, E(T ∗n,1) is always positive by taking large κ. Then, we obtain

E (T ∗n)− z′α − C
|
√
nE [δθ∗(Zi)δθ∗(Zi∗)] |

≥ 1− |z′α|+ C
√
nκ2ρ2

n

{
1−O(n−s/l)

} .
Since ρ2

n = n−1/2, a large value of κ makes the last term in the above equation arbitrary
close to one. Therefore, (A.14) holds by taking κ large enough.

To prove (A.15), we represent T ∗n as follows:

T ∗n =
1√
n

n∑
i=1

∑
j 6=i

Ki,j [Yi − g(Xi, θ
∗)][Yj − g(Xj , θ

∗)] ≡ 1√
n

n∑
i=1

ηi,

where ηi ≡
∑

j 6=iKi,j [Yi − g(Xi, θ
∗)][Yj − g(Xj , θ

∗)]. Let Z = {Z1, Z2, . . . , Zn}. From
the law of total variance, we obtain

var (T ∗n) =
1

n
var

(
n∑
i=1

ηi

)
=

1

n

n∑
i=1

E [var (ηi|Z)] +
1

n
var

[
n∑
i=1

E (ηi|Z)

]
,

where the last equality holds because ηi’s are uncorrelated given Z, that is, ηi’s are i.i.d
conditionally upon Z. Let η̄i = E[g(Xi, θ

∗)|Zi]− g(Xi, θ
∗) +ωi. Then, it is obvious that

E(η̄i|Zi) = 0 and E(η̄2
i |Zi) ≤ E[g(Xi, θ

∗)|Zi]2 + E[g(Xi, θ
∗)2|Zi] + σ2(Zi) is bounded

by Assumptions 1 and 8. By using these and boundedness of δθ∗(Zj), we can show
that E(η2

i |Z) =
∑

j 6=iKi,jE
{

[δθ∗(Zi) + η̄i]
2
∣∣Z}E { [δθ∗(Zj) + η̄j ]

2
∣∣Z} is bounded from

above by a constant Λ. Similarly, there is a constant Λ̄ such that 1
nvar[

∑n
i=1E(ηi|Z)] ≤

Λ̄2. Thus, we yield var(T ∗n) ≤ Λ+Λ̄2. For large enough n that satisfies
[
1−O(n−s/l)

]
>

0, we obtain

var(T ∗n)

|
√
nE [δθ∗(Zi)δθ∗(Zi∗)]|2

≤ Λ + Λ̄2∣∣κ2
{

1−O(n−s/l)
}∣∣2 .

Since this upper bound is bounded and decreasing in κ, (A.15) holds uniformly in δθ(Z) ∈
M(κn−1/4).
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APPENDIX B

Table B.1 shows Monte Carlo results for the power of the test. The results corresponding
to those illustrated in Figure 3.
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