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Abstract

This study examines the existence of bubbles in an economy with
a low growth rate. By using an overlapping-generations model with
Matsuyama�s (1999) production sector, it is shown a bubble exists
in an economy with a low growth rate. If consumers can borrow
assets when they are young, then there is a unique cycle with a bubble
moving back and forth between two phases. In one phase, the output
growth rate is low and innovation occurs. In the other phase, the
output growth rate is high and there is no innovation. Therefore, a
bubble also exists in an economy with a high growth rate. On the
contrary, cycles cannot emerge if consumers save assets when they are
young.

�Institute of Economic Research, Kyoto University, Sakyo-Ku, Kyoto 606-8501, Japan
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1 Introduction

Bubbles have been a main topic of the economic growth literature since
the seminal studies of Samuelson (1958) and Tirole (1985), which show
that bubbles improve the problem of dynamic ine¢ ciency in an overlapping-
generations model. Thus, it is important to analyze the existence of bubbles
in a growing economy. Recently, Martin and Ventura (2012) provide a model
in which the economic growth rate increases with the expansion of a bub-
ble. In fact, in real economies, many countries have experienced economic
booms with bubbles. For example, the Japanese economy was growing when
asset prices were in�ated from 1985 to 1989. The economic boom in the
United States from 2000 to 2006 came with rising prices of real estate1.
Therefore, some may believe that bubbles exist during high economic per-
formance. However, this belief is not correct and their studies do not imply
this belief immediately.
In contrast to the examples mentioned above, there are cases in which

bubbles exist in an economic downturn. In China, for example, housing
prices kept rising sharply from 2015 while the GDP growth rate was declining
and low compared with the level of 2006 (OECD, 2017 ). Therefore, it is
possible that bubbles exist in an economy whose economic performance is
low. Although it has been shown that an expansion of a bubble slows down
economic growth in Tirole (1985), this result does not explain the existence
of bubbles in an economy with low economic performance2.
The main purpose of this study is to provide a theory for the existence

of bubbles when the economic growth rate is low. To show this, we provide
an overlapping-generations model with endogenous growth. Thus, we also
reexamine the conditions for the existence of a steady-state equilibrium with
bubbles in an endogenous growth model.
Our analysis is based on Tirole (1985) and Grossman and Yanagawa

(1993). To achieve the research aims mentioned above, we add two ex-
tensions to their model. First, we consider two cases of bubbles : one is
analyzed by Tirole (1985) and the other by Benhabib and Laroque (1988)
and Kojima (2012a,b). In Tirole�s (1985) model, consumers in their youth
purchase an asset to save, which can form a bubble in the long run. On
the other hand, Benhabib and Laroque (1988) and Kojima (2012a,b) set

1Martin and Ventura (2012) point out these facts.
2Grossman and Yanagawa (1993) and Futagami and Shibata (2000) also show this

result.
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up overlapping-generations models in which consumers borrow an asset (or
money) when they are young3. In particular, Kojima (2012a,b) show that a
steady-state equilibrium with a bubble can exist if the interest rate exceeds
the growth rate in the steady-state equilibrium without bubbles. This re-
sult implies that the steady-state equilibrium with a bubble is dynamically
ine¢ cient4. Hereafter, Tirole�s (1985) model is called the Samuelson�Tirole
case and the model of Benhabib and Laroque (1988) and Kojima (2012a,b)
is called the Benhabib�Laroque�Kojima case5. Second, we introduce the
production sector provided by Matsuyama (1999), which generates business
cycles endogenously. Matsuyama (1999) considers that two growth engines,
capital accumulation and innovation, can capture di¤erent phases in a single
economy. In order to show this, he introduces temporary monopoly power
when innovators produce new goods in the lab equipment model of Rivera-
Batiz and Romer (1991). Matsuyama�s (1999) results show that an economy
achieves growth through cycles, moving back and forth between two phases.
In one phase, there is no innovation and the growth rates of investment and
output are high. In the other phase, there is high innovation and the growth
rates of investment and output are low. Therefore, his framework is suited
to the analysis of endogenous business cycles.
This study obtains three major results. First, we derive necessary and

su¢ cient conditions for the existence of the steady-state equilibrium with
a bubble in the capital accumulation phase and the innovation phase. In
particular, when consumers save (borrow) an asset when they are young,
there is a steady-state equilibrium with a bubble if the growth rate is higher
(lower) than the interest rate. This result is similar to that of Kojima (2012a).
Second, the steady state is locally determinate in the Samuelson�Tirole case
and is either locally indeterminate or locally determinate in the Benhabib�
Laroque�Kojima case. Finally, and most importantly, there is a bubble in
an economy with a low output growth rate. Speci�cally, there are bubbles
in both economies of low output growth rate and high output growth rate

3Kojima�s (2012a,b) framework is similar to Benhabib and Laroque�s (1988) model.
4In Kojima�s (2012a,b) model, bubbles remedy the problem of inadequate capital ac-

cumulation, which is dynamic e¢ ciency. Thus, the expansion of a bubble raises capital
accumulation and output growth rate.

5Following Gale (1973), an economy is called the Samuelson case if the growth rate is
higher than the interest rate and the classical case if the interest rate is higher than the
growth rate. Therefore, we can classify bubbles as two types: Tirole�s results correspond
to the Samuelson case and Kojima�s results correspond to the classical case.
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through endogenous business cycles. In addition, the cycle emerges only
in the Benhabib�Laroque�Kojima case and then its steady state is locally
determinate, that is, the economy never achieves growth through cycles in
the Samuelson�Tirole case.
The rest of the paper is organized as follows. In the next Section 2, we

present the endogenous growth model. In Section 3, we analyze the equi-
librium dynamics. We show the conditions of existence of the steady-state
equilibrium with bubbles and discuss the stability of this equilibrium. Fur-
thermore, we show the conditions of existence of the business cycle with
bubbles. Section 4 concludes. Finally, some proofs are shown in the Appen-
dix.

2 The model

In this section, we develop an overlapping-generations model that is based on
Grossman and Yanagawa (1993). It introduces two aspects to our analysis.
First, we consider two cases of bubbles, one being that consumers save an
asset when they are young and the other is that consumers borrow an asset
to save when they are young. Second, we introduce Matsuyama�s (1999)
production sector of the economy.

2.1 Households

We consider the standard overlapping-generations model in discrete time
(t = 0; 1; 2; :::), and L households live for two periods. Households, born at
time t, supply one unit of labor when they are young and receive a wage
income from a production sector, where wt represents the real wage. In
addition, households allocate income to consumption goods, ct, savings, st,
and an asset Bt+1. Let rt+1 be the return factor of the asset between time
t and time t + 1. The old consume goods dt+1 by using savings and selling
the asset. The utility function of the individual born at time t is given by
u(ct; dt+1) = � log ct + � log dt+1, where �; � > 0. Savings by an individual
born at time t are determined by the following maximization problem:

maxu (ct; dt+1) ;

s.t.
ct + st +

Bt+1
L
� wt;

dt+1 � rt+1

�
st +

Bt+1
L

�
:

(1)
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Following Tirole (1985), Benhabib and Laroque (1988), Grossman and
Yanagawa (1993), and Kojima (2012a,b), we assume that there is an asset
whose fundamental value is zero. Let M and pt be the asset�s supply and
price at time t. Then, Bt := ptM is the aggregate value of the asset at
time t. Using the no-arbitrage condition between bubbles and other assets,
pt+1=pt = rt, yields

Bt+1 = rtBt (2)

We assume thatM is positive or negative, as in Benhabib and Laroque (1988)
and Kojima (2012a,b). We say that M > 0 is the Samuelson�Tirole case.
On the other hand, we call the negative bubble asset, namely, M < 0, the
Benhabib�Laroque�Kojima case.

2.2 Production Sector

Following Matsuyama (1999), �nal goods Yt are in a perfectly competitive
market and are produced by labor and intermediate goods. The production
function of Yt is

Yt = D0

�Z At

0

Xt(i)
1� 1

� di

�
L

1
� ; (3)

where D0 is total factor productivity, Xt(i) represents the input of the i-th
intermediate good at time t, [0; At] is the range of variety, and � 2 (1;+1).
The �rst-order conditions can be expressed as

wt =
1

�

Yt
L

(4)

pt (i) =

�
1� 1

�

�
D0Xt (i)

� 1
� L

1
� (5)

We consider the existing intermediate goods sector i, i 2 [0; At�1]. Sup-
pose that this sector is competitive. The pro�t-maximization problem is
�ct(i) = max p

c
t(i)X

c
t (i) � artX

c
t (i), where a is the marginal cost. Hence, we

obtain pct := pct(i) = art for all i 2 [0; At�1].
On the other hand, we assume that the new intermediate goods sector

i,i 2 [At�1; At], is monopolistic. In this sector, the new intermediate goods
are produced by the marginal cost, a, and a �xed cost, F , to innovate new
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goods. Thus, the pro�t-maximization problem is �mt (i) = max p
m
t (i)X

m
t (i)�

rt (aX
m
t (i) + F ). Then, we obtain pmt := pmt (i) = a�rt=(� � 1) for all i 2

[At�1; At]. Since all the intermediate goods are symmetrical , (5) yields

Xc
t

Xm
t

=

�
pct
pmt

���
=

�
1� 1

�

���
: (6)

From �mt < 0, if and only if aXm
t < (� � 1)F , the free-entry condition

ensures

aXm
t � (� � 1)F;At > At�1; (aX

m
t � (� � 1)F ) (At � At�1) = 0: (7)

Let Kt be all capital in this economy. Then, the resource constraint at time

t is
Kt = At�1aX

c
t + (At � At�1) (aX

m
t + F ) : (8)

(6), (7), and (8) yield

aXc
t =

�
1� 1

�

���
aXm

t = min

�
Kt

At�1
; ��F

�
(9)

and

At = At�1 +max

�
0;
Kt

�F
� �At�1

�
; (10)

where � := (1� 1=�)1�� 2 (1; e) ; e = 2:71828:::.
Using (7), (9), (10), and (3) can be rewritten as

Yt =

(
D (��FAt�1)

1
� K

1� 1
�

t

DKt

Kt � ��FAt�1
Kt � ��FAt�1

; (11)

where

D :=
D0

a

�
aL

��F

� 1
�

: (12)

Let qt := Kt=��FAt�1, and we obtain

Yt
Kt

= D� (qt) ; (13)

Yt
��FAt�1

= Dqt� (qt) ; (14)
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At
At�1

=  (qt) ; (15)

where

� (qt) =

(
q
� 1
�

t

1

qt � 1
qt � 1

(16)

and

 (qt) =

�
1

1 + (qt � 1) �
qt � 1
qt � 1

: (17)

Following Matsuyama (1999), the economy is in the Solow regime if qt � 1
and in the Romer regime if qt � 1. There is no innovation and all interme-
diate goods are competitively supplied in the Solow regime. On the other
hand, in the Romer regime , �nal goods and existing intermediate goods are
competitive but innovated intermediate goods are a monopoly.

3 Equilibrium dynamics

In this section, we provide the results of this study. First, we derive the
equilibrium dynamics of our model presented in Section 2. Then, a necessary
and su¢ cient condition for the existence of steady-state equilibrium with a
bubble is provided. Moreover, we study the dynamic property of our model
around the steady-state equilibrium with a bubble. Second, we show the
existence of period 2 cycles with bubbles. Thus, we obtain the main result
that there is a bubble in an economy with a low growth rate.

3.1 Steady-state Equilibrium

By the optimization condition of (1), the resulting savings are written as

st +
Bt+1

L
=

�

�+ �
wt: (18)

Then, the budget constraint for the young and old holds in the equation.
All new savings by the young are invested in capital,

Lst = Kt+1: (19)
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Thus, in equilibrium, Yt = rtKt + wtL and

rt =

�
1� 1

�

�
Yt
Kt

(20)

hold.
We denote bt := Bt=��FAt�1. By using (4), (13), (14), (15), (19), and

(20), (18) and (2) can be written as follows:

qt+1 = D
�(qt)

 (qt)

�
�

�+ �

1

�
qt �

�
1� 1

�

�
bt

�
(21)

and

bt+1 = D

�
1� 1

�

�
bt
�(qt)

 (qt)
: (22)

Therefore, (21) and (22) are a complete dynamic system with respect to qt
and bt in this economy.
We can easily verify that (21) and (22) have a unique steady state.

Proposition 1 1. Assume that (1� 1=�)D > 1.

(a) Consider the Samuelson�Tirole case. � � 1 < �= (�+ �) if and
only if there is a unique steady state, (q�; b�), in the Romer regime,
given by the following (23).

(b) Consider the Benhabib�Laroque�Kojima case. �� 1 > �= (�+ �)
if and only if there is a unique steady state, (q�; b�), in the Romer
regime, given by the following (23).

(q�; b�) =

�
1

�

��
1� 1

�

�
D � 1

�
+ 1; q�

�
�

�+ �

1

� � 1 � 1
��

: (23)

Furthermore, this steady state is a balanced growth path:

Yt+1
Yt

=
At
At�1

=
Kt+1

Kt

=
Bt+1

Bt

=

�
1� 1

�

�
D: (24)

2. Assume that (1� 1=�)D < 1.
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(a) Consider the Samuelson�Tirole case. � � 1 < �= (�+ �) if and
only if there is a unique steady state, (q��; b��), in the Solow regime,
given by the following (25).

(b) Consider the Benhabib�Laroque�Kojima case. �� 1 > �= (�+ �)
if and only if there is a unique steady state, (q��; b��), in the Solow
regime, given by the following (25).

(q��; b��) =

���
1� 1

�

�
D

��
; q��

�
�

�+ �

1

� � 1 � 1
��

: (25)

Furthermore, the economy does not grow in this steady state, which is
a neoclassical stationary path.

The steady-state equilibriumwithout bubbles in the Romer (Solow) regime
is a balanced growth path (neoclassical stationary path). Let ĝ� and ĝ�� be
the capital growth rate in the steady state without the bubble in the Romer
regime and the Solow regime, which yields

ĝ� = D
�

� (�+ �)
; ĝ�� = 1: (26)

r̂� and r̂�� denote the interest rate in the steady state without bubbles in
the Romer regime and the Solow regime, respectively. Then,

r̂� = D

�
1� 1

�

�
; r̂�� =

(�+ �) (� � 1)
�

: (27)

Therefore, we obtain the following relation:

ĝ� Q r̂� () �

�+ �
Q � � 1; (28)

ĝ�� Q r̂�� () �

�+ �
Q � � 1: (29)

Combining the above relations and Proposition 1, bubbles can exist if and
only if the growth rate is higher (lower) than the interest rate in the Samuelson�
Tirole (Benhabib�Laroque�Kojima) case. This result is similar to that of
Kojima (2012a).
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Next, we consider the local dynamics of (21) and (22). Since Bt is not
predetermined while Kt and At are predetermined, the economy is locally
determinate if the steady state is a saddle point and locally indeterminate if
the steady state is a sink point. Thus, we show the following results.

Proposition 2 1. Assume that (1� 1=�)D > 1. Table 1 summarizes
the results of the stability for each types of steady state.

Table 1
Romer regime Samuelson�Tirole Benhabib�Laroque�Kojima�
1� 1

�

�
D > � � 1 Saddle point (Determinate) Sink point (Indeterminate)�

1� 1
�

�
D < � � 1 non-existent Saddle point (Determinate)

2. Assume that (1� 1=�)D < 1 . Table 2 summarizes the results of the
stability for each type of steady state.

Table 2
Solow regime Samuelson�Tirole Benhabib�Laroque�Kojima

Saddle point (Determinate) Sink point (Indeterminate)

Proof. See Appendix.

3.2 Cycles with Bubbles

We show that there are period 2 cycles in the Benhabib�Laroque�Kojima
case.

Proposition 3 Suppose that (1 � 1=�)D > 1. (1 � 1=�)D < � � 1 and
�=(� + �) < � � 1 if and only if there are unique period 2 Cycles, such as
qL < 1 < qH and

�
qL; bL

�
6=
�
qH ; bH

�
in the Benhabib�Laroque�Kojima case,

satisfying the following equations.

�
�
qH
�
:= qL =

 �
1� 1

�

�2
D2

 (qH)

!�

; (30)

�
1� 1

�

�
DqH =  

�
qH
�
�
�
qH
�
; (31)

bL =

�
�

�+ �

1

� � 1 � 1
�
�
�
qH
�
; (32)
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bH =

�
�

�+ �

1

� � 1 � 1
�
qH : (33)

Proof. See Appendix.

gX denotes the growth rate of varableX. In the same way as Proposition 2
(Matsuyama, 1999), we obtain gA = 1 < D (1� 1=�) < D (1� 1=�)�

�
qL
�
=

gK = gY = gB in the Solow regime and gA =  
�
qH
�
> D (1� 1=�) =

gK = gY = gB in the Romer regime. Therefore, we get a result that output
growth rate in the Solow regime is higher than in the Romer regime6. This
result implies that bubbles exist in the economy of low output growth rate,
Moreover, there is a bubble in the economy with a high output growth rate.
From Propositions 2 and 3, the local determinacy of the steady-state

equilibrium is established and global indeterminacy holds in the economy of
the Benhabib�Laroque�Kojima case. Moreover, Proposition 3 implies that
period 2 cycles never emerge in the Samuelson�Tirole case.

4 Conclusion

Combining the framework of Tirole (1985) and Grossman and Yanagawa
(1993) with Matsuyama�s (1999) production sector, we have explored the
existence of bubbles in countries with low economic performance. Speci�cally,
we have shown the existence of a business cycle with a bubble, which moves
back and forth between the phase of low output growth rate and the phase of
high output growth rate. In addition, we have shown that this cycle emerges
in the Benhabib�Laroque�Kojima case but not in the Tirole�Samuelson case
. Moreover, necessary and su¢ cient conditions are provided for the existence
of an equilibrium steady state with the bubble in both the Samuelson�Tirole
case and the Benhabib�Laroque�Kojima case.
The present study has focused only on the existence of bubbles in relation

to economic performance and has ignored the e¤ects of bubbles on economic
growth rate, as considered by Martin and Ventura (2012). Therefore, clar-
ifying the e¤ects of bubbles on economic growth in each type of economic
performance is an interesting direction for future research.

6In the bubble-free economy, qt+1 = D �(qt)
 (qt)

�
�+�

1
� qt holds. Applying Proposition 2

(Matsuyama, 1999) to the bubble-free economy, we also get this result.
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Appendix

Before providing proofs of the proposition, we show a lemma of parameters.

Lemma 1 We assume that (1� 1=�)D > 1. Then,

� � 1 � �

�+ �
=)

�
1� 1

�

�
D � � � 1: (34)

Proof. We assume that (1� 1=�)D < �� 1. Then, 1 < (1� 1=�)D < �� 1,
which yields 2 < � < e. On the other hand, by using 0 < �= (�+ �) < 1
and � � 1 � �= (�+ �), � is in (1; 2). Since � is an increasing function with
respect to �, � 2 (1; 2) as � 2 (1; 2). This result contradicts 2 < � < e.

Proof of Proposition 2

As a �rst step, we compute the Jacobian matrix. We obtain

@qt+1
@qt

=

8<:
D
�

1
 (pt)

2

�
� (� � 1) bt � (� � 1) �

�+�

�
�
1� 1

�

�
D
�

�
�+�

1
�
� (qt)� bt�

0 (qt)
� Romer regime

Solow regime
; (35)

@qt+1
@bt

=

�
�
�
1� 1

�

�
D 1

 (qt)

�
�
1� 1

�

�
D� (qt)

Romer regime
Solow regime

; (36)

@bt+1
@qt

=

� �
�
1� 1

�

�
D�bt

1
 (qt)

2�
1� 1

�

�
Dbt�

0 (qt)

Romer regime
Solow regime

; (37)

@bt+1
@bt

=

� �
1� 1

�

�
D 1

 (qt)�
1� 1

�

�
D� (qt)

Romer regime
Solow regime

: (38)

Therefore, in each steady state, we have

J11 : =
@qt+1
@qt

����
steady state

=

(
1

��1
�

�+�
� 1� 1

D
�
��1 (� � 1)

1
�

�
�

�+�
�
��1 � 1

� Romer regime
Solow regime

; (39)

J12 : =
@qt+1
@bt

����
steady state

=

�
�1
�1

Romer regime
Solow regime

; (40)

J21 : =
@bt+1
@qt

����
steady state

=

8<: � �
��1

1
D

��
1� 1

�

�
D + � � 1

� �
�

�+�
1

��1 � 1
�

� 1
�

�
�

�+�
1

��1 � 1
� Romer regime

Solow regime
;(41)

J22 : =
@bt+1
@bt

����
steady state

=

�
1
1

Romer regime
Solow regime

: (42)
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We can write the Jacobian matrix evaluated at each steady state as

J =

�
J11 J12
J21 J22

�
: (43)

The eigenvalues of J are the solution of the following function

0 = �2 � (J11 + 1)�+ J11 + J21 (44)

=

8<:
�
�� 1

��1
�

�+�

� �
�+ �

��1
��1
D

��
�� 1

��1
�

�+�

� �
��

�
1� 1

�

�� Romer regime
Solow regime

: (45)

From Lemma 1 and � 2 (1;+1), we obtain the result of this proposition.

Proof of Proposition 3

Substituting ((qt; bt) ; (qt+1; bt+1)) =
��
qL; bL

�
;
�
qH ; bH

��
for (21) and (22),

we obtain

qH = D
�
qL
�� 1

�

�
�

�+ �

1

�
qL �

�
1� 1

�

�
bL
�
; (46)

bH = D

�
1� 1

�

�
bL
�
qL
�� 1

� : (47)

On the other hand, substituting ((qt; bt) ; (qt+1; bt+1)) =
��
qH ; bH

�
;
�
qL; bL

��
for (21) and (22), we obtain

qL = D
1

1 + (qH � 1) �

�
�

�+ �

1

�
qH �

�
1� 1

�

�
bH
�
; (48)

bL = D

�
1� 1

�

�
bH

1

1 + (qH � 1) � : (49)

Combining (46), (47), (48), and (49), we obtain (30), (31), (32), and (33).
Next, we show that qL and qH satisfy 0 < qL < 1 < qH . By (30),

0 < qL < 1() q :=
1

�

�
x2 � 1

�
+ 1 < qH ; (50)

where x := (1� 1=�)D, and q > 1 by (1� 1=�)D > 1. Let (31) be de�ned as

f
�
qH
�
:=  

�
qH
�
�
�
qH
�
�
�
1� 1

�

�
DqH : (51)

15



Since
f 0
�
qH
�
< 0; (52)

lim
qH!1

f
�
qH
�
= �1 (53)

and

f
�
q
�
> 0()

�
1� 1

�

�
D < � � 1; (54)

there is a solution, qH , satisfying 1 < q < qH . Moreover, we obtain

bL < 0; bH < 0() �

�+ �
< � � 1: (55)

Therefore,
��
qL; bL

�
;
�
qH ; bH

��
comprises the period 2 cycle with bubbles.

Conversely, we consider that (30), (31), (32), and (33) are given. Simi-
larly, from (50), (52), (53), (54), and (55), we obtain (1� 1=�)D < �� 1 and
�=(�+ �) < � � 1.
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