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Abstract

This paper considers a portfolio allocation problem between a risky

asset and an ambiguous asset, and investigates how greater ambiguity

aversion influences the optimal proportion invested in the two assets.

We derive several sufficient conditions under which greater ambiguity

aversion decreases the optimal proportion invested in the ambiguous

asset. Furthermore, we consider an international diversification problem

as an application and show that ambiguity aversion partially resolves

the home bias puzzle.
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1 Introduction

In the real world, it is difficult to precisely predict what will happen in the fu-

ture. In particular, in financial markets, it is difficult for investors to accurately

foresee returns on assets. Therefore, it is worth investigating how investors di-

versify their wealth across different assets under uncertainty. The notion of

uncertainty has been investigated in the literature since Keynes (1921) and

Knight (1921) from two perspectives: risk and ambiguity. While risk is a situ-

ation in which the beliefs of a decision maker (DM) are captured by a unique

probability measure, ambiguity is a situation in which a DM’s beliefs are not

pinned down by a unique probability measure because of a lack of information.

When investors choose between different assets, their knowledge of future re-

turns is critical. When they know the return of the investment for sure, we can

consider it a safe asset.1 If different returns are possible, but investors know

the distribution over these returns, the asset is risky.2 When different returns

are possible, but investors have only incomplete knowledge of probabilities,

we would classify the asset as ambiguous. Existing studies have addressed

the choice between two risky assets (Hadar and Seo (1988, 1990) and Chiu et

al. (2012)) and between a safe and an ambiguous asset (Gollier (2011), Huang

and Tzeng (2018)). The third combination, which is the choice between a risky

and an ambiguous asset, has not been considered thus far. The current paper

fills this gap in the literature. By incorporating the notions of both risk and

ambiguity into portfolio selection problems and by introducing some notions

of stochastic dominance to capture shifts in returns on assets,3 we investigate

1Throughout this paper, to avoid confusion, we say that an asset whose return is known

with certainty is safe, rather than riskless or risk-free.
2Throughout this paper, we say that an asset whose return is captured by a unique

probability measure is risky and an asset whose return is not captured by a unique probability

measure is ambiguous.
3For a survey of stochastic dominance, see Levy (1992). For applications of stochas-

tic dominance to portfolio strategies, in particular, second-order stochastic dominance, see

Roman et al. (2013). Recent studies of stochastic dominance in operations research and

management science include Post and Kopa (2013), Eeckhoudt et al. (2016), and Fang and

Post (2017).
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how the presence of ambiguity affects optimal portfolio allocation.

As explained above, the notion of ambiguity is helpful to the understand-

ing of investors’ behaviors in financial markets. From the empirical viewpoint,

the extant studies in the literature have shed light on the importance of am-

biguity. Epstein and Schneider (2008) investigate the effects of bad news and

good news on investors’ behaviors, and show that under ambiguity, investors

overvalue negative information and undervalue positive information. Kelsey et

al. (2010) investigate the profitability of momentum strategies (buying past

winners and selling past losers) in stock trading under ambiguity. Using the

US stock market and accounting data, Kelsey et al. (2010) identify that neg-

ative momentum is greater than positive momentum in terms of magnitude

and persistency of portfolio returns, and that such asymmetric patterns de-

pend on ambiguity. In another recent study, Driouchi et al. (2018) investigate

the behavior of US index put option holders during the pre-crisis and credit

crunch period 2006-2008. Driouchi et al. (2018) find evidence of ambiguity in

the US index options market during 2006-2008 and measure the effect of ambi-

guity on realized index volatility that is implied directly from observed option

prices. Based on portfolio data from a large financial institution in France,

Bianchi and Tallon (2018) show that ambiguity averse investors are relatively

more exposed to the French than to the international stock market. This re-

sult implies that ambiguity aversion plays a significant role in explaining home

bias in equity markets. Let us consider an investor who plans to purchase

equities in her local and foreign markets. Here, we assume that she confronts

more difficulty predicting returns on foreign equities than on local equities.

In this situation, returns on foreign equities are more ambiguous for the in-

vestor than those on local equities, which is captured appropriately by risk

and ambiguity. As another work related to our motivation in this paper, using

a representative sample of about 300 Dutch investors in the De Nederlandse

Bank Household Survey, Anantanasuwoung et al. (2019) elicit ambiguity at-

titudes toward a familiar company stock, a local stock index, a foreign stock

index, and a crypto currency. Anantanasuwoung et al. (2019) identify that

individuals’ perceptions about ambiguity levels differ substantially depending

on the type of asset, which implies that the same investor may perceive high
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ambiguity about foreign stocks or indices and perceive low ambiguity about

local ones.

Ellsberg (1961) shows experimentally that DMs typically dislike situations

where they cannot assign a unique probability measure. This behavior, which

is called ambiguity aversion, cannot be explained within the framework of ex-

pected utility theory. To overcome the shortcomings of expected utility theory

pointed out by Ellsberg (1961), many preference representations, also known

as ambiguity models, have been proposed. For example, Gilboa and Schmei-

dler (1989) propose max-min expected utility theory (MEU), and Schmeidler

(1989) proposes Choquet expected utility theory (CEU). Studies of CEU in op-

erations research include Chateauneuf (1994), Gilboa andd Schmeidler (1994,

1995), and Ghirardato and Marinacci (2001).4 In this paper, we adopt the

smooth ambiguity model by Klibanoff et al. (2005) as our ambiguity model.5

This is because the smooth ambiguity model can differentiate the DMs’ atti-

tude towards ambiguity from their perception of ambiguity, which implies that

the smooth ambiguity model is more general than MEU and CEU. Further-

more, because the smooth ambiguity model has a “double” expected utility

form, it is more tractable than most of ambiguity models.

Several studies in the literature on portfolio selection problems are worth

mentioning. Hadar and Seo (1988, 1990) derive conditions on utility func-

tions when returns on assets are shifted by first-order stochastic dominance

(FSD). Conditions on utility functions can be removed by concepts stronger

than FSD, such as monotone likelihood ratio dominance (MLRD) by Landsber

and Meilijson (1990) and reversed hazard ratio dominance (RHRD) by Kijima

and Ohnishi (1996). Kijima and Ohnshi (1996) provide a systematic method

for stochastic dominance that is useful for portfolio allocation problems. While

these papers analyze portfolio selection problems within the framework of ex-

pected utility theory, Gollier (2011), Osaki and Schlesinger (2014), and this

paper investigate portfolio selection problems within the framework of the

4Borgonovo et al. (2018) study and provide a method to connect operational risk man-

agement with the theoretical background of decision theory.
5Particularly, we adopt Neilson’s (2010) model that is a special case of Klibanoff et al.

(2005). Neilson’s (2010) model is popular in applications.
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smooth ambiguity model. Gollier (2011) introduces ambiguity into returns on

an asset and derives sufficient conditions under which any increase in ambi-

guity aversion decreases the purchase of the ambiguous asset. While Gollier

(2011) analyzes portfolios consisting of one safe asset and one ambiguous asset,

we analyze portfolios consisting of one risky asset and one ambiguous asset.

As mentioned in the example above, in financial markets, it is appropriate to

analyze portfolios consisting of one risky asset and one ambiguous asset. Osaki

and Schlesinger (2014) do not introduce ambiguity into returns on an asset,

but instead investigate background ambiguity. As in Osaki and Schlesinger

(2014), we consider situations with different levels of ambiguity. The distinc-

tion between Osaki and Schlesinger (2014) and this paper is that the exposure

to ambiguity is exogenous in Osaki and Schlesinger (2014), whereas it is en-

dogenous in this paper. Finally, in related works from the viewpoint of the

proof of Theorem 1, Peter (2019) uses a similar argument to show that am-

biguity aversion raises precautionary saving, and Peter and Ying (2018) find

that ambiguity aversion lowers insurance demand in the presence of ambiguity

about contract nonperformance.6

2 Portfolio Allocation between a Risky and an

Ambiguous Asset

In this section, we present a portfolio allocation problem based on the smooth

ambiguity model by Klibanoff et al. (2005) in which an investor is faced with

both risk and ambiguity.

To simultaneously analyze the effects of risk and ambiguity on portfolio

choices, we consider an investor who allocates her wealth w between a risky

asset and an ambiguous asset.7 The return on the risky asset is denoted by the

random variable x̃ whose probability distribution function F is defined over

6We acknowledge an anonymous reviewer who points out these works and provides an

idea of an elementary proof of Theorem 1.
7In the literature, for example, Gollier (2011) considers one safe asset and one ambiguous

asset.
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the bounded support [a, b] with a < 0 < b. The ambiguity of the return is

represented by the second-order probability approach based on Segal (1987)

and Klibanoff et al. (2005). There are n possibilities of the return on the

ambiguous asset which are indexed by θ ∈ Θ = {1, . . . , n}. The possible re-

turns on the ambiguous asset are denoted by ỹθ, θ = 1, . . . , n. The probability

distribution function of ỹθ is denoted by Gθ and is defined over the bounded

support [a, b]. For simplicity, all possible probability distribution functions are

assumed to be defined over the same support [a, b]. The investor attaches the

second-order probability {q1, . . . , qn} to the index set Θ. The return on the

risky asset x̃ and the possible returns on the ambiguous asset ỹθ are assumed

to be independent. The investor’s preferences are assumed to be represented

by the smooth ambiguity model by Klibanoff et al. (2005).

The investor chooses her portfolio allocation (w − k, k) to maximize the

welfare from the terminal wealth. Here, w − k is the amount invested in the

risky asset and k is the amount invested in the ambiguous asset. Her objective

is to maximize the following:

V (k) =
n∑

θ=1

qθϕ(E[u((w − k)x̃+ kỹθ)]).

We assume that u is strictly increasing and strictly concave, that is, u′ > 0

and u′′ < 0, and ϕ is strictly increasing and concave, that is, ϕ′ > 0 and

ϕ′′ ≤ 0. The attitude towards ambiguity is captured by the curvature of ϕ.

The concavity captures an investor’s ambiguity aversion in the sense that she

dislikes any mean-preserving spread of the expected utility of u. The linearity

of ϕ captures her ambiguity neutrality in the sense that ambiguity degenerates

to the single return on the asset, ỹO
d
=

∑n
θ=1 qθỹθ, where

d
= indicates equality

in distribution. The linearity of ϕ plays a significant role in applications (see

Section 4).

The optimal portfolio allocation k∗ is the solution of the following first-

order condition (FOC):

V ′(k∗) =
n∑

θ=1

qθϕ
′(E[u((w − k∗)x̃+ k∗ỹθ)])E[(ỹθ − x̃)u′((w − k∗)x̃+ k∗ỹθ)] = 0.
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The second-order condition is satisfied by the concavities of u and ϕ. We

suppose that V ′(0) > 0 and V ′(w) < 0, that is, the investor allocates a positive

amount of her wealth to each asset.

We define kθ as follows:

kθ = argmaxkE[u((w − k)x̃+ kỹθ)]), θ = 1, . . . , n, (1)

where kθ denotes the ex-post optimal portfolio allocation given θ.

3 Effects of Ambiguity Aversion on Optimal

Portfolio Allocation

In this section, we provide the main result of this paper and an informal proof.

A formal proof is relegated to Appendix.

3.1 Main Result

In the smooth ambiguity model, the attitude towards ambiguity is captured

by the curvature of ϕ, and the concavity of ϕ captures an investor’s ambiguity

aversion. As shown by Klibanoff et al. (2005), greater ambiguity aversion is

characterized by an increasing and concave transformation of ϕ. We examine

how greater ambiguity aversion affects the optimal portfolio allocation. Let

A and B be two investors, and let ϕA and ϕB be their ambiguity attitudes,

respectively. Define the objective functions for i = A,B as follows:

Vi(k) =
n∑

θ=1

qθϕi(E[u((w − k)x̃+ kỹθ)]).

Moreover, let kA and kB be their optimal portfolio allocations which must

satisfy the first-order condition:

V ′
i (k

i) =
n∑

θ=1

qθϕ
′
i(E[u((w−ki)x̃+kiỹθ)])E[(ỹθ−x̃)u′((w−ki)x̃+kiỹθ)] = 0, i = A,B.

Suppose that investor A is more ambiguity averse than investor B in the

sense that there exists an increasing and concave function t such that ϕA =

t ◦ ϕB, and they are identical except for ambiguity aversion.
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We introduce some definitions and notation before stating the main result.

To obtain a clear result, we consider the situation in which the possible returns

on the ambiguous asset are ranked by FSD. Let ỹi and ỹj be random variables

for i, j ∈ Θ = {1, . . . , n}. We say that ỹj is greater than ỹi in the sense of

FSD, denoted by ỹi ≲FSD ỹj, if Gi(y) ≥ Gj(y) holds for any y ∈ [a, b] and every

i, j ∈ Θ with i < j, where Gθ denotes the probability distribution function

of ỹθ for θ ∈ Θ. The Arrow-Pratt measure of relative risk aversion is defined

by R(z) = −zu′′(z)/u′(z).8 This terminology is used within the framework of

expected utility theory. We also use it in the smooth ambiguity model. The

following result shows that, under some conditions, greater ambiguity aversion

decreases the optimal amount of investment.

Theorem 1. Greater ambiguity aversion decreases the optimal portfolio allo-

cation, kA ≤ kB, if the possible returns on an ambiguous asset {ỹ1, . . . , ỹn} are

ranked by FSD and R(z) ≤ 1.

Proof. The proof is relegated to Appendix B.

Gollier (2011, Proposition 2(1)) presents the same conditions in the port-

folio problem that consists of a safe asset and an ambiguous asset. Because

the safe asset in Gollier (2011) is replaced with a risky asset in Theorem 1,

Theorem 1 can be viewed as a generalization of Gollier (2011). Recall that the

optimal portfolio allocation for an ambiguity averse investor is denoted by k∗.

When we set
∑n

θ=1 qθỹθ
d
= ỹO, the optimal portfolio allocation for an expected

utility maximizer is denoted by kO. This value kO corresponds to the optimal

portfolio allocation for an ambiguity neutral investor. In other words, ambigu-

ity neutral investors reduce compound lotteries so that the problem becomes

a choice between two risky assets. The optimal portfolio allocation kO must

satisfy:

kO = argmaxkE[u((w − k)x̃+ kỹO)]) = argmaxkqθE[u((w − k)x̃+ kỹθ)]).

By supposing investor A is ambiguity averse and investor B is ambiguity neu-

tral, Corollary 1 follows from Theorem 1 as a special case.

8See Arrow (1965) and Pratt (1964).
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Corollary 1. The existence of ambiguity aversion decreases the optimal portfo-

lio allocation, k∗ ≤ kO, if the possible returns on an ambiguous asset {ỹ1, . . . , ỹn}
are ranked by FSD and R(z) ≤ 1.

As a special case, Corollary 1 shows how the existence of ambiguity aversion

affects the optimal portfolio allocation compared with ambiguity neutrality.

Corollary 1 plays a significant role in Section 4. It should also be noted that

by formally defining the notions of being more ambiguous, Jewitt and Mukerji

(2017) investigate what makes one act more ambiguous than another one and

provide more general definitions of greater ambiguity. See Jewitt and Mukerji

(2017) for details.

To gain intuitive understanding, we consider the following example in which

there are only two indices Θ = {1, 2}. Define U(k, θ) = E[u((w − k)x̃ + kỹθ)]

and g(θ, k) = E[(ỹθ − x̃)u′((w − k)x̃ + kỹθ)]. Recall that investor A is more

ambiguity averse than investor B. By using the Radon-Nikodym derivatives

{q̂A1 , q̂A2 }, the FOC for investor A can be written as follows:

V ′
A(k

A) = q̂A1 (k
A)g(1, kA) + q̂A2 (k

A)g(2, kA) = 0, (2)

where

q̂Aθ (k) =
qθϕ

′
A(U(k, θ))

q1ϕ′
A(U(k, 1)) + q2ϕ′

A(U(k, 2))
, θ = 1, 2.

Similarly, by using the Radon-Nikodym derivatives {q̂B1 , q̂B2 }, the FOC for in-

vestor B can be written as follows:

V ′
B(k

B) = q̂B1 (k
B)g(1, kB) + q̂B2 (k

B)g(2, kB) = 0,

where

q̂Bθ (k) =
qθϕ

′
B(U(k, θ))

q1ϕ′
B(U(k, 1)) + q2ϕ′

B(U(k, 2))
, θ = 1, 2.

Without loss of generality, we assume that

U(kA, 1) ≤ U(kA, 2). (3)

We can then show that more ambiguity averse investors put greater weight

on a lower expected utility than on a higher expected utility. That is, we can
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show that:

U(kA, 1) ≤ U(kA, 2) ⇔ q̂A1 (k
A) ≥ q̂B1 (k

A), (4)

(equivalently, q̂A2 (k
A) ≤ q̂B2 (k

A) because q̂i1(k
A) = 1− q̂i2(k

A), i = A,B),

because ϕA is an increasing and concave transformation of ϕB, that is, there

exists an increasing and concave transformation t such that ϕA = t ◦ ϕB.
9 It

follows from (2) that the sign of g(θ, kA) is different for θ = 1 and θ = 2. That

is, either

g(1, kA) ≤ 0 ≤ g(2, kA) (5)

or

g(1, kA) ≥ 0 ≥ g(2, kA). (6)

For the former case, because the objective function is concave, it follows by

combining (4) and (5) that:

0 = V ′
A(k

A)

= q̂A1 (k
A)g(1, kA) + q̂A2 (k

A)g(2, kA)

≤ q̂B1 (k
A)g(1, kA) + q̂B2 (k

A)g(2, kA)

= V ′
B(k

A)

⇔ kA ≤ kB.

This is an intuitive case in which greater ambiguity aversion decreases the

amount invested in the ambiguous asset. However, such an intuitive result

might not follow because (5) does not necessarily hold, even assuming FSD

implies (3) as shown by, for example, Hadar and Seo (1990). Therefore, ad-

ditional conditions are required to show that greater ambiguity aversion de-

creases the optimal portfolio allocation. Theorem 1 provides one such sufficient

condition. In subsections 3.3 and 3.4, we present other sufficient conditions.

9See Appendix in detail.
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For the latter case, because the objective function is concave, it follows by

combining (4) and (6) that:

0 = V ′
A(k

A)

= q̂A1 (k
A)g(1, kA) + q̂A2 (k

A)g(2, kA)

≥ q̂B1 (k
A)g(1, kA) + q̂B2 (k

A)g(2, kA)

= V ′
B(k

A)

⇔ kA ≥ kB.

This is a counterintuitive case in which greater ambiguity aversion increases

the amount invested in the ambiguous asset.

As a final remark, we discuss the assumption of the independence. Kijima

and Ohnishi (1996) show that (5) holds for FSD, even though the return on

the risky asset x̃, and each possible return on the ambiguous asset ỹθ are

dependent. However, the convolution property cannot be guaranteed to hold.10

If this property does not hold, (4) may be reversed, that is, it is possible that

q̂A1 (k
A) ≤ q̂B1 (k

A). In this case, we obtain the counterintuitive result that states

that greater ambiguity increases the amount invested in the ambiguous asset.

However, if the convolution property holds, we obtain Theorem 1 in the case

of the dependence.

3.2 Intuition

In this subsection, we provide the intuition for Theorem 1. From Theorem 1,

greater ambiguity aversion does not necessarily decrease the demand for an

ambiguous asset. A set of the sufficient conditions is that the returns on an

ambiguous asset {ỹ1, . . . , ỹn} are ranked by FSD and the Arrow-Pratt measure

of relative risk aversion is smaller than unity. It should be noted that the first-

order condition of the optimal allocation problem can be understood as an

Euler equation under ambiguity. The Euler equation is distorted by ambiguity

aversion, and the distortion is pessimistic in the sense that ambiguity averse

investors assign more weight to worse indices. Within the framework of the

10For the definition of the convolution property, see Appendix A.
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expected utility theory, it is known that pessimistic deteriorations in beliefs do

not always decrease the demand for risky assets.11 Moreover, the deteriorations

in beliefs have a substitution effect and a wealth effect. These conflicting

effects determine whether the demand for the ambiguous asset decreases or

not. Therefore, some sufficient conditions are required to show that more

ambiguity aversion reduces the demand for an ambiguous asset.

3.3 Monotone Likelihood Ratio Dominance and Reversed

Hazard Ratio Dominance

When the possible returns on an ambiguous asset are ranked by FSD, we can

conclude that the presence of ambiguity decreases the optimal portfolio al-

location for investors whose Arrow-Pratt measure of relative risk aversion is

less than unity. The condition R(z) ≤ 1 is assumed in determining the ef-

fect of FSD shifts on various decision problems. See, for example, Fishburn

and Porter (1976). However, as pointed out by Meyer and Meyer (2005), it

is unclear whether this condition is reasonable from an empirical viewpoint.

We also question whether empirical observations under expected utility theory

can be directly applied to the smooth ambiguity model, even though R(z) ≤ 1

is viewed as a reasonable property. In this subsection, based on the motiva-

tions above, we introduce MLRD and RHRD as stronger notions of stochastic

dominance than FSD. First, we provide the definition of MLRD.

Definition 1. Let ỹi and ỹj be random variables for i, j ∈ Θ. Then, ỹj is

greater than ỹi in the sense of monotone likelihood ration dominance (MLRD),

denoted by ỹi ≲MLRD ỹj, if gj(t)/gi(t) ≥ gj(s)/gi(s) for any s, t ∈ [a, b] with

s < t, where Gθ and gθ denote the probability distribution function of ỹθ and

the probability density function of ỹθ for θ ∈ Θ, respectively.

Applying MLRD to rank the possible returns on assets, we obtain the

following proposition corresponding to Theorem 1 without assuming R(z) =

−zu′′(z)/u′(z) ≤ 1. Landsberger and Meilijson (1990) show that ki ≤ kj for

11For example, see Rothschild and Stiglitz (1971), Fishburn and Porter (1976), and Hardar

and Seo (1990).
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ỹi ≲MLRD ỹj for i, j ∈ Θ with i < j for any nondecreasing utility function u.

Recall that ki is defined by (1) for i = 1, . . . , n. Similar to Theorem 1 and

Corollary 1, in the following analyses, we assume that x̃ and ỹi are independent,

and x̃ and ỹj are independent for i, j ∈ Θ with i < j. Now, we obtain the

following proposition.

Proposition 1. Let u be any nondecreasing function. Then, greater ambiguity

aversion decreases the optimal portfolio allocation, kA ≤ kB if the possible

returns on the asset {ỹ1, . . . , ỹn} are ranked by MLRD.

As is clear from Proposition 1, we do not need to impose the concavity

of utility functions. In other words, this proposition can be applied to the

value function of Kahneman and Tversky (1979) if the second-order condition

is satisfied.

Next, we consider RHRD that is weaker than MLRD, which is shown, for

example, in Eeckhoudt and Gollier (1995).12

Definition 2. Let ỹi and ỹj be random variables for i, j ∈ Θ. Then, ỹj is

greater than ỹi in the sense of RHRD, denoted by ỹi ≲RHRD ỹj, if Gj(t)/Gi(t) ≥
gj(t)/gi(t) for any t ∈ [a, b], where Gθ and gθ denote the probability distri-

bution function of ỹθ and the probability density function of ỹθ for θ ∈ Θ,

respectively.13

Kijima and Ohnishi (1996) show that ki ≤ kj for ỹi ≲RHRD ỹj for i, j ∈ Θ

with i < j for any nondecreasing and concave utility function u. Thus, the

following proposition is in order.

Proposition 2. Let u be any nondecreasing and concave function. Then,

greater ambiguity aversion decreases the optimal portfolio allocation, kA ≤ kB

if the possible returns on the asset {ỹ1, . . . , ỹn} are ranked by RHRD.

12In Eeckhoudt and Gollier (1995), RHRD is referred to as monotone probability ratio

order.
13See Eeckhoudt and Gollier (1995, Lemma 2). Eeckhoudt and Gollier (1995, Lemma 1)

also show that RHRD is stronger than FSD.
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3.4 Higher-Order Increases in Risk

The notion of higher-order increases in risk is introduced by Ekern (1980),

and has been analyzed, for example, by Eeckhdout and Schlesinger (2006) and

Jindapon and Neilson (2007). In this subsection, we show that the result in

this paper also applies to higher-order increases in risk.

Definition 3. For θ ∈ Θ = {1, . . . , n}, let Gθ be probability distribution

functions of random variables ỹθ with supports contained in [a, b]. Define the

functions by

G1
θ(x) = Gθ(x) and

Gk
θ(x) =

∫ x

a

Gk−1
θ (t)dt

for x ∈ [a, b], θ ∈ Θ, and k = 2, . . . , N , where the function Gn
θ denotes the

n-th moment of Gθ. Let ỹi and ỹj be random variables for i, j ∈ Θ. Then, ỹj

is greater than ỹi in the sense of N -th degree risk, denoted by ỹi ≲N−risk ỹj, if

GN
j (y) ≥ GN

i (y) and Gn
i (b) = Gn

j (b) for n = 1, . . . , N − 1.

Note that if ỹj is greater than ỹi in the sense of N -th degree risk, then the

first (N − 1)-moments of Gi and Gj are equal. It is worth mentioning that

N = 2 corresponds to an increase in risk in the sense of Rothschild and Stiglitz

(1970), and N = 3 corresponds to an increase in downside risk in the sense of

Menezes et al. (1980).

Chiu et al. (2010) show that ki ≤ kj if ỹi ≲N−risk ỹj, (−1)nun(x) ≤ 0

for n = N, N + 1, and −xuN+1(x)/uN(x) ≤ N , where the utility function u

is assumed to be strictly increasing and infinitely continuously differentiable,

and un denotes the n-th derivative of u. Thus, the following proposition is in

order.

Proposition 3. Greater ambiguity aversion decreases the optimal portfolio al-

location, kA ≤ kB if the possible returns on the asset {ỹ1, . . . , ỹn} are ranked by

N-th degree risk, (−1)nun(x) ≤ 0 for n = N, N +1, and −xuN+1(x)/uN(x) ≤
N .
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4 Applications

In this section, we provide two further results as applications of Corollary 1

that compare an ambiguity averse investor with an ambiguity neutral investor

because this result is suitable for applications, especially the home bias puz-

zle. First, we consider the home bias puzzle based on the smooth ambiguity

model. Second, for the purpose of extending the 50% rule for portfolio alloca-

tion problems, we consider conditions under which the 50% rule holds for the

portfolio allocation problem with a risky asset and an ambiguous asset in the

smooth ambiguity model. The 50% rule for portfolio allocation problems was

investigated by Hadar and Seo (1988, 1990) and Clark and Jokung (1999).

4.1 The Home Bias Puzzle

In this subsection, we apply Corollary 1 to an international diversification

problem, which provides a solution to the home bias puzzle from the viewpoint

of ambiguity.

French and Poterba (1991) observe the tendency for investors to hold more

equities in their home country than in foreign countries, which is contrary to

theoretical results obtained from macroeconomic models. This is called the

home bias puzzle. This puzzle cannot be explained by standard macroeco-

nomic models within the framework of expected utility theory.14 As pointed

out in Introduction, based on portfolio data from a large financial institution

in France, Bianchi and Tallon (2018) show that ambiguity averse investors are

relatively more exposed to the French than to the international stock market.

This result implies that ambiguity aversion plays a significant role in explaining

home bias in equity markets. Anantanasuwoung et al. (2019) elicit ambiguity

attitudes toward a familiar company stock, a local stock index, a foreign stock

index, and a crypto currency, using a representative sample of about 300 Dutch

investors in the De Nederlandse Bank Household Survey. Anantanasuwoung

et al. (2019) identify that individuals’ perceptions about ambiguity levels dif-

14For a survey of the home bias puzzle, see Lewis (1999). For recent studies of the home

bias puzzle, see Solnik and Zuo (2012, 2017).
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fer substantially depending on the type of asset, which implies that the same

investor may perceive high ambiguity about foreign stocks or indices and per-

ceive low ambiguity about local ones. In a related work, Boyle et al. (2012)

analytically show that in the presence of ambiguity about returns on other

assets, investors hold a large amount of the familiar asset, and also show that

investors who are familiar with particular assets and sufficiently ambiguous

about all other assets hold only the familiar assets. Therefore, ambiguity may

play an important role in explaining the home bias puzzle in equity markets.15

We investigate how the difference between individual investors with insuffi-

cient information and institutional investors with much information explains

the home bias puzzle.

Let us consider an ambiguity averse individual investor who allocates her

wealth w between a domestic asset and a foreign asset. The investor possesses

enough information to quantify the return on the domestic asset using a single

probability distribution, but she does not have enough information to quantify

the return on the foreign asset similarly. In this situation, the domestic asset

is risky, and the foreign asset is ambiguous. This setting is the same as the

previous section. The return on the domestic asset is denoted by x̃, and the

return on the foreign asset is represented by n possible returns on the asset

{ỹ1, . . . , ỹn} and the associated second-order probability {q1, . . . , qn}. In this

setting, the optimal portfolio allocation is determined by:

k∗ = argmaxk

n∑
θ=1

qθϕ(E[u((w − k)x̃+ kỹθ)]).

We assume that institutional investors usually estimate returns on assets

from historical data and assign unique probability distributions to these re-

turns. The optimal portfolio allocation is given by:

kO = argmaxkE[u((w − k)x̃+ kỹO)]).

Applying Corollary 1 in the previous section to this setting, we find that kO ≥
k∗. That is, the individual investor purchases more of the domestic asset than

15Epstein and Miao (2003) explain the home bias puzzle under ambiguity within the

framework of MEU.



16

the foreign asset compared with the optimal portfolio allocation derived by

institutional investors. This is because an individual investor with insufficient

information about the foreign asset considers the existence of ambiguity on

the return on the foreign asset, and thus avoids investing in the foreign asset.

4.2 50% Rule

In this subsection, we investigate conditions under which the 50% rule holds for

the portfolio allocation problem with a risky asset and an ambiguous asset. The

so-called demand problem named by Kijima and Ohnshi (1996) has received

attention in the literature. Setting w = 1, the portfolio allocation problem is

formulated as follows:

V (k) =
n∑

θ=1

qθϕ(E[u((1− k)x̃+ kỹθ)]). (7)

Because V ′(0) > 0 and V ′(1) < 0, the optimal portfolio allocation k∗ is an

interior solution in [0, 1].

Suppose that a risk averse investor can allocate her initial wealth to two

risky assets, and the optimal allocation of one risky asset is denoted by k ∈
[0, 1]. Suppose, also, that her preferences are represented by the expected

utility. Conditions for the optimal portfolio allocation to be k ≤ 0.5 have

been investigated in the literature. This is called the 50% rule for portfolio

allocation problems.16 By restricting the class of utility functions, Hadar and

Seo (1988, Theorems 4 and 5) derive necessary and sufficient conditions for

the optimal portfolio allocation to be k ≤ 0.5. Clark and Jokung (1999)

generalize Hadar and Seo (1988, Theorem 3) and derive sufficient conditions on

the conditional distributions of the two risky assets under which the optimal

portfolio allocation of one risky asset is less than 0.5. For the purpose of

extending the 50% rule for portfolio allocation problems, based on the smooth

ambiguity model, we investigate conditions under which the 50% rule holds

16The previous studies examine conditions under which the optimal portfolio allocation

for one asset is greater than 50%, k ≥ 0.5. Because it is essentially identical, their results

are restated as k ≤ 0.5, to agree with the settings in this paper.
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for the portfolio allocation problem with a risky asset and an ambiguous asset.

From Corollary 1, we have:

V ′(0.5) ≤ 0 ⇔ k∗ ≤ 0.5,

by putting w = 1 and kO = 0.5 when the possible returns on the asset

{ỹ1, . . . , ỹn} are ranked by FSD andR(z) ≤ 1. Recall thatR(z) = −zu′′(z)/u′(z)

denotes the Arrow-Pratt measure of relative risk aversion. These are the con-

ditions for the 50% rule for the portfolio allocation problem with a risky asset

and an ambiguous asset. We summarize this argument in the following corol-

lary.

Corollary 2. Suppose that an investor’s objective function is represented by

Equation (7), and that x̃
d
=

∑n
θ=1 qθỹθ. The 50% rule holds, that is, k∗ ≤ 0.5 if

the possible returns on the asset {ỹ1, . . . , ỹn} are ranked by FSD and R(z) ≤ 1.

This result can be applied to every compound return on the asset ỹ for

which kO = 0.5. It can also be applied to other stochastic dominance relations

mentioned in subsections 3.3 and 3.4 by imposing appropriate conditions on

the utility function u.

5 Conclusion

This paper considers a portfolio allocation problem between a risky asset and

an ambiguous asset. We determine conditions under which an investor de-

creases the optimal portfolio allocation for the ambiguous asset. The condi-

tions are imposed on the investor’s utility function u and the stochastic dom-

inance relations of {ỹ1, . . . , ỹn}. For FSD, the investor with an Arrow-Pratt

measure of relative risk aversion less than unity decreases the portfolio alloca-

tion of the risky asset when ambiguity is incorporated into the model. We also

investigate the effect of ambiguity on the optimal portfolio allocation based on

MLRD, RHRD, and higher-order increases in risk introduced by Ekern (1980).

Finally, our analyses can be applied to an international diversification problem

providing a potential explanation of the home bias puzzle. Furthermore, we
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extend the 50% rule for portfolio allocation problems of Hadar and Seo (1988,

1990) and Clark and Jokung (1999) based on the smooth ambiguity model.

This paper assumes that the return on the risky asset x̃ and the possible

returns on the ambiguous asset ỹθ are independent. This assumption enables us

to apply the convolution property to our analyses. However, it is appropriate

to assume that these assets are dependent. We leave this extension for future

research.



19

Appendix

Appendix A

We provide the definition of convolution in probability theory based on

Billingsley (1995, p.266) and Lehmann (2005, p.103).

Definition 4. Let x̃ and ỹ be independent random variables with probabili-

ties µ and v, respectively, and let P and Q be the corresponding probability

distribution functions. The convolution of P and Q is defined by

H(z) ≡
∫ b

a

Q(z − x)dP (x). (8)

It can be shown that H is a probability distribution function. It can also

be shown that if two random variables x̃ and ỹ with probability distribution

functions P and Q are independent, then x̃+ ỹ has the probability distribution

function H defined by (8). Next, we introduce the convolution property.

Definition 5. A stochastic order ≲st satisfies the convolution property if x̃+

ỹi ≲st x̃ + ỹj for any random variable x̃ such that x̃ and ỹi are independent

and x̃ and ỹj are independent.

Appendix B. Proof of Theorem 1

Before providing the proof of Theorem 1, we present the following two

lemmas. As in Kijima and Ohnishi (1996, Proposition 3.3), the convolution

property holds for FSD, which shows the following lemma.

Lemma 1. Let x̃ and ỹi be independent, and x̃ and ỹj be independent for

i, j ∈ Θ with i < j. Let {ỹi, . . . ỹn} be ranked by FSD. Let k ∈ [0, w]. Then,

E[u((w − k)x̃+ kỹi)] ≤ E[u((w − k)x̃+ kỹj)].

Lemma 2. (Hadar and Seo (1990)) Suppose that a) u′ > 0, u′′ ≤ 0, b) x̃i and

ỹ are independent for i = 1, 2, and c) E[u((w − ki)x̃
i + kiỹ)] is maximized at

k∗
i . Then, k∗

1 ≤ k∗
2 for any x̃2 ≲FSD x̃1 if and only if u′(z)z is non-decreasing

if and only if R(z) ≤ 1.
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The following lemma follows from Lemma 2.

Lemma 3. Let x̃ and ỹi be independent, and x̃ and ỹj be independent for

i, j ∈ Θ with i < j. Let ỹi ≲FSD ỹj for i, j ∈ Θ with i < j. Then, ki ≤ kj if

R(z) ≤ 1.

Now, we are in a position to show Theorem 1.

Proof of Theorem 1. Let Vi(k) =
∑n

θ=1 qθϕi(E[u((w − k)x̃+ kỹθ)]) be the ob-

jective functions for i = A,B. Let ϕA = t ◦ ϕB where t is an increasing

and concave function. Define U(k, θ) = E[u((w − k)x̃ + kỹθ)] and g(θ, k) =

E[(ỹθ − x̃)u′((w− k)x̃+ kỹθ)]. The optimal portfolio allocation for investor B

must satisfy

V ′
B(k

B) =
n∑

θ=1

qθϕ
′
B(U(kB, θ))g(θ, kB) = 0.

By the concavity of the objective function, it suffices to show that the sign

of V ′
A(k

B) =
∑n

θ=1 qθϕ
′
A(U(kB, θ))g(θ, kB) is negative. Because ϕA = t ◦ ϕB,

V ′
A(k

B) can be rewritten as follows:

V ′
A(k

B) =
n∑

θ=1

qθt
′(ϕB(U(kB, θ)))ϕ′

B(U(kB, θ))g(θ, kB)

Now, t′(ϕB(U(kB, θ))) is decreasing in θ because, as θ increases, (w−k)x̃+

kỹθ improves in the sense of FSD by Lemma 1, so that U(kA, θ) increases in

θ, and ϕ is increasing in θ because ϕ is increasing by assumption, but the

concavity of t implies that t′(ϕB(U(kB, θ))) is decreasing in θ. From Lemma 3,

kθ is increasing in θ if R(z) ≤ 1. Thus, we obtain that, for ki ≤ kB ≤ ki + 1,g(θ, kB) ≤ 0 for θ ∈ {1, . . . , i}

g(θ, kB) ≥ 0 for θ ∈ {i+ 1, . . . , n}.

With this decomposition in mind, and noting that t′ is decreasing in θ, we
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obtain the following:

V ′
A(k

B)

=
i∑

θ=1

qθt
′(ϕB(U(kB, θ)))ϕ′

B(U(kB, θ))g(θ, kB) +
n∑

θ=i+1

qθt
′(ϕB(U(kB, θ)))ϕ′

B(U(kB, θ))g(θ, kB)

≤ t′(ϕB(U(kB, i)))
i∑

θ=1

qθϕ
′
B(U(kB, θ))g(θ, kB) + t′(ϕB(U(kB, i)))

n∑
θ=i+1

qθϕ
′
B(U(kB, θ))g(θ, kB)

= t′(ϕB(U(kB, i)))V ′
B(k

B) = 0.

Because we show that V ′
A(k

B) =
∑n

θ=1 qθϕ
′
A(U(kB, θ))g(θ, kB) is negative, the

proof is completed.

Appendix C. Derivation of (4)

Let ϕA = t ◦ ϕB, where t is increasing and concave. Then, we can rewrite

q1ϕ
′
A(U(kA, 1)) + q2ϕ

′
A(U(kA, 2))

= q1t
′(ϕB(U(kA, 1)))ϕ′

B(U(kA, 1)) + q2t
′(ϕB(U(kA, 2))ϕ′

B(U(kA, 2)).

Because U(kA, 1) ≤ U(kA, 2), ϕi is increasing for i = A,B, and t′ is decreasing

by t’s concavity, it holds that

t′(ϕB(U(kA, 1))) ≥ t′(ϕB(U(kA, 2))).

Because ϕi is unique up to a positive affine transformation for i = A,B,

we can obtain the following normalization,

q1ϕ
′
A(U(kA, 1)) + q2ϕ

′
A(U(kA, 2)) = q1ϕ

′
B(U(kA, 1)) + q2ϕ

′
B(U(kA, 2)), (9)

which implies that the following inequalities must be satisfied:

t′(ϕB(U(kA, 1))) ≥ 1 ≥ t′(ϕB(U(kA, 2))).

From the first inequality,

ϕ′
B(U(kA, 1)) ≤ t′(ϕB(U(kA, 1)))ϕ′

B(U(kA, 1)) = ϕ′
A(U(kA, 1))
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holds. Now, we obtain that

ϕ′
B(U(kA, 1)) ≤ ϕ′

A(U(kA, 1))

⇔ ϕ′
B(U(kA, 1))

q1ϕ′
B(U(kA, 1)) + q2ϕ′

B(U(kA, 2)])

≤ ϕ′
A(U(kA, 1))

q1ϕ′
A(U(kA, 1)) + q2ϕ′

A(U(kA, 2))

⇔ q̂A1 (k
A) ≥ q̂B1 (k

A),

where the first equivalence follows from (9). Therefore, we complete the proof.

Appendix D. Proofs of Propositions 1 and 2

We can show Propositions 1 and 2 based on the proof of Theorem 1. For that

purpose, it suffices to show that the results corresponding to Lemmas 1 and 3

hold for MLRD and RHRD.

First, Lemma 1 holds for MLRD and RHRD because both MLRD and

RHRD are stronger than FSD.

Second, as in the main text, the result corresponding to Lemma 3 can be

shown by Landsberger and Meilijson (1990, Proposition 2) for MLRD, and

the result corresponding to Lemma 3 can be shown by Kijima and Ohnishi

(1996, Theorem 4. 12 and its Corollary 4.7) for RHRD. Thus, the proofs of

Propositions 1 and 2 are completed.

Appendix E. Proof of Proposition 3

Similar to Propositions 1 and 2, we can show Proposition 3 based on the

proof of Theorem 1. For that purpose, it suffices to show that the results

corresponding to Lemmas 1 and 3 hold for N -th degree risk.

First, we show the result corresponding to Lemma 3. Because x̃ and ỹθ are

independent for any θ ∈ Θ, the convolution of F and Gθ is

Hθ(z) =

∫ b

a

Gθ(z − x)dF (x),

where F and Gθ denote the probability distribution functions of x̃ and ỹθ,

respectively. It can be shown that the convolution H is also a probability
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distribution function. Let us define Gn
θ (y−x) =

∫ y

a
Gn−1

θ (t−x)dt. By Fubini’s

theorem, we can rewrite the probability distribution function as

Hn
θ (z) =

∫ b

a

Gn
θ (z − x)dF (x).

Note that ỹi ≲n−risk ỹj is equivalent toH
n
i (z) =

∫ b

a
Gn

i (z−x)dF (x) ≥
∫ b

a
Gn

j (z−
x)dF (x) = Hn

j (z), that is, x̃+ ỹi ≲n−risk x̃+ ỹj. From the convolution property,

the claim is proved.

Second, the result corresponding to Lemma 3 can be shown by Chiu et al.

(2010) for N -th degree risk. Thus, the proof of Proposition 3 is completed.
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