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Abstract

Previous studies in differential games reveal that intertemporal strategic behav-

iors have an important role for various economic problems. However, most of their

analyses are limited to cases where objective functions are identical among agents. In

this paper, we characterize the open-loop Nash equilibrium and the Markov perfect

Nash equilibrium of a mixed duopoly game where a fully or partially state-owned

firm and a fully private firm compete in the quantities of homogeneous goods with

sticky prices. We show that in the Markov perfect Nash equilibrium, an increase in

the governments’ share-holdings of the state-owned firm has a non-monotonic effect

on the price, and in a wide range of parameter spaces, it increases the price. These

results are derived from the interaction of an asymmetric structure of agents’ objec-

tives and inter-temporal strategic behaviors, which are in sharp contrast with those

in the open-loop Nash equilibrium. We provide new implications for privatization

policies in the presence of dynamic interactions, against the static analyses.

Keywords: Mixed Duopoly, Open-loop Nash equilibrium, Markov Perfect Nash equi-

librium
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1 Introduction

Differential game approaches are widely applied to a number of studies in many fields of

economics. These consist of two Nash equilibrium concepts: the open-loop Nash equilib-

rium (hereafter referred to as OLNE) and the Markov perfect Nash equilibrium (hereafter

referred to as MPNE).1 Importantly, the MPNE is subgame perfect and takes into accounts

of inter-temporal strategic behaviors among agents.2 The seminal paper by Fershtman and

Kamien (1987) characterizes the OLNE and the MPNE of the Cournot game with a sticky

price. They reveal that in the MPNE the presence of inter-temporal strategic substi-

tutability makes firms produce more aggressively compared with the static game. Other

subsequent studies also shed light on the importance of inter-temporal strategic behaviors

for various economic problems. However, most of the previous studies are limited to sym-

metric cases where objective functions are identical among agents. If objective functions

are asymmetric among agents, the analysis of differential games becomes substantially

difficult.

In this paper, we tackle this problem. Specifically, we consider a differential game of a

mixed duopoly market where a fully or partially state-owned firm (hereafter referred to as

firm 1) and a fully private firm (hereafter referred to as firm 2) compete in the quantity of

homogeneous goods.3 Here we explicitly allow the possibility of partial privatization along

the lines of Matsumura (1998). That is, we assume that the government can indirectly

control the weight of the payoff in firm 1’s objective function through its share-holdings.

1The MPNE is often referred to as a feedback (or closed-loop) Nash equilibrium.
2Cabral (2012) points out the importance of considering issues in an area of industrial organization

by using dynamic models. Note that the OLNE is not subgame perfect and does not takes into account
inter-temporal strategic behaviors among agents. By definition, in the OLNE, each player chooses an
entire time path of his/her actions at the outset of the game given the entire path strategy chosen by the
other player. On the other hand, in the MPNE, each firm chooses its strategy at each point in time after
observing the value of its payoff-relevant state variables. See Dockner, Jorgensen, Long, and Sorger (2000)
for more detailed explanations of differential games.

3Mixed markets are found especially in regulated industries such as transport services, utilities, medical
care, finance and insurance, broadcasting, and heavy manufacturing industry. Since the 1980’s, we have
also observed a worldwide trend toward privatization of state-owned firms. Whether or not privatization
policy is beneficial to social welfare has long been debated. Starting from the seminal papers developed by
De Fraja and Delbono (1989) and Matsumura (1998), many researchers have examined this issue in the
context of static oligopoly theory by incorporating various related ingredients. Introduction in Matsumura
and Shimizu (2010) provide excellent surveys for literature of mixed oligopoly.

3



Firm 1 maximizes discounted streams of the weighted average of social welfare and profits,

whereas firm 2 does discounted streams of profits. Thus, unless firm 1 is perfectly priva-

tized, this game has an asymmetric structure of agents’ objectives. Formally, by assuming

price stickiness of the homogeneous goods in a similar way to the literature of differential

games [e.g. Fershtman and Kamien (1987), Piga (2000), and Cellini and Lambertini (2004,

2007)], we characterize the OLNE and the MPNE of the mixed market on an infinite time

horizon. Then we examine how privatization of firm 1 affects firms’ production behaviors,

equilibrium price, and social welfare.

We have the following results. First, we analytically show that in the OLNE, an increase

in the governments’ share-holdings of firm 1 monotonically reduces the equilibrium price.

This is because firm 1 aggressively expands output levels in order to enhance consumer

surplus, which is enough to compensate output contractions by the other fully private firm.

Our numerical analyses show that neither fully privatization nor fully nationalization is

optimal for social welfare, and that the optimal degree of privatization is low. These results

are consistent with in the static Nash equilibrium [see De Fraja and Delbono (1989) and

Matsumura (1998)]. Second, more importantly, we numerically show that in the MPNE,

an increase in the governments’ share-holdings of firm 1 has a non-monotonic effect on

equilibrium price. Furthermore, in a wide range of parameter spaces, it leads to higher

equilibrium price. These results are derived from the interaction of an asymmetric structure

of agents’ objectives and inter-temporal strategic behaviors. When the governments’ share-

holdings of firm 1 increase, firm 1 intends to expand output levels in order to enhance

consumer surplus. However, firm 1 now expects that if firm 1 expands outputs today,

it leads to lower prices tomorrow, which gives incentives for firm 2 to contract output

levels tomorrow. Taking such inter-temporal effects into account, firm 1 refrains from

aggressively expanding outputs. Such modest output expansions by firm 1 are not enough

to compensate output contractions by firm 2. As a result, an increase in government

participation in firm 1 raises the price, which is in sharp contrast to the results in the

literature on mixed oligopolies that is based on static analysis.

This surprising result brings about an important policy implication. Such a price rise

can reduce welfare, and thus, the government has a stronger incentive for reducing gov-
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ernment participation in the presence of dynamic interactions. As a result, the optimal

degree of privatization is higher in the MPNE than in the OLNE and in the static equilib-

rium. This implies that if state-owned firms face dynamic competition with private firms

and firms take into account inter-temporal strategic effects, the government privatizes the

state-owned firm more. It suggests that the traditional static analysis in the literature on

mixed oligopolies may underevaluate the value of privatization.4

The rest of the paper is organized as follows. Section 2 describes the model. Section 3

characterizes the Open-loop Nash equilibrium and the Markov perfect Nash equilibrium.

Section 4 analyzes the steady-state equilibrium as well as the corresponding transitional

dynamics.

2 Model setup

We consider the following duopoly model. Homogeneous goods are produced by two firms:

a fully or partially state-owned firm and a fully private firm. They compete in the quantities

á la Cournot fashion with each other. The differences of the two firm forms are hereafter

described in detail. For brevity of exposition, in what follows, we call the fully or partially

state-owned firm as firm 1 and the fully private firm as firm 2. Time is continuous and is

denoted by t ∈ [0,∞). The cost function of the both firms is symmetric, which is given by

C (xi(t)) = cxi(t) +
1

2
xi(t)

2, i = 1, 2, (1)

where c ≥ 0 and xi(t) is the output levels of firm i at time t.5 Along the lines of the

literature in differential game theory [e.g. Simman and Takayama (1978), Fershtman and

Kamien (1987), Piga (2000), and Cellini and Lambertini (2004, 2007)], we consider the

price stickiness in the homogeneous goods market. The price of the homogeneous goods,

4There are other approaches of long-run competition in mixed oligopolies. One is the analysis free-entry
markets (Anderson, de Palma, and Thisse,1997; Matsumura and Kanda, 2005). Another is the analysis of
repeated game (Colombo, 2016). These approach are completely different from ours.

5The assumption of quadratic cost functions is popular in the literature on mixed oligopolies (De Fraja
and Delbono, 1989). If both firms have the same cost function and the marginal costs are constant, the
monopoly by the state-owned firm obviously yields the first best outcome. Thus, it is nonsense to discuss
mixed oligopolies in such a situation. We do not allow cost asymmetry between two firms for tractability.
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p(t), is governed by the following differential equation:

dp(t)

dt
≡ •

pt = s [a−X(t)− p(t)] , 0 < c < a, (2)

where X(t) ≡ x1(t) + x2(t) represents total outputs and 0 < s ≤ ∞ represents the degree

of the speed of the price adjustments.

Under this environment, the consumer surplus at each point in time, CS(t), is given by

CS(t) ≡
∫ z=X(t)

z=0

(a−X(t)) dz − p(t)X(t) = aX(t)− 1

2
X(t)2 − p(t)X(t), (3)

and the producer surplus which consists of profits of the both firms at each point in time,

PS(t), is given by

PS(t) ≡ p(t)x1(t)− C (x1(t)) + p(t)x2(t)− C (x2(t)) . (4)

The social welfare (total surplus) at each point in time, SW (t), is defined to be the sum

of the consumer surplus and the producer surplus:

SW (t) = CS(t) + PS(t). (5)

Following Matsumura (1998), we assume that the government may own some or all

parts of the share of firm 1. The government is benevolent to maximize the social welfare.

Firm 1’s objective is to maximize the discounted streams of the weighted average of the

social welfare and its own profit. The objective functional of firm 1 is given by

V1 =

∫ t=∞

t=0

[βSW (t) + α {p(t)x1(t)− C (x1(t))}] e−rtdt, α + β = 1, (6)

where r > 0 represents the exogenous constant inter-temporal discount rate and β repre-

sents the weight of the payoff of the government for firm 1’s objective. The government can

control the value of β(= 1−α) through its share-holding. An increase in the government’s

share-holdings of firm 1 means a higher value of β. By contrast, firm 2’s objective is to
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maximize the discounted stream of its own profit. We assume that β = 1 (β = 0) if the

government owns 100% (0%) share in firm 1. The objective functional of firm 2 is given

by:

V2 =

∫ t=∞

t=0

[p(t)x2(t)− C (x2(t))] e
−rtds. (7)

3 Nash equilibrium

We characterize the OLNE and the MPNE of the mixed duopoly game. Before observing

this, we briefly note how outcomes are determined in the static (one-shot) mixed duopoly

game, along the lines of the environment as described in the preceding section [see Mat-

sumura (1998) for more general characterization].

3.1 Static Nash equilibrium

Here, the time subscript can be dropped. The corresponding inverse-demand function is

given by p = a− (x1 + x2). Firm 1’s objective is to maximize βSW +α [px1 − C(x1)] with

respect to x1, and firm 2’s objective is to maximize px2 − C(x2) with respect to x2. The

first-order condition of firm 1 is given by

α
∂p

∂x1

x1 + p− C ′(x1) = 0, (8)

and the first-order condition of firm 2 is given by

∂p

∂x2

x2 + p− C ′(x2) = 0. (9)

Solving (8) and (9) yield the following reaction function of firm 1 and firm 2: x1 = (a −

c− x2)/(3− β) and x2 = (a− c− x1)/3. Therefore, we obtain the following proposition:

Proposition 1. Let p∗ST , x∗ST
1 , and x∗ST

2 denote the price, the output levels of firm 1, and

the output levels of firm 2 in the Static Nash equilibrium (hereafter referred to as STNE),

respectively. We obtain that:
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• p∗ST is given by

p∗ST =
−β(2a+ c) + 4(a+ c)

8− 3β
. (10)

• x∗ST
1 and x∗ST

2 are given by

x∗ST
1 =

2(a− c)

8− 3β
, (11)

x∗ST
2 =

(2− β)(a− c)

8− 3β
. (12)

• For β ∈ [0, 1], x∗ST
1 is increasing in β, whereas x∗ST

2 and p∗ST are decreasing in β.

• For β ∈ [0, 1], let β̂ be the value of β that maximizes the social welfare in the STNE,

SW ∗ST (β). It is found that β̂ ∈ (0, 1).

Proof. The first to third results are straightforwardly derived by simple calculations using

(2), (8), and (9). We briefly give the proof for the last result. SW ∗(β) is given by

SW ∗ST (β) =

∫ x∗ST
1 (β)+x∗ST

2 (β)

0

p(q)dq − C
(
x∗ST
1 (β)

)
− C

(
x∗ST
2 (β)

)
.

From (11) and (12), differentiating SW ∗ST (β) with respect to β in the neighborhood of

β = 0 yields

∂SW ∗ST (β)

∂β

∣∣∣∣
β=0

=
[
p− C ′(x∗ST

1 )
]︸ ︷︷ ︸

(+)

∂x∗ST
1 (β)

∂β

∣∣∣∣
β=0︸ ︷︷ ︸

(+)

+
[
p− C ′(x∗ST

2 )
]︸ ︷︷ ︸

(+)

∂x∗ST
2 (β)

∂β

∣∣∣∣
β=0︸ ︷︷ ︸

(−)

=
(a− c)2

8
> 0.

On the other hand, differentiating SW ∗ST (β) with respect to β in the neighborhood of

β = 1 yields

∂SW ∗ST (β)

∂β

∣∣∣∣
β=1

=
[
p− C ′(x∗ST

1 )
]︸ ︷︷ ︸

=0

∂x∗ST
1 (β)

∂β

∣∣∣∣
β=1

+
[
p− C ′(x∗ST

2 )
]︸ ︷︷ ︸

(+)

∂x∗ST
2 (β)

∂β

∣∣∣∣
β=1︸ ︷︷ ︸

(−)

< 0,

where the first term is equal to 0 and the second term is negative.
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As the third result in Proposition 1 shows, firm 1’s output levels are monotonically

increasing in β, whereas firm 2’s output levels are monotonically decreasing in β. As

β increases, however, the output expansion by firm 1 always compensates the output

contraction by firm 2. Therefore, the price is monotonically decreasing in β. The last

result in Proposition 1 indicates that neither full privatization nor full nationalization is

optimal. The reason is explained as follows. If β = 0, price declines by a marginal increase

in β necessarily improves social welfare because the price level is too high in the presence

of imperfect market competition. On the other hand, if β = 1, a slight reduction in output

levels of firm 1 does not reduce social welfare as the price is equal to the marginal cost for

firm 1. However, because the price is higher than the marginal cost for firm 2, a marginal

increase in the outputs of firm 2 caused by a decrease in β improves social welfare. We

provide another intuitive explanation behind this result by using the welfare-improving

production substitution discussed by Lahiri and Ono (1988). An increase in β reduces the

price and mitigate distortion due to imperfect market competition. On the other hand,

an increase in β increases the output of firm 1 and reduces that of firm 2 (production

substitution from firm 2 to firm 1). When β is positive, firm 1 produces more than firm 2,

and thus, the marginal cost is higher in firm 1 than in firm 2. Therefore, this production

substitution harms social welfare. The latter (former) dominates the former (latter) when

β = 1 (β = 0), and thus, neither β = 0 nor β = 1 is optimal for social welfare. As shown

below in section 4, however, an increase in β can raise the price at the MPE, especially

when β is large. Thus, the optimal degree of privatization is lower at the MPNE.

3.2 Open-Loop Nash equilibrium

In this subsection, we characterize the OLNE for the above-mentioned game. The open-

loop information set for each firm is defined by only its own actions and time. No firm can

observe anything but those items at each point in time. As we will see below, the open-loop

information set is more narrow than the Markov perfect information set. The open-loop

strategy of each firm is characterized by the entire time path for the control variable (its

own outputs), which is fixed at the outset of the game given the rival’s strategy and the
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initial level of the state variable (price). Each firm commits to the path and does not revise

it at any subsequent point in time. Hence, the actions to be done at each point in time

depends only on the time. Formally, following Fershtman and Kamien (1987), we define

the open-loop strategy space and the OLNE for the game as follows:

Definition 1. The open-loop strategy space for firm i (i = 1, 2) is

SOP
i = {xi(t) |xi(t) is piecewise continuous and xi(t) ≥ 0 for every t}.

Definition 2. The open-loop Nash equilibrium (OLNE) is a pair of the open-loop strategies,

(x∗OP
1 (t), x∗OP

2 (t)) ∈ SOP
1 × SOP

2 such that

Vi

(
x∗OP
i (t), x∗OP

j (t)
)
≥ Vi

(
xi(t), x

∗OP
j (t)

)
for every xi(t) ∈ SOP

i (i, j = 1, 2 ; i ̸= j) .

We solve the OLNE by using Pontryagin’s maximum principle and derive the following

proposition:

Proposition 2. Let p∗OP (∞), x∗OP
1 (∞), and x∗OP

2 (∞) respectively denote the steady-state

price, the steady-state output levels of firm 1, and the steady-state output levels of firm 2

in the OLNE. We obtain that

• There is a unique and globally stable steady-state in the OLNE.

• p∗OP (∞) is given by

p∗OP (∞) =
[as+ (a+ 2c)(r + s)] (r + 2s)− βs [as+ (a+ c)(r + s)]

(3r + 4s)(r + 2s)− βs(2r + 3s)
.

• x∗OP
1 (∞) is given by

x∗OP
1 (∞) =

(a− c)(r + s)(r + 2s)

(3r + 4s)(r + 2s)− βs(2r + 3s)
.

• x∗OP
2 (∞) is given by

x∗OP
2 (∞) =

(a− c)(r + s) [(r + 2s)− βs]

(3r + 4s)(r + 2s)− βs(2r + 3s)
.
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• For β ∈ [0, 1], x∗OP
1 (∞) is increasing in β, whereas p∗OP (∞) and x∗OP

2 (∞) are

decreasing in β.

Proof. See Technical Appendix A-1.

The last result in Proposition 2 indicates that an increase in the government’s share-

holdings of firm 1 unambiguously leads to the lower steady-state price at the OLNE.

This is because output expansions by firm 1 necessarily compensate output reductions

by firm 2. These are qualitatively consistent with the result of the STNE. Although the

welfare implication cannot be derived analytically, as shown by numerical analyzes in the

subsequent section, we also confirm that welfare implications at the steady state in the

OLNE are qualitatively consistent with the STNE.

Besides, the following two extreme parameter cases are considered along the lines of

the literature of the differential game theory [e.g. Fershtman and Kamien (1987), Piga

(2000) and Cellini and Lambertini (2004, 2007)]. One is the case in which s → ∞ or r → 0

(referred to as the “limit game”). In this case, the steady state of the game can be viewed

as a continuous-time version of the repeated game. The second is the case in which s → 0

or r → ∞. In this case, each firm chooses its own strategy under the situation where the

price is perfectly rigid or only its current profit flow is important. We obtain the following

proposition:

Proposition 3. As s → ∞ or r → 0, p∗OP (∞) coincides with the price in the STNE, p∗ST .

On the other hand, as s → 0 or r → ∞, p∗OP (∞) coincides with the static competitive

price which is given by (a+ 2c)/3.

Proof. From Proposition 2, taking the limit of s → ∞ or r → 0 (s → 0 or r → ∞) for

p∗OP (∞), we straightforwardly obtain the results above.

3.3 Markov Perfect Nash equilibrium

In the following, we characterize the MPNE for the above-mentioned game. The Markov

perfect information set is less restricted compared to the OLNE in that each firm can

observe the realization value of the payoff-relevant state variable (price) at each point in

11



time. In contrast to the OLNE, each firm does not commit to a particular time path of

its control variable at the outset of the game, but rather, each firm can respond to the

observed price level at each point in time. As a result, the Markov perfect strategies of

the firms are the decision rules which prescribe the firm’s outputs at each point in time as

a function of the observed price. Formally, following Fershtman and Kamien (1987), the

Markov perfect strategy and the MPNE are defined as follows:

Definition 3. The Markov perfect strategy space for firm i (i = 1, 2) is

SMP
i = {xi (t, p(t)) |xi (t, p(t)) is continuous in (t, p(t)) ; xi (t, p(t)) ≥ 0 and

|xi (t, p(t))− xi (t, p
′(t)) | ≤ m(t)|p(t)− p′(t)| for some integrable m(t) ≥ 0}.

Definition 4. The Markov perfect Nash equilibrium (MPNE) for the game is a pair of the

Markov perfect strategies, (x∗MP
1 (t, p(t)) , x∗MP

2 (t, p(t))) ∈ SMP
1 × SMP

2 such that for every

possible initial condition (t0, p(t0)),

Vi

(
x∗MP
i (t, p(t)) , x∗MP

j (t, p(t))
)
≥ Vi

(
xi (t, p(t)) , x

∗MP
j (t, p(t))

)
,

for every xi (t, p(t)) ∈ SMP
i (i, j = 1, 2 ; i ̸= j) .

The MPNE can be solved by dynamic programming. To make exposition simple, in

what follows, we omit the time subscript. The Markov perfect Nash equilibrium strategies,

{x∗MP
1 (p), x∗MP

2 (p)}, must satisfy the following Hamilton-Jacobi-Bellman equations:

rV1(p) = max
x1

[
β

(
aX − 1

2
X2

)
+ αpx1 −

(
cx1 +

1

2
x2
1

)
− β

(
cx2 +

1

2
x2
2

)
+

∂V1(p)

∂p
s (a−X − p)

]
,

(13)

rV2(p) = max
x2

[
px2 −

(
cx2 +

1

2
x2
2

)
+

∂V2(p)

∂p
s (a−X − p)

]
. (14)

The first-order conditions for (13) and (14) are respectively given by

β {a−X}+ αp− (c+ x1)− s
∂V1(p)

∂p
= 0, (15)

12



p− c− x2 − s
∂V2(p)

∂p
= 0. (16)

We guess the value function of firm i as the following quadratic form:

Vi =
1

2
Kip

2 + Eip+ Fi (i = 1, 2), (17)

where {Ki, Ei, Fi} (i = 1, 2) are undetermined coefficients. From (15), (16), and (17), we

obtain the following linear Markov-perfect strategies6:

Proposition 4. The Markov perfect Nash equilibrium strategies,
(
x∗MP
1 (p), x∗MP

2 (p)
)
, are

respectively given by

x∗MP
1 (p) =

1

1 + β
[(1− 2β − sK1 + βsK2) p+ βa− (1− β)c− sE1 + βsE2] , (18)

x∗MP
2 (p) = (1− sK2)p− (c+ sE2), (19)

where {K1, K2} must satisfy the following simultaneous equations:

1

2(2β + α)
s2K2

1 +
1

2β + α
s2K1K2 −

β

2

(
1

2β + α
+ 1

)
s2K2

2

−
[
3α3 + 13αβ + 8β2

(2β + α)2
s+

1

2
r

]
K1 + 3

β

2β + α
sK2 −

6β3 + 11αβ2 + 2α2β − α3

2(2β + α)2
= 0, (20)

1

2
− 1

2
rK2 +

α

2(2β + α)
s2K2

2 +
1

2β + α
s2K1K2 −

3

2β + α
sK2 = 0. (21)

For {K1, K2} determined by (20)-(21), {E1, E2} must satisfy the following simultaneous

equations:

rE1 = βa
(β + 2α)− s(K1 +K2)

2β + α
+ β [(1− sK2)sE2]

− β

(2β + α)2
[(β + 2α)− s(K1 +K2)] [(βa− 2c)− s(E1 + E2)]

+
α

2β + α
[βa− αc− s(E1 − βE2)] +

c

2β + α
[(β − α) + s(K1 − βK2)]

6Tsutusi and Mino (1990) consider nonlinear strategies in the Fershtman Kamien (1987)’s model. Here
we focus only on linear strategies to clarify characters of our dynamic game.
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+
1

(2β + α)2
[(β − α) + s(K1 − βK2)] [(βa− αc)− s(E1 − βE2)]

+
1

2β + α

[
(a+ 2c)sK1 − 3sE1 + 2s2K1E1 + s2(K1E2 +K2E1)

]
, (22)(

r +
3

2β + α
s

)
E2 = −c+

1

2β + α

[
(a+ 2c)sK2 + s2(K1E2 +K2E1)− βs2K2E2

]
. (23)

Proof. See Technical Appendix A-2.

Note that when β = 0, the RHS of (18) coincides with the RHS of (19). In this case,

K1 = K2 and E1 = E2 are satisfied.7 Applying (18) and (19) into X = x1 + x2 and (2),

the total outputs and the law of motion of price in the MPNE are respectively given by:

X =
1

1 + β
[(2− β − sK1 + sK2) p+ βa− 2c− sE1 + sE2] , (24)

•
p =

s

1 + β
[−{3− s(K1 +K2)} p+ a+ 2c+ s(E1 + E2)] . (25)

(25) indicates that 3 > s(K1 +K2) must be satisfied so that the pair (x∗MP
1 (p), x∗MP

2 (p))

constitutes the globally and asymptotically stable MPNE. Since it is too complicated to

analytically find the equilibrium value of {K1, K2, E1, E2} for the case of β ∈ (0, 1] from

(20)-(21) and (22)-(23), we relay on numerical analysis so as to derive our main implications

as demonstrated in the subsequent section. Before going to the quantitative analysis,

however, we give some analytical results here. First, we obtain the following lemma:

Lemma 1. The graph of (20) is a hyperbola.

Proof. See Technical Appendix A-3.

And we can show the following results for the case of β = 1:

Proposition 5. If β = 1, the system of simultaneous equations, (20)-(21), has a unique

solution. Moreover, it is found that K1 < 0 and K2 > 0.

Proof. See Technical Appendix A-4.

Second, considering
•
p = 0, we derive the following lemma and proposition:

7See Fershtman and Kamien (1987).
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Lemma 2. Let p∗MP (∞), x∗MP
1 (∞), and x∗MP

2 (∞) respectively denote the steady-state

price, the steady-state output levels of firm 1, and the steady-state output level of firm 2 in

the MPNE. We find:

• p∗MP (∞) is given by

p∗MP (∞) =
a+ 2c+ s(E1 + E2)

3− s(K1 +K2)
. (26)

• x∗MP
1 (∞) is given by

x∗MP
1 (∞) =

1

1 + β

[
{1− 2β − s(K1 + βK2)} {a+ 2c+ s(E1 + E2)}

3− s(K1 +K2)

+ βa− (1− β)c− s(E1 − βE2)

]
, (27)

• x∗MP
2 (∞) is given by

x∗MP
2 (∞) =

(1− sK2) {a+ 2c+ s(E1 + E2)}
3− s(K1 +K2)

− (c+ sE2). (28)

Proof. Derivations for these results are straightforwardly obtained using (18), (19), (24),

and (25).

Proposition 6. As s → 0 or r → ∞, x∗MP
1 (∞) and x∗MP

2 (∞) are equal to (a − c)/3 for

any β ∈ [0, 1]; p∗MP (∞) is equal to (a + 2c)/3. That is, the steady-state outcomes in the

MPNE coincide with the static competitive equilibrium.

Proof. They are straightforwardly obtained by applying s → 0 or r → ∞ to Lemma 2.

4 Numerical Analysis

4.1 Methodology

Employing numerical simulations, we examine how an increase in β affects the steady

state of the MPNE and the OLNE, as well as considering the transitional dynamics from

an arbitrary initial state to the steady state. As a benchmark, we focus on the parameter
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set listed in Table 1. We confirm that our main implications derived from the benchmark

analysis are fairly robust to a wide range of parameter sets except for the case in which s

is extremely low or s is extremely high. Recall that as s → 0 or r → ∞, both the steady

states of the MPNE and the OLNE degenerate to the static competitive equilibrium. When

s → ∞ or r → 0 (limit price case), the steady state of the OLNE degenerates to the STNE.

On the other hand, qualitative implications of the MPNE in the limit price case remain

the same as those under the benchmark parameter case. To save space in the text, we

relegate the detailed analysis for robustness checks to the Technical Appendix.

Table 2 summarizes the MPNE strategies computed in increments of 0.1 for β ∈ [0, 1]

under the benchmark parameter set. Each panel of Figure 1 respectively displays variations

in the steady-state output levels of firm 1 (x1), output levels of firm 2 (x2), total outputs

(X), price (p), consumer surplus (CS), producer surplus (PS), profit of firm 1 (PS1), profit

of firm 2 (PS2), and social welfare (SW) with respect to β in the MPNE and OLNE under

the benchmark parameter set. These are computed in increments of 0.1 for β ∈ [0, 1].

For reference, the corresponding outcomes in the STNE are also displayed on each panel.

Table 3-5 numerically list these values.

The transitional dynamics are computed by employing the relaxation algorithm method

developed by Trimborn, Koch and Steger (2008).8 Since a one state variable exists (price),

we need to arbitrary set the initial price for computations of the transitional dynamics.

As the initial price level, we consider 80% and 120% level of the steady-state price in the

OLNE for β = 0.0. Figure 2 respectively displays the transitional dynamics of output levels

of firm 1 and firm 2 in the MPNE and the OLNE for β = 0.0, 1.0. In the same manner,

Figure 3 respectively displays the transitional dynamics of total outputs and price.

4.2 Model properties

Figure 1 shows that variations in each variable with respect to β in the OLNE are analogous

to those in the STNE. In contrast, the MPNE qualitatively and quantitatively exhibits

8Trimborn, Koch, and Steger (2008) detail the relaxation algorithm. They also provide MAT-
LAB programs for the relaxation algorithm, which are downloadable for free at http://www.wiwi.uni-
siegen.de/vwli/forschung/relaxation/matlab applications.html?lang=de.
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different implications of a change in β, compared to in the OLNE and the STNE. Since

the production behaviors of firm 1 and firm 2 as a function of β are keys in our paper, in

what follows, we first examine them in detail.

4.2.1 Production behavior of firm 1 and firm 2

Figure 1 and Table 3-5 show that for every equilibrium concept, the (steady-state) output

levels of firm 1 are increasing in β, whereas the (steady-state) output levels of firm 2 are

decreasing in β. But the magnitude of output expansions of firm 1 associated with a higher

β in the MPNE is considerably smaller than in the OLNE and the STNE. Note that if

β = 0.0, the steady-state output levels of firm 1 in the MPNE are higher than in the OLNE

and the STNE. As β exceeds a certain threshold level, however, the steady-state output

levels of firm 1 in the MPNE become lower than in the OLNE and the STNE. In contrast,

the steady-state output levels of firm 2 in the MPNE is higher than in the OLNE and the

STNE for any β ∈ [0, 1]. Furthermore, Figure 2 illustrates that if β = 0.0, firm 1’s output

levels and firm 2’s output levels in the MPNE are always higher than in the OLNE during

the transitional phase. On the other hand, if β = 1.0, firm 1’s output levels in the MPNE

are always lower than in the OLNE. Firm 2’s output levels in the MPNE are lower than

in the OLNE during the early stage of the transition, whereas the steady-state firm 2’s

output levels in the MPNE are higher than in the OLNE.

Table 2 shows that as β increases starting from β = 0.0, the Markov perfect Nash

equilibrium strategies of firm 1 and firm 2 changes asymmetrically. If β = 0.0, the Markov

perfect strategy of both firms is given by 0.8333∗p−6.3333 under the benchmark parameter

set. As β increases, the coefficient-value of p in the Markov perfect Nash equilibrium

strategy of firm 1 decreases and becomes even negative. By contrast, the intercept-value in

the Markov perfect Nash equilibrium strategy of firm 1 is increasing in β. These indicate

that firm 1’s behavior drastically changes depending on β. On the other hand, as β

increases, the coefficient-value of p in the Markov perfect strategy of firm 2 also decreases

but remains to be positive for any β ∈ [0, 1]. And the intercept-value in the Markov

perfect strategies of firm 2 is decreasing in β. Therefore, as β increases, firm 2 strategically

contracts its output levels given a price level.
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The reason behind such counter-intuitive results in the MPNE is derived from the

interaction of inter-temporal strategic behavior and an asymmetric structure of firms’ ob-

jectives. For better understanding of the intuition, specifically consider first the case of

symmetric situation (β = 0.0) in order to clarify only the inter-temporal strategic behavior

which pertains to the MPNE.9 If β = 0, for every equilibrium concept, both firms sym-

metrically seek only profits. In the MPNE, both firms strategically intend to make the

other firm contract outputs for each other. That is, inter-temporal strategic substitutabil-

ity exists. More specifically, at any point in time, if firm i increases outputs today, it leads

to lower prices tomorrow. This causes firm j to contract outputs tomorrow, resulting in

larger residual demand for firm i. Firm i strategically takes such inter-temporal effects

into account and the same logic also prevails in firm j. By definition, such inter-temporal

strategic decisions do not occur in the OLNE and the STNE. Therefore, in the MPNE,

both firms produce more aggressively compared with the OLNE and the STNE.

Next, consider the case in which β ∈ (0, 1]. As β increases, regardless of equilibrium

concepts, firm 1 intends to expand outputs in order to enhance consumer surplus which

is distorted by the presence of the imperfect market competition. In contrast, firm 2

remains to seek only its own profits. In the MPNE, however, the presence of inter-temporal

strategic decision dampens its incentives for firm 1 to expand outputs due to the asymmetric

structure of the firms’ objectives. More specifically, at any point in time, if firm 1 expands

outputs today, this leads to lower prices tomorrow, which causes firm 2 to contract outputs

tomorrow. This secondary effect will weaken price reduction by firm 1’s outputs expansion.

Firm 1 takes such an inter-temporal effect into account, leading to its strategic modest

production. Therefore, the magnitude of output expansion of firm 1 associated with higher

β in the MPNE is considerably smaller than in the OLNE and the STNE.

In an analogous way, in the MPNE, firm 2 expects that if the price decreases tomorrow,

firm 1 will expand outputs tomorrow. This is because the coefficient-value of price in the

linear Markov strategy of firm 1 becomes negative as β increases. Taking such inter-

temporal effects into account, firm 2 also strategically contracts outputs compared with

the OLNE and the STNE. As shown in Figure 2, however, this can be found only in the

9See Fershtman and Kamien (1987) for more description.
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early stage of transition. This is because the price around the steady state in the MPNE

is higher than in the OLNE and the STNE.

4.2.2 Total outputs and price

Figure 1 and Table 3-5 show that the steady-state price (total output levels) in the OLNE

is monotonically decreasing (increasing) in β, which is consistent with outcomes in the

STNE. By contrast, in the MPNE, variations in the steady-state price (total outputs) with

respect to β is non-monotonic in relationship with β. And surprisingly for a wide range

of β, the steady-state price in the MPNE is increasing in β although its variations are

quantitatively small. Furthermore, figure 3 shows that if β = 0.0, price (output levels)

in the MPNE is always lower (higher) than in the OLNE during all transitional phase,

whereas if β = 1.0, the rank order of the configuration inversely changes.

The counter-intuitive result in the MPNE is mainly derived from firm 1’s strategic

modest production in reaction to a higher β. In the MPNE, even if β increases, firm

1 refrains from aggressively expanding outputs because of the presence of inter-temporal

strategic decision as mentioned above. For a wide range of β, the output expansion by firm

1 associated with higher β cannot compensate the associated output reduction by firm 2.

Furthermore, these results directly lead to difference of variations in the steady-state

consumer surplus and producer surplus with respect to β. Figure 1 shows that in the OLNE

and the STNE, the steady-state consumer surplus (producer surplus) is monotonically

increasing (decreasing) in β, whereas the steady-state consumer surplus (producer surplus)

in the MPNE is in a non-monotonic relationships with β. And the steady-state consumer

surplus (producer surplus) in the MPNE is decreasing (increasing) in β for a wide range

of β.

4.2.3 Social welfare

Figure 1 and Table 3-5 show that for every equilibrium concept, the (steady-state) total

surplus exhibits an inverted U-shaped relationship with respect to β. This implies that even

in the presence of inter-temporal strategic decisions among firms, neither a full privatization

policy nor a full nationalization policy is optimal, which is consistent with the preceding
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study developed by Matsumura (1998). However, the value of β which maximizes the

steady-state total surplus in the MPNE is shown to be quantitatively quite different from

the OLNE and the STNE. Specifically, the former value is around β = 0.1, whereas the

latter value is around β = 0.7 to β = 0.8. This suggests that in the OLNE and the

STNE, the low degree of privatization policy is optimal for the social welfare, whereas in

the MPNE, the high degree of privatization policy is optimal for social welfare.

Along the lines of discussions in section 3.1, in the OLNE and the MPNE, there are

two channels for a change in β to affect the social welfare. The first channel is via the

resulting price change. Since the imperfect competition prevails in the goods market, an

equilibrium price is distorted above the social marginal cost. Hence, a price decline has a

positive effect on the social welfare. The second channel is via the production substitution

among firms associated with a change in β. Since the cost function takes a convex form,

the efficiency of the overall production is distorted by asymmetric outputs among firms

when β ̸= 0.

In the OLNE and STNE, an increase in β causes firm 1 to aggressively expand output,

which monotonically leads to the lower price. The resulting price decline has a positive

effect on the social welfare via the first channel. At the same time, the resulting production

substitutions from firm 2 to firm 1 has a negative effect on the social welfare via the second

channel. Except for the case in which β is near to 1, the extent of positive welfare effects

via the first channel exceeds the extent of negative welfare effects via the second channel.

As a result, the low degree of privatization policy is optimal for the social welfare.

By contrast, in the MPNE, an increase in β only leads to less aggressive output ex-

pansion of firm 1. Figure 1 and Table 3 show that when β is sufficiently low, the price is

lower than in the symmetric case (β = 0). On the other hand, the production substitutions

occur for any β ∈ [0, 1], as is the case with the OLNE and STNE. As a result, when β is

sufficiently low, an increase in β can have a positive welfare effect via the first channel.

Therefore, the high degree of privatization policy is optimal for the social welfare. Besides,

note that if β = 1.0, the steady-state social welfare in the MPNE is lower than in the

OLNE as shown in Figure 1 and Table 3-4. This sharply contrasts with results in the

symmetric case which have been examined by Fershtman and Kamien (1987).
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5 Conclusion

In this paper, we analyze differential games with asymmetric firms that have different

objectives. One is profit maximizer, and the other is concerns with both profits and

social welfare. We consider three scenarios: static Nash equilibrium, the open-loop Nash

equilibrium, and the Markov perfect Nash equilibrium. We investigate how the weight of

social concern in a firm affects the price and social welfare. We find that at the static and

open-loop Nash equilibria, an increase in the social concern in a firm’s objective always

reduces the price. However, at the Markov perfect Nash equilibrium, it can raise the price.

As a result, the optimal degree of social concerns at the Markov perfect Nash equilibrium

is substantially lower than those at the static and open-loop Nash equilibria.

In the context of mixed oligopolies in which state-owned public firms compete against

private firms, the degree of social concern in a firm’s objective is associated with the public

ownership ratio in the firm. Following this interpretation, our result suggests that the

optimal degree of privatization is significantly higher at Markov perfect equilibrium than

that at the static Nash equilibrium. This implies that when firms face dynamic competition,

the government should privatize the state-owned firms more.

In this paper, we take the first step to applying the differential game approach to

asymmetric oligopolies in which firms have heterogeneous objectives. For example, firms

may be concerned with corporate social responsibility (CSR). In fact, most major firms

adopt CSR policies but the degree of CSR significantly differs among firms (KPMG, 2013).

We think that our findings can apply to the analysis of such markets. Formal analysis of

this problem remains for future research.
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Table 1: Benchmark parameter set

a c s r

100 1.0 0.1 0.05

Table 2: Markov perfect Nash equilibrium strategies (benchmark)

Firm 1’s strategy Firm 2’s strategy

α = 1.0, β = 0.0 0.8333 ∗ p− 6.3333 0.8333 ∗ p− 6.3333
α = 0.9, β = 0.1 0.6740 ∗ p+ 1.5405 0.8236 ∗ p− 6.5162
α = 0.8, β = 0.2 0.5211 ∗ p+ 8.0855 0.8132 ∗ p− 6.7680
α = 0.7, β = 0.3 0.3817 ∗ p+ 13.8636 0.8026 ∗ p− 7.0347
α = 0.6, β = 0.4 0.2565 ∗ p+ 19.1269 0.7918 ∗ p− 7.2935
α = 0.5, β = 0.5 0.1444 ∗ p+ 24.0085 0.7811 ∗ p− 7.5329
α = 0.4, β = 0.6 0.0438 ∗ p+ 28.5871 0.7705 ∗ p− 7.7468
α = 0.3, β = 0.7 −0.0467 ∗ p+ 32.9136 0.7599 ∗ p− 7.9319
α = 0.2, β = 0.8 −0.1288 ∗ p+ 37.0231 0.7494 ∗ p− 8.0863
α = 0.1, β = 0.9 −0.2036 ∗ p+ 40.9416 0.7390 ∗ p− 8.2095
α = 0.0, β = 1.0 −0.2721 ∗ p+ 44.6890 0.7285 ∗ p− 8.3011

Table 3: Steady-state outcomes in the MPNE (benchmark)

x1 x2 X p CS PS1 PS2 PS TS

α = 1.0, β = 0.0 28.87 28.87 57.75 42.25 1667.53 774.21 774.21 1548.42 3215.95
α = 0.9, β = 0.1 29.86 28.10 57.97 42.02 1680.31 779.41 758.14 1537.56 3217.87
α = 0.8, β = 0.2 30.11 27.61 57.72 42.27 1666.22 789.48 758.40 1547.88 3214.10
α = 0.7, β = 0.3 30.14 27.19 57.34 42.65 1644.32 801.30 763.03 1564.34 3208.67
α = 0.6, β = 0.4 30.17 26.78 56.95 43.04 1622.21 813.24 767.39 1580.64 3202.85
α = 0.5, β = 0.5 30.27 26.35 56.62 43.37 1603.22 824.59 769.41 1594.01 3197.24
α = 0.4, β = 0.6 30.50 25.87 56.37 43.62 1588.89 835.04 768.17 1603.22 3192.11
α = 0.3, β = 0.7 30.86 25.34 56.21 43.78 1579.87 844.33 763.31 1607.65 3187.53
α = 0.2, β = 0.8 31.37 24.77 56.15 43.84 1576.41 852.18 754.76 1606.95 3183.37
α = 0.1, β = 0.9 32.01 24.16 56.18 43.81 1578.54 858.19 742.69 1600.85 3179.38
α = 0.0, β = 1.0 32.80 23.52 56.32 43.67 1586.15 861.90 727.17 1589.08 3175.23
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Table 4: Steady-state outcomes in the OLNE (benchmark)

x1 x2 X p CS PS1 PS2 PS TS

α = 1.0, β = 0.0 27.00 27.00 54.00 46.00 1458.00 850.50 850.50 1701.00 3159.00
α = 0.9, β = 0.1 27.80 26.69 54.50 45.49 1485.43 850.67 831.49 1682.17 3167.60
α = 0.8, β = 0.2 28.66 26.37 55.04 44.95 1514.84 849.24 811.55 1660.80 3175.63
α = 0.7, β = 0.3 29.58 26.03 55.61 44.38 1546.43 845.90 790.60 1636.51 3182.94
α = 0.6, β = 0.4 30.55 25.66 56.22 43.77 1580.47 840.27 768.57 1608.85 3189.32
α = 0.5, β = 0.5 31.59 25.27 56.87 43.12 1617.23 831.90 745.39 1577.30 3194.53
α = 0.4, β = 0.6 32.70 24.85 57.56 42.43 1657.05 820.25 720.96 1541.22 3198.27
α = 0.3, β = 0.7 33.90 24.41 58.31 41.68 1700.32 804.64 695.21 1499.85 3200.18
α = 0.2, β = 0.8 35.18 23.92 59.11 40.88 1747.50 784.26 668.02 1452.29 3199.78
α = 0.1, β = 0.9 36.57 23.40 59.98 40.01 1799.11 748.10 639.30 1397.41 3196.52
α = 0.0, β = 1.0 38.07 22.84 60.92 39.07 1855.81 724.92 608.93 1333.86 3189.67

Table 5: Steady-state outcomes in the static game (benchmark)

x1 x2 X p CS PS1 PS2 PS TS

α = 1.0, β = 0.0 24.75 24.75 49.50 50.50 1225.13 918.84 918.84 1837.69 3062.81
α = 0.9, β = 0.1 25.71 24.42 50.14 49.85 1257.15 925.71 895.13 1820.85 3078.00
α = 0.8, β = 0.2 26.75 24.08 50.83 49.16 1292.24 930.70 869.84 1800.55 3092.79
α = 0.7, β = 0.3 27.88 23.70 51.59 48.40 1330.84 933.24 842.83 1776.08 3106.92
α = 0.6, β = 0.4 29.11 23.29 52.41 47.58 1373.50 932.62 813.92 1746.54 3120.04
α = 0.5, β = 0.5 30.46 22.84 53.30 46.69 1420.86 927.90 782.92 1710.83 3131.68
α = 0.4, β = 0.6 31.93 22.35 54.29 45.70 1473.72 917.88 749.60 1667.50 3141.22
α = 0.3, β = 0.7 33.55 21.81 55.37 44.62 1533.08 900.98 713.74 1614.73 3147.81
α = 0.2, β = 0.8 35.35 21.21 56.57 43.42 1600.16 875.08 675.06 1550.16 3150.32
α = 0.1, β = 0.9 37.35 20.54 57.90 42.09 1676.53 837.39 633.27 1470.67 3147.21
α = 0.0, β = 1.0 39.60 19.80 59.40 40.60 1764.18 784.08 588.06 1372.14 3136.32
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Figure 1: Comparison of the (steady-state) outcomes for alternative equilibrium concept under
benchmark parameter case
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Figure 2: Comparison of transitional path of outputs of firm1 and firm2 in the MPNE and OLNE.
The x-marks on the left (right) vertical axis indicates the initial value (steady-state value) in the
OLNE. The circle-marks on the left (right) vertical axis indicates the initial value (steady-state
value) in the MPNE. In the panel (a), we set initial value of price as 80% level of the steady-state
price for β = 0.0 in the OLNE. In the panel (b), we set initial value of price as 120% level of the
steady-state price for β = 0.0 in the OLNE.
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Figure 3: Comparison of transitional path of total outputs and price in the MPNE and OLNE.
The x-marks on the left (right) vertical axis indicates the initial value (steady-state value) in the
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26



Technical Appendix

In this Technical Appendix, we first provide detailed proofs for Proposition 2, 4, 5 and

Lemma 1 documented in Section 3 of the main text. And we also demonstrate robustness

checks of our numerical analysis in section 4 of the main text.

A Proofs for Proposition 2, 4, 5 and Lemma 1

In this section, we provide the proofs for Proposition 2, 4, 5 and Lemma 1 documented

in Section 3 of the main text. To facilitate the reader, all the equations needed for the

proofs are replicated in this document with self-contained numbering. To make exposition

simple, throughout this Appendix, we omit the time subscript except when needed.

A.1 Derivation of Proposition 2

The proof is done in several steps.

A.1.1 Step 1: Derivation of the dynamic system of the Open-Loop Nash Equi-

librium

First, we derive the dynamic system of the open-loop Nash equilibrium (OLNE) for the

game as described in section 2 of the main text, by applying the Pontryagin’s maximum

principles in the usual manner. The current-value Hamiltonian for solving the inter-

temporal optimization problem for the state-owned firm (firm 1) is defined as follows:

H1 = β

[
a(x1 + x2)−

1

2
(x1 + x2)

2

]
+ αpx1 − C(x1)− βC(x2) + λ1s [a− (x1 + x2)− p] ,

where λ1 is the co-state variable corresponding to this current-value Hamiltonian. The

first-order conditions are given by

β [a− (x1 + x2)] + αp− (c+ x1)− λ1s = 0, (A-1)

•
λ1 = (r + s)λ1 − αx1. (A-2)
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On the other hand, the current value Hamiltonian of firm 2 is defined as follows:

H2 = px2 − C(x2) + λ2s [a− (x1 + x2)− p] .

where λ2 is the co-state variable corresponding to this current-value Hamiltonian. The

first-order conditions are given by

p− (c+ x2)− λ2s = 0, (A-3)

•
λ2 = (r + s)λ2 − x2. (A-4)

From (A-1) and (A-3), we obtain

x1 =
βa− αc− (β − α)p− λ1s+ βλ2s

1 + β
. (A-5)

Summing (A-5) and (A-3), total output, X ≡ x1 + x2, is given by

X =
βa− 2c+ (1 + β)p− λ1s− λ2s

1 + β
. (A-6)

Using (A-6), the law of motion of price is given by

•
p = −

(
3s

1 + β

)
p+

(
s2

1 + β

)
λ1 +

(
s2

1 + β

)
λ2 +

s(a+ 2c)

1 + β
. (A-7)

Substituting (A-5) into (A-2), we find that λ1 is governed by the following differential

equation:

•
λ1 =

[
α(β − α)

1 + β

]
p+

[
r +

2s

1 + β

]
λ1 −

(
αβs

1 + β

)
λ2 −

α(βa− αc)

1 + β
. (A-8)

Substituting (A-3) into (A-4), we also find that λ2 is governed by the following differential

equation:
•
λ2 = −p+ (r + 2s)λ2 + c. (A-9)
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Accordingly, summing up (A-7)-(A-9), we find that the dynamic system of the OLNE is

characterized by


•
p
•
λ1
•
λ2

 =


− 3s

1+β
s2

1+β
s2

1+β

α(β−α)
1+β

r + 2s
1+β

− αβs
1+β

−1 0 r + 2s




p

λ1

λ2

+


s(a+2c)
1+β

−α(βa−αc)
1+β

c

 . (A-10)

A.1.2 Step 2: Uniqueness and stability for the steady state

Second, we give the proof for the first result in Proposition 2. Let p∗OP (∞), λ∗OP
1 (∞), and

λ∗OP
2 (∞) respectively denote the steady-state price and the steady-state co-state variables

of the OLNE, respectively. From (A-10), {p∗OP (∞), λ∗OP
1 (∞), λ∗OP

2 (∞)} are obtained by


p∗OP (∞)

λ∗OP
1 (∞)

λ∗OP
2 (∞)

 = −


− 3s

1+β
s2

1+β
s2

1+β

α(β−α)
1+β

r + 2s
1+β

− αβs
1+β

−1 0 r + 2s


−1

s(a+2c)
1+β

−α(βa−αc)
1+β

c

 . (A-11)

It is obvious from equation above that the steady-state equilibrium values in the OLNE

are uniquely determined. We then check the stability of the dynamic system of the OLNE.

The characteristic equation of the coefficient matrix on the right-hand side of the (A-10)

is given by

−µ3 + (TrJ)µ2 − (BJ)µ+DetJ = 0. (A-12)

where µ represents an eigenvalue associated with the coefficient matrix. TrJ and DetJ is

respectively the trace and the determinant of the coefficient matrix on the right-hand side

of (A-10). BJ is defined as

BJ ≡

∣∣∣∣∣∣−
3s
1+β

s2

1+β

α(β−α)
1+β

r + 2s
1+β

∣∣∣∣∣∣+
∣∣∣∣∣∣r +

2s
1+β

− αβs
1+β

0 r + 2s

∣∣∣∣∣∣+
∣∣∣∣∣∣−

3s
1+β

s2

1+β

−1 r + 2s

∣∣∣∣∣∣ .
The dynamical system has one state variable (p∗OP ) and two jump variables (λ∗OP

1 and

λ∗OP
2 ). If the number of negative eigenvalues around the steady-state is one, there exists

a unique saddle path toward the steady-state. Following Benhabib and Perli (1994), we
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now check the number of negative eigenvalues around the steady-state by applying the

Routh-Hurwitz theorem:

Theorem. The number of roots of the polynomial in (A-12) with positive real parts is equal

to the number of variations of sign in the scheme:

−1 TrJ − BJ +
DetJ

TrJ
DetJ. (A-13)

Calculating TrJ and DetJ , we find that

DetJ = − 1

1 + β
[(3r + 5s)(r + s)β + (3r + 4s)(r + 2s)α] < 0,

TrJ = 2(r + s)− s

1 + β
> 0.

Therefore, regardless of the sign of −BJ+ det J
traceJ

, the number of variations in sign in (A-13)

is two, and the number of a negative eigenvalue around the steady state is one. This proves

that there exists a unique saddle path that converges to the steady-state.

A.1.3 Step 3: Derivation of the steady-state equilibrium price

Third, we derive the steady state equilibrium value of the OLNE. By applying Cramer’s

rule to (A-11) and using (A-1) and (A-3), we obtain the steady-state price, outputs of firm

1, and outputs of firm 2 are as follows:

p∗OP (∞) =
[as+ (a+ 2c)(r + s)] (r + 2s)− βs [as+ (a+ c)(r + s)]

(3r + 4s)(r + 2s)− βs(2r + 3s)
, (A-14)

x∗OP
1 (∞) =

(a− c)(r + s)(r + 2s)

(3r + 4s)(r + 2s)− βs(2r + 3s)
, (A-15)

x∗OP
2 (∞) =

(a− c)(r + s) [(r + 2s)− βs]

(3r + 4s)(r + 2s)− βs(2r + 3s)
. (A-16)

Differentiating (A-14), (A-15), and (A-16) with respect to β straightforwardly leads to the

last result in Proposition 2.
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A.2 Derivation of Proposition 4

We solve the Markov perfect Nash equilibrium by guessing the value function and using

the method of undetermined coefficients. The proof is done in several steps.

A.2.1 Step 1: Derivation of first-order conditions for the Hamilton-Jacobi-

Bellman equations

The Markov perfect Nash equilibrium strategies must satisfy the following Hamiton-Jacobi-

Bellman equations:

rV1(p) = max
x1

{
β

(
aX − 1

2
X2

)
+ αpx1 −

(
cx1 +

1

2
x2
1

)
− β

(
cx2 +

1

2
x2
2

)
+ V ′

1(p)s (a−X − p)

}
, (A-17)

rV2(p) = max
x2

{
px2 −

(
cx2 +

1

2
x2
2

)
+ V ′

2(p)s (a−X − p)

}
, (A-18)

where V1(p) and V2(p) are the value function of firm 1 and firm 2 to be solved. The first

order conditions of the maximization problems are given by

β [a−X] + αp− (c+ x1)− sV ′
1(p) = 0, (A-19)

p− c− x2 − sV ′
2(p) = 0. (A-20)

Substituting (A-20) to (A-19) yields

x1 =
βa− αc− (β − α)p− sV ′

1(p) + βsV ′
2(p)

1 + β
. (A-21)

(A-20) is rewritten by

x2 = p− c− sV ′
2(p). (A-22)

From (A-21) and (A-22), we obtain

X =
βa− 2c+ (1 + β)p− sV ′

1(p)− sV ′
2(p)

1 + β
, (A-23)
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•
pt = s

[
a+ 2c− 3p+ sV ′

1(p) + sV ′
2(p)

1 + β

]
. (A-24)

Substituting (A-21), (A-22), (A-23) into (A-17) and (A-18) yields

rV1(p) = βa

[
βa− 2c+ (1 + β)p− sV ′

1(p)− sV ′
2(p)

1 + β

]
− β

2

[
βa− 2c+ (1 + β)p− sV ′

1(p)− sV ′
2(p)

1 + β

]2
+ αp

[
βa− αc− (β − α)p− sV ′

1(p) + βsV ′
2(p)

1 + β

]
− c

[
βa− αc− (β − α)p− sV ′

1(p) + βsV ′
2(p)

1 + β

]
− 1

2

[
βa− αc− (β − α)p− sV ′

1(p) + βsV ′
2(p)

1 + β

]2
− βc [p− c− sV ′

2(p)]−
β

2
[p− c− sV ′

2(p)]
2

+ V ′
1(p)s

[
a+ 2c− 3p+ sV ′

1(p) + sV ′
2(p)

1 + β

]
, (A-25)

rV2(p) = (p− c) [p− c− sV ′
2(p)]−

1

2
[p− c− sV ′

2(p)]
2

+ V ′
2(p)s

[
a+ 2c− 3p+ sV ′

1(p) + sV ′
2(p)

1 + β

]
. (A-26)

A.2.2 Step 2: Guess for the value functions

We guess the value function of firm i as the following quadratic form:

Vi =
1

2
Kip

2 + Eip+ Fi (i = 1, 2). (A-27)

Applying (A-27) to (A-21) and (A-22) yields

x∗MP
1 (p) =

1

1 + β
[(1− 2β − sK1 + βsK2) p+ βa− (1− β)c− sE1 + βsE2] , (A-28)

x∗MP
2 (p) = (1− sK2)p− (c+ sE2). (A-29)
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Using (A-27), (A-25) can be rewritten as the following identical equation:

r

2
K1p

2 + rE1p+ rF1 =
βa

1 + β
[βa− 2c+ (1 + β)p− s (K1p+ E1)− s (K2p+ E2)]

− β

2(1 + β)2
[βa− 2c+ (1 + β)p− s (K1p+ E1)− s (K2p+ E2)]

2

+
αp

1 + β
[βa− αc− (β − α)p− s (K1p+ E1) + βs (K2p+ E2)]

− c

1 + β
[βa− αc− (β − α)p− s (K1p+ E1) + βs (K2p+ E2)]

− 1

2 (1 + β)2
[βa− αc− (β − α)p− s (K1p+ E1) + βs (K2p+ E2)]

2

− βc [p− c− s (K2p+ E2)]−
β

2
[p− c− s (K2p+ E2)]

2

+
s (K1p+ E1)

1 + β
[a+ 2c− 3p+ s (K1p+ E1) + s (K2p+ E2)] .

(A-30)

In the same manner, (A-26) can be rewritten as the following identical equation:

r

2
K2p

2 + rE2p+ rF2 = (p− c)2 − s(p− c) (K2p+ E2)

− 1

2
[p− c− s (K2p+ E2)]

2

+
s (K2p+ E2)

1 + β
[a+ 2c− 3p+ s (K1p+ E1) + s (K2p+ E2)] .

(A-31)

A.2.3 Step 3: Derivation of simultaneous equations for K1 and K2

Collecting the terms including p2 in the RHS of (A-30), we summarize the coefficients of

p2 in the RHS of (A-30) as follows:

− β

2(1 + β)2
[
(1 + α)2 + s2K2

1 + s2K2
2 − 2(1 + α)sK1 − 2(1 + α)sK2 + 2s2K1K2

]
− α(β − α)

1 + β
− αs

1 + β
(K1 − βK2)

− 1

2(1 + β)2
[
(β − α)2 + s2K2

1 + s2β2K2
2 + 2(β − α)sK1 − 2(β − α)βsK2 − 2βs2K1K2

]
− β

2

(
1− 2sK2 + s2K2

2

)
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1

(1 + β)

[
−3sK1 + s2K2

1 + s2K1K2

]
. (A-32)

(A-32) can be rewritten as the following quadratic form:

s2

2(1 + β)
K2

1 −
(2 + β)βs2

2(1 + β)
K2

2 +
s2

1 + β
K1K2 −

(3α2 + 13αβ + 8β2) s

(1 + β)2
K1

+
3βs

1 + β
K2 −

6β3 + 11αβ2 + 2α2β − α3

2(1 + β)2
. (A-33)

The coefficient of p2 in the LHS of (A-30) is (r/2)K1, which must be equal to (A-33).

Therefore, we find the following identical equation represented as a quadratic form:

s2

2(1 + β)
K2

1 −
(2 + β)βs2

2(1 + β)
K2

2 +
s2

1 + β
K1K2 −

[
(3α2 + 13αβ + 8β2) s

(1 + β)2
+

r

2

]
K1

+
3βs

1 + β
K2 −

6β3 + 11αβ2 + 2α2β − α3

2(1 + β)2
= 0. (A-34)

In the same manner, collecting the terms including p2 in the RHS of (A-31), we sum-

marize the coefficients of p2 in the RHS of (A-31) as follows:

1− sK2 −
1

2

[
1− 2sK2 + s2K2

2

]
+

1

1 + β

[
−3sK2 + s2K1K2 + s2K2

2

]
. (A-35)

(A-35) can be rewritten as the following quadratic form:

α

2(1 + β)
s2K2

2 +
1

1 + β
s2K1K2 −

3s

1 + β
K2 +

1

2
. (A-36)

The coefficient of p2 in the LHS of (A-31) is (r/2)K2, which must be equal to (A-36).

Therefore, we find the following identical equation represented as a quadratic form:

α

2(1 + β)
s2K2

2 +
1

1 + β
s2K1K2 −

[
3s

1 + β
+

r

2

]
K2 +

1

2
= 0. (A-37)

Thus, {K1, K2} can be obtained by solving the simultaneous equations consisting of (A-34)

and (A-37).
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A.2.4 Derivation of simultaneous equations for E1 and E2

Collecting the terms including p in the RHS of (A-30), we summarize the coefficients of p

in the RHS of (A-30) as follows:

βa

1 + β
[(1 + α)− s (K1 +K2)] + β (1− sK2) sE2

− β

(1 + β)2
[(1 + α)− s(K1 +K2)] [(βa− 2c)− s(E1 + E2)]

+
α

1 + β
[βa− αc− s(E1 − βE2)] +

c

1 + β
[(β − α) + s(K1 − βK2)]

+
1

(1 + β)2
[(β − α) + s (K1 − βK2)] [(βa− αc)− s (E1 − βE2)]

+
1

1 + β

[
(a+ 2c)sK1 − 3sE1 + 2s2K1E1 + s2 (K1E2 +K2E1)

]
. (A-38)

The coefficient of p in the left-hand-side of (A-30) is rE1, which must be equal to (A-38).

Therefore, given {K1, K2} determined by solving (A-34) and (A-37), the following equation

for E1 and E2 must be satisfied:

rE1 =
βa

1 + β
[(1 + α)− s (K1 +K2)] + β (1− sK2) sE2

− β

(1 + β)2
[(1 + α)− s(K1 +K2)] [(βa− 2c)− s(E1 + E2)]

+
α

1 + β
[βa− αc− s(E1 − βE2)] +

c

1 + β
[(β − α) + s(K1 − βK2)]

+
1

(1 + β)2
[(β − α) + s (K1 − βK2)] [(βa− αc)− s (E1 − βE2)]

+
1

1 + β

[
(a+ 2c)sK1 − 3sE1 + 2s2K1E1 + s2 (K1E2 +K2E1)

]
. (A-39)

In the same manner, collecting the terms including p in the RHS of (A-31), we sum-

marize the coefficients of p in the RHS of (A-31) as follows::

−c+
1

1 + β

[
(a+ 2c)sK2 − 3sE2 + s2 (K1E2 +K2E1)− βs2K2E2

]
. (A-40)

The coefficient of p in the left-hand-side of (A-31) is rE2, which must be equal to (A-40).

Therefore, given {K1, K2} determined by solving (A-34) and (A-37), the following equation
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for E1 and E2 must be also satisfied:

(
r +

3

2β + α
s

)
E2 = −c+

1

2β + α

[
(a+ 2c)sK2 + s2 (K1E2 +K2E1)− βs2K2E2

]
.

(A-41)

Therefore, {E1, E2} are determined by solving the simultaneous equations consisting of

(A-39) and (A-41), given {K1, K2} determined by solving (A-34) and (A-37).

A.3 Derivation of Lemma 1

We can rewrite (20) of the main text in a matrix form as follows:

K′AK+ b′K+ d = 0, (A-42)

where

K =

 K1

K2



A =

 1
2(2β+α)

s2 1
2(2β+α)

s2

1
2(2β+α)

s2 −β
2

(
1

2β+α
+ 1

)
s2

 ,

b =

 −
[
3α2+13αβ+8β2

(2β+α)2
s+ 1

2
r
]

3 β
2β+α

s

 ,

d = −6β3 + 11αβ2 + 2α2β − α3

2(2β + α)2
.

and where “′” means transposition. We rewrite (A-42) as follows. Let this define the

following new coordinate z.

K = z+ z0,

where z0 will be defined in the following coordinate transformation. Due to this coordinate

change, we write (A-42) as follows:

(z+ z0)
′A(z+ z0) + b′(z+ z0) + d = 0.
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We can rewrite this as follows:

z′Az+ (2Az0 + b)′z+ z0
′Az0 + bz0 + d = 0.

Because matrix A has its inverse matrix, we can find z0 that satisfies 2Az0 + b = 0.

Therefore, we can transform (A-42) into the following simple form.

z′Az+ c = 0, c ≡ z0
′Az0 + b′z0 + d.

We can solve those as follows:

z0 =

(β(2rα3+12rβ3+6sα3+36sβ3+20rαβ2+11rα2β+80sαβ2+46sα2β)
2(α+2β)3s2

(α+β)(rα2+4rβ2+6sα2+28sβ2+4rαβ+32sαβ)

2(α+2β)3s2

)

By choosing an orthogonal matrix, T, we can transform this into the following:

y′Dy + c = 0, (A-43)

where

T−1AT = D, D ≡

 λ1 0

0 λ2

 , and z = Ty.

λi (i = 1, 2) stands for the eigenvalues of matrix A.

We examine the eigenvalues of matrix A. We calculate the trace and the determinant

of the matrix.

traceA =
1

2(2β + α)
s2 − β

2

(
1

2β + α
+ 1

)
s2

= −1− β(β + 2)

2β + α
s2.

detA = −1

4
s4

[(
1

2β + α

)
β

(
1

2β + α
+ 1

)
+

[
1

(2β + α)

]2]
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= − s4

4(2β + α)2
[
3β2 + 2αβ + 1

]
= −1

4
s4 < 0.

Therefore, one of the eigenvalues takes a positive sign and the other eigenvalue takes a

negative sign. This means that the graph of (20) of the main text is a hyperbola.

A.4 Derivation of Proposition 5

Substituting β = 1 (α = 0) into (A-34) and (A-37) yields

1

4
s2K2

1 +
1

2
s2K1K2 −

3

4
s2K2

2 −
[
2s+

1

2
r

]
K1 +

3

2
sK2 −

3

4
= 0, (A-44)

s2K1K2 − (3s+ r)K2 + 1 = 0. (A-45)

When K1 = 0, (A-44) is

−3

4
s2K2

2 +
3

2
sK2 −

3

4
= 0 → (sK2 − 1)2 = 0.

Therefore, the hyperbola of (A-44) is tangent to the K1-axis as shown in Figure A-1. On

the other hand, (A-45) becomes

K1 =
3s+ r

s2
− 1

s2K2

.

This hyperbola has a horizontal asymptotic line, K2 = 0, and a vertical asymptotic line,

K1 = 3s+r
s2

. This hyperbola is an upward sloping curve as shown in Figure A-1. Conse-

quently, these hyperbolas have a unique intersection in the second quadrant. This inter-

section defines the equilibrium. These hyperbolas have the other intersection in the fourth

quadrant. However, this solution does not satisfy the stability of the price adjustment.

The reason is the following: because K1 > 3s+r
s2

at this intersection. Thus, substituting

this solution into (A-24) breaks the stability of the price adjustment process. Moreover,

from Figure A-1, it is clear that the intersection in the quadrant satisfies K1 < 0 and
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Figure A-1: Configuration of K1 and K2 in the MPNE

K2 > 0.
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B Robustness check for numerical analysis

In this Appendix, we demonstrate robustness checks for our main implications derived

from numerical analysis in section 4 of the main text. In the main text, as a benchmark,

we focused on the following parameter set: a = 100, c = 1.0, s = 0.1, r = 0.05. We now

consider various parameter sets which deviate from the benchmark parameter set. These

are listed in Table B-1:

Table B-1: Robustness checks for numerical analysis

a c s r

benchmark : 100 1.0 0.1 0.05

case 1 : 100 1.0 10000.0 0.05
case 2 : 100 1.0 1.0 0.05
case 3 : 100 1.0 0.05 0.05
case 4 : 100 1.0 0.01 0.05
case 5 : 100 1.0 0.01 0.000001
case 6 : 100 1.0 0.01 0.01
case 7 : 100 1.0 0.01 0.15
case 8 : 100 1.0 0.01 0.25
case 9 : 100 0.001 0.01 0.05
case 10 : 100 10.0 0.01 0.05

Figures B-1 to B-10 respectively show the steady-state outcomes as a function of β in

the MPNE and OLNE under the parameter case 1-10 listed in Table B-1. For reference,

the corresponding outcomes in the STNE are also displayed. Each panel of these figures

respectively displays variations in the steady-state output levels of firm 1 (x1), output

levels of firm 2 (x2), total outputs (X), price (p), consumer surplus (CS), producer surplus

(PS), profit of firm 1 (PS1), profit of firm 2 (PS2), and social welfare (SW) with respect

to β. These are computed in increments of 0.1 for β ∈ [0, 1].

First, the parameter case 1 and 5 quantitatively correspond to the limit price case in

which s → ∞ or r → 0. As Figure B-1 and B-5 show, in these cases, the steady-state

outcomes of the OLNE degenerate to the outcomes of the STNE. And yet the qualitative

nature of the MPNE remains to be similar to that obtained under benchmark parameter

set.
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Second, parameter cases 4 and 8 quantitatively correspond to cases in which s → 0 or

r → ∞. As Figure B-4 and B-8 show, in these cases, the steady-state outcomes of both the

MPNE and the OLNE degenerate to the outcomes of the static competitive equilibrium.

Third, parameter cases 2-4 capture the situation in which s is not extremely high and

low; parameter cases 6-7 capture the situation in which r is not extremely low and high.

The corresponding figures (B-2, B-3, B-4, B-6, and B-7) show that our main implications

derived from under the benchmark parameter set are fairly robust to a wide range of s and

r.

Additionally, parameter cases 9-10 also consider cases in which the cost parameter, c,

deviate from the benchmark value. As the corresponding figures (B-9 and B-10) show, the

choice of the cost parameter is not important for our analysis.

To sum up these exercises, we can conclude that our main implications are fairly robust

to a wide range of parameters except for cases in which s is extremely low or r is extremely

high.
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Figure B-1: Comparison of the steady-state values under alternative equilibrium concept [Limit-
price (s = 10000.0) case: a = 100, s = 10000, r = 0.05, c = 1.0]
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Figure B-2: Comparison of the steady-state values under alternative equilibrium concept [s-high
(s = 1.0) case: a = 100, s = 1.0, r = 0.05, c = 1.0]
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Figure B-3: Comparison of the steady-state values under alternative equilibrium concept [s-low
(s = 0.05) case: a = 100, s = 0.05, r = 0.05, c = 1.0]
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Figure B-4: Comparison of the steady-state values under alternative equilibrium concept [s-low
(s = 0.01) case: a = 100, s = 0.01, r = 0.05, c = 1.0]
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Figure B-5: Comparison of the steady-state values under alternative equilibrium concept [Limit-
price (r = 0.000001) case: a = 100, s = 0.1, r = 0.000001, c = 1.0]
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Figure B-6: Comparison of the steady-state values under alternative equilibrium concept [r-low
case: a = 100, s = 0.1, r = 0.01, c = 1.0]
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Figure B-7: Comparison of the steady-state values under alternative equilibrium concept [r-high
(r = 0.15) case: a = 100, s = 0.1, r = 0.15, c = 1.0]
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Figure B-8: Comparison of the steady-state values under alternative equilibrium concept [r-high
(r = 0.25) case: a = 100, s = 0.1, r = 0.25, c = 1.0]
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Figure B-9: Comparison of the steady-state values under alternative equilibrium concept [c-low
(c = 0.001) case: a = 100, s = 0.1, r = 0.05, c = 0.001]
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Figure B-10: Comparison of the steady-state values under alternative equilibrium concept [c-high
(c = 10.0) case: a = 100, s = 0.1, r = 0.05, c = 10.0]
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