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Abstract

This paper considers a dynamic mechanism design in which multiple objects

with different consumption deadlines are allocated over time. Agents arrive

over time and may have multi-unit demand. We characterize necessary and

sufficient condition for periodic ex-post incentive compatibility and provide the

optimal mechanism that maximizes the seller’s expected revenue under regular-

ity conditions. When complete contingent-contracts are available, the optimal

mechanism can be interpreted as an “overbooking” mechanism. The seller uti-

lizes overbooking for screening and price-discriminating advance agents. When

agents demand multiple objects as complements, the seller may face a tradeoff

between the last-minute price of the current object and the future profit.
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1 Introduction

In recent years, an extensive literature on mechanism design examines dynamic allo-

cation problems. A stream of the literature concerns mechanism design with dynamic

populations, in which agents with fixed private information stochastically arrive over

time. A typical example is various kinds of ticket sales for airplanes, trains, hotels,

concerts, etc. The seller allocates a fixed capacity of goods to buyers by a cer-

tain deadline, when an airplane takes off or a concert is held. Buyers arrive at the

market (or a mechanism) at different points in time. Both efficient and revenue-

maximizing mechanisms are studied assuming myopic impatient agents (Gershkov

and Moldovanu, 2009; 2010), patient agents (Board and Skrzypacz, 2016), and a

mixture thereof (Pai and Vohra, 2013; Mierendorff, 2016).1

Another example is repeated perishable-goods sales. The seller allocates a num-

ber of perishable goods or service slots in each period to buyers arriving stochasti-

cally. Efficient mechanism design is examined by Bergemann and Valimaki (2010)

and Said (2012), and revenue maximization is studied by Hinnosaar (2015).

Many applications including ticket sales for transportation and events are com-

plex mixtures of these two types of problems. For example, airline companies si-

multaneously handle tickets for airplanes on different dates, and hotels make room

reservations on arbitrary dates. Buyers have demands and arrive at different points

in time and purchase tickets on different dates. Moreover, buyers may demand multi-

ple objects whose sales deadlines (or consumption dates) are different. A round-trip

traveler wants to purchase seats for both outbound and return flights on different

dates. A hotel guest may need to stay for two or more nights. These complex

preferences are naturally unknown to the seller, but they are private information of

buyers.

Motivated by these applications, this paper examines the revenue-maximizing

mechanism for a dynamic allocation problem with multiple heterogeneous objects

and agents with multi-unit demands. Multiple heterogeneous objects are sequentially

allocated over time. Agents stochastically arrive and have multidimensional type

regarding their desired objects and valuations. We allow the seller to design complete

1See Bergemann and Said (2011) for an early review of mechanism design with dynamic popu-

lations. Revenue maximization under dynamic population is often referred to revenue management

in management science literature. See Talluri and van Ryzin (2004) for example.
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contracts contingent on future events. To make the problem tractable, we formulate

a two-period allocation problem of two heterogeneous objects. Agents are classified

into three demand types; unit demand for either object and multi-unit demand. We

assume a multi-unit demand agent evaluates objects as complements.

We provide a necessary and sufficient condition for a direct revelation mecha-

nism being incentive compatible. Myerson’s (1981) canonical result is extended, and

a mechanism is implementable if and only if the allocation policy is monotone in val-

uation and several other conditions hold. Revenue (and payoff) equivalence theorem

holds. The seller’s expected revenue is transformed into a virtual surplus form. The

seller is allowed to sign a contingent contract with agents. Following the standard ap-

proach, we derive the “relaxed solution,” which ignores implementability conditions.

We then argue regularity conditions for the relaxed solution being optimal.

We show that the optimal mechanism looks like a sales mechanism using “over-

booking.” When contingent contracts are available, the seller determines the alloca-

tion of each object at its sales deadline. An advance agent demanding a future object

is allocated if a “last-minute” agent having a high valuation does not arrive in the

future. However, if such a last-minute agent arrives, the object is allocated to the

new agent. That is, although the advance agent has booked the object beforehand,

the seller still sells the object to the last-minute agent. When the last-minute agent

purchases, the object is overbooked and the advance agent is bumped.

Because the advance agent faces a risk of being overbooked, his payment is dis-

counted. To finely screen advance agents, the seller offers “multiple fare classes.”

A cheap, discount ticket is assigned a high risk of being overbooked, whereas an

expensive ticket guarantees to allocate the object. The last-minute agent faces an

expensive last-minute price, which depends on the “booking class” of the advance

agent, because only a very profitable agent is welcome to the seller at that time.

When an agent exhibits multi-unit demand and complementarity, the sales mech-

anism with overbooking may generate a tradeoff to the seller. A contract for a multi-

unit-demand agent is also discounted by the same overbooking risk with respect to

the future object. When the seller expects a high option value raised from the last-

minute agent in the future, the risk of overbooking is high. However, the high risk of

overbooking decreases the value of multi-unit-demand agent for the current object

because the current object is valuable only if the future object is allocated. Hence,

the price for the bundle of objects is considerably discounted, so that the (last-
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minute) price of the current single object needs to be sufficiently low. To make the

last-minute price of the current object high enough, the seller needs to increase the

probability of allocation to the multi-unit-demand agent and relinquish the option

value to some extent.

1.1 Related Literature

This paper contributes to the literature on dynamic mechanism design in terms of

introducing multi-unit demands. In the literature, most studies focus on single-unit

demand agents or single-unit demand in each period. Dizdar et al. (2011) is a notable

exception that examines the revenue-maximizing mechanism for a fixed capacity sales

problem with multi-unit demand agents. They consider a ticket sales problem where

in each period an agent arrives and demands multiple units. In their model, goods

are homogeneous and allocation rules are limited such that the seller allocates the

requested quantity or not. In contrast, in our model goods are heterogeneous and

allocated at different points in time, so that all the desired objects may not be

allocated to an agent. This makes the mechanism design problem more complicated.

We provide a novel tractable model with multidimensional type. It is well known

that multidimensional mechanism design is complex and Myerson’s (1981) approach

is not successful in general. Myerson’s approach is applicable to our model because

the valuation is assumed to be single dimensional even for agents with multi-unit de-

mand. Multidimensional type similar to ours is considered by Lehmann et al. (2002)

in the literature of multi-object auctions, and by Dizdar et al. (2011), Pai and Vohra

(2013), and Mierendorff (2016) in the dynamic settings.

We argue that the optimal mechanism can be interpreted as an overbooking

sales mechanism. Overbooking from the dynamic mechanism design point of view

is studied by Ely et al. (2016). They consider that agents arrive stochastically and

that advance agents gradually learn their valuation. They show that the seller may

sell more tickets than its capacity to advance agents in the optimal mechanism, and

the goods are rationed or reallocated subsequently by an auction.

Ely et al.’s (2016) model occupies in another stream of the dynamic mecha-

nism design literature; mechanism design with dynamic information. In this stream,

agents’ types evolve over time, and each agent reports his type at each period. The

dynamic information framework is developed by Courty and Li (2000) and Eso and
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Szentes (2007) and generalized by Pavan et al. (2014). Contingent-contracts as in

this paper are considered in their framework. In Ely et al. (2016), the object al-

location is probabilistic because the valuation is still stochastic for advance agents

and new agents may arrive in the future. Our model is simpler than Ely et al. in

the sense that the allocation of the future object is probabilistic only because of the

possibility of new agents in the future. The novelty of our model is the existence of

an object allocated at an early date and possible multi-unit demands.

The remainder of the paper is organized as follows. In Section 2, we illustrate

the main result using a simple example of air-ticket sales. In Section 3, we formulate

the general model and mechanisms and define the equilibrium concept. We employ

so-called periodic ex-post incentive compatibility as the equilibrium concept (Berge-

mann and Valimaki, 2010). In Section 4, we provide the necessary and sufficient

condition for a mechanism being incentive compatible. In Section 5, we derive the

optimal mechanism. We first consider the case of a single agent in each period. We

provide regularity conditions for the relaxed solution being optimal. Then, we con-

sider the case where many agents may arrive in each period. We provide conditions

such that the regularity conditions for the single-agent case are sufficient to make

the problem regular in the general case.

2 An Illustration: Sequential Air-Ticket Sales

For an illustration of our main model and results, consider that a monopoly airline

company sells seats for two flights X and Y to travelers. Flight X is an “outbound

flight” which departs at date 1, and flight Y is a “return flight” leaving at date

2. Two travelers, A and B, arrive to purchase tickets sequentially at date 1 and 2,

respectively. Although traveler B wants to take flight Y, traveler A may want to

take flight X and/or Y, which is unknown to the airline. Traveler A corresponds

to one of the three travel types, {out, in, round}. The travel type out indicates an

outbound traveler, who wants to take flight X only. The travel type in indicates an

inbound traveler, who wants to take flight Y only. The travel type round indicates

a round-trip traveler, wo wants to take both flights. Regardless of travel types, each

traveler (including B) has a per-flight value vi, which is private information of the

travelers and uniformly distributed on [0, 1].

Let us consider the airline’s revenue maximization given that A’s travel type
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is known to the airline. Only travelers’ valuations are private information. First,

suppose that A is an outbound traveler demanding flight X. By uniform distribution

of valuations and textbook calculation2, flight X (respectively, Y) is assigned to

traveler A (resp., B) if and only if his value vA (resp., vB) is greater than 1/2.

This optimal allocation is implemented by simply posting a price to each flight

pX = pY = 1/2.

Second, suppose that A is an inbound traveler demanding flight Y. Because both

travelers demand the same flight and values are uniformly distributed, the airline

maximizes her expected revenue by a second-price auction with a reserve price 1/2.

Remembering that travelers arrive sequentially, however, the optimal allocation is

also implemented by the following sequential sales mechanism: The airline offers

traveler A a menu of contracts {zin(v)} = {(αin(v), pin(v))}, which is indexed by v.

In a contract zin(v) = (αin(v), pin(v)), αin determines the probability that flight Y

is assigned to A, and pin is the price of such a “lottery.”3 According to the contract

that traveler A purchases, the airline posts a price to traveler B, pB(v), where v is

the index of a contract that traveler A purchases. The flight is assigned to B if he

purchases, so the probability of A’s contract needs to satisfy

αin(v) + Pr{vB > pB(v)} ≤ 1.

Using a sequential sales mechanism, the optimal allocation is implemented when we

set αin(v) = v, where v ∈ [1/2, 1]. Traveler A purchases contract vA if pin(v) is equal

to the expected payment in the optimal auction:

pin(v) = Pr{vB < v}E[max{1/2, vB}|vB < v]

=
v2

2
+

1
8
,

where v ∈ [1/2, 1]. The price to traveler B is specified as

pB(v; in) =

1/2 if A exits,

v if A purchases v.

2See Krishna (2010) for example. Flight X (respectively, Y) is assigned to traveler A (resp., B)

if and only if he has a positive virtual valuation: 2vi − 1 ≥ 0.
3We assume that the contract is non-refundable when the traveler is denied boarding in the end.

We assume that the airline fully commits to contracts, so that it is without loss of generality to

limit attention on non-refundable contracts.
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Under the above specification, the associated allocation rule coincides with that in

the second-price auction with the optimal reserve price. Therefore, the airline earns

her maximum expected revenue by the Revenue Equivalence Theorem.

A similar sales mechanism can also be applied to a round-trip traveler. Suppose

that A is a round-trip traveler demands both flights and flights are perfect comple-

ments: The value from either single flight only is zero. The airline offers traveler A a

menu of contracts {zro(v)} = {(aro
X (v), αro

Y (v), pro(v))}, which is indexed by v. In a

contract zro(v) = (aro
X (v), αro

Y (v), pro(v)), aro
X ∈ {0, 1} determines allocation of flight

X, αro
Y determines the probability that flight Y is assigned, and pro is the price of

the contract. Given A is assigned the outbound flight X, the return flight is assigned

to A if his virtual valuation is larger than that of traveler B. Because the total value

2vA of a round-trip traveler is uniformly distributed on [0, 2], A is assigned flight Y

if and only if

4vA − 2 > 2vB − 1 ⇔ vB < 2vA − 1/2.

Traveler A with per-flight value vA ≥ 1/2 chooses contract vA when we set αro
Y (v) =

min{2v − 1/2, 1} and

pro(v) =

2v2 if v ∈ [1/2, 3/4)

9/8 if v ∈ [3/4, 1],

and the optimal allocation at date 2 is implemented. By perfect complementarity,

flight X is assigned, aro
X (v) = 1, for any contract v ∈ [1/2, 1]. Finally, the price to

traveler B is

pB(v; ro) =

1/2 if A exits

2v − 1/2 if A purchases v ∈ [1/2, 3/4),

and the airline does not sell to B if A purchases v ≥ 3/4. In the following sections,

we will confirm that the combination of the above dynamic sales mechanisms for

each travel type in fact maximizes the airline’s expected revenue even if A’s travel

type is his private information.

One might interpret the above sequential sales mechanism as a dynamic sales

mechanism using “overbooking.” Interestingly, the above sequential sales mechanism

has several similarities with real air-ticket sales practice. Consider the case where

traveler A is an inbound or round-trip traveler. When traveler A has a value greater

7



than 1/2, he purchases a ticket from the airline. However, although traveler A holds

a ticket and the flight is full, the airline still sells a ticket to traveler B. The airline

“oversells” tickets in this sense. When traveler B also purchases a ticket, the flight

is overbooked and the allocation is rationed. Traveler A is denied boarding.

Second, the early buyer, traveler A, faces a variety of contracts, which can be re-

garded as multiple fare classes. For each ticket class v, a probability of being seated is

determined. A discount ticket holder (having a low v) is more likely to be overbooked

and bumped, whereas an expensive ticket holder (having a high v) is rarely bumped.

This is consistent with the real reallocation mechanism for overbooking. Finally, the

prices exhibit an increasing price trend, although the advance price is not unique.

Suppose that traveler A is an inbound traveler. The ticket price at the early date is

distributed between pin(1/2) = 1/4 and pin(1) = 5/8. The “last-minute” price just

before departure is likely to be high and it is between 1/2 and 1.

This example shows that the seller screens and price-discriminates early buyers

by using the risk of overbooking. Screening by the risk of overbooking enables the

seller to allocate the good efficiently under the dynamic population and increase her

expected revenue.

However, the combination of the optimal mechanisms under the known travel

types may not be incentive compatible under another type distribution. To see

this, consider that a round-trip traveler’s per-flight value is uniformly distributed on

[0, 3/4] instead of [0, 1]. Then, a new incentive problem arises. We recalculate the

optimal menu of contracts for a round-trip traveler, which is specified as for index

v ∈ [3/8, 3/4],

αro
Y (v) = min{2v − 1/4, 1},

pro(v) =

2v2 + 3
32 if v ∈ [3/8, 5/8)

7/8 if v ∈ [5/8, 3/4],

and flight X is assigned, aro
X (v) = 1, for all contract v ∈ [3/8, 3/4]. Flight X is assigned

if the round-trip traveler has a positive virtual value; 4vA − 3/2 > 0 ⇔ vA > 3/8.

Because a round-trip traveler with vA = 3/8 completes his travel with probability

1/2, the ticket price for such a type is discounted and pro(3/8) = 3/8. The round-

trip ticket price is lower than that of the “one-way” ticket for an outbound traveler:

pro(3/8) < 1/2 = pX . Hence, under the specified sales mechanism, an outbound

traveler has an incentive to deviate and purchase the cheapest round-trip ticket.
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The intuition of the problem is indeed general. Because buyers arrive sequen-

tially, the seller wants to defer the allocation of goods consumed in the future until its

deadline. The seller wants to collect buyers’ information until the allocation deadline,

and then allocates the good to the most profitable buyer. Then, the expected pay-

ment of the advance buyer should be low because of the uncertainty of the allocation.

This is the case for buyers exhibiting multi-unit demand for different consumption

deadlines. Accordingly, a buyer with multi-unit demand may be able to consume an

object of early date with a low price. However, such an object should be high-priced

due to certainty of the allocation, which conflicts with the incentive of buyers having

a single-unit demand for a current object. The mechanism designer needs to design

the optimal mechanism taking account of price monotonicity between a last-minute

price of a current good and a discounted price of a long-term multi-unit contract.

3 Model

The monopolist seller allocates two objects 1 and 2 over two periods of time. There

is no time discounting. One unit of each object is supplied.4 Object t ∈ {1, 2} is

allocated and consumed at period t. In each period, a finite number of agents enter

the mechanism. The set of entrants at period t is denoted by N t, and the number

of entrants |N t| ≥ 0 is an IID random variable at each period. The set of agents

having entered by t is denoted by N t ≡
∪

s≤t N s. An allocation of object t to agent

i is denoted by at
i ∈ {0, 1}. An allocation of object t is denoted by at = (at

i)i∈N t .

An allocation at is feasible at t if
∑

i a
t
i ≤ 1 and at

i = 0 for any i who is not in the

mechanism at t.

Agents are risk neutral and have quasi-linear utility. Agents arriving at period

1 are classified into three demand types, which are denoted by ki ∈ {1, 2,M}. An

agent with demand type 1 demands object 1 only. He is short-lived and exits at the

end of period 1. A type-1 agent i ’s payoff takes the form of a1
i vi − pi, where vi is his

value and pi is his payment. An agent with demand type 2 demands object 2 only.

A type-2 agent i is long-lived and his payoff takes the form of a2
i vi − pi. An agent

with demand type M demands both objects. A type-M agent has a value vi when

he consumes both objects, whereas he has a value βvi when he consumes object 1

only. Object 2 is valuable only when he consumes object 1. Thus, a type-M agent

4The number of units is straightforwardly extended to more than one.
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i ’s payoff takes the form 
vi − pi if a1

i = a2
i = 1,

βvi − pi if a1
i = 1 and a2

i = 0,

−pi if a1
i = 0,

(1)

where β ∈ [0, 1) is a parameter specifying the extent to which the agent with multi-

unit demand is willing to win the second object. We assume that object 1 is essential

for type-M agents to have a value and that they exit the mechanism when they do

not obtain object 1. For example, suppose that objects are seats on outbound and

return flights and that a business traveler wants to make a round-trip. For the

business traveler, the departing flight is essential and necessary for doing his job and

making profits; whereas he can afford to find an alternative return transportation,

should he not take the originally specified option, paying a cost of (1 − β)vi.

To make the problem tractable, we assume β is identical for all type-M agents

and known to the mechanism designer. Note that our model includes the case of

perfect complements for type M , β = 0.

Both a demand type ki ∈ {1, 2,M} and a valuation vi ∈ R+ are private infor-

mation of an agent. A pair of an agent’s demand type and valuation is called the

agent’s type and denoted by θ1
i = (vi, ki) ∈ Θ1 ≡ [0, v̄] × {1, 2,M}, where v̄ ≤ ∞.

All agents arriving at period 2 are demand type 2. When agent j ∈ N2 pays an

amount of pj , then his payoff is a2
jvj −pj . The type of agent j at period 2 is denoted

by θ2
j ∈ Θ2 ≡ [0, v̄] × {2} or simply by vj ∈ [0, v̄], which is also private information

of j.

The number of agents and their types are realized over time. The probability

that |N t| = n is denoted by ηt(n) ≥ 0. The types of agents are independently

distributed. The type of period-1 agent i is drawn from a CDF F . The conditional

distribution function is denoted by Fk(v) = F (v|k) for k ∈ {1, 2,M}. The conditional

distribution functions have density fk(v) > 0. The type of period-2 agent is drawn

from a CDF F2(v), which is the same as the conditional distribution of valuation of

a type-2 agent at period 1. The hazard rate function of a conditional distribution

Fk is denoted by

λk(v) =
fk(v)

1 − Fk(v)
.

The standard regularity condition is assumed throughout the paper.
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Assumption 1 For each k ∈ {1, 2,M}, the virtual valuation ψk(v) ≡ v − 1/λk(v)

is strictly increasing in v.

3.1 Deterministic Mechanisms

We focus on direct revelation mechanisms: agents report their types on their arrival.

We further focus on deterministic mechanisms: the seller never randomizes alloca-

tions or payments. However, the allocation of object 2 can depend on type profile

at period 2. In particular, type-2 and -M agents’ allocation of object 2 is not deter-

mined at the time of their contracting (i.e., the time of arrival). However, we assume

that payments are completed at the time of contracting. This is just for simplicity

because there is a degree of freedom on the timing and distribution of payments. We

can modify the payment rule so that it is sequential and depends on θ2
j at t = 2.

We consider that agents’ arrivals are strategic: a period-1 agent may strategically

delay his entry to the mechanism. Denote by ∅ the strategic delay by a period-1

agent. A report ∅ indicates that the mechanism designer does not identify the agent

at period 1. If the agent delays his entry and makes a report at period 2, he is

regarded as a period-2 agent. Let Θ1
+ ≡ Θ1 ∪ {∅} be the extended message space of

a period-1 agent including delaying. By the definition of utility, however, strategic

delay matters only for those with demand type 2.

A type profile reported at period t is denoted by θt = (θt
i)i∈Nt . A direct mecha-

nism is defined as Γ ≡ (a1, p1, a2, p2), where

• a1 : (Θ1
+)N1 → {0, 1}N1

is an allocation function of object 1,

• p1 : (Θ1
+)N1 → RN1

determines payments of period-1 agents,

• a2 : (Θ2)N2 × (Θ1
+)N1 → {0, 1}N 2

is an allocation function of object 2, and

• p2 : (Θ2)N2 × (Θ1
+)N1 → RN2

determines payments of period-2 agents.

When a report of a period-1 agent i is ∅, neither a1
i or p1

i is defined (alternatively,

they are described as zero). A mechanism is feasible if
∑

i∈N1 a1
i (θ

1) ≤ 1 and∑
i∈N∈ a2

i (θ
1, θ2) ≤ 1 for all θ1 ∈

∏
i∈N1 Θ1 and θ2 ∈

∏
j∈N2 Θ2. It is natural to

focus on allocation rules satisfying the following properties. It is clearly without loss

of optimality because types are independently drawn.

Assumption 2 An allocation rule a = (a1, a2) satisfies the following properties:
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1. For all i ∈ N1 with θ1
i = (vi, 1), a2

i (θ
2, θ1) = 0,

2. for all i ∈ N1 with θ1
i = (vi, 2), a1

i (θ
1) = 0, and

3. for all i ∈ N1 with θ1
i = (vi,M), a2

i (θ
1, θ2) = 1 only if a1

i (θ
1) = 1.

The first and second terms require that an undesired object is never allocated to

agents with single unit demand. The third term requires that object 2 is assigned to

an agent with multi-unit demand only if he is assigned at t = 1.

Under the definition of a mechanism and assumptions, each demand-type-1 agent

signs a contract (a1
i (θ

1), p1
i (θ

1)), which is a pair consisting of an object 1 allo-

cation and a payment. For each demand-type-2 agent at period 1, a contract is

(a2
i (·, θ1), p1

i (θ
1)), where a2

i (·, θ1) specifies an allocation rule for object 2. For each

demand-type-M agent, a contract is (a1
i (θ

1), a2
i (·, θ1), p1

i (θ
1)), which specifies an al-

location of object 1, an allocation rule for object 2, and an associated payment.

Finally, for each period-2 agent, a contract is (a2
i (θ

2, θ1), p2
i (θ

2, θ1)), which is similar

to demand type 1.

We evaluate and define each agent’s payoff at the end of his arrival period. Let

θ̂t = (θ̂t
i)i∈Nt be a profile of reports at period t. Given a mechanism Γ, an associated

payoff function is denoted by πt
i for i ∈ N t. Let us define

Ai(θ̂1, ki) ≡


a1

i (θ̂
1) if ki = 1

α2
i (θ̂

1) if ki = 2

a1
i (θ̂

1)
(
α2

i (θ̂
1)(1 − β) + β

)
if ki = M,

(2)

where ki is agent i ’s true demand type and

α2
i (θ̂

1) ≡ E[a2
i (θ

2, θ̂1)]

is the probability that object 2 is allocated. When a period-1 agent i with a true

type θ1
i = (vi, ki) makes a report θ̂1

i 6= ∅, his payoff given a current type profile θ̂1 is

π1
i (θ̂

1, θ1
i ) = Ai(θ̂1, ki)vi − p1

i (θ̂
1). (3)

For a period-2 agent j ∈ N2, his ex-post payoff given current and past type profiles

is

π2
j (θ̂

2, θ̂1, θ2
j ) = a2

j (θ̂
2, θ̂1)vj − p2

j (θ̂
2, θ̂1).
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When a period-1 agent i with ki = 2 delays his arrival and makes a report θ̂2
i at

period 2, his ex-post payoff is written as

π̃2
i ((θ̂

2
i , θ̂

2), (∅, θ̂1
−i), θ

1
i ) = a2

i ((θ̂
2
i , θ̂

2), (∅, θ̂1
−i))vi − p2

i ((θ̂
2
i , θ̂

2), (∅, θ̂1
−i)).

The agent’s payoff of delaying is defined by

π1
i ((∅, θ̂1

−i), θ
1
i ) =

maxθ̂2
i
E[π̃2

i ((θ̂
2
i , θ

2), (∅, θ̂1
−i), θ

1
i )] if ki = 2

maxθ̂2
i
−E[p2

i ((θ̂
2
i , θ

2), (∅, θ̂1
−i))] otherwise

. (4)

3.2 Incentive Compatibility

We impose so-called periodic ex-post incentive compatibility for the equilibrium con-

cept (Bergemann and Valimaki, 2010). That is, agents have no incentive to deviate

from truth-telling after observing the current type profile, given that future agents

report truthfully. PEPIC is equivalent to the standard ex-post (or dominant strat-

egy) incentive compatibility for short-lived agents. However, it is not for long-lived

agents because types of future agents are still uncertain at the end of the arrival pe-

riod. Let Π1
i (θ

1) = π1
i (θ

1, θ1
i ) be the payoff under truth-telling for a period-1 agent

i ∈ N1, and let Π2
j (θ

2, θ1) = π2
j (θ

2, θ1, θ2
j ) be that for a period-2 agent j ∈ N2.

Definition 1 A mechanism Γ is periodically ex-post incentive compatible (PEPIC)

if for all i ∈ N1, all θ1 ∈
∏

N1 Θ1, and all θ̂1
i ∈ Θ1

+,

Π1
i (θ

1) ≥ π1
i ((θ̂

1
i , θ

1
−i), θ

1
i ),

and for all j ∈ N2, all θ1 ∈
∏

N1 Θ1, all θ2 ∈
∏

N2 Θ2, and all θ̂2
i ∈ Θ2,

Π2
j (θ

2, θ1) ≥ π2
j ((θ̂

2
j , θ

2
−j), θ

1, θ2
j ).

Definition 2 A mechanism Γ is periodically ex-post individually rational (IR) if for

all i ∈ N1, all j ∈ N2, all θ1 ∈
∏

N1 Θ1, and all θ2 ∈
∏

N2 Θ2, Π1
i (θ

1) ≥ 0 and

Π2
j (θ

2, θ1) ≥ 0.

3.3 The Seller’s Problem

Our objective is to find a PEPIC and IR mechanism that dynamically maximizes

the seller’s expected revenue. The seller’s expected revenue is

R = E
[ ∑
i∈N1

p1
i (θ

1) +
∑

j∈N2

p2
j (θ

2, θ1)
]
, (5)
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where expectation is taken over populations (N1 and N2) and types θt. The revenue

maximization problem is written as5

max E
[ ∑
i∈N1

p1
i (θ

1) +
∑

j∈N2

p2
j (θ

2, θ1)
]

subject to PEPIC, IR, and Feasibility.

(6)

4 Characterization of Incentive Compatibility

We derive equivalent conditions for incentive compatibility to apply the standard

Myerson (1981) technique. To avoid messy exhibition, we exclude θ1
−i and θ2

−i from

equations except for the formal description of the theorem in this section. For ex-

ample, an allocation of object 1, a1
i (θ

1
i , θ

1
−i) is simply denoted by a1

i (θ
1
i ) or a1

i (vi, ki).

Similarly, a2
j (θ

2, θ1) is replaced with a2
j (vj , θ

1): we consider the problem as if there

is only one agent in the period.

Given that agents do not misreport their demand types, incentive compatibility

is characterized in a standard manner. Myerson (1981) shows that a direct revelation

mechanism is incentive compatible (in valuation) if and only if the allocation rule is

monotone and payoff equivalence holds:

Proposition 1 (Myerson, 1981) Suppose that agents report their true demand

types. A direct revelation mechanism is PEPIC (in valuation) if and only if the

following conditions hold:

1. (Value-Monotonicity 1) for all i ∈ N1, Ai(θ1
i , ki) is weakly increasing in vi for

each ki ∈ {1, 2,M},

2. (Value-Monotonicity 2) for all j ∈ N2, a2
j (vj , θ

1) is weakly increasing in vj for

each θ1 ∈
∏

N1 Θ1,

3. (Payoff Equivalence) each agent’s truthful payoff satisfies

Π1
i (θ

1
i ) = Π1

i (0, ki) +
∫ vi

0
Ai((s, ki), ki)ds (7)

for i ∈ N1, and

Π2
j (θ

2
j , θ

1) = Π2
j (0, θ1) +

∫ vi

0
a2

j (s, θ
1)ds (8)

for j ∈ N2.
5It is straightforward to find the socially optimal mechanism in this setting.
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Value-Monotonicity is restated as for i ∈ N1,

a1
i (vi, 1) = 1 ⇒ (∀v′i > vi) a1

i (v
′
i, 1) = 1, (Mon-1)

α2
i (vi, 2) is non-decreasing in vi, (Mon-2)

a1
i (vi,M)

(
α2

i (vi,M)(1 − β) + β
)

is non-decreasing in vi. (9)

When β > 0, (9) clearly requires that both a1
i (·,M) and α2

i (·,M) are increasing.

Hence, (9) is separated into two allocative monotonicity conditions:6

a1
i (vi,M) = 1 ⇒ (∀v′i > vi) a1

i (v
′
i, M) = 1, (Mon-Ma)

α2
i (vi,M) is non-decreasing in vi. (Mon-Mb)

Note that when β = 0, we have a1
i (vi,M)α2

i (vi, M) = α2
i (vi,M) for all vi because

α2
i > 0 only if a1

i = 1 by Assumption 2.3. Hence, Value-Monotonicity for demand

type M is characterized by only (Mon-Mb) when β = 0.

For j ∈ N2 and all θ1 ∈
∏

N1 Θ1, Value-Monotonicity indicates

a2
j (vj , θ

1) = 1 ⇒ (∀v′j > vj) a2
j (v

′
j , θ

1) = 1. (Mon-22)

Note that PEPIC is equivalent to dominant strategy incentive compatibility for

demand type 1 and period-2 agents. Because an allocation rule for these agents is

deterministic and binary, we can define the cutoff values for demand types as

c1
i (1) ≡ inf{vi|a1

i (vi, 1) = 1}, (10)

c2
j (θ

1) ≡ inf{vj |a2
j (vj , θ

1) = 1}. (11)

The dominant-strategy incentive compatible payment rule is specified by a form of

pt
i = at

ic
t
i + Zi, where Zi is any constant variable.7

The incentive compatibility for demand types ki = 2,M at period 1 is Bayesian

in the sense that allocation depends on future information. However, for demand

type M , we also define the cutoff value of object 1 as

c1
i (M) = inf{vi|a1

i (vi,M) = 1}. (12)

In order to prevent period-1 agents from misreporting his demand type, we need

to impose additional conditions on allocation rules. By Assumption 2, we can ignore
6Condition (9) does not imply the monotonicity of α2

i (vi, M) for vi such that a1
i (vi, M) = 0.

However, by Assumption 2.3, α2
i = 0 for such vi and the monotonicity over all vi holds.

7If the infimum does not exist, let ct
i = ∞.
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deviations by an agent with ki = 1 to k̂i = 2, by an agent with ki = 2 to k̂i = 1, and

by an agent with ki = M to k̂i = 2. Thus, we need to take account of deviations

by a period-1 agent (1) from ki = 1 to k̂i = M , (2) from ki = M to k̂i = 1, and (3)

from ki = 2 to k̂i = M . By Proposition 1, an allocation rule must be monotone in

valuations and payment rule is uniquely specified by payoff equivalence formulas up

to constants. Using properties in Proposition 1, additional conditions for PEPIC are

specified.

To state the conditions, let us define ᾱ2
i (v,M) ≡ lims→v+ α2

i (s,M). PEPIC

requires the following conditions:

c1
i (1) ≤

(
(1 − β)ᾱ2

i (c
1
i (M),M) + β

)
c1
i (M), (Cond-1M)

βc1
i (M) ≤ c1

i (1), (Cond-M1)

and ∫ v

0
α2

i (s, 2)ds ≥
∫ v

0
α2

i

( s

1 − β
,M

)
ds − βc1

i (M) (Cond-2M)

for all v ≥ (1 − β)c1
i (M). See proof of Theorem 1 in Appendix for the derivation

of them. (Cond-1M) prevents an agent with demand type 1 from reporting demand

type M . (Cond-M1) prevents an agent with demand type M from reporting demand

type 1. (Cond-2M) prevents an agent with demand type 2 from reporting demand

type M .

Finally, we need to prevent a demand-type-2 agent at period 1 from delaying

his entry. Consider a strategic delay of a period-1 agent with demand type 2. His

ex-post payoff in the end is max{vi−c2
i (θ

1
−i), 0}. By payoff equivalence, the expected

payoff under delaying is denoted by∫ v

0
α̃2

i (s, θ
1
−i)ds, (13)

where α̃2
i (v, θ1

−i) ≡ E[a2
i ((v, 2), θ1

−i)] and the expectation is taken over θ2. The

incentive compatibility requires that there exists some di ≥ 0 and∫ v

0
α2

i (s, 2)ds + di ≥
∫ v

0
α̃2

i (s, θ
1
−i)ds (ND)

for all v. The term di represents the difference in constant terms in truthful payoffs.

It turns out that these conditions are necessary and sufficient for PEPIC. We do

not exclude deviation by a demand-type-M agent to reporting demand type 2. This
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makes us drop IR condition from our characterization. The following theorem is our

first main result that is the characterization of PEPIC in our model.

Theorem 1 A mechanism Γ is PEPIC if and only if

1. there exist two functions Π1
i (θ

1
−i) and Π2

j (θ
2
−j , θ

1), satisfying Π1
i (θ

1
−i) ≥ E[Π2

i (θ
2, θ1

−i)]

for all θ1
−i ∈

∏
N1

−i
Θ1,

2. the allocation rule satisfies (Mon-1), (Mon-Ma) (if β > 0), (Mon-Mb), (Mon-

2), (Mon-22), (Cond-1M), (Cond-M1), (Cond-2M), and (ND) with

di(θ1
−i) = Π1

i (θ
1
−i) − E[Π2

i (θ
2, θ1

−i)],

and

3. Truthful payoffs are given by

Π1
i ((v, 1), θ1

−i) = Π1
i (θ

1
−i) + max{v − c1

i (1, θ1
−i), 0}, (14)

Π1
i ((v, 2), θ1

−i) = Π1
i (θ

1
−i) +

∫ v

0
α2

i ((s, 2), θ1
−i)ds, (15)

Π1
i ((v,M), θ1

−i) = Π1
i (θ

1
−i) + max

{∫ v

c1i (M,θ1
−i)

(
(1 − β)α2

i ((s,M), θ1
−i) + β

)
ds, 0

}
,

(16)

Π2
j (v, θ2

−j , θ
1) = Π2(θ2

−j , θ
1) + max{v − c2

j (θ
2
−j , θ

1), 0}. (17)

Proof. See Appendix.

A similar characterization of incentive compatibility is provided by Dizdar et

al. (2011), Pai and Vohra (2013), and Mierendorff (2016). Our result is distinct from

their characterizations in several respects. First, the equilibrium concept is an inter-

mediate of ex-post and Bayesian equilibrium. Second, the demand types, which is

the second private information, are not completely ordered, whereas in these studies

the second private information represents demand quantities or private consumption

deadlines, which are completely ordered. In addition, the preceding characteriza-

tions have relied on the assumption of so-called “single-minded” preferences. Our

model is also a single-minded environment if multi-unit demand agents exhibit per-

fect complementarity. We allow β > 0 and agents are not single-minded, which

makes characterization more complex.

According to Theorem 1, IR is characterized as follows.
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Theorem 2 A PEPIC mechanism is IR if and only if Π1
i (θ

1
−i) ≥ 0 and Π2

j (θ
2
−j , θ

1) ≥
0 for all i ∈ N1, all j ∈ N2, all θ1 ∈

∏
N1 Θ1, and all θ2

−j ∈
∏

N2
−j

Θ2.

Proof. It is immediate by Theorem 1, which implies Π1
i and Π2

j are increasing in

agent’s own valuation. ¥

5 The Optimal Mechanism

Now we turn to the analysis of the optimal mechanism. From payoff equivalence for-

mulas of Theorem 1, it is straightforward to transform the seller’s objective function

into the virtual surplus form. IR implies Π1
i (·) = Π2

j (·) = 0 at the optimum. The

seller’s revenue maximization problem is written as

max E
[∑
ki=1

a1
i (θ

1)ψ1(vi)+
∑

ki=M

a1
i (θ

1)
(
(1−β)a2

i (θ
2, θ1)+β

)
ψM (vi)+

∑
ki=2

a2
j (θ

2, θ1)ψ2(vj)
]

(18)

subject to (Mon-1), (Mon-2), (Mon-Ma), (Mon-Mb), (Mon-22), (Cond-1M), (Cond-

M1), (Cond-2M), (ND), and the feasibility condition. Taking the standard approach,

we first ignore all IC-related constraints and solve the relaxed problem. Then, we

examine whether the relaxed solution satisfies each ignored condition or not.

By Assumption 1, the virtual valuation function has an inverse function ψ−1
k .

Let r∗k ≡ ψ−1
k (0) be the valuation such that the virtual value is zero for each demand

type k.

5.1 Single Agent

We consider a simple situation where at most one agent arrives in each period. The

agent arriving at period 1 is named agent i, and the agent arriving at period 2 is

named agent j, if any. We assume that agent i enters the mechanism with probability

1 and that agent j arrives with probability q ∈ (0, 1]. For convenience, denote vj ≤ 0

if agent j does not arrive. In the model of the single agent in each period, the

(optimal) mechanism at period 1 is implemented ay an indirect mechanism using a

menu of contracts: a “last-minute” price p1 = c1
i (1) of object 1, a menu for contracts

of single object 2, {(α2(v), p2(v))}, and a menu of contracts for multiple objects,

{(a1
M (v), αM (v), pM (v))}. For a contract z2(v) = (α2(v), p2(v)), α2(v) indicates the
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probability of obtaining object 2 and p2(v) is the price of the contract.8 Similarly,

αM (v) indicates the probability of obtaining object 2 for the agent with multi-unit

demand and pM (v) is its price. The allocation of object 1 to a type-M agent is

specified by a1
M . At period 2, the mechanism is implemented by a posted price

pj(θi) = c2
j (θi). The feasibility condition requires

αk(v) + q Pr{vj > pj(v, k)} ≤ 1,

which is equivalent to

αk(v) ≤ 1 − q + qF2(pj(v, k)) (19)

for all v ∈ [0, v̄] and all k ∈ {2,M}.

5.1.1 The Relaxed Solution

Let us consider virtual surplus maximization given that agent i ’s demand type is

known. First, suppose that agent i has demand type ki = 1. Two agents demand

different objects, so that the object is allocated if and only if each agent has a

positive virtual value. Agent i obtains object 1 if and only if ψ1(vi) ≥ 0. Agent j

obtains object 2 if and only if ψ2(vj) ≥ 0. Because of increasing virtual valuation,

this allocation rule is implemented by simple posted prices: p1 = r∗1 to agent i and

pj(θi) = r∗2 to agent j.

Second, suppose that agent i has demand type ki = 2. Given that agent j arrives

at period 2, the virtual surplus maximization problem is written as

max{ψ2(vi), ψ2(vj), 0},

which is the same as the optimal auction problem of object 2. The agent with

the highest positive virtual valuation wins object 2. Remembering agents arrive

sequentially, the allocation rule is implemented by the following mechanism: given

agent i ’s type θ1
i = (vi, 2), the allocation rule with respect to agent j is implemented

by a posted price pj(θ1
i ) = max{r∗2, vi}. When agent i makes a report, his allocation

is not determined yet but he wins the object with probability

Pr{ψ2(vj) < ψ2(vi)} = G(vi) ≡ qF2(vi) + (1 − q)

8Precisely, a contract specifies the full contingent-allocation plan a2
i (·, v) and α2(v) = E[a2

i (vj , v)].

It is similar for αM too.
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for vi ≥ r∗2. Hence, the contract for type θ1
i = (vi, 2), where vi ≥ r∗2, in the relaxed

solution is given by α2(vi) = G(vi) and

p2(vi) = G(vi)vi −
∫ vi

r∗2

G(s)ds,

which is determined by payoff equivalence.

Third, suppose that agent i has demand type ki = M . Given that he obtains

object 1, the virtual surplus maximization at period 2 is similar to the previous case

and written as

max{(1 − β)ψM (vi), ψ2(vj), 0}.

Given agent i ’s type θ1
i = (vi, M), the allocation rule with respect to agent j is

implemented by a posted price pj(θ1
i ) = max{r∗2, ψ

−1
2

(
(1 − β)ψM (vi)

)
}. At the time

of agent i ’s reporting, agent i obtains object 2 with probability

Pr{ψ2(vj) < (1 − β)ψM (vi)} = H(vi) ≡ G
(
ψ−1

2

(
(1 − β)ψM (vi)

))
,

given a1
i = 1. It is clear that the mechanism designer allocates object 1 if and only

if agent i has a positive virtual value. The contract for type (vi,M) in the relaxed

solution is given by a1
M (vi) = 1, αM (vi) = H(vi), and

pM (vi) = Ai((vi,M),M)vi −
∫ vi

r∗M

Ai((vi,M), M)ds

= (1 − β)
(
H(vi)vi −

∫ vi

r∗M

H(s)ds
)

+ βr∗M

for vi ≥ r∗M .

5.1.2 Regularity

Let us examine whether the above relaxed solution satisfies the ignored conditions or

not. First, by Assumption 1, it is clear that Value-Monotonicity condition for each

demand type is satisfied: (Mon-1), (Mon-2), (Mon-Ma), (Mon-Mb), and (Mon-22)

are satisfied. Second, (ND) is satisfied with equality. Suppose that agent i with

ki = 2 delays his entry. Because conditional distributions are identical, the optimal

mechanism at period 2 is equivalent to a second-price auction with a reserve price

r∗2. The winning probability of agent i is α̃(vi) = Pr{vi ≥ max{vj , r
∗
2}} = G(vi),

which is equivalent to that under the truthful entry.

Third, we consider (Cond-2M). It turns out that (Cond-2M) holds if the truthful

payoff of demand type 2 is greater than that of demand type M .
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Lemma 1 Suppose that a mechanism satisfies all Value-Monotonicity conditions

and payoff equivalence. Then, (Cond-2M) holds if Π1
i (v, 2) ≥ Π1

i (v,M) for all v.

Proof. See Appendix.

The remainder we need to check are (Cond-1M) and (Cond-M1); it turns out

that they are not guaranteed under the current assumptions. The following theorem

is immediate from the analysis thus far.

Theorem 3 Consider the single-agent case. The relaxed solution is optimal if

βr∗M ≤ r∗1 ≤
(
(1 − β)G(r∗2) + β

)
r∗M (20)

and Π1
i (v, 2) ≥ Π1

i (v,M) for all v ∈ [0, v̄]. The optimal menu of contracts at period

1 is p1 = r∗1, α2(v) = G(v),

p2(v) = G(v)v −
∫ v
r∗2

G(s)ds
(21)

for v ≥ r∗2, and 
a1

M (v) = 1,

αM (v) = H(v),

pM (v) = (1 − β)
(
H(v)v −

∫ v
r∗M

H(s)ds
)

+ βr∗M

(22)

for v ≥ r∗M . The optimal price at period 2 is

pj(θi) =


r∗2 if ki = 1 or ψ(θi) < 0,

vi if ki = 2 and ψ(θi) ≥ 0,

(1 − β)ψ−1
2 (ψM (vi)) if ki = M and ψ(θi) ≥ 0.

(23)

The optimal mechanism in Theorem 3 can be interpreted as a sequential sales

mechanism. As we have seen in Section 2, the optimal allocation rule utilizes “over-

booking” in the sense that even if agent i signs an “advance (contingent-) contract”

on object 2, the seller sells the object to agent j too by a posted price. Even when

agent i has a contract for object 2, there is no guarantee he will obtain it, indeed he

may be denied at period 2. Due to the risk of losing the object, the price of advance

agent i is discounted. The seller offers a menu of contracts, which she finely screens

and price-discriminates the advance agent by using the risk of overbooking.
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The same is true of contracts for multiple objects. Even at the consumption time

of the first object, a multi-unit contract is discounted because the agent has a risk

of being overbooked with respect to the future object.

In the presence of multiple objects with different periods, an incentive problem

may arise for an agent with a unit demand for the object with the early deadline.

At the consumption time of object 1, the last-minute price is relatively expensive

because there is no risk of overbooking. However, because a multi-unit contract

is discounted, an agent with single-unit demand may be better off purchasing a

discounted multi-unit contract. The seller needs to design a menu of contracts so

that such a non-monotonic price between single- and multi-unit contracts does not

arise.

To have a primitive condition for the relaxed solution being optimal, we introduce

hazard rate ordering of conditional distributions. Given the following Assumption

3, a sufficient condition for the relaxed solution being optimal is that the marginal

value for object 2 is large for demand type M and that the last-minute buyer j at

period 2 arrives with only a small probability. A similar assumption is considered

by Dizdar et al. (2011), Pai and Vohra (2013), and Mierendorff (2016).

Assumption 3 For all v, λM (v) < λ1(v) and λM (v) < λ2(v).

Proposition 2 Suppose Assumptions 1–3 hold. In the single-agent case, the relaxed

solution is optimal if β is sufficiently small and the arrival rate of buyer j, q, is

sufficiently small.

Proof. See Appendix.

Hazard rate ordering and high complementarity for demand type M (i.e., a small

β) guarantee the relaxed solution satisfies (Cond-M1) and (Cond-2M). Nevertheless,

(Cond-1M) is not guaranteed because it critically depends on the distribution of the

number of future agents.

5.1.3 When (Cond-1M) Is Binding

Condition (Cond-1M) is likely to be binding when the number of entrants at period

2, N2, is expected to be large. The optimal mechanism under (Cond-1M) binding

needs “ironing” of the last-minute price p1 and the cheapest multi-unit contract price

pM (c1
i (M)). In the following theorem, we focus on the case with β = 0 and q = 1.
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Proposition 3 Consider the single-agent case and suppose β = 0, q = 1, and r∗1 >

F2(r∗2)r
∗
M . Further suppose that in the optimal mechanism (Cond-2M) is not binding.

Then, there exist ᾱ ∈ (F2(r∗2), 1] and c1
i (M) ∈ (r∗M , v̄], and the optimal menu of

contracts at period 1 is such that p1 = ᾱc1
i (M) < r∗1, α2(v) = G(v) for v ≥ r∗2, anda1

M (v) = 1

αM (v) = max{ᾱ,H(v)}
(24)

for v ≥ c1
i (M). The optimal price at period 2 is

pj(θi) =



r∗2 if ki = 1 or ψ(θi) < 0,

vi if ki = 2 and ψ(θi) ≥ 0,

F−1
2 (ᾱ) if ki = M and vi ∈ [c1

i (M),H−1(ᾱ)],

ψ−1
2 (ψM (vi)) if ki = M and vi > H−1(ᾱ).

(25)

Proof. See Appendix.

The optimal mechanism in the case where (Cond-1M) is binding is understood

as follows. Suppose r∗1 > G(r∗2)r
∗
M . Then, the optimal mechanism is determined so

that

p1 = α2
i (c

1
i (M),M)c1

i (M). (26)

To have (26), the cutoff value of demand type M should be increased:

c1
i (M) > r∗M . (27)

For any given cutoff value c1
i (M) > r∗M , the probability of obtaining object 2 in the

relaxed solution is given by H(c1
i (M)) = G(ψ−1

2 (ψM (c1
i (M)))) > F2(r∗2). By (26),

the probability will be increased more:

ᾱ2
i (ci(M),M) = ᾱ > H(c1

i (M)). (28)

In addition, because αM must be increasing, we have

αM (v) = max{ᾱ,H(v)} (29)

for v > c1
i (M). That is, the optimal allocation at period 2 is distorted toward favoring

demand type M when he has a relatively small virtual valuation. Finally, because
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the multi-unit contract generates allocative distortion at period 2, the last-minute

price of object 1 is reduced:

p1 < r∗1. (30)

When (Cond-1M) is binding, the seller faces a tradeoff between current and future

profits. When the presence of a highly profitable agent in the future is expected, the

seller wants to keep the option to allocate the object to the future agent. However,

the option reduces the profitability of a current agent having multi-unit demand.

When the agent evaluates the objects as complements, a high option value to the

seller implies a low value of the current object for that agent. The seller may need

to reduce the current price because it is bounded from above by the contract for the

multi-unit demand agent.

When the seller faces the tradeoff, she optimally designs contracts for the agents

with multi-unit demand in both advantageous and disadvantageous ways. First, as

in (27), the seller excludes the agent with a low virtual value to keep the future

option value high. Second, as in (28) and (29), the seller increases the probability of

allocating object 2 to the agent to make the current object more valuable.

5.2 Multiple Agents

Let us examine the case where many agents arrive in each period. To simplify the

description of the solution, let us introduce two dummy agents, named 01 and 02 and

01, 02 ∈ N1, each of whom has a type θ1
01

= (r∗1, 1) and θ1
02

= (r∗2, 2), respectively. In

addition, the j-th highest order statistic of type-k virtual valuations, including the

dummy 0k, is denoted by ψ
(j)
k .

Consider t = 2 with any type profile θ1 and an allocation a1 at period 1. The

relaxed virtual surplus maximization problem at t = 2 is written as

max
a2

∑
ki=M

a2
i a

1
i (1 − β)ψM (vi) +

∑
{i∈N 2|ki=2}

a2
i ψ2(vi) (31)

subject to
∑

i a
2
i ≤ 1. Thus, the relaxed solution chooses the agent with the maxi-

mum positive virtual valuation among all type-2 agents and a type-M winner (mul-

tiplied by (1 − β)) at period 1 if any. Agent i with demand type 2 obtains object 2

if

ψ2(vi) = max{a1
M∗(1 − β)ψ(1)

M , ψ
(1)
2 }, (32)
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where M∗ denotes the demand-type-M agent’s identity such that ψM (vM∗) = ψ
(1)
M .

Equivalently, given obtaining object 1, agent i with demand type M wins object 2 if

his marginal virtual value for object 2 is greater than the maximum virtual valuation

among demand type 2:

(1 − β)ψM (vi) ≥ ψ
(1)
2 . (33)

This allocation rule is denoted by a2∗.

Consider t = 1 given a2∗. Let ψ
t,(j)
2 be the j-th highest order statistic of demand-

type-2 virtual valuations among period-t agents; ψ
(1)
2 = max{ψ1,(1)

2 , ψ
2,(1)
2 }. Let

Ψ(y) ≡ max{ψ2,(1)
2 , y}

be the highest virtual value of demand type 2 given ψ
1,(1)
2 = y ≥ 0. The virtual

surplus maximization at t = 1 is written by

max
{

ψ
(1)
1 + E[Ψ(ψ1,(1)

2 )], E
[
max{ψ(1)

M , βψ
(1)
M + Ψ(ψ1,(1)

2 )}
]}

. (34)

The highest type-1 agent wins if the first term is larger than the second term. In

addition, the period-1 agent having ki = 2 and ψ2(vi) = ψ
1,(1)
2 ≥ 0 obtains object 2

with a positive probability. When agent i is such an agent, he obtains object 2 with

probability

Pr{ψ2(vi) > max
j∈N2

ψ2(vj)} = E[Fn
2 (vi)] ≡ G(vi),

where expectation is taken over the number of period-2 agents n = |N2|. Otherwise,

the agent with demand type M having the highest positive virtual value is assigned

object 1. The type-M agent i is assigned object 2 if (1−β)ψM (vi) > ψ
(1)
2 . It is clear

that the type-M agent i is assigned object 1 only if (1 − β)ψM (vi) > ψ
1,(1)
2 . Hence,

the probability, given that an agent with ki = M obtains object 1, is denoted by

Pr{max
j∈N2

ψ2(vj) < (1 − β)ψM (vi)} = G
(
ψ−1

2

(
(1 − β)ψM (vi)

))
≡ H(vi). (35)

The derived allocation rule maximizes the virtual surplus and is denoted by a∗.

The following theorem provides a condition for the allocation policy a∗ being optimal.

Proposition 4 The relaxed solution a∗ is optimal and maximizes the seller’s ex-

pected revenue if Π1
i ((vi, 2), θ1

−i) ≥ Π1
i ((vi,M), θ1

−i) for all vi ∈ [0, v̄] and all θ1
−i ∈∏

−i Θ
1, and for all x ≥ r∗M and all y ≥ 0,

ψ1(βx) ≤ E[max{ψM (x) − Ψ(y), βψM (x)}] ≤ ψ1

(
x
(
β + (1 − β)H(x)

))
. (36)
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Proof. See Appendix.

To have a more primitive sufficient condition for the regularity, we impose some

additional conditions on conditional distributions.

Assumption 4 The virtual valuation function ψM of demand type M is concave

over [r∗M , v̄].

Assumption 5 Inverse functions of virtual valuation functions, ψ−1
k , satisfies

(ψ−1
1 )′(y) ≤ (ψ−1

M )′(y)

for all y ≥ 0.

With these assumptions, including hazard rate ordering, a sufficient condition for

the regularity (36) is equivalent to the single-agent case. Hence, the relaxed solution

is optimal if the arrival rate of period-2 agents is sufficiently low.

Theorem 4 Suppose that Assumptions 1–5 hold and that β is sufficiently small.

The relaxed solution a∗ is optimal if

r∗1 ≤
(
β + (1 − β)G(r∗2)

)
r∗M . (37)

Proof. See Appendix.

Concave virtual valuation function is discussed by Mierendorff (2016) too. In

Assumption 4, concavity of ψM only is imposed. If ψ1 is also concave, we have

another simple sufficient condition for the regularity.

Theorem 5 Suppose that Assumptions 1–3 hold and that β is sufficiently small.

Further suppose that both ψ1 and ψM are concave in their non-negative ranges and

that they satisfy ψ′
1(x) ≥ ψ′

M (x) for all x ≥ r∗M . Then, the relaxed solution a∗ is

optimal if (37) holds.

Proof. Let y = ψM (x) for arbitrary x ≥ r∗M . Because ψ1(x) ≥ y, x̃ ≡ ψ−1
1 (y) ≤ x

and we have ψ′
M (x) ≤ ψ′

1(x) ≤ ψ′
1(x̃). Hence, we have (ψ−1

1 )′(y) ≤ (ψ−1
M )′(y).

Therefore, the theorem holds immediately by Theorem 4. ¥
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6 Commitment Mechanisms

In this section we consider the case where complete contracts contingent on future

events are not available but the seller has to determine the allocation of the future

object to advance agent. Thus far, we have examined the fully optimal mechanism

using contingent-contracts. In practice, however, it is often hard to implement a

contingent-allocation rule because it is too complex. The seller may have to commit

advance agents to allocate the future object. We consider commitment mechanisms,

in which an allocation rule is restricted to satisfy

• for all i ∈ N1 with ki = M , a2
i (θ

1, θ2) = a1
i (θ

1) ∈ {0, 1}, and

• for all i ∈ N1 with ki = 2, a2
i (θ

1, θ2) is independent of θ2: i.e., α2
i (θ

1) ∈ {0, 1}

in addition to Assumption 2.

Even when we focus on commitment mechanisms, the characterization of incen-

tive compatibility does not change but is simplified. By definition of the cutoff value

c1
i (M, θ1

−i), an agent i with θ1
i = (vi,M) is allocated both objects if vi > c1

i (M, θ1
−i).

Similarly, we also define the cutoff value of demand type 2 as

c1
i (2, θ1

−i) ≡ inf{vi|a2
i (θ

1
i , θ

1
−i) = 1}. (38)

Theorem 1 immediately provides the following result.

Corollary 1 A commitment mechanism is PEPIC if and only if

1. there exist two functions Π1
i (θ

1
−i) and Π2

j (θ
2
−j , θ

1), satisfying Π1
i (θ

1
−i) ≥ E[Π2

i (θ
2, θ1

−i)]

for all θ1
−i ∈

∏
N1

−i
Θ1,

2. the allocation rule is weakly increasing in each agent’s own valuation (i.e.,

(Mon-1), (Mon-Ma), (Mon-2), and (Mon-22) hold),

3. the associated cutoff values satisfy

βc1
i (M, θ1

−i) ≤ c1
i (1, θ1

−i) ≤ c1
i (M, θ1

−i), (39)

c1
i (2, θ

1
−i) ≤ c1

i (M, θ1
−i), (40)

max{v − c1
i (2, θ1

−i), 0} + di(θ1
−i) ≥

∫ v

0
α̃2

i (s, θ
1
−i)ds, (41)
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where

di(θ1
−i) = Π1

i (θ
1
−i) − E[Π2

i (θ
2, θ1

−i)],

and

4. Truthful payoffs are given by

Π1
i ((vi, ki), θ1

−i) = Π1
i (θ

1
−i) + max{vi − c1

i (ki, θ
1
−i), 0}, (42)

Π2
j (vj , θ

2
−j , θ

1) = Π2(θ2
−j , θ

1) + max{vj − c2
j (θ

2
−j , θ

1), 0}. (43)

The optimal allocation policy is derived in the same manner as the fully optimal

mechanism case. The optimal allocation rule in period 2 is exactly the same, so

that we focus on period 1. Recall Ψ(0) = E[max{ψ2,(1)
2 , 0}]. The maximum virtual

surplus is written by

max
{
ψ

(1)
1 + max{ψ1,(1)

2 ,Ψ(0)}, ψ(1)
M

}
. (44)

The agent with the highest virtual value among demand type 1 is allocated object 1 if

ψ1(vi) > 0 and ψ1(vi) > ψ
(1)
M −max{ψ1,(1)

2 ,Ψ(0)}. The agent with the highest virtual

value among demand type 2 at period 1 is allocated object 2 if ψ2(vi) ≥ Ψ(0) and

ψ2(vi) > ψ
(1)
M −ψ

(1)
1 . The agent with the highest virtual value among demand type M

is allocated both objects if ψM (vi) > ψ
(1)
1 +max{ψ1,(1)

2 , Ψ(0)}. Otherwise, agents are

not allocated either object. In period 2, the agent with the highest positive virtual

value is allocated object 2 if it is still available. This allocation policy is denoted by

â.

The allocation policy â satisfies all the PEPIC conditions except for (41) if As-

sumption 3 holds. However, it turns out that the allocation policy â does not satisfy

(41). Under â, advance agents demanding object 2 need to compensate the option

value of the period-2 agents and pay much. However, if no high-valued agent arrives

at period 2, the object is sold with a lower price r∗2. Expecting the possibility of this

“fire-sale,” an advance agent with demand type 2 has an incentive to wait and pur-

chase later. Therefore, the constrained-optimal allocation policy â is implementable

if demand-type-2 agents are not forward-looking but short-lived.

Proposition 5 The allocation policy â does not satisfy (41) and is not implementable

if agents with demand type 2 are forward-looking. It is implementable if Assumption

3 holds, β > 0 is sufficiently small, and if period-1 agents with ki = 2 are short-lived

and exit the mechanism when they are not allocated.
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Proof. See Appendix.

7 Conclusion

This paper considers a dynamic mechanism design in which the seller allocates het-

erogeneous objects over time and agents arrive in different points in time. Agents

have private information about their desired objects and valuations. They may de-

mand multiple objects and evaluate them as complements. The seller has a full

commitment power, and a complex contingent-contract is available. We provide a

necessary and sufficient condition for a mechanism being periodically ex-post incen-

tive compatible. Myerson’s (1981) canonical result is extended to a multi-dimensional

type, and our characterization extends those of technically similar models by Diz-

dar et al. (2011), Pai and Vohra (2013), and Mierendorff (2016). The seller’s ex-

pected revenue is transformed into virtual surplus form, and we provide a regularity

condition such that the relaxed solution satisfies implementability conditions. The

assumption of hazard rate ordering of conditional distributions is not sufficient for

implementability. The seller may face a tradeoff between holding a high option profit

raised from the future and posting a high price of a current object. The tradeoff does

not arise when the probability of arrival of a new agent in the future is sufficiently

small and the option profit is not large.

We have many open questions for future research. First of all, extension to a

general T -period model is an important work but is beyond this study. One might

wonder if in a ticket sales problem an agent with multi-unit demand may want

to purchase multiple “single tickets” separately. This type of deviation, which is

examined by Todo et al. (2011) and Deb and Said (2015), is not captured by the

current model. Because in our model a contract for a multi-unit-demand agent is

likely to be cheap, the incentive to signing multiple contracts might be limited.

A Proofs

A.1 Proof of Theorem 1

The cutoff values are defined as in the main text. We show the case where N1 = {i}
and |N2| = {j}. The proof for a general number of agents is the same.
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Only If part. Suppose that a mechanism is PEPIC and i ∈ N1. Value-Monotonicity

conditions (Mon-1), (Mon-2), (Mon-Ma), (Mon-Mb), and (Mon-22) are straightfor-

wardly implied by Proposition 1. Specifically, for each ki, PEPIC requires

Ai(vi, ki, ki)vi − p1
i (vi, ki) ≥ Ai(ṽi, ki, ki)vi − p1

i (ṽi, ki).

Hence,

(Ai(vi, ki, ki) − Ai(ṽi, ki, ki))vi ≥ p1
i (vi, ki) − p1

i (ṽi, ki).

Similarly, we have

(Ai(vi, ki, ki) − Ai(ṽi, ki, ki)ṽi ≤ p1
i (vi, ki) − p1

i (ṽi, ki).

Thus,

(Ai(vi, ki, ki) − Ai(ṽi, ki, ki))ṽi ≤ (Ai(vi, ki, ki) − Ai(ṽi, ki, ki))vi.

Therefore, ṽi < vi leads to Ai(ṽi, ki, ki) ≤ Ai(vi, ki, ki).

For demand type M , value-monotonicity requires

Ai(vi,M,M) = a1
i (vi,M)

(
(1 − β)α2

i (vi,M) + β
)

is weakly increasing in vi. If β > 0, Ai > 0 whenever a1
i (vi,M) = 1. Hence, a1

i (·,M)

is increasing. In contrast, if β = 0, we have Ai(vi,M,M) = a1
i (vi,M)α2

i (vi, M) =

α2
i (vi,M) becuase α2

i (vi,M) = 0 whenever a1
i (vi,M) = 0 by Assumption 2.3. Hence,

(Mon-Ma) is not necessary in the case of β = 0.

By the envelope theorem (Milgrom and Segal, 2002), if Πt
i(vi, ki) ≥ πt

i((ṽi, ki), θt
i)

for all ṽi, then
∂Πt

i(v, ki)
∂v

=
∂πt

i((ṽ, ki), (v, ki))
∂v

∣∣∣
ṽ=v

almost everywhere. Hence, we have

Π1
i (v, 1) = Π1

i (0, 1) + max{v − c1
i (1), 0}, (45)

Π2
j (v, θ1) = Π2

i (0, θ
1) + max{v − c2

i (θ
1), 0}, (46)

Π1
i (v, 2) = Π1

i (0, 2) +
∫ v

0
α2

i (s, 2)ds (47)

Π1
i (v,M) = Π1

i (0,M) +
∫ v

c1i (M)

(
(1 − β)α2

i (s, M) + β
)
ds. (48)
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Suppose Π1
i (0, ki) < Π1

i (0, k′
i) for some pair (ki, k

′
i). Then, agent i with a type

θ1
i = (0, ki) is better off by deviating and reporting θ1′

i = (0, k′
i). This violates

PEPIC. Therefore, Π1
i (0, ki) is independent of ki and Π1

i (0, ki) = Π1
i for all ki ∈

{1, 2,M}.
Suppose that agent i with a type (vi, 1) deviates and reports (ṽi,M) and that

vi > c1
i (1). By (48) and Ai(·,M,M) increasing, p1

i (·,M) is non-decreasing. Hence, a

demand-type-M payment is bounded from below by

p̄1
i (c

1
i (M), M) ≡ inf{p1

i (v,M)|a1
i (v,M) = 1} = lim

v→c1i (M)+
p1

i (v,M). (49)

By (48), we have

p̄1
i (c

1
i (M),M) =

(
(1 − β)ᾱ2

i (c
1
i (M),M) + β

)
c1
i (M) − Π1

i .

Hence, incentive compatibility implies

Π1
i + vi − c1

i (1) ≥ Π1
i + vi −

(
(1 − β)ᾱ2

i (c
1
i (M),M) + β

)
c1
i (M),

∴ c1
i (1) ≤

(
(1 − β)ᾱ2

i (c
1
i (M),M) + β

)
c1
i (M).

Conversely, suppose agent i with a type (c1
i (M),M) deviates and reports (ṽi, 1).

The associated payoff under such a deviation is Π1
i +max{βc1

i (M)−c1
i (1), 0}. Because

the truthful payoff of type (c1
i (M),M) is Π1

i , PEPIC implies

βc1
i (M) − c1

i (1) ≤ 0,

which is (Cond-M1).

Suppose that agent i with a type (vi, 2) deviates and reports (ṽi,M). The asso-

ciated payoff under such a deviation is

α2
i (ṽi,M)vi − p1

i (ṽi, M).

By PEPIC in valuation with demand type M , we have for every s > c1
i (M) and

every ṽi > c1
i (M),(

(1 − β)α2
i (s,M) + β

)
s − p1

i (s, M) ≥
(
(1 − β)α2

i (ṽi,M) + β
)
s − p1

i (ṽi,M)

∴ α2
i (s,M)(1 − β)s − p1

i (s,M) ≥ α2
i (ṽi,M)(1 − β)s − p1

i (ṽi, M).

Hence, we have

α2
i (ṽ,M)v − p1

i (ṽ,M) ≤ α2
i

( v

1 − β
,M

)
v − p1

i

( v

1 − β
,M

)
(50)
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for all ṽ > c1
i (M) and all v = (1 − β)s > (1 − β)c1

i (M). Using revenue equivalence

formula (48),

α2
i

( v

1 − β
,M

)
v − p1

i

( v

1 − β
,M

)
= Π1

i +
∫ v

(1−β)c1i (M)
α2

i

( s

1 − β
,M

)
ds − βc1

i (M),

(51)

which is the optimal payoff under the deviation. Because α2
i (vi,M) = 0 for all

vi < c1
i (M), PEPIC requires for all vi ≥ (1 − β)c1

i (M),

Π1
i (vi, 2) ≥ Π1

i +
∫ vi

0
α2

i

( s

1 − β
,M

)
ds − βc1

i (M) (52)

which implies (Cond-2M).

Finally, suppose that agent i with a type θ1
i = (vi, 2) delays his arrival and reports

θ̂2
i at period 2. By PEPIC, the optimal report at period 2 is truthful: θ̂2

i = vi. Hence,

PEPIC requires

Π1
i +

∫ v

0
α2

i (s, 2)ds ≥ E[Π2
i (θ

2, θ1
−i)] +

∫ v

0
α̃2

i (s, θ
1
−i)ds.

If part. By Proposition 1, we have incentive compatibility in valuation from (Mon-

1), (Mon-2), (Mon-Ma), (Mon-Mb), (Mon-22), and payoff equivalence formulas.

Suppose that agent i has a type θ1
i = (vi, 1) and misreports (ṽi,M). The

most profitable deviation of agent i is such that he reports (c1
i (M)+,M) because

a1
i (vi,M) = 1 whenever vi > c1

i (M) and p1
i (·,M) is non-decreasing. By (16),

p̄1
i (c

1
i (M),M) =

(
(1 − β)ᾱ2

i (c
1
i (M),M) + β

)
c1
i (M) − Π1

i . If vi > c1
i (1), we have

vi − c1
i (1) + Π1

i ≥ vi − p̄1
i (c

1
i (M),M) by (Cond-1M) and the deviation is not prof-

itable. If vi ≤ c1
i (1), we have vi − p̄1

i (c
1
i (M),M) < Π1

i by (Cond-1M) and the

deviation is not profitable. Deviations from an agent with demand-type-1 to type-2

or delaying reporting are obviously unprofitable.

Suppose that agent i has a type θ1
i = (vi, M) and misreports (ṽi, 1). Because the

truthful payoff is at least Π1
i , suppose βvi ≥ c1

i (1). (Cond-M1) implies vi ≥ c1
i (M)

and

Π1
i (vi,M) = Π1

i +
∫ vi

c1i (M)

(
(1 − β)α2

i (s, M) + β
)
ds

≥ Π1
i + β(vi − c1

i (M))

≥ Π1
i + βvi − c1

i (1).

Hence, such a deviation is not profitable. Deviation to demand type 2 is obviously

unprofitable.

32



Suppose that agent i has a type θ1
i = (vi, 2) and misreports (ṽi,M). When

vi ≥ (1 − β)c1
i (M), his expected payoff is

α2
i (ṽi,M)vi − p1

i (ṽi,M) ≤ Π1
i +

∫ vi

(1−β)c1i (M)
α2

i

( s

1 − β
,M

)
ds − βc1

i (M)

≤ Π1
i (vi, 2)

by (Cond-2M). Suppose vi < (1−β)c1
i (M). We already have incentive compatibility

in valuation with demand type M , so that it implies

(1 − β)α2
i (ṽ,M)s + βs − p1

i (ṽ,M) ≤ Π1
i

for all s < c1
i (M) and all ṽi ≥ c1

i (M). Hence, for every vi = (1−β)s < (1−β)c1
i (M),

α2
i (ṽ,M)vi − p1

i (ṽ,M) ≤ Π1
i − β

vi

1 − β
≤ Π1

i ≤ Π1
i (vi, 2).

Deviation of a type-2 to type-1 is obviously unprofitable.

Suppose a demand-type-2 agent at period 1 delays reporting. Because the mech-

anism at period 2 is ex-post incentive compatible, it is optimal to report truthfully

at period 2. Hence, by (ND), it is unprofitable to delay reporting. ¥

A.2 Proof of Lemma 1

Suppose that a mechanism satisfies Value-Monotonicity and payoff equivalence. This

means that the mechanism is incentive compatible in valuation. The RHS of (Cond-

2M) is ∫ v

(1−β)c1i (M)
α2

i

( s

1 − β
,M

)
ds − βc1

i (M)

=(1 − β)
∫ v

1−β

c1i (M)
α2

i (s̃,M)ds̃ − βc1
i (M)

=(1 − β)
(∫ v

c1i (M)
α2

i (s,M)ds +
∫ v

1−β

v
α2

i (s,M)ds
)
− βc1

i (M)

≤(1 − β)
∫ v

c1i (M)
α2

i (s,M)ds + (1 − β)
( v

1 − β
− v

)
− βc1

i (M)

=
∫ v

c1i (M)

(
(1 − β)α2

i (s,M) + β
)
ds = Π1

i (v,M).

(53)

The first equality follows by transformation of variable from s to s̃ = s/(1 − β).

The inequality comes from α2
i (v,M) ≤ 1. Hence, (Cond-2M) holds if Π1

i (v, 2) ≥
Π1

i (v,M). ¥
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A.3 Proof of Proposition 2

With a sufficiently small β > 0, it is clear that βr∗M ≤ r∗1 holds. Because G(v) =

qF2(v) + (1− q) for v ≥ r∗2, G(r∗2) is close to 1 as q is sufficiently small. Assumption

3 implies

ψ1(v) > ψM (v)

for all v. Hence, we have r∗1 = ψ−1
1 (0) < ψ−1

M (0) = r∗M . With a sufficiently small q,

we have

r∗1 ≤
(
(1 − β)G(r∗2) + β

)
r∗M .

Assumption 3 also implies G(v) > G(ψ−1
2 (ψM (v))) for all v. Taking a sufficiently

small β, we have for every v ≥ r∗M ,

α2(v) = G(v) ≥ (1 − β)G(ψ−1
2 (ψM (v))) + β

> (1 − β)G(ψ−1
2 ((1 − β)ψM (v))) + β

= (1 − β)H(v) + β.

In addition, we have r∗2 < r∗M . Therefore, for every v < r∗M , we have Π1
i (v, 2) ≥ 0 =

Π1
i (v,M), and for every v ≥ r∗M ,

Π1
i (v, 2) =

∫ v

r∗2

G(s)ds >

∫ v

r∗M

(
(1 − β)H(s) + β

)
ds = Π1

i (v,M). (54)

The relaxed solution is optimal by Theorem 3. ¥

A.4 Proof of Proposition 3

Because β = 0, we have r∗2 > r∗M and G(v) > H(v) for all v, so that (Cond-2M) is

satisfied in the relaxed solution. In addition, (Cond-M1) is clearly satisfied.

The optimal mechanism at period 1 is specified by cutoff values, c1
i (1) and c1

i (M),

and winning probability functions α2
i (v, 2) and α2

i (v,M). Because incentive compat-

ibility with respect to demand type 2 is satisfied, we determine α2
i (v, 2) = F2(v) for

all v ≥ r∗2. We can focus on the cases in which ki ∈ {1, M}.
When ki = 1, it is obvious that the optimal allocation rule is implemented by

the posted price pj = r∗2. Suppose ki = M and α2
i (v,M) = ᾱ 6= H(v) for some v.
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Given this, the revenue maximization problem at period 2 is given by9

max
a2

∫
vj

a2
j (vi, vj)ψ2(vj)f2(vj)dvj

s.t.
∫

vj

a2
i (vi, vj)f2(vj)dvj = ᾱ,

a2
i (vi, vj) + a2

j (vi, vj) ≤ 1.

(55)

Hence, the constraint is replaced with∫
vj

a2
j (vi, vj)f2(vj)dvj ≤ 1 − ᾱ. (56)

When ᾱ ≥ F2(r∗2) (and ᾱ > H(v)), the solution of the maximization problem is

a2∗
j (vi, vj) =

1 if vj > F−1
2 (ᾱ)

0 if vj < F−1
2 (ᾱ)

. (57)

When ᾱ < F2(r∗2), the solution is

a2∗
j (vi, vj) =

1 if vj > r∗2

0 if vj < r∗2

, (58)

as in the case of ki = 1.

(Cond-1M) conditions c1
i (M) and ᾱ2

i (c
1
i (M), M) only. We have no constraint on

α2
i (v,M) for v > c1

i (M), except for α2
i being increasing. Suppose that c1

i (M) ≥ r∗M

and that α2
i (c

1
i (M),M) = ᾱ > H(c1

i (M)). Then, by the optimal allocation rule at

period 2 and the virtual value maximization, it is clear that the optimal allocation

policy is determined by

α2
i (v,M) = max{ᾱ,H(v)}

for v > c1
i (M).

Given the above properties, the control variables in the revenue maximization

problem is a tuple (c1
i (1), c1

i (M), ᾱ). The Lagrange function for the revenue maxi-

9By fixing ki = M , a2
i (θi, vj) is replaced with a2

i (vi, vj) for simplicity.
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mization problem is written as follows10:

max
c1,cM ,ᾱ

f(1)
∫ v̄

c1

ψ1(v)f1(v)dv + f(M)FM (cM )
∫ v̄

r∗2

ψ2(vj)f2(vj)dvj

+f(M)
[∫ v(ᾱ)

cM

ᾱψM (v)fM (v)dv +
∫ v̄

F−1
2 (ᾱ)

ψ2(vj)f2(vj)dvj(FM (v(ᾱ)) − FM (cM ))
]

+f(M)
∫ v̄

v(ᾱ)

∫
vj

[a2
i ψM (vi) + a2

jψ2(vj)]fM (vi)f2(vj)dvjdvi + µ(ᾱcM − c1)

s.t. a2
i + a2

j ≤ 1,

µ(ᾱcM − c1) = 0,

(59)

where c1 = c1
i (1), cM = c1

i (M), v(ᾱ) = H−1(ᾱ), and µ is a Lagrange multiplier

with respect to (Cond-1M). Taking the first-order conditions, we have the following

equations:

∂L

∂c1
= 0 : f(c1, 1)ψ1(c1) + µ = 0, (60)

∂L

∂cM
= 0 : f(cM ,M)

[∫ F−1
2 (ᾱ)

r∗2

ψ2(vj)f2(vj)dvj − ᾱψM (cM )
]

+ µᾱ = 0, (61)

∂L

∂ᾱ
= 0 : f(M)

∫ v(ᾱ)

cM

[
ψM (vi) − ψM (v(ᾱ))

]
fM (vi)dvi + µcM = 0. (62)

Equation (61) is rewritten as

f(cM ,M)
[∫ F−1

2 (ᾱ)

r∗2

[ψ2(vj) − ψM (cM )]f2(vj)dvj −
∫ r∗2

0
ψM (cM )f2(vj)dvj

]
+ µᾱ = 0.

(63)

Because r∗1 > F2(r∗2)r
∗
M , condition (Cond-1M) is binding: µ > 0 and ᾱc1

i (M) =

c1
i (1). Then, we have c1

i (1) = ψ−1
1 (−µ/f(c1

i (1), 1)) < r∗1. To have (61), we need

ψM (cM ) > 0, which implies c1
i (M) > r∗M . To have (62), we need v(ᾱ) > cM , which

implies ᾱ > H(c1
i (M)). ¥

A.5 Proof of Proposition 4

By the standard regularity Assumption 1, it is clear that Value-Monotonicity for each

ki is satisfied. In particular, when agent i has demand type 2 and ψ2(vi) = ψ
1,(1)
2 ,

10As we noted, we can ignore the cases in which ki = 2.
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and when another agent with demand type 1 (who may be a dummy) obtains object

1, agent i obtains object 2 with probability

Pr{ψ2(vi) > ψ
2,(1)
2 } = G(vi)

by Assumption 1 and it is increasing in vi. Given that agent i with demand type M

is assigned object 1, he obtains object 2 too with probability

Pr{(1 − β)ψM (vi) > ψ
2,(1)
2 } = G

(
ψ−1

2 ((1 − β)ψM (vi)
)

= H(vi),

which is increasing in vi.

Consider condition (ND). We have Π1
i (θ

1
−i) = Π2

i (θ
2, θ1

−i) = 0 for all θ1
−i and all

θ2. Suppose that agent i with θ1
i = (vi, 2) has a positive probability of obtaining

object 2 under θ1
−i. Then, the probability of obtaining the object is G(vi), and the

probability of obtaining the object in the case of strategic delay is the same. What

we will verify is that given any θ1
−i and θ2, a2∗

i ((vi, θ
2), θ1

−i) = 1 always implies

a2∗
i (θ2, ((vi, 2), θ1

−i)) = 1. Indeed, suppose a2∗
i ((vi, θ

2), θ1
−i) = 1. Suppose first that

object 1 is allocated to agent j with demand type 1 (or a dummy). Then, agent i

obtains object 2 because

vi ≥ max
m∈N 2:km=2

vm.

Hence, when agent i arrives at period 1 and reports (vi, 2), it is clear that another

agent j obtains object 1 and so that agent i obtains object 2. Suppose second that

object 1 is allocated to an agent j with demand type M . Then, agent i obtains

object 2 because

vi ≥ max{ψ−1
2 ((1 − β)ψM (vj), max

m∈N 2:km=2
vm}.

Thus, we have ψ2(vi) ≥ (1− β)ψM (vj), so that agent i still obtains the object when

he arrives at period 1 and reports (vi, 2). Therefore, we conclude that for any θ1
−i,

α2
i ((vi, 2), θ1

−i) ≥ α̃2
i (vi, θ

1
−i), which implies (ND).

By Lemma 1, Condition (Cond-2M) holds when Π1
i ((vi, 2), θ1

−i) ≥ Π1
i ((vi,M), θ1

−i).

Hence, the relaxed solution is optimal if it satisfies (Cond-M1) and (Cond-1M).

Condition (Cond-M1) is given by

βc1
i (M) ≤ c1

i (1) ⇔ ψ1(βc1
i (M)) ≤ ψ1(c1

i (1)).

Given the others’ type profile, agent i ’s cutoff values, c1
i (1) and c1

i (M), satisfy

ψ1(c1
i (1)) + E[Ψ(z)] = E[max{ψM (c1

i (M)), βψM (c1
i (M)) + Ψ(z)}]
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with z = ψ
1,(1)
2 . Hence,

ψ1(c1
i (1)) = E[max{ψM (c1

i (M)), βψM (c1
i (M)) + Ψ(z)} − Ψ(z)]

= E[max{ψM (c1
i (M)) − Ψ(z), βψM (c1

i (M))}].
(64)

Therefore, (Cond-M1) and (Cond-1M) hold if (36) holds. ¥

A.6 Proof of Theorem 4

By taking a sufficiently small β, we have for x ≥ r∗M and y ≥ 0,

ψ1(βx) ≤ 0 ≤ E[max{ψM (x) − Ψ(y), βψM (x)}].

Let A(x) ≡ β +(1−β)H(x). A(x) is increasing, and by H(r∗M ) = G(r∗2), we have

β + (1 − β)G(r∗2) ≤ A(x) ≤ 1. Fix arbitrary x > r∗M . By concavity of ψM , we have

A(x)ψM (x) = A(x)ψM (x)+(1−A(x))ψM (r∗M ) ≤ ψM

(
A(x)x+(1−A(x))r∗M

)
. (65)

Then there exists x̃ ∈ (r∗M , A(x)x + (1 − A(x))r∗M ] such that ψM (x̃) = A(x)ψM (x).

Note that

A(x)x ≥ x̃ − (1 − A(x))r∗M ≥ x̃ − (1 − A(r∗M ))r∗M . (66)

By Assumption 5, we have

ψ−1
M (y) − ψ−1

1 (y) ≥ ψ−1
M (0) − ψ−1

1 (0)

for all y > 0. By substituting y = A(x)ψM (x),

x̃ − ψ−1
1

(
A(x)ψM (x)

)
≥ r∗M − r∗1 ≥ (1 − A(r∗M ))r∗M .

The latter inequality follows by (37). Hence, by (66),

ψ−1
1

(
A(x)ψM (x)

)
≤ x̃ − (1 − A(r∗M ))r∗M ≤ A(x)x.

Therefore, we have

E[max{ψM (x) − Ψ(y), βψM (x)}] ≤ E[max{ψM (x) − Ψ(0), βψM (x)}]

≤ H(x)ψM (x) + (1 − H(x))βψM (x)

= A(x)ψM (x)

≤ ψ1(xA(x)).

(67)
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The remainder we need to show is Π1
i ((v, 2), θ1

−i) ≥ Π1
i ((v,M), θ1

−i). Fix arbitrary

θ1
−i. Consider any vi > c1

i (M, θ1
−i). By the definition of a∗, it is obvious that under

a profile of types ((vi, 2), θ1
−i), agent i has a positive probability that object 2 is

allocated to i.11 Note that by hazard rate ordering, v > ψ−1
2 (ψM (v)) for all v. When

β is sufficiently small, the probability of obtaining the object for the type (vi, 2) is

G(vi) ≥ β + (1 − β)G
(
ψ−1

2 (ψM (vi))
)

> β + (1 − β)G
(
ψ−1

2

(
(1 − β)ψM (vi)

))
= β + (1 − β)H(vi).

(68)

Therefore, we have

Π1
i ((vi, 2), θ1

−i) =
∫ vi

0
α2

i ((s, 2), θ1
−i)ds >

∫ vi

c1i (M,θ1
−i)

(
β + (1 − β)H(s)

)
ds

= Π1
i ((vi,M), θ1

−i).

Thus, by Proposition 4, the relaxed solution a∗ is optimal. ¥

A.7 Proof of Proposition 5

Consider â and the associated cutoff values c1
i (ki, θ

1
−i). Suppose that {i ∈ N1|ki =

M} = ∅ and {i ∈ N1|ki = 2} = {i}. Then, we have the cutoff value of agent i,

c1
i (2, θ1

−i) = ψ−1
2 (Ψ(0)) > r∗2.

If agent i has vi < c1
i (2, θ1

−i), then he is not allocated under â. If agent i has

vi ∈ (r∗2, c
1
i (2, θ1

−i)] and delays his entry, he is allocated object 2 if vj < vi for all

j ∈ N2. Such probability is strictly positive: α̃2
I(vi, θ

1
−i) > 0. Hence, we have for

every vi ∈ (r∗2, c
1
i (2, θ1

−i)] ∫ vi

r∗2

α̃2
i (s, θ

1
−i)ds > 0,

which violates (41).

If agents with demand type 2 are short-lived, we can ignore the violation of (41).

What we need to show is to verify (39) and (40). For any θ1
−i, it is clear that if

agent i with θ1
i = (vi,M) is allocated both objects, he is allocated object 1 under

θ̃1 = ((vi, 1), θ1
−i). Similarly, it is clear that if agent i with θ1

i = (vi,M) is allocated

both objects, he is allocated object 2 under θ̃1 = ((vi, 2), θ1
−i). Therefore, we have

c1
i (1, θ1

−i) ≤ c1
i (M, θ1

−i) and c1
i (2, θ1

−i) ≤ c1
i (M, θ1

−i). Therefore both (39) and (40)

are satisfied if β is sufficiently small. ¥
11Precisely, we have ψ2(vi) = ψ

1,(1)
2 and ψ2(vi) ≥ ψ

(1)
M .
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