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Abstract

The convergence rates of the sums of �-mixing (or strongly mixing) triangular arrays of het-
erogeneous random variables are derived. We pay particular attention to the case where central
limit theorems may fail to hold, due to relatively strong time-series dependence and/or the non-
existence of higher-order moments. Several previous studies have presented various versions of
laws of large numbers for sequences/triangular arrays, but their convergence rates were not fully
investigated. This study is the �rst to investigate the convergence rates of the sums of �-mixing
triangular arrays whose mixing coe¢ cients are permitted to decay arbitrarily slowly. We consider
two kinds of asymptotic assumptions: one is that the time distance between adjacent observations
is �xed for any sample size n; and the other, called the in�ll assumption, is that it shrinks to
zero as n tends to in�nity. Our convergence theorems indicate that an explicit trade-o¤ exists
between the rate of convergence and the degree of dependence. While the results under the in�ll
assumption can be seen as a direct extension of those under the �xed-distance assumption, they
are new and particularly useful for deriving sharper convergence rates of discretization biases in
estimating continuous-time processes from discretely sampled observations. We also discuss some
examples to which our results and techniques are useful and applicable: a moving-average process
with long lasting past shocks, a continuous-time di¤usion process with weak mean reversion, and
a near-unit-root process.
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1 Introduction

The purpose of this paper is to investigate the convergence rates of the sums of �-mixing (or strongly
mixing) triangular arrays of heterogeneous random variables. We speci�cally consider the case where
the degree of dependence is relatively strong (allowing for any arbitrarily slow decay rate of mixing
coe¢ cients), its higher-order moments do not exist and, thus, the central limit theorem (CLT) may fail
to hold. For such cases, several versions of the laws of large numbers (LLN) for sequences/triangular
arrays are known, but, in contrast, the convergence rates of the sums have not been fully investigated
in the literature.
The LLN states that the sum of a zero-mean array divided by its sample size n converges to zero.

The CLT, on the other hand, tells us that its convergence rate is the order of n�1=2. While the weak
LLN imposes no decay rate on the mixing coe¢ cients (see Example 4 of Andrews, 1988, and Remark 2
below), requiring only that they converge to zero, the CLT requires that the decay rate is faster than
a particular rate and the higher-order moments exist.1 There is a gap between these two results: the
convergence rates of the sums (or the sample means) are unknown when the CLT may fail to hold due
to the slow decay of mixing coe¢ cients and/or non-existence of the higher-order moments. In related
studies, Davidson and de Jong (1997) and de Jong (1998) analyzed the convergence rates of the sums
of mixingale arrays/sequences, considering such intermediate cases.2 Analyses of this sort for �-mixing
arrays have not been fully conducted in the literature. Since �-mixing processes are also mixingale,
given a certain moment condition, the results of Davidson and de Jong are also applicable to the �-
mixing case. However, convergence rates obtained from such mixingale results are generally not sharp
for �-mixing arrays. This is because the mixingale size of a mixing array/sequence is generally shown
to be lower than its mixing size (see subsequent discussions: �Comparison with previous mixingale LLN
results�). Our results, which aim at �-mixing arrays, may lead to sharper rates. This complements
the work of Davidson and de Jong. This study is the �rst to investigate the convergence rates of the
sums of �-mixing triangular arrays whose mixing coe¢ cients are allowed to decay arbitrarily slowly. We
present an explicit trade-o¤ between the rate of convergence and the degree of dependence, suggesting
that stronger dependence implies slower convergence of the sums.
Our results also complement previous studies concerning convergence rates in the LLNs for �-

mixing (or some other dependent) sequences/arrays. These studies include Shao (1993), Liebscher
(1996), Louhichi (2000), and Louhichi and Soulier (2000). We take an approach similar to that in
Liebscher (1996), relying on the Bernstein-type inequality derived in Rio (1995). All of these, including
Liebscher�s, consider strong LLNs and focus on the case where the degree of dependence is (relatively)
weak, typically assuming that the decay rate of mixing coe¢ cients is fast enough. In contrast, we work
under a weak notion of the convergence in probability. This seems the price of allowing for (relatively)
strong dependence. Additionally, our results (as in the previous studies) exhibit a trade-o¤ between
the rate of convergence and the order of the moment, that is, if the higher order moment exists, the
convergence of the sum occurs more quickly.
The results are useful when we consider time series with high persistence, such as �nancial asset

1For the conditions under which the CLT for a mixing process holds (or fails to hold), see Ibragimov (1962), Chapter
18 of Ibragimov and Linnik (1971), Bradley (1985, 1988), Merlevède, Peligrad and Utev (2006), and the references therein.

2For LLNs in the mixingale case, see also McLeish (1975), Andrews (1988), Hansen (1991, 1992), Davidson (1993),
and de Jong (1995, 1996).
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returns. As argued in Chen, Hansen, and Carrasco (2010), some Markov processes, which look like long
memory type processes, exhibit this property. These processes, whose mixing coe¢ cients decay very
slowly, are in the scope of our results. Heavy-tailed distributions may also be a key feature in a �nancial
time series. Our results may be applied to processes with such a feature, like processes with in�nite
variance. We present some examples to which our results are relevant and applicable for both discrete
and continuous time cases. Note that we do not assume the stationarity of the processes, allowing
for some form of heterogeneity and/or non-stationarity. However, we can only deal with minor non-
stationarity in that strongly non-stationary processes, such as unit-root and null-recurrent processes, are
excluded. Our theorems are stated for triangular arrays and can be used to investigate the convergence
rates of estimators/statistics in situations where distributions of random variables may vary with the
sample size n. Such situations naturally arise, e.g., when estimating time varying models (e.g., Dahlhaus
and Rao, 2006), using kernel-based methods (see, e.g., Chapters 5 and 6 of Fan and Yao, 2003), and
investigating limit properties of near-unit-root processes (e.g., Stock, 1991; Elliott, Rothenberg, and
Stock, 1996; Phillips and Magdalinos, 2007). We discuss the last two cases in detail (in Section 3 and
Example 3, respectively).
We consider two kinds of asymptotic assumptions: one is that the time distance between the adjacent

observations is �xed for any sample size n and the other is that it shrinks to zero as n tends to in�nity.
The latter is called in�ll asymptotics and is often necessary to estimate continuous-time models from
discretely sampled data (e.g., Florens-Zmirou, 1989; Bandi and Phillips, 2003; Kristensen, 2010). An
original suggestion and exploration of in�ll asymptotics were given in Phillips�(1987) seminal paper on
time series regression with a unit root (see his Section 6 of �Continuous Record Asymptotics�).3 We do
not consider a unit root case but share the motivation for in�ll asymptotics with Phillips (1987). These
may provide a reasonable approximation to analyze high-frequency data. While several previous studies
have investigated in�ll asymptotics, their derivations of limit theorems have often relied on a sort of
(semi) martingale assumption, as in Phillips (1987) and in recent papers on volatility estimation (such as
Barndor¤-Nielsen and Shephard, 2002). In contrast, we intend to explore in�ll-asymptotic results under
the mixing (and ergodic) environment without such a martingale assumption. Given the nature of in�ll
asymptotics, the dependence between consecutive observations typically becomes stronger as n ! 1.
This leads to slower convergence rates of the sums (relative to those obtained under the �xed-distance
assumption).
While our results for the in�ll case can be seen as a direct extension of results for the �xed-

distance case, they are new and particularly useful to derive sharper convergence rates of estimators
for continuous-time processes from discretely sampled observations. For this in�ll case, we also as-
sume that the time horizon of an observation period tends to in�nity (the long-span assumption). This
double-asymptotic scheme is important for estimating continuous-time processes, where we note that
the long-span assumption is often necessary for the drift estimation (see p. 243 of Bandi and Phillips,
2003; Section 5 of Kristensen, 2010). While certain parts of a model structure (such as volatility) may be
identi�ed and consistently estimated under only the in�ll assumption (over a �xed time span), several
economically interesting parameters, including risk-attitude parameters and the market price of risk
(e.g. Stanton, 1997), can be identi�ed only through agents�behavior or price movement in the long

3Phillips (1987) showed that the in�ll limit of a regression estimator was represented as a functional of a Brownian
motion. He discussed that such a representation was particularly useful to explain the estimator�s (�nite-sample) behavior.
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run, necessitating the long-span assumption. Estimation of such parameters often requires that of drift
components. We discuss and exemplify the usefulness of our convergence results for the in�ll case in a
non-parametric drift estimation problem. We speci�cally consider a kernel-based estimator for Park�s
(2009) martingale regression model, which encompasses a wide class of continuous-time models found
in the economics/�nance literature, and we show that our new results lead to a sharper convergence
rate of the non-parametric estimator�s discretization bias.

In the next section, we introduce our basic framework and derive our primary convergence results for
both the �xed-distance and in�ll cases. We also compare the previous mixingale results with ours and
present some examples of processes to which our results are applicable. In Section 3, we consider the
drift function estimation of continuous-time processes and discuss the usefulness of the derived results.
Section 4 provides some concluding remarks. Proofs, as well as auxiliary discussions and results, can be
found in the Appendix.

2 Primary convergence results

2.1 Basic setup

Let (
;F ;Pr) denote a probability space and let fXn;ig (:= fXn;i : i = 1; : : : ; n; n 2 Ng) be a triangular
array of random variables on (
;F ;Pr). Let nFk

j be the �-algebra generated by Xn;j; Xn;(j+1); : : : ; Xn;k

and de�ne the �-mixing coe¢ cients of fXn;ig by

�n (m) := sup
1�k�n�m

sup
�
jPr (A \B)� Pr (A) Pr (B)j : A 2 nFn

m+k; B 2 nFk
1

	
:

This is a standard de�nition of triangular arrays (see Bradley, 2005). The mixing coe¢ cients represent
the degree of time-series dependence of fXn;ig. We note that the coe¢ cients may depend on n, since
nFn

m+k and
nFk

1 are allowed to depend on n. The dependence on n is relevant in this study, since we
consider the cases where the degree of time-series dependence between consecutive observations changes
with n (as in Example 2 of a near-unit-root process). It is also relevant to the in�ll assumption under
which we let time intervals between adjacent observations shrink to zero as the sample size n tends to
in�nity. To accommodate this case, we suppose that there exists some function �� (�) which does not
depend on m and n, such that �n (m) � �� (m�), where � = �n := T=n (> 0) is the time interval
of adjacent observations and T (:= Tn) is the time horizon of the observation period. We speci�cally
consider two cases: (I) � is �xed; and (II) � shrinks to zero as n!1. The array fXn;ig is said to be
�-mixing if �� (m�)! 0 as m�!1. The second case is often relevant in estimating continuous time
processes from discretely sampled observations, where we need the in�ll assumption to kill biases (due
to the discretization) and achieve consistent estimation.4

We derive the rate of the sum
Pn

i=1Xn;i for both cases. For our purposes, we impose the following
conditions:

4The �-mixing coe¢ cients of a continuous time process are de�ned analogously: for a process fZs : s � 0g de�ned on
a �ltered probability space (
;F; fFsg ;Pr),

�Z (t) := sups�0 sup
�
jPr (A \B)� Pr (A) Pr (B)j : A 2 F1t+s; B 2 Fs0

	
;

where Fut is the �-algebra generated by fZs : s 2 [t; u]g. If Xn;i = Zi�, we can set �� (�) = �Z (�).
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A1. Let fXn;ig be an �-mixing triangular array of mean-zero random variables that are Lp-integrable
with p � 1. Its mixing coe¢ cients satisfy

�n (m) � �� (m�) := A (m�)�� ; (1)

for some A > 0 and � > 0, where �(= T=n > 0) is the time interval between the adjacent
observations and T is the time horizon of the observation period.

A2. For a triangular array fXn;ig, there exist some sequences of positive real numbers, fbng and f�ng,
such that as n!1,

��1n
Xn

i=1
Xn;i1 fjXn;ij > bng = Op (1) : (2)

If � is �xed in Condition A1, we can set � = 1 without loss of generality. When we let � ! 0

(the in�ll assumption), we also let T ! 1 as n ! 1 (the long-span assumption). If we impose
an additional assumption, such as a sort of martingale-di¤erence or (semi) martingale one, it may be
possible to establish the LLN and explore the rate of the sum under in�ll asymptotics without long-span
asymptotics, as in volatility estimation (see, e.g., Barndor¤-Nielsen and Shephard, 2002; Kristensen,
2010). However, given �xed T , we cannot exploit the asymptotic independence implied by the mixing
condition, and it is uncertain whether we could establish a sensible LLN result for general �-mixing
arrays under only in�ll asymptotics. We assume polynomial decay of �n (m) and its dependence on n
only through� in (1). This is only for simplicity. Our techniques based on the Bernstein-type inequality
work even without these assumptions, as discussed and exempli�ed in Remark 1 and Example 2. The
sequence fbng in Condition A2 is used for truncating random variables, by which we control tail behavior
of the sum of fXn;ig when applying the Bernstein-type inequality. If fXn;ig is almost surely bounded
uniformly over any n and i, then (2) is satis�ed by any �n with bn = O (1).

2.2 Convergence rates of sums with �xed observation intervals

Given the stated conditions, we can obtain the following theorem:

Theorem 1. Suppose that Conditions A1 and A2 hold and that � is a positive constant. Then, for any
sequences f�ng and fbng which satisfy (2) and

bn
�n
=

8<:
O
�
n�1=(1+�)

�
for � 2 (0; 1) ;

O(1=
p
n log n) for � � 1;

O (1=
p
n) for � > 1;

(3)

it holds that
Pn

i=1Xn;i = Op (�n) as n!1.

The rate of �n may be written without bn if the uniform moment bound of fXn;ig exists. Suppose
that each Xn;i is Lp integrable with p > 1 and let

gn = gn (p) � max1�i�n kXn;ikp ; (4)

where k�kp := fE[j � jp]g
1=p. Then, Condition A2 is satis�ed under ngpn=�nb

p�1
n = O (1), since we have

Pr
�
��1n
Pn

i=1Xn;i1 fjXn;ij > bng � a
�
� a�1��1n E [j

Pn
i=1Xn;if1 jXn;ij > bngj]

� a�1ngpn=�nb
p�1
n ;
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which can be made arbitrarily small for any su¢ ciently large a > 0. In this case, we can write �n as:

�n =

8><>:
n(p+�)=p(1+�)gn for � 2 (0; 1) ;
n(p+1)=2p (log n)(p�1)=2p gn for � � 1;
n(p+1)=2pgn for � > 1:

(5)

We note that rates in (5) can be obtained by solving ngpn=�nb
p�1
n = O (1) (6= o (1)) and (3) with respect

to �n for each case, where each rate on the right-hand side (RHS) of (3) should be interpreted as a big-
O (�) order of the relevant rate (not a small-o (�) one). This (5) indicates an explicit trade-o¤ between
the degree of dependence and the rate of convergence: the smaller � (i.e., the stronger time-series
dependence) implies the faster divergence rate of �n (i.e., the slower convergence rate of the sample
mean). If fXn;ig is uniformly bounded, the sum of the array has the rate of Op(

p
n) for � > 1, which

corresponds to the classical CLT (Theorem 18.5.4 of Ibragimov and Linnik, 1971). Some other remarks
on Theorem 1 are in order:

Remark 1. The polynomial decay condition (1) on mixing coe¢ cients can be relaxed in Theorem 1
(and also in Theorems 2 and 4 - 6). The decay rate may be arbitrarily slower than any polynomial rate.
Given the condition that �n (m) � �� (m�)! 0, as m�!1 in Theorem 1, instead of (1) in Condition
A1, we can show that

Pn
i=1Xn;i = Op (�n) if �n satis�es (2) and (n2b2n=�

2
n) �� (�

2
n=nb

2
n) = O (1) (the proof

of this result proceeds in the same way as that of Theorem 1 and is omitted).

Remark 2. If fXn;ig is uniformly integrable (UI), then for any sequence bn ! 1, we can always �nd
some �n satisfying (2) with �n = o (n). Given this fact, together with the argument in Remark 1, we can
show that

Pn
i=1Xn;i = op (n) if fXn;ig is UI and �� (m�) ! 0 as m� ! 1. No decay rate on �� (m�)

is imposed here. This is an �-mixing counterpart of Andrews�(1988) LLN, where he proved that the
weak LLN holds if an L1-mixingale zero-mean array is UI and the average of its scaling constants has
a �nite limsup (we again recall that no decay rate is imposed on the mixingale numbers in Andrews�
LLN).

The result in (5) also indicates that the rate of �n improves if a higher order moment of fXn;ig exists.
If p > 2, we can obtain further improvements as follows:

Theorem 2. Suppose that Condition A1 holds with p > 2 and � is a positive constant. Then, for a
sequence f�ng such as

�n =

8<:
n(p+�)=p(1+�)gn for � 2 (0; p= (p� 2)) ;p
n log ngn for � � p= (p� 2) ;p
ngn for � > p= (p� 2) ;

(6)

where gn is given in (4), it holds that
Pn

i=1Xn;i = Op (�n) as n!1.

While the rate �n = n(p+�)=p(1+�)gn for � 2 (0; p= (p� 2)) in this theorem is the same as the one
given in (5), �� � 1� is allowed here. The rate for � > p= (p� 2) also corresponds to the classical
CLT:

Pn
i=1Xn;i = Op(

p
n) if gn = O (1) (see Theorem 18.5.3 of Ibragimov and Linnik, 1971 or Theorem

1.7 of Bosq, 1998). Note that for arrays whose degree of dependence is weak (i.e., ones with � large
enough), various results on the strong convergence exist in the literature, as stated previously. Some
other remarks on Theorems 1-2 follow:
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Remark 3. From the viewpoints of the analysis in Remark 2 and the classical CLT results in Ibragimov
and Linnik (1971), we can say that the results of Theorems 1 and 2 for � 2 (0; 1] and � 2 (0; p= (p� 2)],
respectively, �ll the gap between the LLN and the CLT. We also note that according to Bradley
(1985, Remark 1) and Bosq, Merlevède, and Peligrad (1999, Remark 1.1),

P1
m=1m�� (m) < 1 (resp.P1

m=1m��
(p�2)=p (m) with p > 2) is essentially a minimal requirement for an �-mixing sequence/array

of bounded (resp. Lp-bounded) random variables to satisfy a non-degenerate CLT under the condition
that Var[

Pn
i=1Xn;i]!1.

Remark 4. The degree of heterogeneity in fXn;ig is captured and controlled by the truncation constant
bn and the moment bound gn, respectively, in Theorems 1 and 2, which are uniform over i. Overall,
bn and gn play a role similar to the scaling constants in the mixingale cases, as in Andrews (1988),
Hansen (1991, 1992), Davidson (1993), Davidson and de Jong (1997), and de Jong (1995, 1996, 1998).
In some of these studies, such constants may depend on each of the observations. Analogously, we
could potentially let bn and/or gn be dependent on each i. This manner of treating heterogeneity may
allow for more �exibility, but we do not pursue this direction, since it makes conditions and proofs more
complicated. Our treatment of heterogeneity seems su¢ cient in many applications.

Remark 5. The results for � � p= (p� 2) in Theorem 2 can be strengthened to the L2 convergence,
which is a direct consequence of Davydov�s inequality for covariances (see the proof of Theorem 2).
While the same inequality also allows us to derive an L2-convergence rate for � 2 (0; p= (p� 2)), it is
inferior to �n = n(p+�)=p(1+�)gn in (6), which seems to illustrate the price of using the stronger notion of
the convergence.

Comparison with previous mixingale LLN results. Here, we compare our convergence results of
Theorems 1 and 2 with previous mixingale LLN results and discuss advantages of our results in mixing
cases. As stated in the Introduction, Davidson and de Jong (1997) and de Jong (1998) investigated
convergence rates of sums of mixingale sequences/arrays. Since �-mixing arrays can also be mixingale,
we can apply Davidson and de Jong�s results (and other mixingale LLN results) to the �-mixing cases.
To understand this point, we recall the following fact: if fXn;ig is a zero-mean array with each Xn;i

being Lp-bounded (p > 1) and measurable with respect to nF i
1, and if its mixing coe¢ cients satisfy

Conditions A2 (i.e., �n (m) � Am��, where we set � = 1 for simplicity), then it is also Lq-mixingale
with its mixingale numbers �m satisfying

�m � �Am��(1=q�1=p) for 1 � q < p; (7)

which follows from Lemma 2.1 of McLeish (1975, p. 834; see also Section 16.1 of Davidson, 1994). To
the author�s knowledge, this inequality is the best available result that relates an �-mixing rate to a
mixingale one. For the de�nition of Lq-mixingale arrays, see Andrews (1988) or Section 16 of Davidson
(1994).
The inequality (7) implies that we can also apply mixingale LLN results to �-mixing arrays. However,

if we do so, some stronger conditions will be needed and/or less sharp rates will be obtained than if
we would directly apply the LLN results tailored to the mixing arrays as developed here. For example,
to apply Andrews�(1988) LLN to an �-mixing array fXn;ig, we need to impose the Lp-boundedness
with p > 1, which is stronger than necessary, while the original Andrews�LLN holds under the L1-
boundedness (see also Remark 2 above).
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To provide another example, we compare our LLN rates with those by Davidson and de Jong. While
their results and ours are not necessarily immediately comparable (as they consider the almost-sure
and Lp convergence concepts), we compare our L2 rates in Remark 5 with those in de Jong (1998),
which seems to lead to a fair comparison, illustrating advantages of our LLN theorems rather than
their mixingale LLNs in the mixing environment. Suppose that fXn;ig satis�es Condition A1 with � >
p= (p� 2) (p > 2) and gn (p) = O (1). In this case, by Remark 5, it holds that k

Pn
i=1Xn;ik2 = O(

p
n).

On the other hand, (7) implies that fXn;ig is L2-mixingale with �m � �Am��(1=2�1=p), and the application
of de Jong�s (1998, Theorem 7) mixingale LLN leads to

k
Pn

i=1Xn;ik2 =

8<:
O(n1��(1=2�1=p)=2) for � 2 (p= (p� 2) ; 2p= (p� 2));
O(
p
n log n) for � � 2p= (p� 2) ;

O(
p
n) for � > 2p= (p� 2) ;

(8)

whose proof is provided in Appendix A.4. Rates in (8) are inferior to O(
p
n) for � � 2p= (p� 2). de

Jong�s theorem requires � > 2p= (p� 2) to obtain the sharp rate
p
n, which is stronger than necessary,

while we can check that the same rate is attained for � > p= (p� 2).
These two comparisons suggest the bene�ts of using our results. We do not claim that our conver-

gence theorems dominate previous mixingale LLNs, but we argue that they are more likely to derive
superior/sharper results if an array in question is mixing (rather than in the case when the mixingale
LLNs were applied via (7)). We note that it is relatively easy to check mixing properties/rates of
moving-average, autoregressive and Markov processes, as a number of su¢ cient conditions are available
in the literature.

Examples of �-mixing arrays. Before concluding this subsection, we provide two examples that
have slowly decaying mixing coe¢ cients. Example 1 satis�es Conditions A1-A2, to which our new
theorems are directly applicable. Example 2 is a near-unit-root (near-nonstationary) process. While
this process does not satisfy (1) of Condition A1 in that �n (m) depends directly on n (even when � is
a constant, say � = 1), the Bernstein-type inequality can still be employed to derive a LLN result. We
take up this example to illustrate the usefulness of this technical device.

Example 1: A moving-average process with long lasting past shocks. Let fXn;ig be described
by

Xn;i = Xi :=
X1

j=0
cj"i�j;

where f"ig is a sequence of independent random variables each of which has the probability density fi
with R1

�1jfi (x)� fi (x+ y) jdx � Cjyj for any i (with some constant C > 0)

and satis�es supi2ZE[j"ij
�] <1 for some � > 0, and the moving-average coe¢ cients satisfy

P1
j=0 cjz

j 6=
0 for jzj � 1 (cj 2 R).
Given these settings, we can derive the decay rate of �n (m) in terms of fcjg by Gorodetskii�(1977)

theorem. When e¤ects of past shocks "i�j do not die out su¢ ciently fast, �n (m) decays slowly (as
m ! 1). For example, if cj decays only polynomially: cj = O (j�q) as j ! 1 with �q > 3=2�and
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�� > 2=(q � 1) or � � 4,�then it holds that

�n (m) � �� (m�) =

�
O(m�[�(q�1)�2]=(1+�)) for � < 2q + 1;
O(m�q+3=2plogm) for � � 2q + 1:

We note that the polynomial decay of cj (with small q) represents a case in which the e¤ects of past
shocks f"ig do not die out rapidly. If we have � > 1 and E["i] = 0, the result (5) or (6) can be applied
with � = p and

gn =
nP1

j=0 jcjj supi2ZE[j"ij
�]
.P1

k=0 jckj
o1=�

= O (1) ;

which can be derived by Jensen�s inequality. If q and/or � are not su¢ ciently large, usual CLTs cannot
be used but our previous theorems may still be applied.

Example 2. Here, we consider a near-unit-root process, as in Stock (1991), Elliott, Rothenberg,
and Stock (1996), and Phillips and Magdalinos (2007; PM, henceforth):

Xn;i = �nXn;i�1 + ui and �n = 1� �c=kn; (9)

where fuigi�1 is a sequence of independent random variables with E [ui] = 0 and maxi�1E
�
juij�

�
<1

for � > 0; X0 = op(
p
kn) is independent of fuig with E [X0] = 0; kn is a sequence increasing to 1 such

that kn = o(n) or = n; and �c > 0. This speci�cation of fXn;ig follows that of PM (while we allow kn to
be n but additionally suppose that E [X0] = 0 and �c > 0).
If 1=kn is some positive constant (independent of n), fXn;ig is a standard autoregressive process

of order 1. Its mixing coe¢ cients decay exponentially fast, which follows from Gorodetskii�s (1977)
theorem. For the case 1=kn = o (1), the decay rate of mixing coe¢ cients can be derived in the same
way (as long as �c > 0) but it depends on n. Speci�cally, the coe¢ cient of fXn;ig satis�es

�n (m) = O(expf�(1 + �)�1m(log �n)g) � O(expf��(1 + �)�1�cm=kng); (10)

which can also be derived by Gorodetskii�s (1977) theorem (as it leads to the upper bound of the �-mixing
coe¢ cient for each n), where we have let� = 1 for simplicity (the inequality holds since log �n � ��c=kn).
We note that (9) behaves like a stable/ergodic autoregressive process in that its mixing coe¢ cients decay
exponentially as m grows for each (�xed) n, while it represents a near-nonstationary situation in which
its autoregressive coe¢ cient �n is (very) close to 1 and the convergence of the mixing coe¢ cients does
not occur quickly for large n (or kn). The convergence rate in the LLN involves kn, as follows:

Theorem 3. Suppose that fXn;ig is speci�ed by (9) with � � 2. Then,
Pn

i=1Xn;i = Op(�n) with
�n =

p
knn as n!1.

The condition �� � 2�is imposed only for simplicity (it may be relaxed, but a smaller � will lead to
a less sharp rate). This theorem may complement PM�s limit results for (9). It seems that the literature
on processes such as (9) have not necessarily paid attention to the mixing property of the processes,
which can still be used for establishing asymptotic results.
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2.3 Convergence rates of sums under in�ll and long-span asymptotics

Here, we consider an array whose observation intervals shrink to zero as n!1. The results obtained
here are useful for analyzing convergence rates of estimators for continuous-time processes, as we see in
the next section.
We set out an additional condition:

A3. ��1 � c1T
c2 for some c1; c2 > 0 (as �! 0 and T !1 with n!1).

This condition may slightly simplify rate expressions in Theorems 4 and 5 for the intermediate cases
� � 1 and � � p= (p� 2), respectively. We can derive convergence results without A3. However, this
bound of ��1 can be used to control the degree of dependence in arrays: if a divergence rate of ��1

is fast beyond this condition, the dependence between consecutive observations becomes too strong,
which may hamper establishing simple and sharp rate expressions. We also note that there should be
no practical restriction due to Condition A3, since c1 and c2 may be arbitrarily large.
We subsequently write the rate of �n (given in Condition A2) in terms T (:= Tn) and �(:= �n).

While it may be more reasonable to write �T;� instead of �n (as pointed out by a referee), we use �n to
avoid writing the same condition using a di¤erent notation (the same remark applies to bn, gn, and �n,
which are given in Condition A2, (4) and Condition A4 below).5

Now, analogously to the �xed-distance case, we present two additional theorems:

Theorem 4. Suppose that Conditions A1-A2 hold. Then, for any sequences f�ng and fbng satisfying
(2) and

bn
�n
=

8<:
O
�
T�1=(1+�)�

�
for � 2 (0; 1) ;

O(�=
p
T log (T=�)) for � � 1;

O
�
T�1=2�

�
for � > 1;

(11)

it holds that
Pn

i=1Xn;i = Op (�n) as T ! 1 and � ! 0 with n ! 1. If Condition A3 is additionally
supposed, then bn=�n = O(�=

p
T log T ) for � � 1 in (11).

Due to the in�ll assumption, the rate of �n depends on the shrinking rate of �. Given that � is
�xed, the smaller � leads to the faster divergence rate of �n (or equivalently, the slower shrinking rate
of the sample mean). This is because a small � increases the degree of time-series dependence in the
array and makes consecutive observations highly correlated.
Analogously to (5), if p > 1, we can write �n in Theorem 4 as follows:

�n =

8<:
T (p+�)=p(1+�)��1gn for � 2 (0; 1) ;
T (p+1)=2p[log (T=�)](p�1)=2p��1gn for � � 1;
T (p+1)=2p��1gn for � > 1;

(12)

where �n = T (p+1)=2p (log T )(p�1)=2p��1gn under Condition A3. This result may not fully exploit the
existence of higher order moments. If p > 2, the rate of �n is improved:

5We also note that the rates of T (= Tn) and �(= �n) may be written in terms of n through the de�nition n = T=�
and Condition A3. Then, we can regard Tn !1 and �n ! 0 as n!1.

10



Theorem 5. Suppose that Conditions A1 holds with p > 2. Then, for a sequence f�ng, such as

�n =

8<:
T (p+�)=p(1+�)��1gn for � 2 (0; p= (p� 2)) ;p
T log (T=�)��1gn for � � p= (p� 2) ;

T 1=2��1gn for � > p= (p� 2) ;
(13)

where gn is given in (4), it holds that
Pn

i=1Xn;i = Op (�n), as T ! 1 and � ! 0 with n ! 1. If
Condition A3 is additionally supposed, then �n =

p
T log T��1gn for � � p= (p� 2) in (13).

As can be seen in Theorems 4-5, the sample mean of the array is not convergent unless T !1 (e.g.,
n�1

Pn
i=1Xn;i = Op(gn=

p
T ) for � > p= (p� 2) in Theorem 5). Note that both the in�ll and long-span

assumptions are often necessary in drift function estimation, as in the next section (see p. 243 of Bandi
and Phillips, 2003; Section 5 of Kristensen, 2010).

Remark 6. The rate for � > p= (p� 2) is sharp and corresponds to the rate obtained in the CLT for
continuously observed processes. To see this point, let Xa

n;i :=
R �(2i�1)
�2(i�1) Zsds and X

b
n;i :=

R �2i
�(2i�1)Zsds,

where fZsgs�0 is a zero-mean continuous time process with sups�0 kZskp = O (1) for p > 2, whose
mixing coe¢ cients satisfy �Z (s) � As��. We can then writeR T

0
Zsds =

Pn
i=1(X

a
n;i +Xb

n;i) +
R T
n
Zsds:

Applying Theorem 5, we obtain
R T
0
Zsds = Op(

p
T ), since

Pn
i=1X

k
n;i = Op(T

1=2��1 supi�1


Xk

n;i




p
) =

Op(
p
T ) for k = a; b; supi�1



Xk
n;i




p
= O (�) and

R T
n
Zsds = Op (1). Note that the rate of

R T
0
Zsds may

also be derived using Theorems 1 or 2 analogously.

Before concluding this subsection, we present a simple example of a continuous-time process to which
our convergence results are relevant.

Example 3: A di¤usion process with weak mean-reversion drift. Let fZsgs�0 be an R-valued,
continuous-time di¤usion process de�ned through (a weak solution to) the following stochastic di¤eren-
tial equation:

dZs = �Z (Zs) ds+ dWs;

where �Z (�) is the drift function; fWsgs�0 is a standard Brownian motion; and the process is supposed
to start from some constant z0 2 R, i.e., Z0 = z0.6 If the drift function satis�es

�Z (z) � �r=z for z �M0; and �Z (z) � �r=z for z � �M0; (14)

for some r > 1=2 and M0 � 0, then we can �nd the decay rate of �-mixing coe¢ cients of the process
fZsg and its uniform moment bound:

�Z (t) � At�� for any � < (0; r � 1=2);
sups�0E[jZsjp] <1 for any p 2 (0; 2r) ;

6We can also think of more general cases: (i) Z0 follows some distribution, (ii) fZsg is a general di¤usion process with
its non-constant di¤usion function (say, dZs = �Z (Zs) ds + �Z (Zs) dWs), and/or (iii) it is of multi-dimension. Mixing
rates and moment bounds for these cases are investigated in Veretennikov (1997).
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where A (> 0) is some positive constant and �Z (t) stands for the mixing coe¢ cient for the continuous-
time process fZsg (see the de�nition in Footnote 4). These results follow from Section 5.3 of Chen,
Hansen, and Carrasco (2012) and Lemma 1 of Veretennikov (1997). In this example, the mixing rate
and the moment existence rely directly on the parameter r. The condition (14) on �Z (�) represents
a case in which the drift function�s e¤ect of the mean-reversion is very weak.7 If fXn;ig is an array
of (normalized) discrete-time observations from fZsg, say, Xn;i = (Z�i � E[Z�i]), then its mixing
coe¢ cients satisfy �n (m) � A (m�)�� and the uniform moment bound gn = gn (p) is well-de�ned for
p 2 (0; 2r). Therefore, we can apply the rate results of (12) and (13). In particular, for a small r, we
cannot obtain a su¢ ciently fast convergence rate.

3 Non-parametric drift function estimation of continuous-time
processes

3.1 Continuous-time framework

We now apply the results from the previous section to the drift function estimation for continuous-time
processes. We pay particular attention to processes with (relatively) strong time-series dependence and
non-existence of higher-order moments, both of which may be prominent features in �nancial data. We
consider the following type of continuous-time process:

dYs = � (Zs�) ds+ dUs; (15)

where fYsg and fZsg are real-valued càdlàg processes de�ned on a �ltered probability space (
;F;
fFsgs�0 ;Pr), and fUsg is a martingale process on the same space. We suppose that each process is
adapted to the �ltration fFsg and � (�) is a continuous function. � (�) is termed the drift (or instanta-
neous conditional mean) function. This general speci�cation, called the martingale regression, has been
proposed by Park (2009) (see also Kim and Park, 2016). It includes many interesting models used in
the �elds of economics and �nance. A leading example is a univariate di¤usion process with Ys = Zs
and dUs = � (Zs) dWs, where fWsg is a standard Brownian motion and � (�) is a volatility function.8
As an example with Ys 6= Zs, we note that (15) may be used to construct a continuous-time analog of a
long run risk model, as in Bansal and Yaron (2004). For other examples, see our subsequent arguments
on Conditions B4 and B5 as well as Park (2009).
Given a set of observations sampled at discrete-time points, f(Yi�; Zi�) : 1 � i � n+ 1g (with n =

T=�), we consider the following non-parametric estimator of the drift function � (�):

�̂ (z) := �̂ (z) =�̂ (z) ;

7For instance, compare (14) with a linear-drift case (possessing a strong mean-reversion property): ~�Z (x) = � (m� z)
with � > 0 and m 2 R. Given this drift speci�cation, the process is pulled toward m: for a su¢ ciently large positive
(resp. small negative) value of z, ~�Z (x) takes a very small negative (resp. large positive) value.

8We note that the speci�cation (15) allows for general di¤usion and stochastic volatility processes. This can be
understood by writing dUs in terms of a (formal) integral expression. For example, in the case of a stochastic volatility
process with a spot volatility process f�sg, we have Ut � U0 =

R t
0
�sdWs, which is equivalently written as dUs = �sdWs

by convention.
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where

�̂ (z) :=
1

T

Xn

i=1
Kh (Zi� � z)

�
Y(i+1)� � Yi�

�
;

�̂ (z) :=
�

T

Xn

i=1
Kh (Zi� � z) ;

Kh (x) := K (x=h) =h; K is a kernel function; and h is a smoothing parameter (bandwidth). By using
the results obtained in the previous section, we investigate the convergence rate of �̂ (z). To this end,
we impose the following conditions:

B1. The support of K(: R ! R) is bounded (say, it is included in [�cK ; cK ] for some cK 2 (0;1)),
and satis�es

R1
�1K (x) dx = 1;

R1
�1 xK (x) dx = 0; and supx2R jK (x)j � �K for some �K (<1).

B2-i. fZsgs�0 is an �-mixing process whose mixing coe¢ cients satisfy �Z (t) � At�� for some A; � > 0.

B2-ii. The drift function � (z) is di¤erentiable at z and each Zs has the marginal density �s (�); and
there exists some ��(> 0), such that supj�j��� j�0 (�+ z)j <1 and sups�0;j�j��� �s (z + �) <1.

Condition B1 is standard, except for the boundedness of the support. While some kernels (such as
the normal one) are excluded, this condition allows us to work without imposing the boundedness of the
moment (say E[j�(Zs)jp] < 1). If some kernel with an unbounded support is employed, the existence
of some (higher-order) moment is likely to be a required condition. Condition B2 allows for some sort
of non-stationarity/heterogenous process, e.g., the process need not be initialized by the invariant dis-
tribution, while it excludes strongly non-stationary processes (such as null-recurrent processes). While
many parametric models used in the econometric literature turn out to be geometrically �-mixing, we
can easily �nd exceptions, as in Example 3 (see also Veretennikov, 1997, 1999). Chen, Hansen, and
Carrasco (2010) also present a class of Markov di¤usion processes with very slowly decaying mixing
coe¢ cients.9 They observe that such processes look like long memory processes from the vantage point
of sample statistics. Note also that di¤usion processes with the so-called volatility-induced stationary
(see Conley, Hansen, Luttmer, and Scheinkman, 1997), which may look like unit-root processes, often
fail to possess higher-order moments, as argued and exempli�ed in Nicolau (2005). These kinds of
processes are also allowed under Condition B2. Additionally, notice that Condition B2-i does not imply
the Markov property of processes. While several mixing results available in the literature are derived
using the Markov condition, we do not exclude non-Markov cases.

3.2 E¤ects of discretized observations

In this subsection, we illustrate that our convergence results under the in�ll assumption �� ! 0�
(Theorems 4-5) are particularly useful in the context of kernel-based estimation for a continuous-time

9Veretennikov (1997, 1999) and Chen, Hansen, and Carrasco (2010) present some conditions for processes to be
polynomially �-mixing. Their conditions can be used to check Condition B2-i, since �-mixing coe¢ cients are always
smaller than �-mixing ones. In addition, in view of Bradley (2005, Section 4.2), where he observes that various mixing
conditions can occur simultaneously at essentially the same decay rate, we note that to investigate a sharp �-mixing rate
of a process, it is often su¢ cient to investigate its sharp �-mixing rate (e.g., if �-mixing coe¢ cients of some process decay
at the (exact) rate of t�c with some c > 0, then its �-mixing coe¢ cients are less likely to decay at a faster rate of t�d

with some d > c).
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process fZsgs�0. As we can see below, one has to incur some sort of discretization bias in such estimation
since only the availability of discretized observations fZi�gni=1 has been assumed (instead of that of a
continuous trajectory). Roughly speaking, we can think of (at least) two ways to verify the estimator�s
convergence. Here, we show that one approach based on fully discretized processes may allow us to
derive a sharper rate for the discretization biases than the other one based on fully continuous-time
processes in the mixing/ergodic environment, and the former approach requires the rate results based
on the in�ll assumption (as Theorems 4-5).
Now, consider the following decomposition of the nonparametric drift estimator:

�̂ (z)� � (z) = [~� (z) + ~ (z)]=�̂ (z) ;

where

~� (z) :=
1

T

Xn

i=1
Kh (Zi� � z)

Z (i+1)�

i�

[� (Zs�)� � (z)] ds;

~ (z) :=
1

T

Xn

i=1
Kh (Zi� � z)

�
U(i+1)� � Ui�

�
:

Note that we have the regressor process fZtg evaluated at t = i� (a sample time) as well as at all
t 2 [i�; (i+ 1)�] (not necessarily sample times) in each summand of ~� (z).

Decomposition with a fully discretized process. For the �rst approach mentioned above, we
further decompose ~� (z) into

~� (z) =
1

nh

Xn

i=1

~Xn;i +
1

nh

Xn

i=1
E

�
K

�
Zi� � z

h

�
[� (Zi�)� � (z)]

�
+
1

Th

Xn

i=1
~�n;i; (16)

where

~Xn;i := K

�
Zi� � z

h

�
[� (Zi�)� � (z)]� E

�
K

�
Zi� � z

h

�
[� (Zi�)� � (z)]

�
;

~�n;i := K

�
Zi� � z

h

�Z (i+1)�

i�

[� (Zs�)� � (Zi�)] ds:

We call the �rst term (1=nh)
Pn

i=1
~Xn;i on the RHS of (16) as a fully discretized component, as fZsg is

only evaluated at sample times. The convergence rate of this term can be obtained using Theorem 4 or
5. The second term is the bias due to smoothing. The third term (1=Th)

Pn
i=1~�n;i is the discretization

bias that appears only when estimating continuous-time processes from discrete observations. In this
discretization term, fZsg also needs to be evaluated at non-sample points, but such an evaluation occurs
only when it is put outside the kernel function.

Decomposition with a fully continuous-time process. Another way of decomposition other than
(16) is also possible:

~� (z) =
1

Th

Z T

0

~Xc
sds+

1

Th

Z T

0

E

�
K

�
Zs� � z

h

�
[� (Zs�)� � (z)]

�
ds� 1

Th

Xn

i=1
~�cn;i; (17)
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where

~Xc
s := K

�
Zs� � z

h

�
[� (Zs�)� � (z)]� E

�
K

�
Zs� � z

h

�
[� (Zs�)� � (z)]

�
;

~�cn;i :=

Z (i+1)�

i�

�
K

�
Zs� � z

h

�
�K

�
Zi� � z

h

��
� (Zs�) ds:

The �rst term (1=Th)
R T
0
~Xc
sds on the RHS of (17) is de�ned through an integral (rather than a sum of

discretized components), where fZsg has to be evaluated at all t 2 [0; T ]. The second and third terms
on the RHS of (17) are also smoothing and discretization biases, respectively, while their expressions
are di¤erent from those in (16) due to the di¤erent nature of the decomposition.

Comparison of the two decompositions. We can usually show that the convergence rates of
(1=nh)

Pn
i=1
~Xn;i and (1=Th)

R T
0
~Xc
sds are the same and that those of the smoothing biases in (16) and

(17) are also the same. However, the convergence rate of (1=Th)
Pn

i=1~�n;i in (16) may be di¤erent
from that of (1=Th)

Pn
i=1~�

c
n;i in (17). In general, we are able to show that the rate of (1=Th)

Pn
i=1~�n;i

is faster than that of (1=Th)
Pn

i=1~�
c
n;i. This is the advantage of using the decomposition with fully

discretized processes, whose convergence needs to be analyzed by limit results under the in�ll scheme,
as in Theorem 4 or 5.
If we can �nd some uniform rate �n (! 0 as n!1) (or assume its existence), such that

max1�i�n sups2[i�;(i+1)�] jZs � Zi�j = Op(�n) as T; n!1 and �! 0;

which may hold for continuous di¤usion processes (see our subsequent discussions on B4), then we are
able to show that (1=Th)

Pn
i=1~�n;i = Op(�n), as in Theorem 7. However, it is likely that (1=Th)

Pn
i=1~�

c
n;i

can be shown to be only Op(�n=h) or to shrink at a slower rate. This is because we need to evaluate
the di¤erence between Zs� and Zi� (for ~�cn;i), which is on the inside of K(�), taking into account
its interaction with 1=h(! 1). Bandi and Phillips (2003) and Aït-Sahalia and Park (2016) have
considered decompositions with fully continuous-time processes, as in the second one (17). Bandi and
Phillips assume that

max1�i�n sups2[i�;(i+1)�] jZs � Zi�j = Oa:s:(�n) with �n =
p
� log (1=�); (18)

for continuous di¤usion processes (see Section A.3 for related results), and their convergence rates of
nonparametric estimators include a term

p
� log (1=�)=h, which is assumed to be o (1).10 Aït-Sahalia

and Park (2016) impose the condition �=h4 = o (1) (see their Assumption 4 for the drift estimation),
which guarantees the negligibility of discretization biases (relative to smoothing biases). Since the
obtained convergence rates of the discretization biases are slower, we need to impose more restrictive
conditions on the shrinking rates of h and � in the approach with (17) than in that with (16).
For more details, look at

1

Th

Xn

i=1
~�cn;i =

1

Th

Xn

i=1

Z (i+1)�

i�

K 0
�
Zs� � z

h
+Oa:s:

�
Zs� � Zi�

h

��
Zs� � Zi�

h
� (Zs�) ds; (19)

10Bandi and Phillips (2003) imposed the condition that �LZ (T; z)
p
� log (1=�)=h = oa:s: (1) for their asymptotic distri-

bution result, where �LZ (T; z) is the chronological local time of fZsg. This condition corresponds to T
p
� log (1=�)=h =

o (1) in ergodic cases like ours.
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where the equality follows from the Taylor expansion under the di¤erentiability of K. Given (19), if
(18) were assumed with

p
� log (1=�)=h! 0, we could obtain (1=Th)

Pn
i=1~�

c
n;i = Op(

p
� log (1=�)=h),

since
1

Th

Xn

i=1

Z (i+1)�

i�

����K 0
�
Zs� � z

h
+Oa:s:

�
Zs� � Zi�

h

������ j� (Zs�)j ds = Op (1) ; (20)

where we will outline how to prove this result (20) in Appendix A.4. We also note that Aït-Sahalia and
Park�s (2016) results and derivations (e.g., Lemmas 10-12) may be used to compare the two types of
decompositions.
Before concluding this subsection, note that for non-stationary/non-ergodic Markov processes, it is

often more convenient to consider decompositions with fully continuous-time processes as (17) (rather
than ones as (16)), which allow us to exploit integral forms, as

R T
0
~Xc
sds, and use some mathematical

devices, such as the local time and occupation time formulae in Bandi and Phillips (2003). Aït-Sahalia
and Park (2016), Jeong and Park (2014), and Kim and Park (2015) have made signi�cant contributions
to asymptotic theory in this line for null-recurrent Markov di¤usion processes. The two approaches
outlined here may be seen as complementary to each other.

3.3 Convergence results for the non-parametric drift estimator

We now present the convergence results for the estimator �̂ (z), which is based on the decomposition in
(16):

Theorem 6. Suppose that (B1)-(B2) hold. Then, for any � 2 (0; 1=2),

1

nh

Xn

i=1

~Xn;i = Op(�
�
n) with �

�
n =

�
T��=(1+�)[T �=(1+�)h]� if � 2 (0; 1];
T�1=2h� if � > 1;

(21)

as T !1 and �! 0 with n!1, where the bandwidth h is chosen so that ��n ! 0.

This is a direct application of Theorem 5. The parameter � 2 (0; 1=2) may be chosen arbitrarily,
which corresponds to the existence of any arbitrary order moment of ~Xn;i under Condition B2-ii. For
� 2 (0; 1], we can have a shrinking rate arbitrarily close to T��=(1+�) (by letting � very small) if the
bandwidth is selected as h = O(T�b) for some b 2 (0; 1), which is likely to be a standard choice (say,
b = 1=5), balancing the e¤ects of the variance and smoothing bias components, i.e., the term ~ (z) and
the second term on the RHS of (16), respectively.
To complete our analysis of �̂ (z), we also present the convergence results for the other terms. To

this end, we consider the following conditions:

B3. �s (�) and � (�) are continuously twice di¤erentiable satisfying

sup
s�0

Z
R
j�00s (z)j dz <1 and sup

s�0

Z
R
jl00s (z)j dz <1;

where ls (z) := � (z)�s (z).
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B4. fZsg and � (�) satisfy either of the following conditions:

max
1�i�n

sup
s2(i�;(i+1)�]

j� (Zs�)� � (Zi�)j = Op (�n) or (22)

max
1�i�n

sup
s2(i�;(i+1)�]

k� (Zs�)� � (Zi�)k1+� = O (�n) for some � > 0; (23)

where f�ng is some positive sequence tending to 0 as n!1, and k�k1+� := fE[j � j1+�]g1=(1+�).

B5. fUsg is described by

dUt = �s�dWs +

Z
Rnf0g

�Us� (x) (JU � vU) (ds; dx) ; (24)

where fWsg is a standard Brownian motion; f�sg is an adapted càdlàg process; JU is a Pois-
son random measure with intensity measure �U (ds; dx) = dsFU (dx); FU is a �-�nite measure;
�Us (x) (!) is a map on 
 � [0;1) � R into R that is Fs � B (R)-measurable for all s and càdlàg
in s; and

R t
0

R
Rnf0g j�

U
s� (x) j2FU (dx) ds <1 almost surely for any t > 0. For some " > 0, it holds

that

sup
s�0

jj�2s +
Z
Rnf0g

���Us (x)��2 FU (dx) jj1+" <1:

Condition B3 is quite standard. The condition (22) in B4 holds with �n = �
 for any 
 2 (0; d=c) �
(0; 1=2) if fZsg satis�es

E[jZs � Ztjc] � Cjs� tj1+d; (25)

for some positive constants C, c, and d (independent of s and t). If fZsg is a continuous di¤usion
process, such as

dZs = aZ (Zs) ds+ �Z (Zs) dBs; (26)

where fBsg is a standard Brownian motion, we may be able to show that

sup0�s<t<T ; js�tj�� jZs � Ztj = Op(
p
� log (1=�)) as � ! 0 and T !1;

under certain conditions (see discussions on the global modulus of continuity in Kanaya, 2016). We
can then let �n =

p
� log (1=�) in (22), which may be satis�ed by Example 3. We provide some more

discussions on the two cases (25) and (26) in Appendix A.3.
We can show that the condition (23) in B4 holds with �n = O

�
�1=2

�
if fZsg is driven by a semi-

martingale of the following type:

dZs = asds+ �s�dBs +

Z
Rnf0g

�Zs� (x) (JZ � vZ)(ds; dx); (27)

and if k�0 (Zs) askq, k�00 (Zs) �2skq, k�0 (Zs) �sk2, E[
R
Rnf0gj�

�
Zs + �Zs (x)

�
� � (Zs) j2FZ (dx)], and

jj�0 (Zs)
R
Rnf0g�

Z
s (x)FZ (dx) jjq are bounded uniformly over s � 0 for some q 2 (1; 2].11 A speci�cation

similar to (27) can be found in Todorov (2011), where similar moment conditions are also imposed.

11fBsg is a standard Brownian motion; fasg is locally bounded and predictable; f�sg is adapted and càdlàg; and the
other components of the last term on the RHS of (27) are de�ned analogously to those in (24).
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The speci�cation (24) of fUsg in Condition B5 is quite general, including processes described by
Lévy-type stochastic di¤erential equations, and it covers almost all models used in the economics/�nance
literature. While we assume for simplicity that both the Brownian and Poisson components are uni-
variate, they may be multivariate. Finally, the moment conditions imposed in B4 and/or B5 may be
too strong for some classes of processes. Even in such cases, we may be able to derive the convergence
rate of the estimators by using the damping function approach considered in Kanaya (2016).

Theorem 7. (i) Under Conditions B1 and B3,

1

nh

Xn

i=1
E

�
K

�
Zi� � z

h

�
[� (Zi�)� � (z)]

�
= O

�
h2
�
, as h! 0 (with n!1).

(ii) Under Conditions B1, B2-ii, and B4, (1=Th)
Pn

i=1~�ni = Op (�n) as T ! 1 and h;� ! 0 (with
n!1).
(iii) Under Conditions B1, B2-ii, and B5, ~ (z) = Op(1=

p
Th) as T !1 and h;�! 0 (with n!1).

These convergence results do not rely on the mixing condition, where we note that the last one (iii) is
derived by the martingale condition B5 and that the regressand process fYsg is not necessarily mixing.
We can show that �̂ (z) isOp (1) in the same way as in Theorem 6 under Conditions B1-B2. Therefore,

given the results of Theorems 6-7, we have

�̂ (z)� � (z) = Op(�
�
n) +Op(�n) +O(h2) +Op(1=

p
Th): (28)

It is often assumed that the discretization bias is negligible (relative to the last term on the RHS) by
setting �n

p
Th! 0, which typically corresponds to ��


p
Th! 0�or �

p
� log (1=�)Th! 0�(see the

previous arguments on Condition B4).

Bandwidth rate. According to the rate result (21) of Theorem 6, if � > 1, the term Op(�
�
n) in

(28) is negligible, relative to Op(1=
p
Th) (always, with any choice of the bandwidth h ! 0), since

��n
p
Th = h�+1=2. Accordingly, the asymptotic distribution of �̂ (z) is determined by ~ (z), the sum of

the martingale di¤erences (the last term on the RHS of (28)). However, when � 2 (0; 1], the choice of
the bandwidth may matter to the relative magnitude of Op(��n) to Op(1=

p
Th). For example, if we let

h = O(T�1=5)(6= o(T�1=5)), then

��n
p
Th = T [1�(��2�)]=2(1+�)h(1+2�)=2 = O(T (2��)=5��(1��)=(1+�)); (29)

We note that
2� �

5
� � (1� �)

1 + �
� 0, 2� �

3� 4� � � and also

sup�2(0;1=2)
2� �

3� 4� = 3=2;

which exceeds 1. Therefore, given this (standard) bandwidth h = O(T�1=5), the order of ��n is greater
than Op(1=

p
Th) for any � 2 (0; 1]. This situation may arise for the process in Example 3 if the mean-

reversion e¤ect of the process is weak (in particular, when the parameter r in (14) is equal to or less
than 3=2).
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If � 2 (0; 1] and we want to have the negligibility of ��n (relative to 1=
p
Th, in order to obtain the

asymptotic normality), then we must have a faster shrinking rate of h. That is, if we consider the form

of h = O(T�b), b 2 (0; 1) must be large with � > (1� b) (1 + 2�)

b (1 + 2�) + 1
or equivalently b >

(1� � + 2�)

(1 + 2�) (1 + �)
for some � 2 (0; 1=2), which can be obtained by plugging h = O

�
T�b

�
into (29), implying that b must

satisfy at least

b > inf�2(0;1=2)
1� � + 2�

1 + 2� + �
=
1� �

1 + �
: (30)

For � close to 0, one has to have b close to 1. If one fails to select b satisfying (30), the asymptotic property
of �̂ (z) may be determined by (1=nh)

Pn
i=1
~Xn;i and the asymptotic normality may not necessarily hold.

It is uncertain whether one can construct some reasonable inference procedure in this case while only
the consistency is guaranteed by Theorems 6-7, as long as h = O(T�b)(6= o(T�b)) for any b 2 (0; 1).

4 Conclusion

We have derived the convergence rates of the sums of �-mixing arrays for the cases where their mixing
coe¢ cients decay slowly and/or the higher-order moments do not exist. Our results may �ll the gap
between the CLT and LLN under the mixing environment and complement previous convergence rate
results for weakly dependent time series (e.g., mixingale LLNs, as in Andrews, 1988; Davidson and
de Jong, 1997; de Jong, 1998). We have also showed that our techniques, based on the Bernstein-
type inequality, may be applied to a near-unit-root process. The fact that such processes may also be
analyzed in the mixing framework does not seem to have attracted attention in the literature.
This paper may also contribute to the high-frequency econometrics literature, where double (in�ll

and long-span) asymptotics are often necessary to estimate economically interesting objects (such as
risk-preference parameters) in the continuous-time framework. Limit theorems used in this literature
usually rely on a Markov or (semi) martingale type assumption. For the Markov di¤usion case, Aït-
Sahalia and Park (2016), Jeong and Park (2014), and Kim and Park (2015) have recently provided
extensive studies of limit theorems under double asymptotics. This paper�s results may complement
their theorems, as the former are based on the mixing assumption and are applicable to non-Markov
processes (as well as non semi-martingales).

References

[1] Aït-Sahalia, Y. and J.Y. Park (2016) Bandwidth selection and asymptotic properties of local non-
parametric estimators in possibly nonstationary continuous-time models, Journal of Econometrics
192, 119-138.

[2] Andrews, D.W.K. (1988) Law of large numbers for dependent non-identically distributed random
variables, Econometric Theory 4, 458-467.

[3] Bandi, M.F. and P.C.B. Phillips (2003) Fully nonparametric estimation of scalar di¤usion models,
Econometrica 71, 241-283.

19



[4] Bansal, R. and A. Yaron (2004) Risks for the long run: A potential resolution of asset pricing
puzzles, Journal of Finance 58, 1481-1509.

[5] Barndor¤-Nielsen, O.E. and N. Shephard (2002) Econometric analysis of realised volatility and its
use in estimating stochastic volatility models, Journal of the Royal Statistical Society, Series B, 63,
253-280.

[6] Borkovec, N.H. and C. Klüpperlberg (1998) Extremal behaviour of di¤usion models in �nance,
Extremes 1, 47-80.

[7] Bosq, D (1998) Nonparametric Statistics for Stochastic Processes, 2nd ed., Springer-Verlag, New
York.

[8] Bosq, D., F. Merlevède, and M. Peligrad (1999) Asymptotic normality for density kernel estimators
in discrete and continuous time, Journal of Multivariate Analysis 68, 78-95.

[9] Bradley, R.C. (1985) On a central limit question under absolute regularity, Annals of Probability
13, 1314-1325.

[10] Bradley, R.C. (1988) On a Theorem of Gordin, Stochastic 24, 357-392.

[11] Bradley, R.C. (2005) Basic properties of strong mixing conditions. A survey and some open ques-
tions, Probability Surveys 2, 107-144.

[12] Chen, X., L.P. Hansen, and M. Carrasco (2010) Nonlinearity and temporal dependence, Journal of
Econometrics 155, 155-169.

[13] Conley, T., L.P. Hansen, E. Luttmer, and J. Scheinkman (1997) Short-term interest rates as sub-
ordinated di¤usions, Review of Financial Studies 10, 525-577.

[14] Dahlhaus, R., and S.S. Rao (2006) Statistical inference for time varying ARCH processes, Annals
of Statistics 34, 1075-1114.

[15] Davidson, J. (1993) An L1-convergence theorem for heterogenous mixingale arrays with trending
moments, Statistics and Probability Letters 16, 301-304.

[16] Davidson, J. (1994) Stochastic Limit Theory, Oxford University Press, Oxford.

[17] Davidson, J. and R.M. de Jong (1997) Strong laws of large numbers for dependent heterogenous
processes: a synthesis of recent and new results, Econometric Reviews 16-3, 251-279.

[18] de Jong, R.M. (1995) Laws of large numbers for dependent heterogeneous processes, Econometric
Theory 11, 347-358.

[19] de Jong, R.M. (1996) A strong law of large numbers for triangular mixingale arrays, Statistics and
Probability Letters 27, 1-9.

[20] de Jong, R.M. (1998) Weak laws of large numbers for dependent random variables, Annales
D�Economie et de Statistique, 51, 209-225.

20



[21] Elliott, G., T.J. Rothenberg, and J.H. Stock (1996) E¢ cient tests fro an autoregressive unit root,
Econometrica 64, 813-836.

[22] Fan, J. and Q. Yao (2003) Nonlinear Time Series: Nonparametric and Parametric Methods,
Springer-Verlag, New York.

[23] Florens-Zmirou, D. (1989) Approximate discrete-time scheme for statistics of di¤usion processes,
Statistics 20, 547-557.

[24] Hansen, B.E. (1991) Strong laws for dependent heterogeneous processes, Econometric Theory 7,
213-221.

[25] Hansen, B.E. (1992) Strong laws for dependent heterogeneous processes, Erratum, Econometric
Theory 8, 421-422.

[26] Ibragimov, I.A. and Y.V. Linnik (1971) Independent and Stationary Sequences of Random Variables,
Wolters-Noordho¤, Groningen.

[27] Jeong, M. and J.Y. Park (2014) Asymptotic theory of maximum likelihood estimator for di¤usion
model, Working Paper, Indiana University.

[28] Kanaya, S. (2016) Uniform convergence of kernel-based nonparametric estimators for continuous
and discrete time processes: A damping function approach, forthcoming in Econometric Theory
(�rst published online: 14 July 2016, doi: 10.1017/S0266466616000219).

[29] Kanaya, S. and D. Kristensen (2015) Estimation of stochastic volatility models by nonpara-
metric �ltering, forthcoming in Econometric Theory (�rst published online 12 April 2015, doi:
10.1017/S0266466615000079).

[30] Karatzas, I. and S.E. Shereve (1991) Brownian Motion and Stochastic Calculus, Springer-Verlag,
New York.

[31] Kim, J. and J.Y. Park (2016) Asymptotics for recurrent di¤usions with application to high frequency
regression, forthcoming in Journal of Econometrics.

[32] Kristensen, D. (2010) Nonparametric �ltering of the realized spot volatility: A kernel-based ap-
proach, Econometric Theory 26, 60-93.

[33] Liebscher, E. (1996) Strong convergence of sums of �-mixing random variables with applications
to density estimation, Stochastic Processes and their Applications 65, 69-80.

[34] Louhichi, S. (2000) Convergence rates in the strong law for associated random variables, Probability
and Mathematical Statistics 20, 203-214.

[35] Louhichi, S. and P. Soulier (2000) Marcinkiewicz-Zygmund strong laws for in�nite variance time
series, Statistical Inference for Stochastic Processes 3, 31-40.

[36] McLeish, D. L. (1975) A maximal inequality and dependent strong laws, Annals of Probability 3,
829-839.

21



[37] Merlevède, F., M. Peligrad, and S. Utev (2006) Recent advances in invariance principles for sta-
tionary sequences, Probability Surveys 3, 1-36.

[38] Nicolau, J. (2005) Processes with volatility-induced stationarity: an application for interest rates,
Statistica Neerlandica 59, 376-396.

[39] Park, J.Y. (2009) Inference on conditional mean models in continuous time, Working Paper, Indiana
University.

[40] Phillips, P.C.B (1987) Time series regression with a unit root, Econometrica 55, 277-301.

[41] Phillips, P.C.B. and T. Magdalinos (2007) Limit theory for moderate deviations from a unit root,
Journal of Econometrics 136, 115-130.

[42] Shao, Q.M. (1993) Complete convergence for �-mixing sequences, Stochastic and Probability Letters
16, 279-287.

[43] Stanton, R. (1997) A nonparametric model of term structure dynamics and the market price of
interest rate risk, Journal of Finance 52, 1973-2002.

[44] Stock, J.H. (1991) Con�dence intervals for the largest autoregressive root in U.S. macroeconomic
time series, Journal of Monetary Economics 28, 435-459.

[45] Todorov, V. (2011) Econometric analysis of jump-driven stochastic volatility models, Journal of
Econometrics 160, 12-21.

[46] Veretennikov, A.Y. (1997) On polynomial mixing bounds for stochastic di¤erential equations, Sto-
chastic Processes and their Applications 70, 115-127.

[47] Veretennikov, A.Y. (1999) On polynomial mixing and convergence rate for stochastic di¤erence
and di¤erential equations, Theory of Probability and its Applications 44, 361-374.

A Appendix

A.1 Proofs of primary convergence results

Proofs of Theorems 1-5. We follow similar steps in the proofs of Theorems 1-5. Here, we outline
points that are common among them. Further details tailored to each theorem are provided subse-
quently. First, we split the sum of fXn;ig into two parts:Pn

i=1Xn;i =
Pn

i=1Zn;i +
Pn

i=1
~Zn;i; (31)

where

Zn;i := Xn;i1 (jXn;ij � bn)� E [Xn;i1 (jXn;ij � bn)] ;

~Zn;i := Xni1 (jXn;ij > bn)� E [Xn;i1 (jXn;ij > bn)] :
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We can complete the proof if both terms on the RHS of (31) are shown to be Op (�n) and the rate of �n
is as given in each of Theorems 1-5.
For Theorems 1 and 4, we have

Pn
i=1
~Zn;i = Op (�n) by Condition A2 and the assumption that

E[jXn;ij] <1. For Theorem 3, we derive the rate of
Pn

i=1
~Zn;i (below). For Theorems 2 and 5, we use

the Markov inequality: for any a > 0,

Pr
����Pn

i=1
~Zn;i

��� � a�n

�
� a�1��1n E[j

Pn
i=1
~Zn;ij]

� a�1��1n 2
Pn

i=1E[jXn;ijp]=bp�1n

� a�12ngpn=�nb
p�1
n ; (32)

where the second inequality follows from the triangle inequality and the last inequality follows from the
de�nition of the uniform moment bound in (4). The majorant side of (32) can be made arbitrarily small
for su¢ ciently large a; therefore, we obtain

Pn
i=1
~Zn;i = Op (�n) if ngpn=b

p�1
n = O (�n). We subsequently

show that ngpn=b
p�1
n = O (�n) with �n speci�ed in (6) or (13).

To derive the rate of
Pn

i=1Zn;i, we use the Bernstein-type inequality in the proofs of all �ve theorems.
We de�ne the covariance process of fZn;ig as

D (n;m) := sup0�j�n�1E[(
Pminfj+m;mg

i=j+1 Zn;i)
2] (for m = 1; : : : ; n). (33)

Note that E [Zn;i] = 0, jZn;ij � 2bn, and fZn;ig has the same mixing coe¢ cient as fXn;ig. Then, by
Theorem 2.1 of Liebscher (1996), for any arbitrary a > 0 and each positive integer m satisfying

m � n and 4m (2bn) < a�n; (34)

it holds that

Pr (j
Pn

i=1Zn;ij � a�n) � 4 exp
(
� (a�n)

2

64nD (n;m) =m+ (8=3) (a�n)m (2bn)

)
+ 4

n

m
�n (m) : (35)

We derive the bound of D (n;m) and choose an appropriate pair of m and bn in the proof of each
theorem. We also illustrate that for a large enough, the majorant side can be arbitrarily small (as
n!1), which means

Pn
i=1Zn;i = Op (�n).

Proof of Theorem 1. Given the previous arguments, we �rst derive the bound of D (n;m) (whose proof
is provided in Section A.4):

Lemma 1. There exists some constant ! (> 0) such that

D (n;m) �

8<:
!b2nm

2�� for � 2 (0; 1) ;
!b2nm logm for � � 1;
!b2nm for � > 1:

(36)

Now, suppose that � 2 (0; 1). Letting int [x] denote the integer part of x, we set m = int[
p
an1=(1+�)]

and bn = �nn
�1=(1+�), both of which satisfy the conditions in (34) for any a (> 0) if n is large enough.

Then, by (1) with D (n;m) � !b2nm
2�� in (36), the RHS of (35) is bounded by

4 exp

�
� a2

64!a(1��) + (16=3) a3=2

�
+ 4An=int

�p
an
�
;

23



and we can let Pr (j
Pn

i=1Zn;ij � a�n) be arbitrarily small for a large enough. This implies the desired
result for � 2 (0; 1). If � = 1 (resp. � > 1), we set bn = �nn

�1plogm (resp. bn = �nn
�1=2). This bn,

together withm = int
�p
an1=(1+�)

�
, satis�es (34) for any n large enough. Then, given the corresponding

bound of D (n;m) in (36), we can show that
Pn

i=1Zn;i = Op (�n) by the same argument. The proof is
now complete.

Proof of Theorem 2. First, consider the case where � (p� 2) =p 2 (0; 1). Given any arbitrary a (> 0),
we set m = int

�p
an1=(1+�)

�
and bn = �nn

�1=(1+�) (these m and bn satisfy (34) for n large enough).
Then, we apply (35) to

Pn
i=1Zn;i with the following covariance bound:

D (n;m) � !g2nm
2��(p�2)=p; (37)

where p > 2; � (p� 2) =p 2 (0; 1); ! (> 0) is some constant; and gn is de�ned in (4). Given �n in (6),
we can show that Pr(j

Pn
i=1Znij � a�n) ! 0 as a ! 1, as in the proof of Theorem 1. This, together

with (32), implies that Pn
i=1Xn;i = Op (�n) +Op(ng

p
n=b

p�1
n ):

Therefore, we can complete the proof if we show that ngpn=b
p�1
n = O (�n). Since bn = �nn

�1=(1+�) and
�n = n(p+�)=p(1+�)gn, it holds that ngpn=b

p�1
n = O

�
n(p+�)=p(1+�)gn

�
= O (�n). Now, we have obtained the

desired result.
For the cases where � (p� 2) =p = 1 and > 1, we compute the L2-bound of

Pn
i=1Xn;i by using Davy-

dov�s inequality, which allows us to derive the same convergence rate as when using the Bernstein-type
inequality but with a stronger notion of the L2-convergence (rather than the convergence in probability).
By Davydov�s inequality (Corollary 1.1 of Bosq, 1998), we have


n (l) := sup1�k�n�l jCov
�
Xn;k; Xn;(k+l)

�
j

� 4p(2Al��)(p�2)=pg2n = O(l��(p�2)=pg2n); (38)

uniformly over l. Then,

E[j
Pn

i=1Xn;ij2] �
Pn

i=1E[X
2
n;i] + 2n

Pn�1
l=1 
n (l)

� ng2n +O
�
ng2n

�
�
Pn�1

l=1 l
��(p�2)=p: (39)

The bound of
Pn�1

l=1 l
��(p�2)=p can be computed as

Pn�1
l=1 l

��(p�2)=p �
(
1 +

R n
1
x�1dx = 1 + log n for � = p= (p� 2) ;

1 +
R1
1
x��(p�2)=pdx � 1 + 1

�(p�2)=p�1 for � > p= (p� 2) : (40)

This, together with (39), implies

E[j
Pn

i=1Xn;ij2] =
(
ng2n +O (ng2n)� [1 + log n] = O (n (log n) g2n) for � = p= (p� 2) ;
ng2n +O (ng2n)� [1 + 1

�(p�2)=p�1 ] = O (ng2n) for � > p= (p� 2) :

Therefore, we have shown the desired result: E[j
Pn

i=1Xn;ij2] = Op(
p
n log ngn) for � = p= (p� 2) and

= Op (
p
ngn) for � > p= (p� 2), completing the proof.
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Proof of Theorem 3. Since the mixing coe¢ cient satis�es �n (m) � O(expf�(1 + �)�1m log �ng) as in
(10), we can �nd some ! 2 (0;1), such that

Dn;m = O(!mb2n[1 +
1

log �n
expf�(1 + �)�1m log �ng])

� !mb2n [1 + kn expf�~cm=kng] ;

where ~c := �(1 + �)�1�c; the �rst equality follows from arguments similar to those for (38)-(40); and the
last inequality holds since 1

log �n
= O(kn) and log �n � ��ckn. By the proof of Lemma 3.1 of Phillips and

Magdalinos (2007), we have
Pn

i=1X
2
n;i = Op(nkn). Now, we set bn = �n=

p
nkn and �n =

p
nkn, which

together with E[jXn;ij] <1 (for each i) imply that
Pn

i=1
~Zn;i = Op(�n).

If kn = o (n), we let m =
p
ankn (which satis�es (34) for large a). Then, the RHS of (35) is bounded

by

4 exp

�
� a2

64 + (16=3) a3=2

�
+O

�
a�1=2

p
n=kn expf�~ca1=2

p
n=kng

�
;

which can be made arbitrarily small for su¢ ciently large a, as n!1. For the case of kn = n, by letting
m = n=(log n) (which also satis�es (34) for any a if n is large enough), the RHS of (35) is bounded by

4 exp

�
� a2

64 + (16=3) a=(log n)

�
+O ((log n) expf�~c log ng) ;

which is also arbitrarily small for large a, as n ! 1. Now, we have shown that
Pn

i=1Zn;i = Op(�n),
completing the proof.

Proof of Theorem 4. We follow the same strategy as in the proof of Theorem 1. Thus, we omit details
and outline only the main points. For the Bernstein-type inequality (35), we setm = int[

p
an1=(1+�)���=(1+�)]

(for each a; this m satis�es the �rst conditions in (34) as T !1) throughout this proof. Furthermore,
we use the following covariance bound:

Lemma 2. There exists some constant ! (> 0) such that

D (n;m) �

8<:
!b2n�

��m2�� for � 2 (0; 1) ;
!b2n�

�1m logm for � � 1;
!b2n�

�1m for � > 1:
(41)

Given this bound for each case, we set bn=�n to satisfy the rate given in (11). Then the second
condition in (34) is satis�ed for any a large enough (for example, if we let bn = �nT

�1=(1+�)� for
� 2 (0; 1) then �a � 64� is enough). Note that we use �logm = O(log n)� for � � 1, since m =

int
�p
an1=(1+�)���=(1+�)� and ��1 = n=T = O (n). If Condition A3 is supposed, then we can write

logm = O (log T ). Then, by the same arguments as in the proof of Theorem 1, we can show thatPn
i=1Zni = Op (�n), completing the proof.

Proof of Theorem 5. For the case where � < p= (p� 2), we apply (35) to
Pn

i=1Zn;i. We let m =

int
�p
an1=(1+�)���=(1+�)� and bn = �nn

�1=(1+�)��=(1+�) with �n in (13), and we use the covariance
bound:

D (n;m) � !g2n�
��(p�2)=pm2��(p�2)=p; (42)
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where ! (> 0) is some constant. This (42) follows from the same argument as in (37), whose proof is
omitted. Now, we can show that

Pn
i=1Zni = Op (�n) by the previous argument. Given these �n and bn,

we have ngpn=b
p�1
n = O (�n), completing the proof for � 2 (0; p= (p� 2)).

For the cases where � (p� 2) =p = 1 and > 1, we derive the L2-bound of
Pn

i=1Xn;i. As in (39), we
have

E[j
Pn

i=1Xn;ij2] � ng2n +O
�
ng2n

�
�
Pn�1

l=1 (�l)
��(p�2)=p : (43)

If � (p� 2) =p = 1, we can show that
Pn�1

l=1 (�l)
��(p�2)=p = O (��1 log n), as we did in (40). Then,

together with (43), we obtain

jj
Pn

i=1Xn;ijj2 = O(
p
n��1 log ngn) = O(

p
T log n��1gn);

where we note that log n = log (T=�) = O (log T ) under Condition A3. If � (p� 2) =p > 1, then

E[j
Pn

i=1Xn;ij2] �
Pn

i=1E[X
2
n;i] + 2n[

P�
l=1
n (l) +

Pn�1
l=�+1
n (l)]

� ng2n + 2ng
2
n[�+O (1)�

Pn�1
l=�+1 (�l)

��(p�2)=p]; (44)

where 
n(l) is de�ned in (38). The last inequality holds since 
n (l) � g2n and 
n (l) = O(g2n (�l)
��(p�2)=p)

uniformly over l (the latter can be derived in the same way as for (38) under �! 0). The second term
in the square brackets is bounded as

Pn�1
�+1 (�l)

��(p�2)=p � ���(p�2)=pR1
�
x��(p�2)=pdx =

���(p�2)=p�1��(p�2)=p

� (p� 2) =p� 1 :

Given this, we set � = int [��1] and obtain

E[j
Pn

i=1Xn;ij2] = O
�
ng2n�

�1� = O
�
Tg2n�

�2�
in (44), implying the desired result.

A.2 Proofs for the nonparametric estimator�s convergence

Proof of Theorem 6. We start by computing the uniform moment bound. For any p � 1,

fE[j ~Xn;ij]g1=p � 2f
R1
�1 jK ((q � z) =h) [� (q)� � (z)]jp �i� (q) dqg1=p; (45)

by the triangle and Hölder inequalities, where �i� is the marginal density of Zi�. We also have

max
1�i�n

E[j ~Xn;ijp] = max
1�i�n

R1
�1 jK ((q � z) =h) [� (q)� � (z)]jp �i� (q) dq

= max
1�i�n

h
R1
�1 jK (r)j

p j� (rh+ z)� � (z)jp �i� (rh+ z) dq

= max
1�i�n

hp+1
R1
�1 jK (r) rj

p j�0 (rh�rh;z + z)j�i� (rh+ z) dr

� hp+1
R1
�1 jK (r) rj

p dr � sup
j�j���

j�0 (�+ z)j � sup
s�0; j�j���

�s (�+ z)

= O
�
hp+1

�
; (46)
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where the second and third equalities follow from changing variables and the Taylor expansion (with
some �rh;z 2 [0; 1], which may depend on rh and z); the inequality holds for h small enough, since the
support of K is assumed to be bounded; and the last equality holds by Condition B2-ii.
Given (45)-(46), we obtain gn = sup1�i�n jj ~Xn;ijjp = O

�
h1+1=p

�
for any p > 1. We then apply

Theorem 5 with p > 2. For the case when � � 1,

(1=nh)
Pn

i=1
~Xni = Op

�
(1=nh)� T (p+�)=p(1+�)��1 � h1+1=p

�
= Op(T

��=(1+�) �T �=(1+�)h�1=p):
If � > 1, we can always have � > p= (p� 1) by setting p (> 2) large enough, to obtain

(1=nh)
Pn

i=1
~Xni = Op

�
(1=nh)� T 1=2��1 � h1+1=p

�
= Op

�
T�1=2h1=p

�
:

Now, the results of the theorem follow since 1=p 2 (0; 1=2) for p > 2.

Proof of Theorem 7 (i). The result can be proven by the standard arguments for the kernel method,
where we use the Taylor expansion and an argument similar to that for (46) to show the negligibility of
the remainder terms. We omit details for brevity.

Proof of Theorem 7 (ii). If the condition in (22) holds, we have

(1=Th)
Pn

i=1~�n;i � op (1)� (1=nh)
Pn

i=1

��K �Zi��z
h

��� :
Note that fE [jK ((Zi� � z) =h)j]g = O (h) uniformly over i (for each p � 1 and each z), which follows
from the uniform boundedness of �s (z). Consequently, we obtain the desired result. When (23) holds,
we consider the following moment bound:

E [j~�n;ij] =
R1
�1
R1
�1K

�
u�z
h

�
v~�i�;i�+1 (u; v) dudv

= h
R1
�1
R1
�1K (w) v~�i�;i�+1 (wh+ z; v) dwdv

� h
nR1

�1 jK (w)j
(1+�)=� �i� (wh+ z) dw

o�=(1+�)
jj
R (i+1)�
i�

[� (Zs)� � (Zi�)] dsjj1+�

� h
n
sups�0;z2R �s (z)� �K1=�

R1
�1 jK (w)j dw

o�=(1+�)
� max
1�i�n

sup
s2[i�;(i+1)�]

k� (Zs)� � (Zi�)k1+�

= O (h��n) ; (47)

where ~�i�;i�+1 (�; �) is the joint density of Zi� and
R (i+1)�
i�

[� (Zs) � � (Zi�)]ds; �i� (�) is the marginal
density of Zi�; the inequality holds by the Hölder inequality; and the last equality holds uniformly over
i. Consequently, (47) leads to the desired result.

Proof of Theorem 7 (iii). First, look at

E
�
K2
�
Zi��z
h

�
[U(i+1)� � Ui�]

2
�

=
R (i+1)�
i�

E
h
K2
�
Zi��z
h

�
[�2s�ds+

R
Rnf0g

���Us� (x)��2 FU (dx)]i ds
� h sup

1�i�n

nR1
�1 jK (w)j

2(1+")=" �i� (wh+ z) dw
o"=(1+")

�sup
s�0

jj�2s +
R
Rnf0g

���Us (x)��2 FU (dx) jj1+"
= O (h�) ;
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uniformly over i, where the �rst equality holds by the Ito isometry and the Fubini theorem; the inequality
holds by arguments similar to those for (47); and the last equality holds by the boundedness conditions
in (B1), (B2) and (B5). Then, since

�
U(i+1)� � Ui�

	
is a martingale di¤erence array,

E[j ~ (z) j2] =
�
1=T 2h2

�Pn
i=1E

�
K2
�
Zi��z
h

�
[U(i+1)� � Ui�]

2
�

=
�
1=T 2h2

�Pn
i=1O (h�) = O (1=Th) ;

as desired.

A.3 Discussions on eqs. (25) and (26), su¢ cient conditions for Condition
B4

The condition (25) is called the Kolmogorov-µCentsov criterion (e.g., Theorem 2.8 in Chapter 2 of
Karatzas and Shreve, 1991). If (25) holds, then there exists a continuous modi�cation f ~Zsg of fZsg
that is almost surely Hölder continuous with any exponent 
 2 (0; d=c) and some # 2 (0;1) satisfying

Pr

0@! 2 

������9 �� (!) > 0 such that sup

jt�sj2(0; ��(!)); s;t2[0;1)

j ~Zt (!)� ~Zs (!) j
jt� sj
 � #

1A = 1; (48)

where �� is some positive-valued random variable. While the classical Kolmogorov-µCentsov theorem
is a local result in that T must be �xed (T = �T < 1), we can extend it to a global result where
�s; t 2 [0; T ]�may be replaced with �s; t 2 [0;1),� as in (48) (see arguments/proofs in Kanaya and
Kristensen, 2015).

We consider the case where fZsg follows (26). For example, if fZsg is the OU process described by

dZs = �Z (Zs �mZ) ds+ ��ZdBs;

where �Z ; ��z 2 (0;1) and mZ 2 R, we can verify that

sup0�s<t<T ; js�tj�� jZs � Ztj = Op(�
p
log T ) +Op(

p
� log (1=�)); (49)

as � ! 0 and T !1. Therefore, the RHS is Op(
p
� log (1=�)) if

p
�= log (1=�) = O(

p
log T ), which is

a mild restriction on � (cf. Condition A3 with � = �). More generally, if fZsg is a general di¤usion as
in (26), then it holds that

sup0�s<t<T ; js�tj�� jZs � Ztj
= Op(� sup0�s<T jaZ (Zs) j) +Op(

p
� log (1=�)max

�
1; sup0�s<T j�Z (Zs) j

	
); (50)

as � ! 0 and T !1, which is discussed and veri�ed in Kanaya (2016), where the proof of (50) is based
on a new result on the global modulus of continuity of Brownian motions (also developed in Kanaya,
2016), as well as so-called time-change arguments.
Given (50), we can check (49) since the OU process satis�es maxf1; sup0�s<T j�Z (Zs)jg � 1 + ��Z =

O (1) and sup0�s<T jaZ (Zs)j � j�Zmzj+Op(sup0�s<T jZsj) = Op(
p
log T ), where the latter follows from

the result on extremal processes (see, e.g., Borkovec and Klüpperlberg, 1998; Jeong and Park, 2014, and
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references therein). In the same way, (50) also allows us to verify that sup0�s<t<T ; js�tj�� jZs � Ztj =
Op(

p
� log (1=�)) for a di¤usion process in Example 3 (for example, if its drift function is uniformly

bounded on R). Given these continuity results such as (48)-(50), as well as some further Hölder conti-
nuity condition of the drift function �(�) (or the use of the Ito lemma to a di¤usion process (26)), we
can check (22) of Condition B4.

A.4 Proofs of auxiliary results

Proof of eq. (8). By a careful investigation of the proof of Theorem 7 of de Jong (1998), we can check
that replacing de Jong�s condition (19) with

a�2n (
Pn

t=1c
2
nt)
Pn�1

m=0�m = O (1) (51)

leads to k
Pn

t=1Xntk2 = O (an), where �m stands for the mixingale number, and an, cnt and Xnt are used
in the same sense as in de Jong�s theorem. Given that gn (p) = O (1), we can let cnt = O (1). In this
case, (51) is reduced to a�2n n

Pn�1
m=0�m = O (1). Since �m � �Am��(1=2�1=p), we can derive the bound ofPn�1

m=0�m in the same way as in the proof of Lemma 1 for the three cases in (8), where we note that
�(1=2 � 1=p) < 1 , � < 2p= (p� 2). We can then check that the possible rates of an are as given on
the RHS of (8).

Proof of Eq. (20). We outline only the main points. Assuming that (18) holds, we have Zs = Zs�.
Look at

(1=Th)
Pn

i=1

R (i+1)�
i�

��K 0 �Zs�z
h
+Oa:s:(

Zs�Zi�
h

)
��� j� (Zs)j ds

= (1=Th)
Pn

i=1

R (i+1)�
i�

��K 0 �Zs�z
h
+Oa:s:(

Zs�Zi�
h

)
��� j� (Zs)j1fjZs�Zi�j=h��gds

+ (1=Th)
Pn

i=1

R (i+1)�
i�

��K 0 �Zs�z
h
+Oa:s:(

Zs�Zi�
h

)
��� j� (Zs)j1fjZs�Zi�j=h>�gds; (52)

where � (> 0) is some positive constant. The second term on the RHS is negligible. This is because, for
each ! 2 
� with Pr (
�) = 1, it holds that 1fjZs�Zi�j=h>�g = 0 uniformly over s 2 [i�; (i+ 1)�] and
i 2 f1; : : : ; ng for any

p
� log (1=�)=h small enough. To �nd the bound of the �rst term on the RHS,

we look at ��K 0 �Zs�z
h
+Oa:s:

�
Zs�Zi�

h

����1fjZs�Zi�j=h��g � K� �Zs�z
h

�
;

where K� is a dominant function such that 8 j�j � � (with some � > 0), jK 0 (x+ �)j � K� (x) for any
x, and

R1
�1K

� (x) dx < 1. We can �nd such a dominant function for almost all standard kernels (in
particular for kernels with bounded support; see the conditions on the kernel function and the proof of
Theorem 1 in Kanaya and Kristensen, 2015). Therefore, the �rst term on the RHS of (52) is bounded
by 1

T

R T
0
1
h
K� �Zs�z

h

�
j� (Zs)j ds, which can be shown to be Op (1) by a standard argument for the kernel

method.

Proof of Lemma 1. We set� = 1 without loss of generality. Let 
n (l) := sup1�k�n�l
��Cov �Znk; Zn(k+l)���

for each l(= 0; 1; : : : ; n � 1). Since jZn;ij � 2bn and 
n (l) � �� (l) j2bnj2 � 4Ab2nl
��, where the latter
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follows from Billingsley�s inequality (Corollary 1.1 of Bosq, 1998). Then,

E[(
P(j+m)^n

i=j+1 Zni)
2] �

P(j+m)^n
i=j+1 E[Z2ni] + 2m

Pm�1
l=1 
n (l)

� 4mb2n + 2m
Pm�1

l=1 4Ab
2
nl
��

= 4mb2n
�
1 + 2A

Pm�1
l=1 l

��� : (53)

The proof is completed if we compute the bound of
Pm�1

l=1 l
�� for each case:

Pm�1
l=1 l

�� �
R m
0
x��dx =

m1��

1� �
for � 2 (0; 1) ;Pm�1

l=1 l
�� = 1 +

Pm�1
l=2 l

��

�
�
1 +

R m
1
x�1dx = 1 + logm for � = 1;

1 +
R1
1
x��dx = 1 + 1= (� � 1) for � > 1:

Proof of Inequality (37). This proof proceeds in the same way as that of Lemma 1 for � 2 (0; 1), and
the details are omitted. It di¤ers only in using the covariance bound 
n (l) � 4p

�
2Al��

�(p�2)=p
g2n in

(53), where this bound follows from Davydov�s inequality (Corollary 1.1 of Bosq, 1998).

Proof of Lemma 2. We use the same notion as in the proof of Lemma 1. By Billingsley�s inequality

n (l) � � (l) j2bnj2 � 4Ab2n (l�)

��. For � � 1, we consider the following bound:

E[(
P(j+m)^n

i=j+1 Zni)
2] �

P(j+m)^n
i=j+1 E[Z2ni] + 2m

Pm�1
l=1 
n (l)

� 4mb2n
�
1 + 2A

Pm�1
l=1 (l�)

��
�
: (54)

The bound of
Pm�1

l=1 l
�� can be computed as follows:

Pm�1
l=1 (l�)

�� �
�
���R m

0
x��dx � ���m1��= (1� �) for � 2 (0; 1) ;

��1 �1 + R m
1
x�1dx

�
= ��1 (1 + logm) for � = 1:

These, together with (54), imply the desired results for � � 1. If � > 1, then for any integer � (� 1),

E[(
P(j+m)^n

i=j+1 Zni)
2] �

P(j+m)^n
i=j+1 E[Z2ni] + 2m

nP�
l=1
n (l) +

Pm�1
�+1 
n (l)

o
� 4mb2n + 8mb2n

n
�+ A

Pm�1
�+1 (l�)

��
o
; (55)

where the second term in the braces is bounded asPm�1
�+1 (l�)

�� � ���R1
�
x��dx

� ����1��= (� � 1) (since � > 1).

Given this, we set � = int [��1] and obtain the upper bound of the RHS of (55) as O (mb2n�
�1),

completing the proof.
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