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Abstract

We consider sequential second-price auctions in which heterogeneous objects are

sold to bidders with unit demand and a single dimensional type. We show that a

symmetric increasing equilibrium exists if objects are ordered in terms of dispersive-

ness of value distributions. Equilibrium price declines when objects are equivalent

on average and additional conditions hold.
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1 Introduction

Sequential auctions are a popular institution for selling multiple objects. In a canonical

independent private values model of homogeneous objects, equilibrium price is martingale

(Weber 1983). However, many empirical studies suggest that price tends to decrease in ac-

tual markets (Ashenfelter 1989, Ashenfelter and Genesove 1992, Beggs and Graddy 1997).

To solve this “declining price anomaly,” many theoretical studies examine various real-

istic extensions, which include risk aversion (McAfee and Vincent 1983, Mezzetti 2011),

uncertainty about the future (Bernhardt and Scoones 1994, Engelbrecht-Wiggans 1994,

Jeitschko 1999), and goods heterogeneity (Kittsteiner et al. 2004).

Beggs and Graddy (1997) empirically examine heterogeneous objects and declining

price. Kittsteiner et al. (2004) formulate a declining valuation model and show declining

price in equilibrium. However, as Beggs and Graddy point out, valuation or quality of

objects does not always decline in many applications such as art and used cars.

This paper extends Kittsteiner et al. (2004) and incorporates a more general goods

heterogeneity that allows increasing valuations. We consider sequential second-price auc-

tions, with bidders having unit demand and a single dimensional type. We show that the

dispersive order of sales is critical for both the existence of a symmetric increasing equi-

librium and the declining price phenomenon. A symmetric increasing equilibrium exists

if a more dispersive object is sold first. Under the dispersive order of sales, declining price

in equilibrium is reasonable when the objects are equivalent on average, i.e., when they

have the same mean value. Expected price declines in equilibrium when there are many

bidders or when values are symmetrically distributed. Moreover, the declining price in

the “deflated scale” is explained solely by the dispersive order of sales.

2 Model and Equilibrium

The seller allocates two heterogeneous objects A and B in sequential second-price auc-

tions.1 The seller allocates object A in the first auction and then object B in the second.

1The analysis is straightforwardly extended to the case with more than two objects.
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There are n ≥ 3 potential buyers, each of whom has unit demand. Each bidder i has

private information about his type zi ∈ [z, z̄], which is independently and identically dis-

tributed. The cumulative distribution function of zi is denoted by F , which has a density

function f > 0. Bidder i ’s value of k = A,B is denoted by vk(zi), where vk(·) is identical

to all bidders. Both vA and vB are continuous and strictly increasing in zi. Without loss

of generality, let vA(z) ≡ z and vB(z) ≡ w(z).

We assume that the winner of the first auction does not participate in the second auc-

tion even if zi < w(zi).2 We focus on a symmetric increasing Bayesian Nash equilibrium,

in which bidders take a symmetric increasing pure strategy. Note that all remaining bid-

ders in the second auction submit their true values w(zi) in a weakly dominant strategy.

Hence, we focus on the incentives in the first auction.

The key condition of the paper is the dispersiveness of value distributions.

Definition 1 The value distribution of object A is more dispersive than that of object

B if w′(z) < 1 for all z. In short, we say that object A is more dispersive than B.

We assume that a more dispersive object is sold first. When we consider two random

variables z and y = w(z), our notion of dispersiveness is equivalent to the dispersive

order in stochastic orders (Shaked and Shanthikumer 2007). Kittsteiner et al. (2004)

and Elmaghraby (2003) assume the dispersive order of sales to guarantee an equilibrium.

Bernhardt and Scoones (1994) also consider a similar notion of dispersion, which is weaker

than ours.

Suppose that a bidding function b1(zi) forms a symmetric increasing equilibrium in

the first auction. Then, the equilibrium bid should satisfy the following Euler equation

(first-order condition) of the payoff maximization:

zi − b1(zi) = E[w(zi) − w(z(2)
n−1)|z

(2)
n−1 < zi], (1)

where z
(j)
m indicates the j-th highest order statistic of m IID random variables. The

left-hand side is the marginal profit in the first auction by slightly increasing the first
2This is also assumed in the model of stochastically equivalent objects by Engelbrecht-Wiggans (1994)

and Bernhardt and Scoones (1994).
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bid b1(zi). In a second-price auction, the marginal change in bid affects the bidder’s

own payoff only when his bid is very critical: zi = z
(1)
n−1. Hence, the marginal increase

in bid generates the ex-post gain of zi − b1(zi) at the first auction. The right-hand

side is the option value of participating in the second auction. In the marginal case of

zi = z
(1)
n−1, the bidder would win the second auction with probability 1 after losing in

the first auction. These two effects balance in equilibrium. Equation (1) immediately

provides the equilibrium bidding function at the first auction. The dispersive order of

sales guarantees the Euler equation to be sufficient for equilibrium.

Proposition 1 Sequential second-price auctions have a symmetric increasing equilib-

rium if object A is more dispersive than B. The equilibrium bidding function at the first

auction is

b1(zi) = zi − w(zi) + E[w(z(2)
n−1)|z

(2)
n−1 < zi]. (2)

Proof. All proofs are presented in the Appendix.

3 Equilibrium Price Trend

Let pt be the equilibrium price at the t-th auction. Because p1 = b1(z(2)
n ) and p2 = w(z(3)

n ),

(2) implies

p1 = z(2)
n − w(z(2)

n ) + E[p2|p1]. (3)

Hence, the expected price E[pt] declines if and only if E[z(2)
n ] > E[w(z(2)

n )].

Hereafter, let us assume that objects are equivalent on average: i.e., both objects A

and B have the same mean value.

Assumption 1 E[z] = E[w(z)] = µ.

Under Assumption 1, the expected price tends to decline with reasonable additional

conditions. We provide two cases in which equilibrium price declines.
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3.1 Large Number of Bidders

The first scenario is such that a large number of bidders exist. When w′ < 1, Assumption

1 indicates z > w(z) for a sufficiently large z. As n → ∞, we have E[z(2)
n ] → z̄, which

leads to E[z(2)
n ] > E[w(z(2)

n )].

Proposition 2 Suppose that Assumption 1 holds and that object A is more dispersive

than B. The expected price declines, i.e., E[p1] > E[p2], if the number n of bidders is

sufficiently large.

3.2 Symmetric Distributions

Another scenario is such that the value distributions of A and B are symmetric. The

value distribution of object A is symmetric if µ = (z+ z̄)/2 and f(µ−z) = f(µ+z) for all

z ≤ µ. In addition, the distribution of object B is also symmetric if w′(µ−z) = w′(µ+z)

for z ≤ µ. Under symmetric distributions, the equilibrium price declines even for a small

number of bidders.

Proposition 3 Suppose that the number of bidders n ≥ 4 and that object A is more

dispersive than B. Further suppose that Assumption 1 holds and that both distributions

are symmetric. Then, the equilibrium price declines: E[p1] > E[p2].

3.3 Deflated Price Trend

Kittsteiner et al. (2004) consider sequential auctions with declining valuations and assume

an equivalent condition to w′(z) ≤ 1 (Assumption A5, p. 93). Their main theorem states

that if object A is (weakly) more dispersive and w(z) ≤ z for all z, then

p1 ≥ w(p1) ≥ E[p2|p1] (4)

(Theorem 2, p. 94). That is, equilibrium price declines in devaluated or deflated scale.

This result is independent of declining valuations w(z) ≤ z but derived only from the

dispersive order of objects. Indeed, because p1 < z
(2)
n must hold in equilibrium, the
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dispersiveness indicates

z(2)
n − p1 > w(z(2)

n ) − w(p1).

Substituting (3) for p1, we have

w(p1) > w(z(2)
n ) − z(2)

n + p1 = E[p2|p1].

The deflated price declines when a more dispersive object is sold first, regardless of level

of valuation. Thus, the declining price anomaly observed in the case of heterogeneous

objects by Beggs and Graddy (1997) is solved.

A Proofs

A.1 Proof of Proposition 1

We assume w′(z) < 1 for all z. Suppose that all bidders other than i take b1(z) in the

first auction, which is defined by (2). The expected payoff for bidder i when he bids

b1(ẑi) in the first auction and bids his true valuation w(zi) in the second is given by:

Ui(zi, ẑi) =
∫ ẑi

z
[zi−b1(y1)]f (1)(y1)dy1+

∫ z

ẑi

∫ min{y1,zi}

z
[w(zi)−w(y2)]f (1,2)(y1, y2)dy2dy1,

where f (k) denotes the density of z
(k)
n−1 and f (1,2) denotes the joint density of z

(1)
n−1 and

z
(2)
n−1. We shall show that for all ẑi > zi, ∂

∂ẑi
Ui(zi, ẑi) < 0 and for all ẑi < zi, ∂

∂ẑi
Ui(zi, ẑi) >

0.

Suppose ẑi > zi. We have

∂

∂ẑi
Ui(zi, ẑi) = [zi − b1(ẑi)]f (1)(ẑi) −

∫ zi

z
[w(zi) − w(y2)]f (1,2)(ẑi, y2)dy2.

Then,

∂
∂ẑi

Ui(zi, ẑi)

f (1)(ẑi)
= zi − b1(ẑi) −

∫ zi

z
[w(zi) − w(y2)]f (2)(y2|z(1)

n−1 = ẑ1)dy2

< zi − b1(ẑi) −
∫ ẑi

z
[w(zi) − w(y2)]f (2)(y2|z(1)

n−1 = ẑ1)dy2

= zi − b1(ẑi) − w(zi) + E[w(z(2)
n−1)|z

(2)
n−1 < ẑi].

(5)
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The inequality holds because w(zi) − w(y2) < 0 for y2 > zi. Substituting (2) for b1(ẑi),

(5) yields

∂
∂ẑi

Ui(zi, ẑi)

f (1)(ẑi)
< zi − b1(ẑi) − w(zi) + E[w(z(2)

n−1)|z
(2)
n−1 < ẑi]

= zi − ẑi − (w(zi) − w(ẑi)) < 0.

The last inequality comes from w′(z) < 1.

Suppose ẑi < zi. Similarly to the previous paragraph, we have the result as follows:

∂
∂ẑi

Ui(zi, ẑi)

f (1)(ẑi)
= zi − b1(ẑi) − w(zi) + E[w(z(2)

n−1)|z
(2)
n−1 < ẑi]

= zi − ẑi − (w(zi) − w(ẑi)) > 0.

¥

A.2 Proof of Proposition 2

Let g(z) = z −w(z). By (3), it suffices to show E[g(z(2)
n )] > 0 for a large n. Because g is

increasing by the dispersive order of sales and E[g(z)] = 0, there exists ẑ and g(z) > 0

for all z > ẑ. Let F
(2)
n be the CDF of z

(2)
n ; thus,

F (2)
n (z) = Fn(z) + n(1 − F (z))Fn−1(z)

≤ Fn−1(z)(n + F (z)).
(6)

Notice that for every δ ∈ (0, 1), δn−1n converges to 0 as n → ∞. Therefore, for every

z ∈ (z, z̄), F
(2)
n (z) converges to 0 as n → ∞. For an arbitrary z ≥ ẑ, we have

E[g(z(2)
n )] =

∫ z

z
g(s)f (2)

n (s)ds +
∫ z̄

z
g(s)f (2)

n (s)ds

>

∫ z

z
g(z)f (2)

n (s)ds +
∫ z̄

z
g(z)f (2)

n (s)ds

= F (2)
n (z)g(z) + (1 − F (2)

n (z))g(z).

(7)

Hence, we have E[g(z(2)
n )] > 0 for a sufficiently large n. ¥
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A.3 Proof of Proposition 3

Note that for every pair of generic realizations (z(2)
n , z

(j)
n ) with j ≥ 3, dispersiveness

implies

z(2)
n − z(j)

n > w(z(2)
n ) − w(z(j)

n ). (8)

Case 1. The number of bidders n is odd; n = 2m + 1 and m ≥ 2. By symmetric

distributions, the sample median is an unbiased estimator of its mean: E[z(m+1)
n ] =

E[w(z(m+1)
n )] = µ. By taking expectation of (8) with j = m + 1, we have

E[z(2)
n − z(m+1)

n ] > E[w(z(2)
n ) − w(z(m+1)

n )]

∴ E[z(2)
n − w(z(2)

n )] > 0. (9)

Case 2. The number of bidders n is even; n = 2m and m ≥ 2. By symmetric distribu-

tions, we have

E
[z

(m)
n + z

(m+1)
n

2

]
= E

[w(z(m)
n ) + w(z(m+1)

n )
2

]
= µ.

In a similar manner to Case 1, we have

1
2

(
E[z(2)

n − z(m)
n ] + E[z(2)

n − z(m+1)
n ]

)
>

1
2

(
E[w(z(2)

n ) − w(z(m)
n )] + E[w(z(2)

n ) − w(z(m+1)
n )]

)
∴ E[z(2)

n − w(z(2)
n )] > 0. (10)
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