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Abstract

We study a two-period saving model where the agent’s future income might be

ambiguous. Our agent has a version of the smooth ambiguity decision criterion

(Klibanoff, Marinacci and Mukerji (2005)), where the agent’s perception about ambi-

guity is described by a second-order belief over first-order risks. We model increasing

ambiguity as a spreading-out of the second-order belief. We show that under a “Risk

Comonotonicity” condition, our agent saves more when ambiguity in future income

increases. We argue that the condition is indispensable for our result.

JEL classification numbers: D80, D81, D91, E21

1 Introduction and Summary

Does an ambiguity averse agent have a stronger precautionary saving motive when ambi-

guity in future income increases? We study a saving problem of an ambiguity averse agent
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in the face of ambiguity in future income. The agent has a version of the smooth ambiguity

decision criterion that is axiomatized by Klibanoff, Marinacci and Mukerji (2005). When the

agent is ambiguity neutral, our problem reduces to the classic one studied by Kimball (1990).

Our main result (Proposition 1) is that under an appealing condition, the agent has a stronger

precautionary saving motive when the ambiguity in future income increases. The condition

roughly says that when “first-order beliefs” about future income change, the expected utility

and the expected marginal utility from future income move in the opposite directions. Since

utility is increasing and marginal utility is decreasing in income, this condition holds intu-

itively in a variety of contexts. We argue in Section 3 that it is in fact indispensable for our

comparative statics result. So our main result is tight in this sense.

The contributions of this paper are twofold. First, we propose a notion of increasing

ambiguity for future income, elaborating on the idea in Snow (2010).1 It relates directly to

the informativeness of signals in Blackwell’s information theory. Hence, the notion admits

various equivalent interpretations and could be useful in a variety of applications. Second, we

demonstrate that the notion is plausible at least in our precautionary saving context. When

the future looks more ambiguous in our notion, an ambiguity averse agent is shown to saves

more as expected.

Our model is similar to, but different from, Berger (2014) and Osaki and Schlesinger

(2014), where the agent has the recursive smooth ambiguity decision criterion (Klibanoff,

Marinacci and Mukerji (2009)). Notably, Berger (2014) reports an important result that an

ambiguity averse agent saves more in the case of ambiguity in future income than the case

of no ambiguity, under a condition similar to ours in spirit. The result however is silent if

an initially ambiguous future income gets more ambiguous, which our model can handle

in a clean way. We speculate that such intermediate cases, though important, are hard to

characterize in the recursive smooth ambiguity decision model.

2 Precautionary Saving under Income Ambiguity

An environment is a pair (S ,Y) of random variables jointly distributed on R2, where S is a

signal and Y an income level. It summarizes an agent’s perception about income ambiguity.

In Klibanoff, Marinacci and Mukerji (2005)’s terms, each conditional distribution Y |S = s,

s ∈ R, is a first-order belief about future income, and the distribution of all first-order beliefs
1Snow (2010) proposes a notion of increasing ambiguity in a general abstract setup.
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{Y |S = s, s ∈ R} induced by S is his second-order belief. We consider the saving problem

of an agent who has a sure income e ∈ R+ today, an ambiguous income (S ,Y) tomorrow,

a discounting factor β ∈ (0, 1), and who faces a per unit saving cost q ∈ (0,∞). The agent

solves

max
z

v (e − qz) + βE
[
φ (E [u (z + Y) |S ])

]
(1)

where z ∈ R is an amount of saving, and v, u, φ are increasing and smooth real-valued func-

tions over R with v′′ < 0,2 u′′ ≤ 0, u′′′ ≥ 0, φ′′ ≤ 0, and φ′′′ ≥ 0.

In period 1, the utility from net income is measured by v. In period 2, the utility is calcu-

lated first by finding the expected values of u conditional on various first-order beliefs, and

then these conditional expected values, after transformed by φ, are averaged with respect to

the second-order belief. It therefore conforms with the so called smooth ambiguity decision

criterion.3 When φ is strictly concave, the agent is strictly ambiguity averse. When φ is

linear, the agent is ambiguity neutral, and (1) reduces to Kimball (1990)’s classical problem.

It helps to consider the special case of v = φ ◦ u, where the objective function,

φ◦u (·)+βE
[
φ (E [u (·) |S ])

]
, represents an additively time separable preference.4 In this case,

if Y equals to a constant y, then E
[
φ (E [u (z + Y) |S ])

]
= φ ◦ u (z + y) = v (z + y), so v mea-

sures non-random income in each period. If S is a constant, then E
[
φ (E [u (z + Y) |S ])

]
=

φ (E [u (z + Y)]), which is a monotonic transformation of E [u (z + Y)]. In other words, the

preference restricted to the second-period risks is represented by the vNM function u.

Fixing v, u and φ as well as e, β and q, we are interested in the comparative statics of

optimal saving with respect to the change in environment. We apply a standard technique to

establish our results. Throughout, we assume that probability distributions in consideration

are well-behaved so that we can apply differentiation under expectation operators. Differen-

tiating (1) with respect to z we get

Ψ (z; (S ,Y)) := −qv′ (e − qz) + βE
[
φ′ (E [u (z + Y) |S ]) · E

[
u′ (z + Y) |S

]]
. (2)

Observe that −qv′ (e − qz) is decreasing in z, and φ′ (E [u (z + Y) |S ]) and E [(u′ (z + Y)) |S ]

are non-increasing in z, so Ψ (z; (S ,Y)) is decreasing in z. Hence, our precautionary saving
2The strict concavity of v is assumed to guarantee the uniqueness of the solution. It simplifies the presenta-

tion but is not necessary for our result.
3See Klibanoff, Marinacci and Mukerji (2005) for an axiomatization. However, except for the trivial case,

our preferences are not recursive in the sense of Klibanoff, Marinacci and Mukerji (2009).
4Thus one can extend this type of preference to the sum of an infinite series of discounted utilities, which

admits the standard dynamic programming techniques in principle.
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problem is a well-defined concave problem. Write z∗ (S ,Y) for the optimal saving under the

environment (S ,Y). Then z∗ (S ,Y) ≤ z∗ (S ′,Y ′) if Ψ (z∗(S ,Y); (S ′,Y ′)) ≥ 0.

3 Comparative Statics on Environment

3.1 Increasing Background Risks

For an illustrative purpose, we first assume that S ,Y and Y ′ are jointly distributed random

variables. We compare the optimal amounts of saving under (S ,Y) and (S ,Y ′), where signals

are identically distributed. Suppose that Y ′|S is riskier than Y |S with probability one. That

is, based on almost all the first-order beliefs, the agent perceives a greater income risk under

the latter environment.

When φ is linear, Kimball (1990) shows that an ambiguity neutral agent saves more in

the face of greater income risks. In our general setup, it is readily seen that an ambiguity

averse agent also saves more, i.e., z∗ (S ,Y) ≤ z∗ (S ,Y ′). Indeed, for each z, (z + Y ′)|S is

riskier than (z + Y)|S with probability one, and since φ′ is non-decreasing and u is concave,

then φ′ (E [u (z + Y) |S ]) ≤ φ′ (E [(u (z + Y ′)) |S ]) with probability one. Similarly, since u′ is

convex, E [(u′ (z + Y)) |S ] ≤ E [(u′ (z + Y ′)) |S ] with probability one. Hence, Ψ (z; (S ,Y)) ≤

Ψ (z; (S ,Y ′)) holds at each z, and a fortiori at z∗ (S ,Y).

3.2 Risk and Ambiguity Trade Off

Now assume that S , S ′ and Y are jointly distributed random variables. We compare (S ,Y)

and (S ′,Y), i.e., the income distribution is the same, but the signals are different, generat-

ing different ambiguity. Recall that when S is a constant, the objective function (1) reduces

to v (e − qz) + βφ (E [u (z + Y)]). Thus tomorrow’s income is deemed purely risky, not am-

biguous at all. At the other extreme, when S ′ = Y with probability one, (1) reduces to

v (e − qz) + βE
[
φ (u (z + Y))

]
. So the final income tomorrow is evaluated with a compound

function φ ◦ u, i.e., it is deemed purely ambiguous rather than risky in our model.

Notice that signal S in the first extreme case is completely uninformative for Y , and signal

S ′ in the second extreme case is perfectly informative. This observation suggests the follow-

ing criterion for comparison of ambiguous environments, which is essentially equivalent to

the definition proposed by Snow (2010):

4



Definition 1. An environment (S ′,Y) is no less ambiguous than another environment

(S ,Y) if S ′ is at least as informative as S for Y, i.e., for each integrable function f ,

E
[
E

[
f (Y) |S ′

]
|S

]
= E

[
f (Y) |S

]
.

In other words, an environment is more ambiguous if the agent learns more from the

signal. Notice that since the agent cannot choose an action contingent on the signal, an

additional piece of information is useless per se, and it will even hurt an ambiguity averse

agent who cares about first-order beliefs.5

The condition above is the same as the informativeness in Blackwell’s information

theory. Hence, there are well-known equivalent conditions. In the case of discrete ran-

dom variables, it is equivalent to that for each y and s in the support, Pr (Y = y|S = s) =∑
s′ Pr (Y = y|S ′ = s′) Pr (S ′ = s′|S = s). In general, it says that for each s in the support, the

conditional distribution Y |S = s is an average of conditional distributions E[(Y |S ′)|S = s].

That is, the second-order belief over {Y |S ′ = s′ : s′ ∈ R} constitutes a mean preserving

spread of that over {Y |S = s : s ∈ R}.6

We will show that our agent saves more in the face of the same income risks but more

ambiguous environment, under a condition to be stated below. To simplify notation, let

W0
(
S ′; z

)
:= E

[
u (z + Y) |S ′

]
, (3)

W1
(
S ′; z

)
:= E

[
u′ (z + Y) |S ′

]
. (4)

By construction, for each z, W0 and W1 are random variables measurable with respect to S ′.

Since u is increasing and u′ is non-increasing, it is intuitive that W0 and W1 move in the

opposite directions with S ′. If S ′ brings good news so that Y tends to be high, then W0 tends

to be high and W1 tends to be low. But this is not necessarily correct because Y is random

conditional on S ′, and it is something we need to assume.

Definition 2. Risk Comonotonicity at z is said to be satisfied if W0 and −W1 are comonotonic

random variables at z, i.e., for each pair of realizations s′1 and s′2 of S ′,

(
W0

(
s′1; z

)
−W0

(
s′2; z

))
·
(
W1

(
s′1; z

)
−W1

(
s′2; z

))
≤ 0

5See Grant, Kajii and Polak (1998) for their general discussion on Blackwell’s theorem without contingent

action choice.
6Snow (2010) uses this version, essentially.
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Notice that Risk Comonotonicity holds immediately if Y = S ′ with probability one, i.e.,

tomorrow’s income is purely ambiguous, or if u′ is constant, i.e., the agent is risk neutral.

Computing E [u (z + Y) |S ′] and E [u′ (z + Y) |S ′] by integration by parts, it can be readily

verified that Risk Comonotonicity holds at each z if the distributions in {Y |S ′ = s′ : s′ ∈ R}
are ordered by the first-order stochastic dominance as s′ changes, or they are ordered by the

second-order stochastic dominance.7

Proposition 1. Suppose that (S ′,Y) is no less ambiguous than (S ,Y), and that Risk Comono-

tonicity holds at z∗ (S ,Y). Then z∗ (S ,Y) ≤ z∗ (S ′,Y).

Proof. Let z := z∗ (S ,Y). We want to show that Ψ (z; (S ′,Y)) ≥ 0. Write for sim-

plicity Wi (S ′) = Wi (S ′; z), i = 0, 1. Since (S ′,Y) is no less ambiguous than (S ,Y),

then E [E [u (z + Y) |S ′] |S ] = E [u (z + Y) |S ] and E [E [u′ (z + Y) |S ′] |S ] = E [u′ (z + Y) |S ].

Thus,

E
[
W0

(
S ′

)
|S

]
= E [u (z + Y) |S ] , (5)

E
[
W1

(
S ′

)
|S

]
= E

[
u′ (z + Y) |S

]
. (6)

Since φ′ is non-increasing, Risk Comonotonicity implies that φ′ (W0) and W1 are

comonotonic random variables. That is, for each pair of realizations s′1 and s′2 of S ′,(
φ′

(
W0

(
s′1
))
− φ′

(
W0

(
s′2

)))
·
(
W1

(
s′1

)
−W1

(
s′2

))
≥ 0.

Since s′1 and s′2 are arbitrary, we can take the expectation of the above, conditional on S , first

letting s′1 = S ′ and then s′2 = S ′. Thus, we have

E
[
φ′

(
W0

(
S ′

))
·W1

(
S ′

)
|S

]
≥ E

[
φ′

(
W0

(
S ′

))
|S

]
· E

[
W1

(
S ′

)
|S

]
(7)

with probability one.

Since φ′ is convex by assumption, then by Jensen’s inequality

E
[
φ′

(
W0

(
S ′

))
|S

]
≥ φ′

(
E

[
W0

(
S ′

)
|S

])
with probability one. Since W1 is a positive random variable, then

E
[
φ′

(
W0

(
S ′

))
|S

]
· E

[
W1

(
S ′

)
|S

]
− φ′

(
E

[
W0

(
S ′

)
|S

])
· E

[
W1

(
S ′

)
|S

]
≥ 0 (8)

7As a matter of fact, the techniques to establish propositions 1 and 2 in Berger (2014) can be applied almost

directly to assure Risk Comonotonicity. So we refer the reader to them for more conditions that guarantee Risk

Comonotonicity.
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with probability one.

Now since z = z∗(S ,Y), in view of (5) and (6), we have

−qv′ (e − qz) + βE
[
φ′

(
E

[
W0

(
S ′

)
|S

])
· E

[
W1

(
S ′

)
|S

]]
= 0.

Hence,

1
β

Ψ
(
z;

(
S ′,Y

))
= −

q
β

v′ (e − qz) + E
[
φ′

(
E

[
u (z + Y) |S ′

])
· E

[
u′ (z + Y) |S ′

]]
= E

[
φ′

(
W0

(
S ′

))
·W1

(
S ′

)]
− E

[
φ′

(
E

[
W0

(
S ′

)
|S

])
· E

[
W1

(
S ′

)
|S

]]
= E

[
E

[
φ′

(
W0

(
S ′

))
·W1

(
S ′

)
|S

]
− φ′

(
E

[
W0

(
S ′

)
|S

])
· E

[
W1

(
S ′

)
|S

]]
≥ E

[
E

[
φ′

(
W0

(
S ′

))
|S

]
· E

[
W1

(
S ′

)
|S

]
− φ′

(
E

[
W0

(
S ′

)
|S

])
· E

[
W1

(
S ′

)
|S

]]
≥ 0

as desired, where the third equality holds because E [·] = E [E [·|S ]], the first inequality

holds by (7), and the last inequality by (8).

Remark 1. Risk Comonotonicity is used to establish (7): φ′ (W0 (S ′)) and W1 (S ′) are posi-

tively correlated conditional on S . Since positive correlation is weaker than comonotonicity,

we could strengthen Proposition 1 using (7) as an assumption. But as we shall discuss in the

next section, some sort of comonotonicity is indispensable for a robust comparative statics

result.

Remark 2. A similar comparative statics analysis can be carried out for the recursive case,

where the relevant first-order effect corresponding to (2) is:

−qv′ (e − qz) +
βE

[
φ′ (E [u (z + Y) |S ]) · E [u′ (z + Y) |S ]

]
φ′

{
φ−1 (

E
[
φ (E [E [u (z + Y) |S ]])

])}
Notice that the denominator of the fraction cancels out if S is constant, i.e., there is no

ambiguity, and this is the property Berger (2014) takes advantage of. However, if S is not

constant, i.e., both (S ,Y) and (S ′,Y) are ambiguous environments, the comparison of the

first-order effects appears to be complicated, and there does not seem to be an analogous

result as Proposition 1 in this setup.
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3.3 Tightness of Comonotonicity Assumption

We shall argue that Risk Comonotonicity is indispensable for a robust comparative statics

result to hold. That is, if comonotonicity fails at some z, then the saving implication is

reserved in some problem.

Let q, u and v be given as assumed. Suppose further that u′′ < 0, and for ease of expo-

sition that u > 0 so that when we construct φ later, we only needs to define it for positive

numbers. Moreover, assume that lim
x→0

v′(x) = ∞ and lim
x→∞

v′(x) = 0 so that an optimal con-

sumption level in the first period is positive.

Let (S ′,Y) be an environment where S ′ takes values from {s′0, ..., s
′
n}, s′i with probability

pi > 0, i = 0, ..., n, and
∑

pi = 1. Suppose that for some z > 0, E[u(z + Y)|S ′] and

−E[u′(z + Y)|S ′] are not comonotonic, say E[u(z + Y)|S ′ = s′0] > E[u(z + Y)|S ′ = s′1] and

E[u′(z + Y)|S ′ = s′0] > E[u′(z + Y)|S ′ = s′1]. For simplicity, let w0 j := E[u(z + Y)|S ′ = s′j]

and w1 j := E[u′(z + Y)|S ′ = s′j], j = 0, 1. Thus, wi1 < wi0 for i = 0, 1.

We shall construct φ, e and (S ,Y) such that (S ′,Y) is no less ambiguous than (S ,Y), but

the optimal saving under (S ,Y) is more than that under (S ′,Y).

Let random variables S , S ′,Y be generated as follows. First draw a number from

{s1, ..., sn}, s1 with probability p0 + p1, si with probability pi, i = 2, ..., n, and set S to be

the drawn number. If s1 is drawn, choose s′0 with probability p0
p0+p1

, and s′1 with probability
p1

p0+p1
and set S ′ to be the chosen number. If si, i , 1, is drawn, set S ′ = s′i . Finally, choose Y

according to the conditional probability distribution given S ′. Clearly, the joint distribution

of S ′ and Y is the same as in the given environment (S ′,Y). By construction, (S ′,Y) is no

less ambiguous than (S ,Y).

Next we construct φ. Let η be a smooth, positive, decreasing, convex and integrable

function such that
p0

p0 + p1
η(w00) +

p1

p0 + p1
η(w01) − η(

p0

p0 + p1
w00 +

p1

p0 + p1
w01)

<
p0 p1[η(w01) − η(w00)](w10 − w11)

(p0 + p1)(p0w10 + p1w11)
.

This is possible since the left hand side can be made arbitrarily small by making η flat,

keeping the right hand side unchanged. Let φ (t) :=
∫ t

0
η (s) ds, t > 0. Clearly, φ′ > 0,

φ′′ = η′ < 0 and φ′′′ = η′′ > 0, as required.

Finally, let e be such that

−qv′ (e − qz) + E
[
φ′ (E [u (z + Y) |S ]) · E

[
u′ (z + Y) |S

]]
= 0,
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so that z is optimal under (S ,Y).

It remains to demonstrate that the optimal saving under (S ′,Y) is less than z, and it

suffices to show that (2) is negative at (S ′,Y). Notice that E[u(z + Y)|S = s1] =
p0

p0+p1
w00 +

p1
p0+p1

w01, E[u′(z + Y)|S = s1] =
p0

p0+p1
w10 +

p1
p0+p1

w11, and that the expectations conditional on

S = si and on S ′ = s′i coincide for i = 2, ..., n. We therefore have:

E
[
φ′

(
E

[
u (z + Y) |S ′

])
· E

[
u′ (z + Y) |S ′

]]
− E

[
φ′ (E [u (z + Y) |S ]) · E

[
u′ (z + Y) |S

]]
=p0φ

′(w00)w10 + p1φ
′(w01)w11

− (p0 + p1)φ′(
p0

p0 + p1
w00 +

p1

p0 + p1
w01) · (

p0

p0 + p1
w10 +

p1

p0 + p1
w11)

=(p0 + p1)[
p0φ

′(w00)w10

p0 + p1
+

p1φ
′(w01)w11

p0 + p1

− (
p0φ

′(w00)
p0 + p1

+
p1φ

′(w01)
p0 + p1

) · (
p0

p0 + p1
w10 +

p1

p0 + p1
w11)

+ (
p0φ

′(w00)
p0 + p1

+
p1φ

′(w01)
p0 + p1

) · (
p0

p0 + p1
w10 +

p1

p0 + p1
w11)

− φ′(
p0

p0 + p1
w00 +

p1

p0 + p1
w01) · (

p0

p0 + p1
w10 +

p1

p0 + p1
w11)]

= −
p0 p1

p0 + p1
[η(w01) − η(w00)] · (w10 − w11)

+ [
p0

p0 + p1
η(w00) +

p1

p0 + p1
η(w01) − η(

p0

p0 + p1
w00 +

p1

p0 + p1
w01)] · (p0w10 + p1w11)

<0,

where the last inequality holds by the construction of η. This proves that (2) is negative at

(S ′,Y).
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