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Abstract

This paper considers a dynamic allocation problem in which many perishable

goods are allocated at each period. Agents want to keep winning goods for more

than one period to make profits. We consider efficient and optimal mechanisms

when the seller offers simple long-term contracts. The dynamic VCG mechanism

achieves efficient allocations. The expected revenue is maximized by the virtual

welfare maximization. In the single unit case, price discounts for long-stay

agents can be optimal under certain distributions. Both the efficient and optimal

mechanisms are implemented by a simple “handicap auction” in the binary

length case.
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1 Introduction

This paper considers a dynamic allocation problem where a seller allocates many

perishable objects at each period. A motivating example is an on-line scheduling

problem. Suppose that there are a number of facilities such as city halls, hotel

rooms, or shared computer servers, and time slots to use such facilities are allocated

at each time. Potential users randomly arrive over time and often want to use the

facilities for a long time. For example, a conference or an exhibition would be held

at a hotel or a convention center for several days or a week. People would like to stay

at a hotel for several nights, or a computer job would need a long processing time to

complete on a server. A similar environment would also be considered in electricity

markets, in which an electricity supplier or a power plant signs a big contract with

firms, factories, and retailers over time. People need the object for different periods

to be satisfied, and the necessary duration is in general private information of each

person along with the valuation.

The seller faces tradeoff between revenue from current long-stay buyers and that

from potential future buyers. The seller often needs to sign long-term contracts for

buyers and reserve future slots for them in advance. Although a long-term contract

might be contingent on future events, such a complex contract is often difficult in

practical situations. Only simple incomplete contracts that are not contingent on

future events are available in many real situations. In such a case, how can the seller

achieve the efficient outcome? And, how can she maximize her expected revenue?

This paper applies a standard mechanism design to this problem. We charac-

terize incentive compatible mechanisms, and provide an efficient mechanism and a

revenue-maximizing mechanism in our domain of mechanisms. Given a period length,

incentive compatibility requires that the allocation policy for an agent is increasing

in his valuation, and that the payment is determined by the envelope theorem. In

addition, to ensure reporting true lengths, the allocation policy needs to satisfy a

weak notion of monotonicity on lengths. We show that these conditions are also

sufficient for incentive compatibility.
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Standard techniques provide the efficient mechanism and the revenue-maximizing

mechanism. The efficient mechanism is provided as a straightforward extension of

the Vickrey-Clarke-Groves (VCG) mechanism. Each agent pays the expected exter-

nality to the other current and future agents. The revenue-maximizing (optimal)

mechanism is provided as in Myerson (1981) and Riley and Samuelson (1981). The

optimal allocation policy maximizes the discounted virtual valuations under a mono-

tone hazard rate condition.

We then consider two specific cases. First, we consider a single unit case. With

certain distribution conditions, the optimal allocation policy is distorted in such a

way that long-stay agents are more favored than in the efficient allocation policy.

In addition, the optimal posted prices exhibit volume discounts for long-stay agents,

as is sometimes observed in the real world. However, such long-stay discounts are

not robust. The existence of long-stay discounts or premium depends on the type

distribution and population dynamics.

Second, we consider the case where agents stay at most for two periods. We show

that the concavity of the maximum social welfare function in terms of current supply

units. As a result, the efficient allocation policy is implemented by simple multi-

unit uniform price auctions with proper handicaps to long-stay agents. Analogously,

revenue maximization is done by multi-unit uniform price auctions with reserve prices

and handicaps.

1.1 Related Literature

In recent years, a number of studies consider dynamic auction design.1 Dynamic

auction design in an environment where agents strategically arrive and depart is

often called online mechanism design, and has been investigated in the fields of

computer science and operations research (Lavi and Nisan, 2000).

Parkes and Singh (2003), Mierendorff (2009), and Pai and Vohra (2013) consider

an allocation problem of durable goods, such as air ticket sales and hotel reservations.

1See Bergemann and Said (2011) and Parkes (2007) for a review.
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Buyers arrive over time, stay for several periods, and participate in auctions during

their stay. They buy a good at most once in their stay. Parkes and Singh (2003)

extend the VCG mechanism to the case where buyers strategically choose their arrival

and departure times. Mierendorff (2009) and Pai and Vohra (2013) investigate the

optimal mechanism.

Hajiaghayi et al. (2005) and Parkes (2007) consider a perishable goods case such

as scheduling of facilities in the presence of strategic arrivals and departures. They

consider incentive compatible mechanisms and investigate the efficiency of an allo-

cation policy. In the literature of machine job scheduling, Porter (2004) considers

a dynamic mechanism with heterogeneous job lengths. Kittsteiner and Moldovanu

(2005) study queueing mechanism using auctions under stochastic arrivals of jobs

with heterogeneous waiting cost and processing time.

Dizdar et al. (2011) consider a problem closely related to ours. They consider

a durable goods sale (knapsack problem) to a sequence of short-lived buyers who

have multiple-unit demands. They characterize the implementability of determinis-

tic allocation rule with two-dimensional type of value and demand volume. Then,

they examine revenue maximization and sufficient conditions for the regularity of

the problem. For a difference from their characterization result, we allow random

allocation rule to some extent whereas they limit attention on deterministic rules

and strategy-proofness.

For other models with random arrivals of agents, Vulcano et al. (2002) and Ger-

shkov and Moldovanu (2009, 2010) consider the efficient or optimal durable goods

sales in which agents are impatient and short-lived. Board and Skrzypacz (2010) also

consider durable goods sales in which agents are patient and stay until the deadline

of the sale. Said (2012) considers a perishable goods case. Buyers arrive at random

and stay through the next period with a positive probability common among buy-

ers. Said shows that the outcomes in the efficient and optimal mechanisms can be

achieved by repeated ascending auctions in a perfect Bayesian equilibrium.

Some studies examine a similar dynamic allocation problem with dynamic in-

4



formation. Bergemann and Valimaki (2010) consider a dynamic allocation problem

with fixed agents whose types fluctuate over time. They formulate an efficient mech-

anism by extending the VCG mechanism. Athey and Segal (2013) consider a similar

situation and provide an efficient budget-balancing mechanism. Pavan et al. (2014)

characterize incentive compatibility and provide revenue equivalence in a dynamic

information model.

The remainder of the paper is organized as follows. In section 2, we provide a

model of the time-slot scheduling problem. We characterize incentive compatibility

and show a revenue equivalence. In section 3, we consider the efficient mechanism

design. We show that truthful reporting is a dominant strategy in the dynamic

VCG mechanism. In section 4, we consider the revenue maximization for the seller.

We show that the optimal allocation policy maximizes virtual welfare under the

monotone hazard rate condition. In section 5, we focus on a single unit case. We

show that with a certain condition, the optimal allocation is distorted in such a way

that long-stay agents are more favored. In addition, the optimal posted prices exhibit

volume discounts for long-stay agents. In section 6, we examine the allocation policy

in the case where agents stay at most for two periods. The efficient and optimal

outcomes are implemented by a simple handicap auction. Section 7 concludes the

paper.

2 Model

We consider an environment with independent and private values in a discrete-time

model. K identical objects, for example, time slots of a city hall or facilities, are

supplied at each period t = 1, . . . , T . For simplicity, we consider infinite horizon:

T = ∞. Objects are non-storable and perish at the end of each period. At each

period, a finite number of agents enter the mechanism. The set of entrants at t is

denoted by N t, and the number of entrants |N t| is an i.i.d. random variable at each

period. Each agent at each period is ex ante homogeneous and wants to own at most

one unit of the object at a period. The set of agents having entered by t is denoted
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by N t ≡
∪

s≤t N s. An allocation at t is denoted by at = (at
i)i∈N t . An allocation

at
i ∈ [0, 1] for i denotes the probability of obtaining the object at t. An allocation

at is said to be feasible at t if
∑

i a
t
i ≤ K and at

i = 0 for any i who is not in the

mechanism at t. Let āt
i ∈ {0, 1} be the realized allocation for i at t.

Agents and the seller discount future payoffs by a common factor δ ∈ (0, 1). Each

agent i has his private information θi ≡ (Vi, li) ∈ [0, V̄ ]×{1, . . . , L} ≡ Θi. Agent i of

type θi = (Vi, li) stays in a mechanism for at least li periods. Given a deterministic

sequence of allocations and payments, the utility of i ∈ N t evaluated at t is given by

ui =


Vi −

∑∞
s=t δs−tps

i if ās
i = 1 for ∀s ∈ {t, . . . , t + li − 1},

−
∑∞

s=t δs−tps
i otherwise,

(1)

where ps
i denotes i’s payment at s. Agent i earns a total profit Vi only if he owns the

object for li periods of time.2 Otherwise, agent i earns zero. We call Vi, valuation

type and li, length type. Each agent’s type θi is independently drawn from an identical

distribution F on Θi. Let F (·|li) be the cumulative distribution function conditional

on li. Given any li, F (·|li) has a density function f(·|li) > 0 for all Vi.3

The seller offers a long-term contract to each agent. Each agent signs only one

contract when he enters a mechanism.4 There is no renegotiation and a contract is

never revised or interrupted before its expiration. A contract for i at t, zt
i , specifies

a sequence of allocations and payments.

We restrict the domain of contracts to simple contracts that depend only on the

current history. We assume that a contract is defined as zt
i ≡ (ai,mi, Pi), where

ai ∈ [0, 1] specifies a (random) goods allocation, mi denotes a contract term, and

Pi =
∑

s≥t δs−tps
i is total payment. Contract term mi is assumed to be determinis-

2Note that total profit Vi is evaluated at t. An alternative definition of the (expected) utility is

ui = at
i · at+1

i · · · · · at+li−1
i Vi −

X

s≥t

δs−tps
i .

3We may allow upper bound of valuations to depend on length types. Then, the conditional

density f(·|li) > 0 is assumed in the domain of values for each li.
4If an agent rejects a contract, then he leaves the mechanism and gets payoff 0.
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tic. Moreover, the admissible sequences of realized allocations (āt
i, . . . , ā

t+mi−1
i ) are

limited to (1, . . . , 1) and (0, . . . , 0). An allocation ai is the probability assigned to

the sequence (1, . . . , 1). In other words, agent i obtains the goods with a probability

of ai at his entry period t, and the realized allocation āt
i at t is allocated with prob-

ability 1 in the later periods. We take care of the total payment Pi instead of the

sequence of payments because there is a degree of freedom. The set of admissible

contracts for i is denoted by Zi ≡ [0, 1] × {1, . . . , L} × R. The set of bundles of

contracts at t is denoted by Zt ≡ ×i∈N tZi. For contract zt
i = (ãi, m̃i, P̃i), we use

the following notations for the corresponding components: ai(zt
i) = ãi, mi(zt

i) = m̃i,

and Pi(zt
i) = P̃i. The realized allocation from zt

i is denoted by āi(zt
i).

2.1 Dynamic Direct Mechanisms

We assume that each agent does not manipulate the arrival time. However, they

may manipulate their period lengths. We also assume that each agent does not ob-

serve past history or the number of current agents N t when making a report. This

assumption would be natural in many practical situations such as facility scheduling

and hotel room assignments. The assumption can also be interpreted as the case

where the seller hides past events so that agents’ incentive constraints are the weak-

est. One might consider the case in which agents observe some information about

past events. In such a case, an incentive constraint is necessary for every history.

We will see that the results of the paper hold even in such cases.

We apply the revelation principle and limit our attention to direct mechanisms.

Each agent reports the type to the seller at his entry. Then, the seller offers a

contract to each current entrant just once.

At each t, each entrant i ∈ N t makes a report γt
i = (V̂i, l̂i) ∈ Θi. The profile of

types at t is denoted by θt ≡ (θi)i∈Nt . The seller makes a contract for each i ∈ N t

based on the vector of reports γt ∈ Θt ≡
∏

i∈Nt Θi and history up to t,

ht = (N1; γ1, z1, N2; . . . ; γt−1, zt−1, N t).
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Let Ht be the set of possible history at t. A mechanism is denoted by {zt}∞t=1, where

zt : Θt × Ht → Zt.

A mechanism is feasible if zt
i = ∅ for all i 6∈ N t and if

∑
i∈Nt ai(zt

i) ≤ Kt, where Kt

denotes the number of units available for the current entrants.5

For a profile of reports γt = (γt
j)j∈Nt at t, an entrant i at t earns payoff

ui(γt, θi, ht) = ai(zt
i(γ

t, ht))I{mi(zt
i )≥li}Vi − Pi(zt

i(γ
t, ht)), (2)

where I denotes the indicator function. For the verifiability of contracts, we as-

sume that agents observe the history after the enforcement of their contracts. Let

Ui(θt, ht) ≡ ui((θi, θ
t
−i), θi, ht), which indicates i’s payoff when every entrant at t

reports true information.

A bidder’s strategy is a mapping γi : Θi → Θi. Given that the others report

their true types, agent i ’s interim expected payoff is

πi(γt
i , θi) = E[ui(γt

i , θ
t
−i, θi, ht)]

= αi(γt
i , li)Vi − qi(γt

i ),
(3)

where

αi(γt
i , li) = E

[
ai(zt

i(γ
t
i , θ

t
−i, ht))I{mi(zt

i )≥li}
]

(4)

and

qi(γt
i ) = E

[
Pi(zt

i(γ
t
i , θ

t
−i, ht))

]
. (5)

Let Πi(θi) ≡ πi(θi, θi), which denotes the expected payoff when i reports his true in-

formation. Note that agent i’s winning probability αi depends on i’s true length type

li through the indicator function. Abusing notations, let αi(Vi, li) ≡ αi((Vi, li), li),

which indicates the winning probability when reporting the true length type.

Incentive compatibility and individual rationality are defined in a standard man-

ner.

5See section 3 for a formal definition of Kt.
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Definition 1 A dynamic direct mechanism is (Bayesian) incentive compatible if for

all i, all t, all θi, and all γt
i ,

Πi(θi) ≥ πi(γt
i , θi).

A mechanism is individually rational if for all i, all t, and all θi, Πi(θi) ≥ 0.

Definition 2 A dynamic direct mechanism is dominant strategy incentive compatible

if for all i, all t, all ht, all θ, and all γt
i ,

Ui(θt, ht) ≥ ui((γt
i , θ

t
−i), θi, ht).

Note that by the ex post availability of history, dominant strategy incentive com-

patibility is a little stronger than the standard definition in the sense that incentive

compatibility is imposed for every history.

2.2 Characterization of Incentive Compatibility

We characterize incentive compatibility and show the revenue equivalence. We limit

our attention to mechanisms such that contract terms are equal to the agents’ re-

ported lengths.

Definition 3 A dynamic direct mechanism is exact if it satisfies mi(zi(θt, ht)) = li

for all t, all ht, all i ∈ N t, and all θt.6

In an exact mechanism, every contract term is determined by the reported length.

This restriction would be natural and does not lose generality. It is easy to verify

that for any mechanism, there exists an equivalent exact mechanism that gives the

same payoffs and revenue.

Lemma 1 For any mechanism {zt}, there exists an equivalent exact mechanism that

gives the same payoffs for agents and revenue for the seller.

Proof. All proofs are in Appendix.

6The term “exactness” follows Lehmann et al. (2002) in the literature of multi-object auctions.
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Hereafter, we focus on exact mechanisms. Incentive compatibility is characterized

by two separated monotonicity constraints. Similar results are found in Dizdar et

al. (2011), Pai and Vohra (2013) and Mierendorff (2009) in different settings.

Proposition 1 An exact dynamic direct mechanism is incentive compatible if and

only if for all i,

1. αi(Vi, li) is weakly increasing in Vi for every li,

2.
∫ Vi

0 αi(ν, li)dν is weakly decreasing in li for every Vi, and

3. there exists a constant Πi, and

Πi(θi) = Πi +
∫ Vi

0
αi(ν, li)dν (6)

for all Vi and all li.

Preceding studies introduce a stronger notion of monotonicity of allocation policy,

which requires that allocation for an agent is monotone in both valuation and length.

We introduce a similar concept in our model. Given a mechanism {zt}, the allocation

policy is denoted by at : Θt × Ht → [0, 1]N
t

and

at
i(θ

t, ht) ≡ ai(zt
i(θ

t, ht)).

Definition 4 An allocation policy is said to be monotone if for all i, at
i(θ

t, ht) is

weakly increasing in Vi and weakly decreasing in li.

Note that incentive compatibility does not require the allocation policy to be

monotone in length. Proposition 1 implies that any monotone allocation policy is

implementable.7

Corollary 1 If an allocation policy is monotone, then there exists a payment scheme

that induces incentive compatibility.
7Bikhchandani et al. (2006) show that in a multi-dimensional model, a deterministic allocation

rule is implemented in dominant strategy if and only if it is weakly monotone.
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3 Efficient Mechanism

In this section, we establish an efficient incentive compatible mechanism, that is an

extension of the well-known VCG mechanism. To formulate the social optimization

problem, we introduce the residual periods of zs
i at t ≥ s, which is denoted by χ(t, zs

i )

and

χ(t, zs
i ) ≡ max{mi(zs

i ) + s − t, 0}.

In addition, the residual periods of objects at t is K-dimensional vector xt = (xt
k)

K
k=1,

where xt
k is the k-th highest order number of χ(t, zs

i ) of all i and all s < t such that

āi(zs
i ) = 1. Note that #{k|xt

k ≥ 1} units of the object are occupied at t by some

incumbent agents. The supply at t is denoted by Kt = K −#{k|xt
k ≥ 1}. Let X be

the set of xt; X = {x ∈ ZK
+ |0 ≤ x ≤ (L − 1, . . . , L − 1), xk ≤ xk−1}.

3.1 Social Welfare

In what follows, we formulate the socially optimal allocation policy. Because we

assume i.i.d. populations and type distributions, the state of the world at t is (θt, xt).

It is easy to verify that the efficient allocation policy {at∗}∞t=0 is deterministic. The

allocative state of the next period, xt+1, is determined by the current allocation at,

profile of current length types lt = (li)i∈Nt , and current state xt. Let G be the state

transition function: xt+1 = G(at, lt, xt). The socially optimal welfare at t, W (θt, xt),

is written in a recursive form as

W (θt, xt) = max
at

∑
i∈Nt

at
iVi + δE

[
W (θt+1, xt+1)

]
s.t. at

i ∈ {0, 1},∑
i∈Nt

at
i ≤ Kt,

xt+1 = G(at, lt, xt).

(7)

The solution of (7) is the efficient allocation policy a∗(θt, xt). It is easy to verify that

the efficient allocation policy a∗(θt, xt) is monotone.
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3.2 The Dynamic VCG Mechanism

The efficient allocation policy is implemented in weakly dominant strategy via the

dynamic VCG mechanism. Let W−i(θt, xt) be the maximized social welfare when

agent i is excluded. The efficient allocation without i ∈ N t is denoted by ât
−i. As

defined in the static VCG mechanism, we introduce the marginal contribution of i,

defined as

Ci(θt, xt) ≡ W (θt, xt) − W−i(θt, xt).

Let xt+1∗ ≡ G(at∗, lt, xt), which indicates the allocative state at t + 1 given

the efficient allocation at t. Similarly, let x̂t+1
−i ≡ G(ât

−i, l
t, xt), which denotes the

allocative state at t + 1 given the efficient allocation ât
−i when i is excluded at t.

Note that agent i is inactive after t + 1. Hence, we have

W−i(θt, xt) =
∑

j∈Nt\{i}

ât
−i,jVj + δE

[
W (θt+1, x̂t+1

−i )
]
.

The payment scheme for the dynamic VCG mechanism is defined so that each

agent earns his marginal contribution under the current state. Hence, (total) mone-

tary transfer P ∗
i (θt, xt) in the dynamic VCG mechanism is defined as follows:

P ∗
i (θt, xt) =

∑
j∈Nt\{i}

(ât
−i,j − at∗

j )Vj + δ(W (x̂t+1
−i ) − W (xt+1∗)), (8)

where W (x) ≡ E[W (θt+1, x)].

Definition 5 An exact dynamic mechanism {z∗} = {(a∗, P ∗)}∞t=0 is said to be the

dynamic VCG mechanism if a∗ is the efficient allocation policy and the payment is

determined by (8).

Theorem 1 The dynamic VCG mechanism {z∗} is dominant strategy incentive

compatible and individually rational. The equilibrium payoff of i ∈ N t is Ui(θt, ht) =

Ci(θt, xt).

Similar mechanisms that extend the VCG mechanism to dynamic environments are

provided by Parkes and Singh (2003), Bergemann and Valimaki (2010), and Athey

and Segal (2013).
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4 Revenue Maximization

Revenue maximization is done by a standard manner by Myerson (1981). We intro-

duce virtual valuation, which is denoted by φ(θi), and

φ(θi) ≡ Vi −
1 − F (Vi|li)

f(Vi|li)
. (9)

From Proposition 1 and standard calculations, the expected revenue from agent

i ∈ N t, E[qi(θi)], is given by

E[qi(θi)] = −Πi +
∫

θi

αi(θi)φ(θi)f(θi)dθi.

The revenue maximization problem is written as

max
{as}∞s=t

E
[ ∞∑

s=t

δs−t
[
−

∑
i∈Ns

Πi +
∑
i∈Ns

as
iφ(θi)

]]
s.t. αi(θi) is weakly increasing in Vi,∫ V

0
αi(ν, li)dν is weakly decreasing in li,

Πi ≥ 0,

as
i ∈ [0, 1],∑

i∈Ns

as
i ≤ Ks.

(10)

Obviously, Πi = 0 for all i at the optimum. We consider a relaxed problem in a

recursive form below:

R(θt, xt) = max
at

∑
i∈Nt

at
iφ(θi) + δE

[
R(θt+1, xt+1)

]
s.t. at

i ∈ [0, 1],∑
i∈Nt

at
i ≤ Kt,

xt+1 = G(at, lt, xt),

(11)

where R(θt, xt) denotes the optimal virtual welfare function. This problem is the

same as the social optimization problem (7), except that the valuations are replaced
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with virtual valuations. The solution a∗∗ of the virtual welfare maximization problem

(11) is weakly increasing in φ.

We need a regularity condition so that the solution of the relaxed problem (11)

also solves the original problem (10). A sufficient condition is that the virtual valu-

ation φ is increasing in Vi and weakly decreasing in li.

Assumption 1 The conditional hazard rate λli(Vi) ≡ f(Vi|li)
1−F (Vi|li) is weakly increasing

in Vi and weakly decreasing in li.8

In addition to the standard increasing hazard rate condition, Assumption 1 re-

quires the conditional distributions F (·|li) are ordered in terms of hazard rate dom-

inance. Although the hazard rate dominance is known to be stronger than the first

order stochastic dominance, this would likely be the case in real situations. The

revenue maximization problem is regular when the hazard rate condition above is

satisfied. Dizdar et al. (2011) examine weaker sufficient conditions for the regularity.

Theorem 2 Under Assumption 1, the allocation policy a∗∗ derived from the relaxed

problem (11) is monotone and maximizes the expected revenue for the seller.

The optimal allocation policy a∗∗ is in general very different from the efficient

allocation policy a∗ even when the type distribution is identical. In the standard

static optimal auction design, the optimal allocation policy is efficient in the sense

that the agent awarded the object has the highest value. However, in our model, the

virtual value φ depends on both valuation and length, and it generates asymmetry

between the different length types. In addition, the social welfare and the optimal

virtual welfare functions are different, so that the optimal policies a∗ and a∗∗ are

different. In addition, difference in continuation values gives different indifference

curves for the seller, which is discussed in the next section. In the following sections,

we consider the efficient and optimal mechanisms in some special cases.

8Pai and Vohra (2013) impose a similar hazard rate condition. For the monotonicity on Vi, it is

sufficient to assume that φ(θi) is increasing in Vi.
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5 Single Unit Case

5.1 Efficient Mechanism

We consider the case of K = 1. An allocative state xt indicates the remaining periods

of the currently enforced contract, and 0 ≤ xt ≤ L − 1. For any t such that xt ≥ 1,

the object is allocated to an incumbent agent and no entrant at t gets the object:

a∗i = 0 for all i ∈ N t. Thus, for xt = l ≥ 1,

W (θt, l) = δlE
[
W (θt+l, 0)

]
≡ δlW̄ .

An allocation problem is considered only when xt = 0. The social optimization

problem for xt = 0 is described as

W (θt, 0) = max
i∈Nt∪{0}

Vi + δliW̄ , (12)

where agent 0 is a dummy agent (or the seller), whose type is θ0 = (0, 1). The agent

who maximizes the value Vi + δliW̄ wins the object, or the seller keeps the object

and waits for the next period.

Suppose that agent i wins an object at t and that j ∈ N t ∪ {0} is the second-

highest agent. Then i’s payment in the dynamic VCG mechanism is

P ∗
i (θt) = Vj + (δlj − δli)W̄ .

5.2 Optimal Mechanism

The optimal allocation policy is analogous to the efficient allocation policy. An

allocation problem is considered only when xt = 0. Let R̄ ≡ E[R(θt, 0)]. Then, the

Bellman equation is

R(θt, 0) = max
i∈Nt∪{0}

φ(θi) + δliR̄, (13)

where 0 denotes a dummy agent whose reservation type is θ0 = (V , 1). The reserva-

tion value V ∈ (0, V̄ ) is determined from φ(V , 1) = 0.

An incentive compatible mechanism is such that winning agents pay the critical

value for winning given the others’ types. Suppose agent i wins at t and agent j is
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the second highest: j ∈ arg maxj′∈Nt
−i∪{0} φ(θj′) + δlj′ R̄. In addition, let φ−1(·|li) be

the inverse function of φ(·|li) given li. Then, agent i pays the total amount of

P ∗∗
i (θt) = φ−1

(
φ(θj) + (δlj − δli)R̄|li

)
.

An interesting question is how the efficient and the optimal allocation policies

are different. To investigate this, let us consider the seller’s indifference curves given

arbitrary reference type θ̂ = (V̂ , l̂). The indifference curve under the optimal allo-

cation policy, V o(l; θ̂), describes the valuation that the seller evaluates equally to

θ̂:

V o(l; θ̂) − 1

λl(V o(l; θ̂))
= V̂ + (δ l̂ − δl)R̄ − 1

λl̂(V̂ )
. (14)

Similarly, the agent with length l is evaluated equally to θ̂ in the efficient mechanism

when the valuation type satisfies

V e(l; θ̂) ≡ V̂ + (δ l̂ − δl)W̄ . (15)

The relationship between two indifference curves is generally unclear because the

indifference curve under the optimal allocation policy critically depends on type

distribution. Here, we consider a special case in which valuation Vi and length li

are independently distributed. Then, we have λl(·) = λ(·) for all l. Under this

specification, the indifference curve under the optimal allocation policy is flatter

than that under the efficient allocation policy.

Proposition 2 Suppose that the valuation and length types are independently dis-

tributed and λ(·) is non-decreasing. Then, agents with a long length are more “fa-

vored” under the optimal mechanism than under the efficient mechanism; if for li ≥ l̂,

the seller prefers θi to θ̂ under the efficient mechanism, then she prefers θi to θ̂ under

the optimal mechanism too.

5.3 Long-Stay Discount vs. Premium

In what follows, we examine the seller’s pricing strategy as the optimal mechanism.

We now assume that |N t| ≤ 1 for all t. At most one agent enters the mechanism in
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a period with an arrival rate η ∈ (0, 1]. Both the incentive compatible efficient and

optimal mechanisms are posted prices: the seller sets a proper price for each period

length.

In the real world situations such as for hotel rooms, the seller often offers a

discounted price for long-stay agents. However, the seller has to give up the potential

revenue from future agents by assigning slots to a long-stay agent. Hence, it is

uncertain whether the long-stay discount is supported by optimal pricing.

First, consider the efficient mechanism as a benchmark. It is easy to verify that

the efficient total price for each length, P ∗(l), is given by P ∗(l) = (δ − δl)W̄ . Thus,

the average (per period) price p∗(l) for an l-period stay is given by

p∗(l) =
δ − δl

1 − δl
w̄, 9

where w̄ = (1 − δ)W̄ indicates average social welfare. Since δ−δl

1−δl is increasing in l,

the per period price p∗(l) is increasing in length in the efficient mechanism. Thus,

long-stay discounts do not exist but a long-stay premium necessarily exists.

Proposition 3 Suppose that K = 1 and |N t| ≤ 1. Under the efficient pricing, the

per period price is increasing in period length.

Next, consider the optimal mechanism. We show that long-stay discounts are

optimal under a certain situation. Suppose again that the total value and length

type are independently distributed: λl(·) = λ(·) for all l. As observed in the previous

section, long-stay agents are more favored in the optimal mechanism than in the

efficient mechanism. The total payment P ∗∗(l) for an l-period stay in the optimal

mechanism is given from φ(P ∗∗(l)) = (δ−δl)R̄. The following theorem shows that the

long-stay discount exists for two periods. Moreover, the average price is decreasing

in period lengths with an additional condition. Let r̄ ≡ (1 − δ)R̄, which indicates

the average revenue per period.

9An average price p(l) for a total price P (l) is defined as p(l) = 1−δ
1−δl P (l).
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Theorem 3 Suppose that K = 1, |N t| ≤ 1, and valuation and length types are

independently distributed. The long-stay discount exists for two periods: p∗∗(2) <

p∗∗(1). In addition, if there exists l̄ ≥ 2 such that λ(P ∗∗(l̄))r̄ ≤ 1, then the average

price p∗∗(l + 1) < p∗∗(l) for all l ≤ l̄.

Note that the average revenue r̄ is endogenously determined by the optimization

problem (13) and depends on the type distribution. However, r̄ has a degree of

freedom by the parameter of population dynamics η.

Although long-stay discount exists in the above specification, it does not in an-

other specification. Consider the case where the per period value vi and length type

li are independently drawn. Assume also that the value per period vi is drawn from

a density function f > 0 on [0, 1]. The distribution of vi satisfies the monotone

hazard rate condition, so that Assumption 1 is satisfied. Then, we have the virtual

valuation by a simple calculation

φ(θi) =
1 − δli

1 − δ
φ̃(vi),

where φ̃(vi) = vi − 1−F (vi)
f(vi)

. Hence, the average price is given by

p∗∗(l) = φ̃−1
(δ − δl

1 − δl
r̄
)
, (16)

which implies the long-stay premium.

When long-stay premium exists, a long-stay agent would not like to accept a

long-term contract but would prefer to repeat a short-term contract in each period,

which is not considered in our model. The result would change if agents are al-

lowed to enter into a new contract after the expiration of a contract. We need to

strengthen incentive compatibility to prevent such a deviation. Nevertheless, the

long-stay premium might still exist even if agents can repeat short-term contracts

because long-stay agents accepting a short-term contract face the risk of losing in a

future auction.
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6 Binary Length Types and the Multi-Unit Handicap

Auction

In this section, we consider the case of K ≥ 2 and L = 2: Agents stay for at most

two periods. We can simply let the allocative state xt be the number of objects

reserved for incumbent agents: xt ∈ {0, . . . ,K}. For simplicity of notations, a type

of agent i is denoted by vi for θi = (vi, 1) and Vi for θi = (Vi, 2). In addition, let

v(j) indicate the j-th highest order statistics among short-stay agents (li = 1) at the

current period. Let V (j) be the j-th highest order statistics among long-stay agents

(li = 2).

6.1 Efficient Mechanism

It is obvious that only the highest agents among the same length win the objects

in the efficient allocation policy. That is, if agent i with vi wins, then any agent i′

with vi′ > vi wins in the efficient allocation. This holds for long-stay agents too. In

addition, social welfare improves by allocating a unit to a short-stay agent rather

than keeping it unallocated. Hence, all the units are allocated to someone by adding

a sufficient number of dummy agents with vi = 0 in each period. Let kt be the

number of units allocated to long-stay agents at t. Thus, we have xt = kt−1 and

Kt = K − kt−1. The Bellman equation for the efficient allocation policy is

W (θt, kt−1) = max
kt∈{0,...,Kt}

kt∑
j=1

V (j) +
Kt−kt∑
j=1

v(j) + δW (kt). (17)

W (k) is decreasing in k. To have the efficient allocation policy, we first show

that W (k) is “concave;” i.e., W (k) − W (k − 1) is decreasing (increasing in absolute

value) in k. The intuition is simple. Given supply units Kt = K − k at the current

period, the difference W (k−1)−W (k) indicates the marginal value for an additional

supply of the (Kt + 1)-th unit at the current period. As the supply decreases (i.e.,

k increases), the market at the current period becomes more competitive and an

agent with a high value might lose the auction. Thus, the marginal welfare for the
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additional unit is increasing in k. Let w(θt, k) ≡ −(W (θt, k) − W (θt, k − 1)).

Proposition 4 For any θt, W (θt, k) is concave in k; i.e., w(θt, k) is increasing in

k.

By Proposition 4, the efficient allocation policy is described in a simple opti-

mization. In addition, the efficient allocation policy is implemented by a multi-unit

uniform price auction with heterogeneous handicaps to long-stay agents. In the

multi-unit handicap auction below, winners are determined by just selecting the

highest bids, those of long-stay agents are handicapped depending on their rank

order. The VCG payment is determined by the highest rejected bid.

Let w(k) ≡ E[w(θt, k)].

Theorem 4 Suppose L = 2. The following multi-unit handicap auction is efficient

and dominant strategy incentive compatible:

1. Each agent reports his type vi or Vi.

2. Sort the reported values for each length. For the k-th highest order bid V (k) for

a long-stay agent, define

V̂ (k) ≡ V (k) − δw(k). (18)

3. The highest Kt bids from B ≡ {v(1), v(2), . . . , V̂ (1), V̂ (2), . . . } are selected for

winning bids.

4. For the number of units allocated to long-stay agents k∗, each winning short-

stay agent pays max{v(Kt−k∗+1), V̂ (k∗+1)}. Each winning long-stay agent pays

max{V (k∗+1), v(Kt−k∗+1) + δw(k∗)}.

6.2 Optimal Mechanism

The optimal mechanism for the seller is analogous to the efficient handicap auction.

We obtain the optimal allocation policy by replacing the values and social welfare
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with the virtual values and virtual welfare. Let φ(j) and Φ(j) be the j-th highest

order virtual values among short- and long-stay agents in a period, respectively.

That is, φ(j) = φ(v(j), 1) and Φ(j) = φ(V (j), 2). The Bellman equation for the

revenue maximization is

R(θt, kt−1) = max
kt∈{0,...,Kt}

kt∑
j=1

Φ(j) +
Kt−kt∑
j=1

φ(j) + δE[R(θt+1, kt)], (19)

where sufficiently many reservation types θ = (v, 1) satisfying φ(v, 1) = 0 are included

in the above expression. Let

r(k) ≡ −E[R(θt, k) − R(θt, k − 1)],

which is increasing in k by Proposition 4. The multi-unit auction with handicaps

r(k) is optimal for the seller. Proof is omitted because it is the same as the efficient

mechanism Theorem 4.

Theorem 5 Suppose L = 2 and Assumption 1. The multi-unit handicap auction

below is dominant strategy incentive compatible and maximizes the seller’s expected

revenue:

1. Each agent reports his type vi or Vi.

2. Sort the reported values for each length. For the k-th highest order virtual value

Φ(k) for a long-stay agent, define

Φ̂(k) ≡ Φ(k) − δr(k). (20)

3. The highest Kt bids from B ≡ {φ(1), φ(2), . . . , Φ̂(1), Φ̂(2), . . . } are selected for

winning bids.

4. For the number of units allocated to long-stay agents k∗, each winning short-

stay agent pays max{v(Kt−k∗+1), φ−1(Φ̂(k∗+1)|l = 1)}. Each winning long-stay

agent pays max{V (k∗+1), φ−1(φ(Kt−k∗+1) + δr(k∗)|l = 2)}.
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7 Conclusion

We formulate a model of a dynamic allocation problem in which agents want to obtain

an object for periods of time. We characterize incentive compatibility and construct

the efficient mechanism and optimal mechanism in a domain where the seller offers

simple long-term contracts. The dynamic VCG mechanism achieves efficiency in a

dominant strategy equilibrium. With a monotone hazard rate condition, the optimal

allocation policy maximizes virtual welfare. In a single unit case, long-stay discount

is not observed in the efficient posted prices, whereas it can be optimal for the seller

under some specifications. When agents stay at most for two periods, both the

efficient and optimal allocations are implemented by simple multi-unit auctions and

properly handicapping long-stay agents.

Several avenues are open for future research. First, the efficient or optimal allo-

cation policy needs to be investigated further in detail. Although we focus on simple

incomplete contracts, it is difficult to specify the allocation policy when there are

multiple units. Second, it would be interesting and important to consider the case in

which agents often make new contracts after expiration, as formulated by Athey and

Segal (2013), Bergemann and Valimaki (2010), Pavan et al. (2014). We would need

to consider a dynamic structure for both the seller and agents in order to examine

various practical situations.

A Proofs

A.1 Proof of Lemma 1

For any mechanism {zt}, define an exact mechanism {ẑt} as for every t, every i, and

every θi, mi(ẑt
i) = li, Pi(ẑt

i) = Pi(zt
i), and

ai(ẑt
i) =


ai(zt

i) if mi(zt
i) ≥ li

0 if mi(zt
i) < li

.
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It is obvious that the payoff function under {ẑt} is the same as that under {zt}. In

addition, mechanism {ẑt} satisfies
∑

i∈Nt ai(ẑt
i) ≤

∑
i∈Nt ai(zt

i), thus it is feasible.

¥

A.2 Proof of Proposition 1

(Only if part.) Suppose a mechanism is incentive compatible. Then, we have

αi(Vi, li)Vi − qi(Vi, li) ≥ αi(V ′
i , li)Vi − qi(V ′

i , li),

hence,

(αi(Vi, li) − αi(V ′
i , li))Vi ≥ qi(Vi, li) − qi(V ′

i , li).

Similarly, we have

(αi(Vi, li) − αi(V ′
i , li))V ′

i ≤ qi(Vi, li) − qi(V ′
i , li).

Therefore,

(αi(Vi, li) − αi(V ′
i , li))V ′

i ≤ (αi(Vi, li) − αi(V ′
i , li))Vi.

Therefore, V ′
i < Vi implies αi(V ′

i , li) ≤ αi(Vi, li).

From the standard argument of the envelope theorem (Milgrom and Segal, 2002),

if Vi ∈ arg maxν∈[0,V̄ ] αi(ν, li)Vi − qi(ν, li), then

∂Πi(Vi, li)
∂Vi

= αi(Vi, li)

almost everywhere, and

Πi(Vi, li) − Πi(V ′
i , li) =

∫ Vi

V ′
i

αi(ν, li)dν. (21)

Suppose l′i > li. Then, αi((V ′
i , l′i), li) = E[ai(V ′

i , l′i, θ
t
−i, ht)I{mi(zt

i )=l′i≥li}] = αi(V ′
i , l′i).

Then incentive compatibility implies for all Vi,

Πi(Vi, li) ≥ αi((Vi, l
′
i), li)Vi − qi(Vi, l

′
i)

= αi(Vi, l
′
i)Vi − qi(Vi, l

′
i)

= Πi(Vi, l
′
i).

(22)
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From the envelope formula (21), (22) yields

Πi(0, li) +
∫ Vi

0
αi(ν, li)dν ≥ Πi(0, l′i) +

∫ Vi

0
αi(ν, l′i)dν. (23)

For Vi = 0, it also holds that Πi(0, li) = −qi(0, li). Incentive compatibility requires

−qi(0, li) ≥ −qi(0, l′i) for any li and l′i, thus that −qi(0, li) does not depend on li.

Hence, Πi(0, li) = Πi for all li.

(If part.) Since αi is monotone, each agent’s expected payoff πi((ν, li), (Vi, li))

satisfies the single crossing condition on (Vi, ν). Given li, a standard argument as in

Myerson (1981) implies for all V ′
i ,

αi(Vi, li)Vi − qi(Vi, li) ≥ αi(V ′
i , li)Vi − qi(V ′

i , li).

Suppose l′i > li. Note that αi((Vi, l
′
i), li) = αi(Vi, l

′
i). Hence, for any V ′

i ,

αi((V ′
i , l′i), li)Vi − qi(V ′

i , l′i) = αi(V ′
i , l′i)Vi − qi(V ′

i , l′i)

≤ Πi(Vi, l
′
i)

≤ Πi(Vi, li).

The last inequality holds from the conditions 2 and 3.

The envelope condition (6) implies

−qi(Vi, li) = Πi +
∫ Vi

0
[αi(ν, li) − αi(Vi, li)]dν

≤ Πi(0, li),

where inequality comes from the monotonicity of αi. Then, for all V ′
i and all l′i < li,

αi((V ′
i , l′i), li)Vi − qi(V ′

i , l′i) = −qi(V ′
i , l′i)

≤ Πi(0, l′i)

= Πi(0, li)

≤ Πi(Vi, li).

The second equality comes from condition 3, and the last inequality is from the

monotonicity and (6). ¥
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A.3 Proof of Theorem 1

Suppose i ∈ N t. For any θi and reports of the others θt
−i, i’s ex post payoff given a

report γi is

ui((γi, θ
t
−i), θi, ht) = a∗i (γi, θ

t
−i, x

t)Vi − P ∗
i (γi, θ

t
−i, x

t)

=
∑
Nt

a∗j (γi, θ
t
−i, x

t)Vj + δW (G(a∗(γi, θ
t
−i, x

t), (γil, l
t
−i), x

t)) − W−i(θt, xt)

≤
∑
Nt

a∗j (θ
t, xt)Vj + δW (G(a∗(θt, xt), lt, xt)) − W−i(θt, xt)

= Ui(θt, ht).

(24)

Therefore, truth-telling is optimal, and the associated payoff is W (θt, xt)−W−i(θt, xt) =

Ci(θt, xt). Since W (θt, xt) ≥ W−i(θt, xt) by definition, {z∗} is individually rational.

¥

A.4 Proof of Theorem 2

It suffices to show that the solution of (11) is monotone. By Assumption 1, the

virtual value φ weakly increases by shortening li. Hence, a∗∗ is weakly decreasing in

li because a∗∗ is weakly increasing in φ. Thus, the solution of (11) is monotone in

terms of (φ(θi), li). Since φ is increasing in Vi, the solution is monotone. ¥

A.5 Proof of Proposition 2

Suppose li ≥ l̂. From the regularity and the non-decreasing hazard rate, V o(li, θ̂) > V̂

and λ(V o(li, θ̂)) ≥ λ(V̂ ). Note that the expected revenue for the seller R̄ is strictly

less than the expected social welfare W̄ ; R̄ < W̄ . Therefore, we have

1

λ(V o(li; θ̂))
− 1

λ(V̂ )
≤ 0 ≤ (δ l̂ − δli)(W̄ − R̄), (25)

thus V o(li; θ̂) ≤ V e(li; θ̂). ¥
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A.6 Proof of Theorem 3

The average price p∗∗(l) satisfies

p∗∗(l) =
δ − δl

1 − δl
r̄ +

1 − δ

1 − δl
· 1
λ(P ∗∗(l))

. (26)

From Assumption 1 and P ∗∗(l) < P ∗∗(l + 1), we have λ(P ∗∗(l)) ≤ λ(P ∗∗(l + 1)).

Hence,

p∗∗(l + 1) − p∗∗(l) =
δl(1 − δ)2

(1 − δl)(1 − δl+1)
r̄ +

1 − δ

(1 − δl)(1 − δl+1)

( 1 − δl

λ(P ∗∗(l + 1))
− 1 − δl+1

λ(P ∗∗(l))

)
≤ δl(1 − δ)2

(1 − δl)(1 − δl+1)

(
r̄ − 1

λ(P ∗∗(l))

)
.

Therefore, we have p∗∗(l + 1) < p∗∗(l) for some l̄ and l ≤ l̄ when

λ(P ∗∗(l̄))r̄ ≤ 1. (27)

Note that p∗∗(1) = P ∗∗(1) and λ(P ∗∗(1))p∗∗(1) = 1. The seller earns revenue

p∗∗(1) when agent i with Vi ≥ p∗∗(1) and li = 1 enters. Further, li = 1 is the best

length type. Therefore, it is obvious that r̄ < p∗∗(1) regardless of the arrival rate η.

¥

A.7 Proof of Proposition 4

For the current state (θt, k), let k∗(θt, k) be the efficient allocation policy that deter-

mines the number of units allocated to long-stay agents. To show the proposition,

we first show the following lemma.

Lemma 2 For any θt, k∗(θt, k) is non-increasing in k.
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Proof. Suppose for contradiction that there exists k and for some θt, k∗(θt, k) >

k∗(θt, k−1). Let k∗ ≡ k∗(θt, k) and k∗∗ ≡ k∗(θt, k−1). Since k∗∗ < K−k, we have10

W (θt, k) =
k∗∑

j=1

V (j) +
K−k−k∗∑

j=1

v(j) + δW (k∗)

>

k∗∗∑
j=1

V (j) +
K−k−k∗∗∑

j=1

v(j) + δW (k∗∗),

and hence,

k∗∑
j=k∗∗+1

V (j) −
K−k−k∗∗∑

j=K−k−k∗+1

v(j) + δ(W (k∗) − W (k∗∗)) > 0. (28)

Therefore, we have

W (θt, k − 1) − W (θt, k) =
k∗∗∑
j=1

V (j) +
K−k−k∗∗∑

j=1

v(j) + δW (k∗∗) −
k∗∑

j=1

V (j) −
K−k−k∗∑

j=1

v(j) − δW (k∗)

= −
k∗∑

j=k∗∗+1

V (j) +
K−k−k∗∗∑

j=K−k−k∗+1

v(j) − δ(W (k∗) − W (k∗∗)) + v(K−k−k∗∗+1)

< v(K−k−k∗∗+1).

(29)

However, it is obvious that

W (θt, k − 1) − W (θt, k) ≥ v(K−k−k∗+1)

≥ v(K−k−k∗∗+1),

which is a contradiction to (29). ¤

Thus, k∗ ≤ k∗∗. Next, we show k∗∗ ∈ {k∗, k∗ + 1}.

Lemma 3 If W (k) is concave, k∗∗ ∈ {k∗, k∗ + 1}.

Proof. Suppose W (k) is concave. Suppose for contradiction that for some k and θt,

k∗ + 2 ≤ k∗∗.

10If equality holds, k∗∗ is also an efficient allocation given (θt, k), and we can construct a non-

increasing allocation policy.

27



Since k∗ + 1 ≤ k∗∗ − 1 ≤ K − k,

W (θt, k) =
k∗∑

j=1

V (j) +
K−k−k∗∑

j=1

v(j) + δW (k∗)

>

k∗+1∑
j=1

V (j) +
K−k−k∗−1∑

j=1

v(j) + δW (k∗ + 1),

and hence,

−V (k∗+1) + v(K−k−k∗) + δw(k∗ + 1) > 0. (30)

Since W (k) is concave, we have

0 < −V (k∗+1) + v(K−k−k∗) + δw(k∗ + 1)

≤ −V (k∗+2) + v(K−k−k∗−1) + δw(k∗ + 2)

≤ . . . .

(31)

Therefore, we have

W (θt, k − 1) −
[k∗+1∑

j=1

V (j) +
K−k−k∗∑

j=1

v(j) + δW (k∗ + 1)
]

=
k∗∗∑

j=k∗+2

V (j) −
K−k−k∗∑

j=K−k−k∗∗+2

v(j) − δ(W (k∗ + 1) − W (k∗∗))

≤
k∗∗−1∑

j=k∗+1

V (j) −
K−k−k∗∑

j=K−k−k∗∗+2

v(j) − δ(w(k∗ + 2) + w(k∗ + 3) + · · · + w(k∗∗))

≤
k∗∗−1∑

j=k∗+1

V (j) −
K−k−k∗∑

j=K−k−k∗∗+2

v(j) − δ(w(k∗ + 1) + w(k∗ + 2) + · · · + w(k∗∗ − 1))

< 0.

The second inequality comes from the concavity of W (k). This contradicts the

optimality of W (θt, k − 1). ¤

Finally, we show the proposition. It suffice to show that if any continuation value

Ŵ (θt, k) is concave in k, then the mapping is also concave. Let k∗∗∗ ≡ k∗(θt, k − 2).

Case 1: k∗∗ = k∗ or k∗∗∗ = k∗∗.

Note that

w(θt, k) ≥ v(K−k−k∗+1).
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Since k∗ ≤ K − k and k∗∗∗ ≤ k∗ + 1 ≤ K − k + 1,

w(θt, k − 1)

≤
k∗∗∗∑
j=1

V (j) +
K−k−k∗∗∗+2∑

j=1

v(j) + δW (k∗∗∗) −
k∗∗∗∑
j=1

V (j) −
K−k−k∗∗∗+1∑

j=1

v(j) − δW (k∗∗∗)

= v(K−k−k∗∗∗+2)

≤ v(K−k−k∗+1)

≤ w(θt, k).

Case 2: k∗∗ = k∗ + 1 and k∗∗∗ = k∗∗ + 1 = k∗ + 2.

Note that

W (θt, k − 1) − W (θt, k) = V (k∗+1) + δ(Ŵ (k∗ + 1) − Ŵ (k∗))

and

W (θt, k − 2) − W (θt, k − 1) = V (k∗+2) + δ(Ŵ (k∗ + 2) − Ŵ (k∗ + 1)).

Hence,

W (θt, k − 1) − W (θt, k) ≥ W (θt, k − 2) − W (θt, k − 1).

¥

A.8 Proof of Theorem 4

Suppose Kt > 0. The social welfare when k units are allocated to long-stay agents is

k∑
j=1

V (j) +
Kt−k∑
i=1

v(i) + δW (k)

=
k∑

j=1

(
V (j) − δw(j)

)
+

Kt−k∑
i=1

v(i) + δ
(
W (k) +

k∑
j=1

w(j)
)

=
k∑

j=1

V̂ (j) +
Kt−k∑
i=1

v(i) + δW (0).

Since W (0) is just a constant term, the social welfare maximization is equivalent to

max
k∈{0,...,Kt}

k∑
j=1

V̂ (j) +
Kt−k∑
i=1

v(i). (32)
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By Proposition 4, w(k) is increasing in k and thus V̂ (k) is decreasingly ordered.

Hence, the solution of (32) is simply to select the highest Kt bids from

B ≡ {v(1), v(2), . . . , V̂ (1), V̂ (2), . . . }.

Note that because the efficient allocation policy when agent i is excluded is

given in the same manner, the externality that agent i gives to the other agents is

determined by the highest rejected bid or the (Kt + 1)-th highest bid of B. Let k∗

and b(j) be the solution of (32) and j-th highest bid of B, respectively. Thus, k∗

units are allocated to long-stay agents and Kt −k∗ units to short-stay agents. When

a winner i is a short-stay agent, then his payment in the dynamic VCG mechanism

is b(Kt+1) = max{v(Kt−k∗+1), V̂ (k∗+1)}. When a winner i is a long-stay agent, then

his total payment in the dynamic VCG mechanism is V (k∗+1) if b(Kt+1) = V̂ (k∗+1).

If b(Kt+1) = v(Kt−k∗+1), the total payment is v(Kt−k∗+1) + w(k∗). ¥
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