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A Dynamic Agency Theory of Investment and Managerial Replacement

Abstract

In this paper, we explore a dynamic theory of investment and costly managerial turnover

given agency conflicts between the firm manager and investors. We incorporate the pos-

sibility of the successive replacement of managers until the firm is finally liquidated, and

develop a continuous-time agency model with the q-theory of investment. We derive the

dynamic variations of average q, marginal q, and the optimal investment—capital ratio sur-

rounding manager turnover. Furthermore, we also indicate that the firm’s optimal replace-

ment/retention decision becomes more permissive with the frequency of the replacement of

managers. Our theoretical findings yield empirical implications for the joint dynamics of

investment and CEO turnover policy, which are consistent with evidence provided by the

existing empirical literature, and provide novel testable hypotheses.

JEL Classification Codes: D86, D92, G31, G32, M12, M51.

Keywords: average q, CEO turnover, continuous-time agency model, investment, marginal

q.
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1. Introduction

Because of the key economic role played by top corporate managers and the agency conflict

with investors, one of the most important decisions for the firm is to decide whether to

retain or fire an incumbent CEO following poor stock prices and/or accounting performance.

Several empirical studies already find that the performance quality and investment behavior

of firms vary markedly around CEO turnover.1 However, persistent shocks to the firm’s

profitability occur stochastically over time and thereby affect the firm’s performance and

stock prices. Furthermore, the empirical estimates suggest that firing a CEO involves a

very large CEO turnover cost.2 Taking into account these factors requires us to develop a

dynamic theory of investment and costly managerial turnover in a stochastic environment.

In this paper, we explore a dynamic theory of investment and costly managerial turnover

in the context of agency conflicts between investors and managers using the framework

of the continuous-time agency model. In the extant literature, the optimal replacement

timing of the manager has not been examined. If it has, it has only been in a perfectly

stationary environment in the sense that the firm faces the same agency problem with each

manager the firm hires (see the literature discussed later in this section). However, in

reality, as estimated in Taylor (2010), the cost to the firm’s shareholders of replacing the

incumbent CEO is large. Furthermore, if the reorganization and/or restructuring of the firm

is required with the replacement of the manager, the replacement cost may be larger when the

firm’s current financial distress worsens.3 The firm then needs to consider the replacement

cost incurred by its shareholders and related to its financially distressed situation. This

cost requirement implies that the firm’s environment surrounding the replacement of the

manager cannot be stationary, even under scale-invariant technology. Nevertheless, none

of the existing studies discuss the joint dynamics and inefficiency of the firm’s investment

and managerial replacement decisions in such a nonstationary environment. Hence, this

paper sheds new light on the joint dynamics and inefficiency of the firm’s investment and

managerial replacement strategies under agency conflicts when a replacement cost arises with

1See Huson, Malatesta, and Parrino (2004), Hornstein (2013), and Alderson, Bansal, and Betker (2014).
2Taylor (2010) suggests that firing a CEO costs shareholders the equivalent of some 5.9% of firm assets.
3If the reorganization and/or restructuring of the firm quickly needs new funds financed by equity, con-

vertible bonds, and/or subordinated bonds, this presumption is more realistic and plausible.
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the replacement of each manager that is related to its financially distressed situation.

We examine a continuous-time agency model with the q-theory of investment by incorpo-

rating the possibility of the successive replacement of managers prior to the liquidation of the

firm. The benchmark is the dynamic agency and investment model in DeMarzo, Fishman,

He, and Wang (2012), in which the agent’s scaled continuation payoff can be interpreted as

a measure of the firm’s financial slack. Our primary change to their model is that investors

decide at each point of time whether to fire or retain the current manager by considering

the replacement cost relating to the firm’s financially distressed situation. A second change

is that the optimal contract is implemented in a capital structure with a credit line because

the financial slack interpretation can be better adapted to the reorganized and/or restruc-

tured firm. This second modification enables the replacement cost of the manager to reflect

the reorganization and/or restructuring cost of the firm at the replacement. Because this

variable replacement cost causes the contract environment with the new manager to differ

from that with the old manager, both the scaled value function of investors and the initial

value of the new manager’s scaled continuation payoff switch at replacement. Thus, we can

fully characterize the joint dynamics of the investment and successive managerial turnover

strategies in the nonstationary environment.

We summarize our main results as follows. First, the variations in average q and marginal

q at the time of manager turnover move in opposite directions if the predecessor’s scaled con-

tinuation payoff near his replacement time is sufficiently close to his replacement threshold

(that is, if the firm’s financial slack is relatively low before the replacement of the manager).

However, such variations may occur in the same direction if the predecessor’s scaled contin-

uation payoff near his replacement time is sufficiently larger than his replacement threshold

(that is, if the firm’s financial slack is not relatively low before the replacement of the man-

ager).

Second, the optimal investment—capital ratio increases following the replacement of each

manager if the predecessor’s scaled continuation payoff near his replacement time is suffi-

ciently close to his replacement threshold (that is, if the firm’s financial slack is relatively

low before his replacement). However, this ratio may be lower after the replacement of

each manager if the predecessor’s scaled continuation payoff near his replacement time is
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sufficiently larger than his replacement threshold (that is, if the firm’s financial slack is not

relatively low before his replacement).

Third, the threshold of the manager’s scaled continuation payoff regarding the replacement

of each manager declines with the frequency of the replacement of managers. This implies

that the firm’s optimal replacement/retention decision becomes more permissive with the

frequency of the replacement of managers.

Finally, the main results of our model are unchanged even though contracts are constrained

to be renegotiation-proof.

Importantly, very few empirical studies examine patterns in average q, marginal q, and in-

vestment behavior in the years surrounding CEO turnover. Our theoretical findings therefore

yield useful empirical implications for the dynamics of investment and CEO turnover pol-

icy. These theoretical predictions are consistent with the evidence provided by the existing

empirical literature and provide novel testable hypotheses.

Our results also provide a new insight into the relation between average q and marginal q.

In many empirical studies, average q is used more than marginal q, even though it is often

argued that marginal q is a more accurate measure than average q of the firm’s investment

opportunities. In fact, Caballero and Leahy (1996) suggest that average q can be a better

proxy for the firm’s investment opportunities with fixed costs of adjustment. Bolton, Chen,

and Wang (2011) also argue that average q rather than marginal q can be a more robust

predictor of investment for financially constrained firms. However, our results show that the

variations in average q and marginal q at the time of manager turnover can be in opposite

directions. This implies that average q is not a suitable proxy for marginal q surrounding the

turnover of the manager. Furthermore, we suggest that the optimal investment—output ratio

can be negatively related to average q around the turnover of the manager. This suggests

that if average q is used for the estimation of the investment function, the estimate involves

an estimation bias when the manager is replaced. Together, these findings imply that average

q is not a better proxy than marginal q for the firm’s investment opportunities surrounding

the replacement of the manager, in contrast to the suggestions of both Caballero and Leahy

(1996) and Bolton, Chen, and Wang (2011).

The work in this paper relates to the expanding literature on continuous-time principal—
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agent models using martingale techniques. See, for example, DeMarzo and Sannikov (2006),

Biais, Mariotti, Plantin, and Rochet (2007), He (2009), Hoffmann and Pfeil (2010), Piskorski

and Tchistyi (2010), Zhu (2013), and Hori and Osano (2013, 2014). For the most part,

these studies employ either the cash diversion or hidden-effort choice model, and show that

the threat of replacement plays an important role in incentivizing effort when the agent

is protected by limited liability.4 The most important difference between our work and

these studies is that we examine the joint dynamics of the firm’s investment and successive

managerial replacement strategies under agency conflicts. Specifically, studies other than

the present analysis do not consider the replacement of the agent, or they only discuss the

perfectly stationary environment in the sense that the firm faces the same agency problem

with each agent the firm hires. The latter arises partly because of the assumption of the fixed

replacement cost of the agent such that neither the scaled value function of investors nor the

initial value of the new agent’s scaled continuation payoff changes. As a result, these existing

studies are essentially reduced to the case in which the replacement of the agent does not take

place before the termination of the firm. By contrast, by making the replacement cost relate

to the firm’s financially distressed situation, we show that at the time of each replacement,

the scaled value function of investors switches and the initial value of the new manager’s

scaled continuation payoff is decreasing. Hence, our model can fully capture the dynamics

of the managerial replacement strategy in the sense that both the scaled value function of

investors and the initial value of the new manager’s scaled continuation payoff change, even

under scale-invariant technology, whenever the replacement of managers successively takes

place over time.

The dynamic contracting and investment problem given agency conflicts has been exam-

ined in Albuquerque and Hopenhayn (2004), Quadrini (2004), Clementi and Hopenhayn

(2006), DeMarzo and Fishman (2007), and Biais, Mariotti, Rochet, and Villeneuve (2010).

In particular, DeMarzo, Fishman, He, and Wang (2012) use the continuous-time agency

model detailed above and discuss the q theory of investment under agency conflicts. How-

ever, the main difference between our study and theirs is that in our model, the replacement

of managers can occur successively over time, whereas in their model, the firm does not

4In the risk—averse agent model in Sannikov (2008) and He (2011), as in the discrete model in Spear and

Wang (2005) and Wang (2011), a risk—averse agent may be optimally induced to cease to exert effort and

then retire once his continuation utility becomes either too high or too low. This is because it is too costly

for the firm to incentivize further effort if the agent’s continuation utility is too high or too low.
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replace the initially hired agent until the firm is liquidated. As a result, our model can fully

develop the joint dynamics of the firm’s investment and successive managerial replacement

strategies under agency conflicts in the nonstationary environment.5

This paper also relates to a line of discrete—time research in the dynamic turnover literature

in which turnover is derived from variations in managerial productivity. For instance, Garrett

and Pavan (2012) develop a dynamic theory of managerial turnover where the quality of the

match between a firm and its managers changes stochastically over time. They show that

the firm’s optimal retention decision becomes more permissive with time. Once again, the

main difference between our model and theirs is that in their model the firm’s environment

is perfectly stationary in the sense that the firm faces the same problem with each manager

it hires. This is because they assume that upon separating from the incumbent manager

the firm returns to the labor market and is randomly matched with a new manager. Hence,

the initial value of the continuation utility is the same for any manager the firm hires. In

contrast, in our model, the replacement cost relating to the firm’s financially distressed

situation dynamically changes both the scaled value function of investors and the initial

value of the manager’s scaled continuation payoff at replacement. As a result, we can fully

analyze the joint dynamics of the firm’s investment and managerial replacement strategies

given agency conflicts in a nonstationary environment.

The remainder of the paper is organized as follows. Section 2 describes the basic model.

Section 3 analyzes the first-best solution. Section 4 derives the optimal contract under agency

conflicts. Section 5 examines the model implications. Section 6 discusses the implementation

of the optimal contract. Section 7 considers the empirical implications of our theoretical

results, and Section 8 concludes. Appendix A provides the more complicated proofs, and

Appendix B considers the impact of a renegotiation-proof contract.

2. The Model

A firm produces output by employing capital. The firm’s capital stockKt evolves according

to

dKt = (It − δKt)dt, (1)

5Neglecting agency costs, Bolton, Chen, and Wang (2011) provide a model of dynamic investment, fi-

nancing, and risk management for financially constrained firms.
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where It is the firm’s growth investment rate and δ ≥ 0 is the rate of depreciation. Investment
entails adjustment costs G(It,Kt). We assume that G(It,Kt) satisfies G(0, Kt) = 0, is

increasing and convex in It, increasing in Kt, and is homogeneous of degree one in It and

Kt. Using the homogeneity of G(It, Kt), we have

It +G(It, Kt) = c(it)Kt, (2)

where it =
It
Kt
and c(0) = 0.

We assume that the incremental gross output over time interval dt is proportional to Kt:

KtdAt, where At is the cumulative productivity process. Then, the firm’s cumulative cash

flow process Yt is represented by

dYt = Kt[dAt − c(it)dt], (3)

where Ktc(it)dt is the total cost of investment.

We now consider an agency conflict between the firm’s investors and managers. The

firm’s investors hire a manager to manage the firm and can replace him with a new manager

at any time. We assume that all of the managers in the pool of potential applicants are

identical, meaning that they have the same preferences and that their productivity is drawn

independently from the same distribution and is expected to evolve over time according

to the same Brownian motion described below. Hence, the only reason for the investors to

replace the incumbent manager is the incentive consideration in that the manager’s expected

payoff becomes too low so that it is very costly for the investors to give the manager sufficient

incentives to work under the limited liability of the manager.

Let the n-th manager denote a manager employed by the firm after the n− 1-th manager
has been replaced. In fact, we assume that the n− 1-th manager continues to be hired with
some probability. Hence, either the incumbent n − 1-th manager or a new manager hired
from the pool of potential applicants becomes the n-th manager.6 Although the incumbent

n − 1-th manager can continue to be hired with some probability as the n-th manager, we
6To compensate the n − 1-th manager for his continuation value at his replacement, we impose the

assumption of stochastic replacement. In the discrete dynamic agency model, Anderson, Bustamante, and

Guibaud (2011) exploit stochastic replacement to achieve the same purpose as ours.
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refer to the transition from the n − 1-th manager to the n-th manager as the replacement
of the n − 1-th manager in order to simplify the terminology in the subsequent analysis.
Indeed, in our model, all the events where incumbent managers are replaced by other new

managers are included in the set of the transition events from the n− 1-th manager to the
n-th manager (n = 1, . . . , N). Thus, by elucidating the features of the transition from the

n− 1-th manager to the n-th manager, we can characterize the joint dynamics of the firm’s
investment and managerial replacement strategies around the time of the replacement of the

incumbent manager by another new manager.

Now, when the n-th manager is hired, his binary action ant ∈ {0, 1} determines the
expected rate of output per unit of capital stock:

dAnt = a
n
t μdt+ σdZt, (4)

where μ is the drift of the cash flows, σ is the instantaneous volatility, and Z = {Zt,Ft; 0 ≤
t < ∞} is a standard Brownian motion on the complete probability space (Ω,F ,Q). When
the n-th manager takes the action ant , he enjoys private benefits at the rate λ(1 − ant )μdt
per unit of capital stock. We assume that 0 < λ ≤ 1. Thus, we can interpret the action as
an effort choice: the n-th manager shirks if ant = 0, or works if a

n
t = 1.

The firm’s investors have unlimited wealth, are risk neutral, and discount the flow of profit

at rate r > 0. All of the managers are risk neutral, with a negative wage ruled out by limited

liability. These managers also discount their consumption at γ (> r). If each manager’s

savings interest rate is lower than the investors’ discount rate and if each manager is risk

neutral, DeMarzo and Sannikov (2006) show that there is an optimal contract in which each

manager maintains zero savings. Hence, in this model, each manager can be restricted to

consuming what the principal pays him at any point in time.

Regarding the information structure, the firm’s capital stock Kt and its cash flow Yt are

publicly observable and contractible. Hence, investment It and productivity At are also

contractible. However, the firm’s investors cannot observe any managerial action or the flow

of any manager’s private benefit.

After the n− 1-th manager has been replaced, the investors sign a contract with the n-th
manager that specifies the firm’s investment policy Int during his employment, his cumulative
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compensation Unt , and his replacement time τn, all of which depend on the history of his

performance as described by the productivity process Ant . As a negative wage is excluded,

Unt must be nondecreasing. Let Φ
n = {In, Un, τn} represent the contract with the n-th

manager.

For simplicity, we assume that the investors commit to the contract arrangements with

each manager. In Appendix B, we show that if the renegotiation cost is the same functional

form as the replacement cost, the main results of our model are unchanged, even though the

contract is constrained to be renegotiation-proof.

Now, for any contract Φn, the n-th manager chooses an action process {ant ∈ {0, 1} : τn−1

≤ t < τn} to solve

W (Φn) = max
{ant ∈{0,1} : τn−1≤t<τn}

Eaτn−1

Z τn

τn−1
e−γt [dUnt + λ(1− ant )μKtdt] , (5)

where Ea
τn−1(·) is the expectation operator under the probability measure induced by the

n-th manager’s action process. We assume that if the n-th manager is fired and does not

continue to be hired in this firm, he does not return to the managerial labor market and is

retired with a value normalized to zero.

In the subsequent analysis, we focus on the case in which it is optimal for the investors to

implement the efficient action ant = 1 for any t ∈ [τn−1, τn). The sufficient condition for the
optimality of implementing this action is provided by Lemma A2 in the proof of Proposition

2 in Appendix A. Henceforth, we use the expectation operator Eτn−1(·), which is under the
measure induced by {ant = 1 : τn−1 ≤ t < τn}. A contract Φn is incentive compatible if it
implements the efficient action ant = 1 for any t ∈ [τn−1, τn).
At the initial time, the firm holds K0 in capital. We assume that after the 1st manager is

fired and does not continue to be hired by the firm, each manager in the pool of potential

applicants prefers to participate in the contract as long as his discounted expected present

value is larger than or equal to his outside option normalized to zero. Similarly, we assume

that if the incumbent n − 1-th manager continues to be hired as the n-th manager (n =
1, . . . , N), he still prefers to participate in the contract as long as his discounted expected

present value is larger than or equal to zero. This is because each manager can be retired

with a value normalized to zero, as has been assumed. However, regarding the 1st manager,
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he may have to exert additional observable and verifiable effort at time 0 to commence the

firm’s project. Hence, we assume that the optimal contract must deliverW (Φ1) = W0 (> 0)

to the 1st manager at time 0.7 We also suppose that the firm is liquidated when the N-th

manager is fired and does not continue to be hired in the firm. In Section 4, we show how

N is given to make our analysis meaningful. However, we assume that N is a finite number

so that the pool of potential applicants is competitive.

Then, the investors’ optimization problem is

P (K0,W0,Φ
1, . . . ,ΦN) = max

Φ1,...,ΦN
E
PN

1
n

∙Z τn

τn−1
e−rt(dY nt − dUnt )− e−rτ

n

cfKτn

¸
+ e−rτ

N

`KτN ,

s.t. (Φ1, . . . ,ΦN) is incentive compatible, W (Φ1) =W0, and W (Φ
n) ≥ 0 for i = 2, . . . N,

(6)

where τ 0 = 0; dY nt is determined by (3) when dAt = dA
n
t and i

n
t =

Int
Kt
; cfKτn reflects the cost

of lost productivity when the n-th manager is replaced with the n+1-th manager; and `KτN

is the expected liquidation payoff of the investors when the firm is liquidated. In Section 4,

we indicate how ` is endogenously determined.

The presence of the replacement cost of the manager is empirically justified by Taylor

(2010). By estimating that the required cost of replacing the incumbent CEO is 5.9% of firm

value, he discusses why the observed replacement probability of CEOs is low. In Section

4, we show how cf is endogenously determined. In addition, the investors must incur the

cost of lost productivity even though they continue to hire the n-th manager as the n+1-th

manager. We also discuss the justification for this assumption in Section 4.

3. The First-best Solution

We first determine the optimal allocation without agency problems. With no agency con-

flicts (that is, λ = 0 and/or σ = 0), the firm does not replace the 1st manager employed

initially because the firm must incur the replacement cost upon the replacement of the man-

ager and all of the managers in the pool of potential candidates are identical. As in DeMarzo,

7Alternatively, we may assume that the 1st incumbent manager only has the ability to commence the

firm’s project. In this case, the 1st manager’s initial expected discounted payoff W0 will be determined by

the relative bargaining power of the investors and the 1st manager when the firm’s project is initiated.
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Fishman, He, and Wang (2012) and Brunnermeier and Sannikov (2014), our model then re-

duces to the standard dynamic model of corporate investment (the q theory of investment)

à la Hayashi (1982), except that the liquidation value is endogenously determined.

Let qFB denote the average value of capital (average or Tobin’s q) in this case. Given the

stationarity of the economic environment and the homogeneity of the production technology,

we can show that the marginal value of capital (marginal q) equals average q in this situation.

Furthermore, these two values are given by

qFB = max
i

μ− c(i)
r + δ − i . (7)

To ensure that qFB is well defined, we make the following assumption.

Assumption 1: (r + δ)c0(0) < μ < c(r + δ).

The first inequality of Assumption 1 ensures that the first-best investment is positive and

qFB > 1,8 whereas the second inequality of Assumption 1 indicates that the firm cannot

profitably grow faster than the discount rate.

Then, the first-order condition for (7) yields the following proposition.

Proposition 1: The first-best investment is characterized by

c0(iFB) = qFB =
μ− c(iFB)
r + δ − iFB . (8)

In addition, the first-best investment is increasing with q.

4. Optimal Contract with Agency

In this section, we characterize the optimal contract with agency concerns. The contract-

ing problem is then to find incentive-compatible contracts with each manager, (Φ1, . . . ,ΦN),

that maximize the expected profit of the investors subject to ensuring each manager’s par-

ticipation in the contract.

For any (Φn, τn−1), the n-th manager’s continuation value Wn
t is his future expected

8Note that c(0) = 0 and c0(it) ≥ 1 for any it ≥ 0.
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discounted payoff at time t (≥ τn−1), given that he will follow {ans = 1 : t ≤ s < τn}:

Wn
t = Et

Z τn

t

e−γ(s−t)dUns ds. (9)

The optimal contract is now derived using the technique in DeMarzo and Sannikov (2006)

and Sannikov (2008). Specifically, for any (Φn, τn−1), there exists a progressively measurable

process {βnt : τn−1 ≤ t < τn} in L∗ such that Wn
t evolves according to

9

dWn
t = γW n

t dt− dUnt + βntKt (dA
n
t − μdt) , (10)

under ant = 1 for all time periods. The evolution of Wn
t in (10) includes the sensitivity

βnt (W
n
t ) of W

n
t to output KtdA

n
t . This suggests that we can characterize the n-th manager’s

incentive compatibility by considering βnt (W
n
t ).

Indeed, implementing ant = 1 is incentive compatible if and only if

βnt (W
n
t ) ≥ λ, for all t ∈ [τn−1, τn). (11)

Intuitively, if the n-th manager deviates and chooses ant = 0, his instantaneous benefit is

λμKt, whereas his instantaneous cost is the expected reduction of his consumption, β
n
t μKt.

Hence, the n-th manager’s incentive compatibility is equivalent to (11).

In this model, the only relevant state variables going forward are the firm’s capital stock

Kt and the n-th manager’s continuation payoff W
n
t . Thus, denote by P

n(Kt,W
n
t ) the value

function of the investors hiring the n-th manager (the highest expected present value of the

profit to the investors, given Kt andW
n
t ). Using the scale invariance of the firm’s technology

arising from the homogeneity assumption, we write P n(Kt,W
n
t ) = p

n(wnt )Kt. Hence, we can

reduce our problem to one with a single state variable wnt =
Wn
t

Kt
. For simplicity, we assume

that pn(wnt ) is concave. The formal proof for the concavity of p
n(wnt ) is provided by Lemma

A1 in the proof of Proposition 2 in Appendix A.

If wnt is small, the investors could replace the manager or liquidate the firm. Here, we

9A process βn is in L∗ if E
"Z τn

τn−1
Y 2s ds

#
<∞ for all t ∈ [τn−1, τn).
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assume that the firm is not liquidated until the N-th manager is fired and does not continue

to be hired in the firm. The integer N will be given below in the replacement boundary to

make the analysis meaningful. For n < N , the investors can replace the n-th manager with

the n+ 1-th manager if wnt is small.

Let wn be the replacement boundary for the n-th manager such that the n-th manager is

replaced at wnt and instead the n + 1-th manager is hired at w
n. To compensate the n-th

manager for wnt at his replacement, the firm needs to exploit stochastic replacement so that

the n-th manager continues to be hired as the n + 1-th manager with some probability at

wn.

We have also assumed that there is a cost of lost productivity at the replacement of the

manager. To simplify the analysis, we impose the following assumption.

Assumption 2: (i) cf = ζ(wn − wnt ) for ζ > 0 and wnt ≤ wn; and (ii) cf = wnt − wn for
wnt > w

n.

Assumption 2 implies that the replacement cost is increasing (decreasing) in wn − wnt if wnt
< wn (wnt > w

n).

We first justify Assumption 2(i). When wnt ≤ wn, the replacement cost can be caused by
the reorganization and/or restructuring of the firm. If the n-th manager is replaced at wnt (≤
wn) and instead the n+ 1-th manager is hired at wn, the firm can launch its reorganization

and/or restructuring of the firm, which requires a larger cost per unit of capital stock when

the firm’s current and future situation worsens. Indeed, the less favorable present and future

prospects of the firm are represented by the lower wnt . Hence, when the firm replaces the

n-th manager at wnt and hires the n + 1-th manager at w
n (≥ wnt ), it needs to spend a

larger reorganization and/or restructuring cost per unit of capital stock if wn − wnt is larger.
This assumption can also be justified in another way by the implementation result derived

in Section 6. This is because (30) enables us to rewrite Assumption 2(i) by cf = ζλ(mn
t −

mn) for mn
t ≥ mn, where mn

t is the credit line balance per unit of capital stock when the

n-th manager is hired; and mn is the replacement threshold regarding mn
t .
10 Thus, this can

be interpreted such that the replacement cost of the n-th manager per unit of capital stock

10In Proposition 6 in Section 6, mn is given by
wn−wn

λ
.
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is higher, the more constrained the firm’s liquidity and financial slack position.11

These justifications can be applied not only to the case in which the n-th manager is fired

and another new manager is hired from the pool of potential applicants as the n + 1-th

manager, but also to the the case in which the n-th manager continues to be employed as

the n + 1-th manager at wn. This is because both the reorganization and/or restructuring

cost and the new equity issuing cost are needed, even in the latter case.

We next justify Assumption 2(ii). In fact, when wnt > wn, the stochastic replacement

cannot ensure wnt for the n-th manager at his replacement because w
n
t must reduce to w

n.

Thus, in this case, the firm is forced to continue to employ the n-th manager as the n+1-th

manager with probability 1 by giving him wnt − wn as an immediate payment. This implies
that the replacement cost is represented by Assumption 2(ii) in this case.

However, as argued below in the payment boundary, it is not optimal for the investors to

reduce wnt by making the immediate payment to the n-th manager before w
n
t hits w

n. Hence,

without loss of generality, we can neglect the possibility of the replacement of the manager

when wnt > w
n, and focus on the possibility of the replacement of the manager when wnt ≤

wn so that the n-th manager is replaced at wnt (≤ wn) and the n+ 1-th manager is hired at
wn.

The conditions to be satisfied by wn are now discussed as follows. The argument above

ensures that the replacement of the n-th manager occurs for wnt ≤ wn, but does not occur
for wnt > wn. As the investors’ scaled value function changes from pn(wnt ) to p

n+1(wn+1t )

when they replace the n-th manager with the n+ 1-th manager, the optimality requires

pn(wnt ) ≤ pn+1(wn)− ζ(wn − wnt ), for wnt ≤ wn, (12a)

pn(wnt ) > pn+1(wn)− (wnt − wn), for wnt > w
n. (12b)

Here, the left-hand side of (12) is the investors’ scaled value when they continue to employ

the n-th manager, whereas the right-hand side of (12) is the investors’ scaled value minus the

11Furthermore, to reduce the credit line balance mn
t to m

n at the replacement of the n-th manager, our

implementation requires that the firm issues additional new equity to the initial shareholders. If this new

equity issue must be made promptly, and if the prompt equity issue obliges the firm to incur additional costs

that are proportional to the new amount of equity, the replacement cost of cf can also include such issuing

costs that are proportional to mn
t − mn. Bolton, Chen, and Wang (2011) also model the frictional financing

costs a firm incurs when it chooses to issue external equity.

15



replacement cost when they replace the n-th manager. Inequality (12a) shows that pn(wnt ) ≤
pn+1(wn) for wnt ≤ wn. This implies that pn(wn) ≤ pn+1(wn). However, at the replacement
boundary wn, we must have

pn(wn) = pn+1(wn). (13)

This is because if pn(wn) < pn+1(wn), (12b) could not be satisfied if wnt is sufficiently close

to wn. Furthermore, it follows from (12a) and (13) that

pn(wnt )− pn(wn) ≤ pn+1(wn)− pn(wn)− ζ(wn − wnt )
≤ ζ(wnt − wn), for wnt ≤ wn. (14)

If wnt − wn → 0, the optimality also requires that the replacement boundary for the n-th

manager, wn, must be the largest scaled continuation payoff of the n-th manager that satisfies

pn0(wn) = ζ. (15)

The reason is that if pn0(wn) < ζ, (14) must be satisfied with strict inequality for wnt = w
n.

Given (13), this finding implies that (12a) must be satisfied with strict inequality for wnt =

wn. However, this contradicts (13). Note that (15) also satisfies (12b) because (12b) only

results in pn0(wn) > −1. In the end, for wnt < wn, the investors immediately replace the n-th
manager at wnt and newly hire the n + 1-th manager at w

n, which can be summarized by

pn(wnt ) = p
n+1(wn) − ζ(wn − wnt ).

However, we suppose that the investors do not hire any new manager from the pool of

potential applicants yet as n = N . Thus, it needs to be optimal for the investors to fire the

N-th manager with zero value and liquidate the firm.12 This implies that

pN 0(0) = ζ, (150)

12Alternatively, we may suppose that the investors must always liquidate the firm after the N -th manager

is replaced. Although the liquidation value needs to be considered exogenous in this case, the lower boundary

condition in the case of the N -th manager is then given by pN (0) = `. Indeed, in this situation, the HJB

equation and all the boundary conditions are the same as those of DeMarzo, Fishman, He, and Wang (2012),

when the N -th manager is hired. Hence, the value function, pN (wN ), is equivalent to that of DeMarzo,

Fishman, He, and Wang (2012) for all wN ∈ [0, wN ]. Even so, however, all of the results in our paper still
continue to hold, except that pN (wN ) is equivalent to the value function of DeMarzo, Fishman, He, and

Wang (2012).
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pN(0) = `. (16)

Equation (150) shows that the N-th manager is replaced at wN = 0, whereas (16) means

that the firm is liquidated at wN = 0.13 Note that the liquidation value ` is determined

endogenously so that the firm is liquidated at wN = 0.

To make our analysis meaningful, we focus on the case in which wN−1 > 0 and w0 = W0

K0

> w1. Then, Proposition 3 derived in the next section ensures that 0 < wn−1 < w0 for n

= 1, . . . , N − 1. We also focus on the case in which N is set so that p1(w0) is larger than

the maximum value attainable by the investors when the 1st manager is never replaced until

the liquidation of the firm. This assumption can be justified if N and the replacement cost

parameter ζ are sufficiently small.

To complete the discussion of the replacement boundary, we need to determine the prob-

ability of the n-th manager being replaced at wn when n < N . To compensate the n-th

manager for wnt (< w
n), we suppose that the investors replace the n-th manager with a new

manager from the pool of potential applicants with probability 1 − wnt
wn
, whereas they retain

the n-th manager and increase wnt by w
n with probability

wnt
wn
. As the n-th manager is retired

with value 0 when he is fired and does not continue to be hired in the firm, this replacement

strategy can compensate the n-th manager for wnt at his replacement.

For the upper boundary of wn, note that there is a benefit from deferring the n-th man-

ager’s compensation because early compensation for a small wnt increases the possibility of

the inefficient replacement of managers or the inefficient liquidation of the firm. On the other

hand, there is a cost in deferring the n-th manager’s compensation because he has a higher

discount rate than the investors. This trade-off means that there is a compensation level for

the n-th manager, wn, such that it is optimal to pay the n-th manager with cash if wnt ≥ wn

and to defer compensation otherwise. Let dunt =
dUnt
Kt
. Thus, dunt = max (w

n
t −wn, 0), which

implies that pn(wnt ) = pn(wn) − (wnt − wn), for wnt > wn. Hence, as shown in DeMarzo,

Fishman, He, and Wang (2012), the payment boundary for the n-th manager, wn, is the

smallest scaled continuation payoff of the n-th manager that satisfies

pn0(wn) = −1. (17)

13These conditions can be interpreted as an extension of the lower boundary condition in the fixed re-

placement cost model in He (2012, Section 3.1) into the variable replacement cost model.
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For wnt ∈ [wn, wn] (wNt ∈ [0, wN ]), the n-th manager is not paid anything, dunt = 0, when
n < N (n = N). Thus, the evolution of wnt follows directly from the evolution of W n

t from

(10) and Kt from (1). Under the incentive—compatible contract (βnt ≥ λ), it follows from

(1), (4), and (10) with ant = 1 and du
n
t = 0 that

dwnt = [γ − (int − δ)]wnt dt+ βnt (dA
n
t − μdt) = [γ − (int − δ)]wnt dt+ βnt σdZt. (18)

Equation (18) implies that the promised payoff of the n-th manager grows on average at his

discount rate γ less the net growth rate (int − δ) of the firm.

Now, using (18) and Ito’s lemma, we can obtain the following Hamilton—Jacobi—Bellman

(HJB) equation to characterize pn(wn) for wn ∈ [wn, wn] when n < N (wN ∈ [0, wN ] when
n = N):

rpn(wn) = sup
in≥0,βn≥λ

[μ− c(in)]+(in−δ)pn(wn)+[γ − (in − δ)]wnpn0(wn)+
1

2
(βn)

2
σ2pn00(wn),

(19)

with pn(wnt ) = p
n+1(wn) − ζ(wn − wnt ) for wnt < wn; and pn(wnt ) = pn(wn) − (wnt − wn)

for wnt > wn. The first—term on the right-hand side of (19) expresses the instantaneous

expected cash flows, the second term is the expected change in the value of the firm from

capital accumulation, and the third and fourth terms are the expected change in the scaled

value of the firm because of the drift and volatility in the n-th manager’s scaled continuation

payoff wn.

As pn00(wn) < 0, the outside investors dislike volatility in wn and optimally choose the

sensitivity of wn to output. That is, βn = λ in (19). Furthermore, we derive the optimal

investment—capital ratio int that satisfies the following Euler equation.

c0(in(w)) = pn(wn)− wnpn0(wn). (20)

Equation (20) shows that the investors’ marginal cost of investing equals their marginal value

of investing. The marginal value of investing is represented by pn(wn) plus the marginal effect

of decreasing wn as the firm grows.

The investors’ scaled value function pn(wn) is now jointly determined by (18) and (19) in
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the range of wn ∈ [wn, wn] when n < N (wN ∈ [0, wN ] when n = N). We also have the

boundary conditions (13) and (15) for the replacement boundaries wn when n = 1, . . . , N−1,
and the “smooth pasting” conditions (17) for the payout boundaries when n= 1, . . . , N . Only

when n = N is the firm liquidated. Thus, (150) and (16) must be satisfied for n = N . To

complete our characterization, we need the "super contract" conditions in order to determine

the optimal levels of wn for n = 1, . . . , N :

pn00(wn) = 0. (21)

Then, using (17) and (19), we show that (21) is equivalent to

pn(wn) + wn = sup
in≥0

μ− c(in)− (γ − r)wn
r + δ − in , n = 1, . . . , N. (22)

In (22), the left-hand side is the total firm value at wn, while the right-hand side is the

perpetuity value of the firm’s cash flows given the cost of maintaining wn at wn because

there is a cost to deterring the n-th manager’s compensation when γ > r. Again, this

implies that postponing payment is optimal until (22) is satisfied.

The following proposition summarizes the optimal contract. To simplify the analysis, we

assume the case of quadratic investment adjustment costs:

c(i) = i+
1

2
θ(i)2, (23)

where θ > 0. Then, (20) implies that the optimal investment—capital ratio int is given by

in(w) =
pn(wn)− wnpn0(wn)− 1

θ
. (24)

We also provide a formal verification argument for the optimal policy in the proof of Propo-

sition 2 in Appendix A.

Proposition 2: (i) The investors’ value function after the n-th manager is hired is repre-

sented by P n(K,Wn) = pn(wn)K, where pn(wn) is the investors’ scaled value function. The

investors hire N managers cumulatively before the firm is liquidated.
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(ii) Suppose that n < N . For wn ∈ [wn, wn], pn(wn) is strictly concave and uniquely solves
the HJB equation (19) with boundary conditions (13), (15), (17), and (21). For wn < wn,

pn(wn) = pn(wn) − ζ(wn − wn). For wn < wn, pn(wn) = pn(wn) − (wn − wn).
(iii) Suppose that n = N . For wN ∈ [0, wN ], pN(wN) is strictly concave and uniquely solves
the HJB equation (19) with boundary conditions (15 0), (16), (17), and (21). For wN < wN ,

pN(wN) = pN(wN) − (wN − wN).
(iv) The manager’s scaled continuation payoff wn evolves according to (18) for wn ∈ [wn,
wn] when n < N , and for wN ∈ [0, wN ] when n = N . Cash payments dunt are equal to zero
for wnt ∈ [wn, wn) and reflect wnt back to wn when n < N ; whereas duNt is equal to zero

for wNt ∈ [0, wN) and reflects wNt back to wN . The n-th manager is replaced when wnt <

wn for n < N , which causes wn+1t to start at wn.14 However, the contract is terminated at

time τN when wNt reaches 0. Optimal investment is given by I
n
t = i

n(wnt )Kt, where i
n(wnt )

is determined by (20) ((24)). The sensitivity of wnt to output is given by βnt = λ.

Proof: See Appendix A. ¥

The concavity of pn(wn) reveals the “investors’ induced aversion” to fluctuations in wn

because the variations in wn increase the risks of the inefficient replacement of the manager

and the inefficient liquidation of the firm. According to DeMarzo, Fishman, He, and Wang

(2012), the investors’ induced aversion to fluctuations in wn implies that the investors behave

in a risk-averse manner toward idiosyncratic risk because of the agent’s friction, even though

they are risk neutral.

Figure 1 depicts an example of the investors’ scaled value function pn(wn) and pn+1(wn+1).

In this figure, we do not illustrate the detailed properties of pn(wn) or pn+1(wn+1) in the

range of wj > bwj, where bwj = argmax
wj

pj(wj) for j = n, n + 1. This is because in that

range, the graphs of pn(wn) and pn+1(wn+1) are similar to the investors’ scaled value function

illustrated in DeMarzo, Fishman, He, and Wang (2012).

14Note that the n-th manager is replaced with a new manager with probability 1 − wnt
wn
, while he is retained

as the n+ 1-th manager with probability
wnt
wn
.
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5. Model Implications

In this section, we examine the properties of the replacement boundaries and analyze the

model’s predictions for the investors’ scaled value, average q, marginal q, and the investment—

capital ratio when considering the firm’s successive decisions concerning manager turnover.

Although the incumbent n-th manager continues to be hired as the n+ 1-th manager with

some probability, all the replacements of the incumbent managers by the other new managers

are characterized by the replacement boundaries in our model. Thus, this investigation

enables us to analyze the joint dynamics of the firm’s investment and managerial turnover

around the time of the replacement of the incumbent manager by another new manager.

We begin by proving the following proposition about the replacement boundaries.

Proposition 3: (i) 0 < wn+1 < wn for n = 1, . . . , N − 2.
(ii) wn is uniquely determined for n = 1, . . . , N − 1.

Proof: It follows from the definition of wn that if wn ≤ wn+1, the investors must immediately
replace the n+ 1-th manager and incur the replacement cost after the n+ 1-th manager is

employed. Hence, we can exclude this possibility without loss of generality,15 and verify that

wn+1 < wn. Note that wn > 0 for n < N because we focus on the case wN−1 > 0. Finally,

it is immediate from the strict concavity of pn(wn) and pn0(wn) = ζ that wn is uniquely

determined. ¥

Proposition 3 suggests that the replacement boundary declines with the frequency of the

replacement of managers, even though the incumbent manager can be retained with some

probability at or below the replacement boundary. This implies that the firm’s optimal re-

placement/retention decision becomes more permissive with time. Although this result may

be analogous to that of Garrett and Pavan (2012), their result suggests that the productivity

level that the firm requires for retention declines with the length of the manager’s tenure.

Thus, their result is applied to the one-shot replacement strategy of the firm facing a perfectly

stationary environment with no turnover cost in the sense that the firm is confronted with

the same agency problem with each manager it hires. By contrast, our result holds for the

successive replacement/retention strategy of the firm that employs and replaces managers

15If there is a sufficiently small administration cost incurred by the investors and the manager at the

contract termination, this procedure can also be justified at wn = wn+1.
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by incurring variable replacement costs related to the firm’s financial distress. Intuitively,

the firm would have to immediately replace the n+ 1-th manager and incur the additional

replacement cost if it replaced the n-th manager when wn ≤ wn+1. Hence, the firm desires

to delay the replacement of the n + 1-th manager by wn+1 that is sufficiently smaller than

wn.

We next derive the implications of the properties of pn(w). We first obtain the following

lemma.

Lemma 1: (i) pn(w) < pn+1(w) for any w ∈ [0, wn) and n = 1, . . . , N − 1.
(ii) pn(w) = pn+1(w) for w = wn and n = 1, . . . , N − 1.
(iii) pn(w) > pn+1(w) for n = 1, . . . , N − 1, if w is not sufficiently larger than wn.

Proof: Suppose that n < N − 1. Using the concavity of pn+1(w), pn0(wn) = pn+10(wn+1) =
ζ, wn > wn+1 from Proposition 3, and pn(w) = pn+1(wn) − ζ(wn − w) for any w ≤ wn, we
verify all the statements of this lemma. Suppose that n = N − 1. Then, it follows from the

concavity of pN(w), pN−10(wN−1) = pN 0(0) = ζ, and pN−1(w) = pN(wN−1) − ζ(wN−1 − w)
for any w ≤ wN−1 that all the statements of this lemma hold. ¥

The intuition behind Lemma 1 is that the firm incurs the replacement cost as a function of

its financially distressed situation if it replaces the n-th manager with the n+1-th manager.

Thus, when the n-th manager is replaced for w ∈ [0, wn) and n < N , pn+1(w) must be

higher than pn(w) to compensate the replacement cost in this range of w. However, after

the n+ 1-th manager is hired when n < N − 1, he is not replaced until w falls below wn+1,
which is lower than wn (see Proposition 3). Similarly, after the N -th manager is hired, he

is not replaced until w falls to 0, which is lower than wN−1. As discussed below in Lemma

2(ii), this causes pn0(w) > pn+10(w) in the range of w ∈ (wn+1, wn] when n < N − 1, and
pN−10(w) > pN 0(w) in the range of w ∈ (0, wN−1]. Hence, because of pn(wn) = pn+1(wn),

this feature makes pn(w) higher than pn+1(w) for n = 1, . . . , N − 1, if w is not sufficiently
larger than wn.

We further show the following lemma.

Lemma 2: (i) pn0(w) = pn+10(w) = ζ for any w ∈ [0, wn+1] and n = 1, . . . , N − 2.
(ii) pn0(w) > pn+10(w) for any w ∈ (wn+1, wn] and n = 1, . . . , N − 2; and pN−10(w) >
pN 0(w) for any w ∈ (0, wN−1].
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(iii) In addition, if w is sufficiently close to wn and if w > wn, then pn0(w) > pn+10(w) for

n = 1, . . . , N − 1.

Proof: It is evident from Proposition 3 and (15) that pn0(w) = pn+10(w) = ζ for any w ∈
[0, wn+1] and n = 1, . . . , N − 2. It also follows from Proposition 3, (15), and the concavity

of pn+1(w) that pn0(w) = ζ > pn+10(w) for any w ∈ (wn+1, wn] and n = 1, . . . , N − 2. In
addition, using the concavity of pN(w) with pN 0(0) = ζ and pN−1(w) = pN(wN−1) − ζ(wN−1

− w) for w ≤ wN−1, we must have pN−10(w) > pN 0(w) for any w ∈ (0, wN−1]. Finally, as
pn0(wn) > pn+10(wn), we show that if w is sufficiently close to wn and w > wn, then pn0(w)

> pn+10(w) for such w and n = 1, . . . , N − 1. ¥

The intuition underlying Lemma 2 is as follows. In the range of w ∈ [0, wn+1] for n
= 1, . . . , N − 2, both the n-th and the n + 1-th managers are replaced. Hence, both the
sensitivities of pn(w) and pn+1(w) with respect to w are equal to the replacement cost per

unit of variation in w, that is, ζ. In the range of w ∈ (wn+1, wn] for n = 1, . . . , N − 2 (w
∈ (0, wN−1]), Proposition 3 shows that the n-th (N − 1-th) manager is replaced, whereas
the n + 1-th (N-th) manager is not replaced. Hence, the firm delays the replacement of

the n + 1-th manager (the liquidation of the firm) by wn+1 (by 0). Under the investors’

induced aversion to fluctuations in w, the delay of the replacement of the n+ 1-th manager

(the liquidation of the firm) reduces the marginal value of his continuation payoff for the

investors, thus decreasing pn+10(w) (pN 0(w)). This causes the sensitivity of pn+1(w) (pN(w))

to be smaller than that of pn(w) (pN−1(w)) in this range. If w (> wn) is sufficiently close

to wn, the tendency of pn0(w) > pn+10(w) continues for such w in which the n-th manager is

not replaced.

Average q is defined as the ratio between firm value and capital stock. As total firm value

includes the claim held by the manager and is equal to P (K,W ) + W , average q when the

n-th manager is hired is represented by

qna (w) =
P n(K,W ) +W

K
= pn(w) + w, n = 1, . . . , N. (25)

On the other hand, marginal q measures the incremental impact of a unit of capital on firm
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value. Thus, marginal q when the n-th manager is hired is given by

qnm(w) =
∂ [P n(K,W ) +W ]

∂K
= P nK(K,W ) = p

n(w)− wpn0(w), n = 1, . . . , N. (26)

As in DeMarzo, Fishman, He, and Wang (2012), using (7), (25), and (26) with pn0(w) ≥ −1,
note that the following inequality is attained:

qFB > qna (w) ≥ qnm(w), for any w ≥ wn and n < N ; and for any w ≥ 0 and n = N.
(27)

Hence, it follows from (8), (20), (26), (27), and the convexity of c(·) that

in(w) < iFB, for any w ≥ wn and n < N ; and for any w ≥ 0 and n = N. (28)

Because the replacement of the n-th manager causes wn to end at wn, we focus on the

case of wn ≥ wn when considering investment under the employment of the n-th manager.
In addition, when the n-th manager is hired, he is not replaced as long as w > wn. However,

if w ≤ wn, the n-th manager is replaced and the n+1-th manager starts his management at
w = wn. This implies that, when examining the effect of the replacement of the manager on

investment, we should evaluate average q, marginal q, and the investment—output ratio at w

> wn when the n-th manager is hired, while evaluating these variables at w = wn when the

n-th manager is replaced with the n+ 1-th manager.

Let wn be the smallest scaled continuation payoff of the n-th manager that satisfies pn(wn)

= pn+1(wn) for wn <wn. The following proposition about average andmarginal q is obtained.

Proposition 4: (i) For average q, qn+1a (wn) < qna (w) for any w ∈ (wn, wn+) and n =
1, . . . , N − 1, where wn+ = min(wn, wn).
(ii) For marginal q,

(a) qn+1m (wn) > qnm(w) for n = 1, . . . , N−1 if w (> wn) is sufficiently close to wn. However,
if w (> wn) is not sufficiently close to wn, it is possible that qn+1m (wn) ≤ qnm(w) for n =
1, . . . , N − 1.
(b) qnm(w) is increasing in w. In particular, q

n
m(w

n) < qnm(w) for w
n < w and n = 1, . . . , N.

Proof: (i) It follows from the concavity of pn(w), pn0(wn) = ζ > 0 and pn(wn) = pn+1(wn)
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= pn+1(wn) with (25) that this statement is verified.

(ii) For n = 1, . . . , N − 1, let ψn,n+1(w,wn) = qnm(w) − qn+1m (wn) = pn(w) − pn+1(wn)

− wpn0(w) + wnpn+10(wn). Then, ψn,n+1(wn, wn) < 0 and
∂ψn,n+1(w,wn)

∂w
= −wpn00(w) > 0

because of Lemmas 1(ii) and 2(ii) and the concavity pn(w). If w (> wn) is sufficiently close

to wn, then qnm(w) < q
n+1
m (wn) still holds for such w. However, if w (> wn) is not sufficiently

close to wn, it is possible that qnm(w) ≥ qn+1m (wn) for such w. Thus, the statement of (a) is

verified. Furthermore, for n = 1, . . . , N , note that
∂qnm(w)

∂w
= −wpn00(w) > 0 because of the

concavity pn+1(w). Then, we verify the statement of (b). ¥

The intuition behind the results of Proposition 4 is as follows. It follows from the definition

of wn+ that pn0(wn) = ζ > 0 ensures pn(w) ≥ pn(wn) (= pn+1(wn)) for w ∈ [wn, wn+] when
n = 1, . . . , N − 1. Then, given the definition of qa(w) from (25), the result of Proposition

4(i) is immediately obtained.

For the results of Proposition 4(ii), notice that pn(wn) = pn+1(wn) and pn0(wn) = ζ >

pn+10(wn) for n = 1, . . . , N − 1, given Lemmas 1(ii) and 2(ii). The first relation is evident
from the definition of wn, whereas the second relation is derived from (15) and the delay

of the replacement of the n + 1-th manager in view of Proposition 3 under the investors’

induced aversion to fluctuations in w. Then, using the definition of qm(w) from (26), this

implies that qnm(w
n) < qn+1m (wn). If w (> wn) is sufficiently close to wn, the relation of

qnm(w) < q
n+1
m (wn) continues to hold for such w. However, the investors’ induced aversion to

fluctuations in w implies that qnm(w) − qn+1m (wn) is increasing in w. Hence, if w (> wn) is not

sufficiently close to wn, it is possible that qnm(w) ≥ qn+1m (wn) for such w. Thus, these results

lead to Proposition 4(ii)(a). In addition, given that qnm(w) is increasing in w, Proposition

4(ii)(b) is evident.

Proposition 4 can be interpreted as follows. Proposition 4(i) indicates that average q

becomes lower after the replacement of each manager, except when the predecessor’s scaled

continuation value is not considerably larger. Proposition 4(ii)(a) suggests that marginal q

becomes higher after the replacement of each manager if the predecessor’s scaled continuation

value is sufficiently close to his replacement threshold. However, it is possible that marginal

q becomes lower after the replacement of the manager if his scaled continuation value is

sufficiently larger than his replacement threshold. Proposition 4(ii)(b) shows that marginal
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q is increasing in the manager’s scaled continuation value.

Several remarks about Proposition 4 are in order. DeMarzo, Fishman, He, and Wang

(2012) suggest that agency costs cause marginal q to differ from average q even though their

model features homogeneity properties as in Hayashi (1982). In our model, if we further

consider the possibility that the investors can successively replace any hired manager by

incurring the variable replacement cost related to the firm’s financially distressed situation,

Propositions 4(i) and 4(ii)(a) imply that the variations of average q and marginal q around

the replacement time of each manager move in opposite directions if the predecessor’s scaled

continuation value before his replacement is sufficiently close to his replacement threshold.

However, these statements imply that the variations of average q and marginal q around the

replacement time of each agent may move in the same direction if the predecessor’s scaled

continuation value is sufficiently larger than his replacement threshold before his replacement.

Thus, we summarize these discussions in the following corollary.

Corollary to Proposition 4: The variations of average q and marginal q around the

replacement time of each manager are in opposite directions if the predecessor’s scaled con-

tinuation value near his replacement time is sufficiently close to his replacement threshold,

but may be in the same direction if his scaled continuation value near his replacement is

sufficiently larger than his replacement threshold.

We now turn to the model’s prediction of the investment—capital ratio. Given (20) ((24))

and the convexity of c(·), we show the following proposition.

Proposition 5: (i) in+1(wn) > in(w) for n = 1, . . . , N − 1 if w (> wn) is sufficiently close
to wn. However, if w (> wn) is not sufficiently close to wn, it is possible that in+1(wn) ≤
in(w) for n = 1, . . . , N − 1.
(ii) in(w) is increasing in w. In particular, in(wn) < in(w) for wn < w and n = 1, . . . , N.

Proof: These statements are evident from Proposition 4(ii) with c00 > 0 and (20). ¥

Proposition 5(i) indicates that around the replacement time of each manager, the optimal

investment—capital ratio is higher under the successor than under the predecessor if the

predecessor’s scaled continuation value before his replacement is sufficiently close to his

replacement threshold. However, the optimal investment—capital ratio may be lower under
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the successor than under the predecessor if the predecessor’s scaled continuation value before

his replacement is sufficiently larger than his replacement threshold. Proposition 5(ii) shows

that the optimal investment—capital ratio is increasing in the manager’s scaled continuation

value.

These discussions are summarized as follows.

Corollary to Proposition 5: (i) The optimal investment—capital ratio is higher after

the replacement of each manager if the predecessor’s scaled continuation value near his re-

placement time is sufficiently close to his replacement threshold, but may be lower after the

replacement of each manager if his scaled continuation value near his replacement time is

sufficiently larger than his replacement threshold.

(ii) The optimal investment—capital ratio under each manager is increasing in his scaled

continuation value.

6. Implementation of the Optimal Contract

We consider the implementation of the optimal contract à la DeMarzo and Sannikov

(2006) in terms of securities that include equity, long-term debt, and a credit line.16 These

securities are held by widely dispersed investors or intermediaries. As the optimal contract is

conditional on w, the implementation result is unaffected, regardless of whether the manager

designs the capital structure and investment policies to maximize his own payoff or the

investors design these policies to maximize the value of the firm.

However, the securities used in the implementation are quite different from those in De-

Marzo and Sannikov (2006), although both of the models use equity, long-term debt, and

a credit line. More specifically, the firm issues not only initial equity to raise initial capital

K0 at time 0, but also additional new equity to the initial shareholders to finance addi-

tional funds required at the replacement of each manager. Besides, when the initial equity

is issued at time 0 (the new equity is issued at the replacement of the n − 1-th manager),
the firm grants the 1st manager (n-th manager) a fraction α1 (αn) of the firm’s equity as

restricted stock. In fact, if any manager is fired, he must return all of his holdings of this

16An alternative implementation is given in DeMarzo, Fishman, He, and Wang (2012), in which the firm

retains a cash reserve rather than a credit line.
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restricted stock to the firm. The remaining fraction of the firm’s equity is held by the initial

shareholders at any time. Equity holders receive dividend payments paid from the firm’s

available cash or credit. However, no managers can receive part of the liquidation payoff. In

this sense, the manager’s equity is inside equity with the provision that it is worthless in the

event of his replacement or the firm’s termination.

The firm is also provided financial slack with long-term debt and a credit line. According

to the rule determined at time 0, the firm issues or buys back long-term debt with face value

bnt per unit of capital stock at any time when the n-th manager is hired. The long-term debt

issued when the n-th manager is hired is a consol bond that pays continuous coupons at rate

xnt per unit of capital stock.
17 We let the coupon rate be r, so that bnt =

xnt
r
. If the firm

defaults on a coupon payment, debt holders force termination of the project. A revolving

credit line opened after hiring the n-th manager provides the firm with available credit up

to a limit cLn per unit of capital stock. Balances on the credit line per unit of capital stock

are mn
t , and are charged a fixed interest rate r

c. The firm borrows and repays funds on the

line of credit at the discretion of the manager. If mn
t exceeds c

Ln, the firm defaults and the

project is terminated.

Our implementation need not specify the priority between long-term debt and the credit

line. However, if long-term debt is risky, the firm must trade at a discount because the

coupon rate is equal to r. One way of dealing with this problem is to assume that as in

DeMarzo and Sannikov (2006), lenders provide both long-term debt and the credit line so

that the firm pays an amount that exactly offsets the discount on long-term debt because of

credit risk. Note that lenders can receive the high interest rate rC on the credit line if rC− r
is sufficiently large.18 Another way is to assume that when the n-th manager is hired, the

liquidation value of the firm per unit of capital stock is larger than bnt and that the long-term

debt is senior to the credit line, as in Hennessy and Whited (2005), DeMarzo and Sannikov

(2006), and Hennessy, Levy, and Whited (2007). The long-term debt is then risk free.

The next proposition shows that the optimal contract can be implemented with a capital

17If bnt < 0, long-term debt is interpreted as a compensating balance, as in DeMarzo and Sannikov (2006).
18The credit line is almost always provided by banks or financing companies. In a sample of 11,758 credit

lines obtained by 4011 public firms between 1996 and 2003 in Loan Pricing Corporation’s DealScan, the

median commitment fee is 25 basis points and the median interest rate on drawn funds is 150 basis points

above LIBOR (see Sufi (2009)). Thus, the assumption that rC − r is sufficiently large can be justified.
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structure based on the securities introduced above.19 The proof of this proposition is provided

in Appendix A.

Proposition 6: There exists a capital structure that implements the optimal contract and

has the following features:

αn = λ, n = 1, . . . , N, (29a)

bnt =
μ

r
− γ − int + δ

r
cLn, n = 1, . . . , N, (29b)

cLn =
wn

λ
, n = 1, . . . , N. (29c)

The line of credit has interest rate rC = γ. For the balance mn
t ≥ 0, the n-th manager’s

scaled continuation payoff wnt is determined by the current draw m
n
t on the line of credit:

wnt = λ(cLn −mn
t ), n = 1, . . . , N, (30)

which coincides with the scaled continuation payoff of the n-th manager in Proposition 2.

Then, it is optimal for the n-th manager to choose effort ant = 1 and the investment—capital

ratio int given by (24). The dividends are not paid until the credit line is fully repaid (m
n
t

= 0). However, if mn
t hits 0, all excess cash flows are issued as dividends. If n < N , the

n-th manager is replaced when mn
t is above

wn−wn
λ

. Then, new equity is issued to the initial

shareholders, until the credit line returns to wn−wn
λ

and the replacement cost is covered. In

addition, the n-th manager’s equity is returned to the firm, but the n + 1-th manager is

granted new equity. If n = N , the firm is liquidated when mN
t hits c

LN .

Several remarks on the theoretical implications of Proposition 6 are in order. First, equa-

tion (29a) shows that to eliminate the managers’ incentive to divert cash, the investors need

to provide each manager with a fraction of equity λ.

Second, equation (30) ensures that no manager pays dividends prematurely by drawing

down the line of credit per unit of capital stock cLn − mn
t immediately and then defaulting.

This is because (30) implies that the n-th manager’s immediate payoff (his share of the firm’s

profit) when he follows this deviation–the right-hand side of (30)–would be equal to wnt ,

19In this capital structure implementation, the manager can choose when to draw on or repay the credit

line, how much to pay in dividends, and whether to accumulate cash balances within the firm.
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which he can receive by committing to the rule of our capital structure implementation.

Third, (29b) shows that long-term debt per unit of capital stock bnt is decreasing in m
n
t

because Proposition 5(ii) with (30) indicates that int is decreasing in m
n
t . This means that

long-term debt is a substitute for the credit lines. Furthermore, if γ is close to r, (29b)

suggests that the total debt capacity of the firm is represented by

bnt + c
Ln ' μ

r
+
int − δ

r
cLn.

Thus, the total debt capacity of the firm per unit of capital stock is also decreasing in mn
t .

Finally, the n-th manager has the incentive to pay dividends only when mn
t = 0. However,

all excess cash flows are paid as dividends oncemn
t = 0. On the other hand, the n-th manager

for n < N is replaced as long as mn
t hits

wn−wn
λ

. Given (29c), this implies that when n < N ,

the n-th manager is replaced even though the credit line balance is not fully exhausted.

7. Empirical Implications

As shown in Proposition 6, when the manager’s scaled continuation payoff increases, this

can be interpreted as greater financial slack (see equation (30)). Furthermore, Proposition

4(ii)(b) also shows that marginal q is increasing in the manager’s scaled continuation payoff.

These results imply that the higher the manager’s scaled continuation payoff, the higher the

financial slack and the higher the marginal q. Given these findings, we propose the following

empirical implications for average q, marginal q, and the investment—capital ratio, using the

corollaries to Propositions 4 and 5.

(A) The variations of average q and marginal q around the replacement time of each manager

move in opposite directions if the firm’s financial slack (marginal q) is relatively low before

the replacement of the manager, but may move in the same direction if the firm’s financial

slack (marginal q) is not relatively low before the replacement of the manager.

(B)(i) The optimal investment—capital ratio (marginal q) is higher after the replacement of

each manager if the firm’s financial slack (marginal q) is relatively low before the replacement

of the manager, but may be lower after the replacement of each manager if the firm’s financial

slack (marginal q) is not relatively low before the replacement of the manager.
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(ii) The optimal investment—capital ratio under each manager is increasing as the firm’s

financial slack (marginal q) becomes higher.

Very few studies examine the patterns in capital budgeting and investment policy in the

years surrounding CEO turnover. Huson, Malatesta, and Parrino (2004), using US firm

data from 1971 to 1994, report that capital expenditure intensity increases around forced

CEO turnovers. On the other hand, using a sample of US firm data from 1990 to 2007,

Fee, Hadlock, and Pierce (2013) provide weak evidence that capital expenditure intensity

decreases around overtly forced CEO turnovers. However, if they use the larger sample of

suspected forced CEO turnovers, they obtain stronger evidence that the capital expenditure

intensity increases around suspected forced CEO turnovers. These findings are broadly

consistent with our implication (B) if the firm’s financial slack or marginal q in their samples

is relatively low before the replacement of the manager.

Using US firm data from 1989 to 2005, Hornstein (2013) shows that the estimated mar-

ginal q rises substantially as the firm nears the turnover year, peaks shortly after turnover,

and then slowly stabilizes. This finding is again consistent with our implication (B) if the

firm’s financial slack is relatively low before the replacement of the manager and is stable

after the turnover time elapses. Furthermore, Hornstein (2013) indicates that the impact of

CEO turnover is asymmetric for under- and overinvesting firms.20 Specifically, the regressed

coefficient of the estimated marginal q upon average q is positively correlated and highly

significant for underinvesting firms around CEO turnover. By contrast, this same variable

is negative for overinvesting firms around CEO turnover, although it is insignificant. These

findings are also consistent with our implication (A) because marginal q is relatively high

(low) for under- (over)investing firms.

Our implications (A) and (B) also provide a new insight into the relation between average

q and marginal q. The neoclassical q model of investment with adjustment costs shows that

the investment—capital ratio is positively related to marginal q. In fact, in many empirical

studies, average q is used as a proxy for the firm’s investment opportunities. This is because

(i) average q is easily observable, (ii) Hayashi (1982) provides conditions under which average

q is equal to marginal q, and (iii) average q is positively related to marginal q in most of the

20According to her definition, under— (over)investing firms are defined as firms whose marginal q is larger

(smaller) than 1.0 or 0.78.
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investment models, although average q is not necessarily equal to marginal q.

However, several studies show that there is no longer a monotonic relation between in-

vestment and marginal q, and that average q can actually be a more robust indicator for

investment. For example, Caballero and Leahy (1996) suggest that average q is a better

proxy for the firm’s investment opportunities with fixed costs of adjustment. Bolton, Chen,

and Wang (2011) also argue that average q rather than marginal q can be a more robust

predictor of investment for financially constrained firms.

Our implication (A) shows that the variations in average q and marginal q at the time of

manager turnover can be in opposite directions. This implies that average q is not a suitable

proxy for marginal q surrounding the turnover of the manager. In addition, combining

our implications (A) and (B), we argue that the optimal investment—output ratio can be

negatively related to average q at the time of manager turnover. This suggests that if

average q is used for the estimation of the investment function, the estimation result involves

an estimation bias when the manager is replaced. These findings imply that average q is

not a better proxy than marginal q for the firm’s investment opportunities surrounding the

replacement of the manager, in contrast to the suggestions of both Caballero and Leahy

(1996) and Bolton, Chen, and Wang (2011).

Our theory also derives new implications for the likelihood of CEO turnover, using Propo-

sition 3.

(C) The more frequent the replacement of previous CEOs, the less likely the replacement of

the succeeding CEO for the firm’s poor financial slack,.

This statement provides new empirical implications for the likelihood of CEO turnover.

Specifically, CEO retention is more likely, despite the firm’s poor performance, the more

frequent the replacement of previous CEOs.

8. Conclusion

We explore the dynamic theory of investment and costly managerial turnover under agency

conflicts between the investors and the manager. To this end, we develop the continuous-

time agency model with the q-theory of investment by incorporating the possibility of the

successive replacement of managers before the firm is finally liquidated. The model enables
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us to discuss how the investors decide at each point of time whether to fire or retain the

current manager by considering incurring a replacement cost related to the firm’s financially

distressed situation.

We show that the variations of average q and marginal q around the turnover are in op-

posite directions if the predecessor’s scaled continuation payoff near his replacement time is

sufficiently close to his replacement threshold (that is, if the firm’s financial slack is relatively

low before the replacement of the manager). However, such variations may occur in the same

direction if his scaled continuation payoff near his replacement time is sufficiently larger than

his replacement threshold (that is, if the firm’s financial slack is not relatively low before the

replacement of the manager). Our results also imply that the optimal investment—capital

ratio increases after the replacement of each manager if the predecessor’s scaled continuation

payoff near his replacement time is sufficiently close to his replacement threshold (that is, if

the firm’s financial slack is relatively low before the replacement of the manager), but this ra-

tio may be lower after the replacement of each manager if his scaled continuation payoff near

his replacement time is sufficiently larger than his replacement threshold (that is, if the firm’s

financial slack is not relatively low before the replacement of the manager). Furthermore,

we show that the firm’s optimal replacement/retention decision becomes more permissive

with the frequency of the replacement of managers. These main results are unaffected even

when contracts are constrained to be renegotiation-proof. Finally, our theoretical findings

yield several empirical implications for the dynamics of investment and CEO turnover pol-

icy that are consistent with evidence given in the existing empirical literature and provide

novel testable hypotheses. In addition, our empirical implications suggest that if we need

to consider the possibility of the replacement of the manager, average q is not necessarily

a better proxy than marginal q for the firm’s investment opportunities, in contrast to the

suggestions of several theoretical studies such as Caballero and Leahy (1996) and Bolton,

Chen, and Wang (2011).
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Appendix A

Proof of Proposition 2: As required by DeMarzo, Fishman, He, and Wang (2012), we

impose the following conditions. First, we assume the usual regularity condition on the

payment policies

E
PN

1
n

³R τn

τn−1e
−γtdUnt

´2
<∞. (A1)

We also put the regularity conditions on the investment policies

E
hR T
0

¡
e−rtKt

¢2
dt
i
<∞ for all T > 0, (A2)

and

lim
T→∞

E
¡
e−rTKT

¢
= 0. (A3)

Now, we prove the following lemma.

Lemma A1: When n < N , the function pn(wn) is strictly concave on (wn, wn). When

n = N , the function pN(wN) is also strictly concave on [0, wN).

Proof: We focus on the case of n < N because the proof in the case of n = N is similar.

Substituting the optimal value of in(w) given by (24) into (19) and rearranging it with βn

= λ, (20), and (23), we obtain

(r + δ)pn(wn) = μ+
[pn(wn)− wnpn0(wn)− 1]2

2θ
+ (γ + δ)wnpn0(wn) +

λ2σ2

2
pn00(wn). (A4)

Differentiating (A4) with respect to wn yields

(r + δ)pn0(wn) = − [p
n(wn)− wnpn0(wn)− 1]wnpn00(wn)

θ
+ (γ + δ)pn0(wn)

+(γ + δ)wnpn00(wn) +
λ2σ2

2
pn000(wn). (A5)

Evaluating (A5) at wn, and using pn0(wn) = −1 and pn00(wn) = 0, we have

λ2σ2

2
pn000(wn) = γ − r > 0.

Hence, pn00(wn − ²n) < 0 for sufficiently small ²n > 0.
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Next, let qn(wn) ≡ pn(wn)− wnpn0(wn). Then, it follows from (A4) that

(r + δ)qn(wn) = μ+
[qn(wn)− 1]2

2θ
+ (γ − r)wnpn0(wn) + λ2σ2

2
pn00(wn). (A6)

Suppose that there exists some wn◦ < wn such that pn00(wn◦) = 0. Choose the largest wn◦

such that pn00(wn◦ + ²n) < 0. Then, for any wn ∈ (wn◦, wn), we must have pn00(wn) < 0

because pn00(wn − ²n) < 0 for sufficiently small ²n > 0. Evaluating (A6) at wn◦, we show

(r + δ)qn(wn◦) = μ+
[qn(wn◦)− 1]2

2θ
+ (γ − r)wn◦pn0(wn◦).

Using pn0(wn) = −1 and pn00(wn) ≤ 0 for any wn ∈ [wn◦, wn], it follows that qn(wn◦) ≡
pn(wn◦) − wn◦pn0(wn◦) < pn(wn◦) + wn◦ < pFB(wn◦) + wn◦ ≡ qFB.21 In addition, it is found
from (8), (23), and (24) that (r+ δ)qFB = μ +

[qFB−1]2

2θ
. Given that ψ(q) ≡ (r+ δ)q − μ −

(q−1)2
2θ

is increasing in q for any q < 1 + θ(r + δ) and that 1 + θ(r + δ) > qFB > qn(wn◦),22

we obtain pn0(wn◦) < 0. Now, evaluating (A5) at wn◦, we have

(r + δ)pn0(wn◦) = (γ + δ)pn0(wn◦) +
λ2σ2

2
pn000(wn◦),

which implies that pn000(wn◦) = 2(r−γ)
λ2σ2

pn0(wn◦) > 0 because of pn0(wn◦) < 0 and γ > r.

However, this is inconsistent with the choice of wn◦, where pn00(wn◦) = 0, but pn00(wn + ²n)

< 0. Therefore, pn(wn) is strictly concave over the whole domain wn ∈ (wn, wn). k

Next, let us consider any incentive-compatible contract Φn and any replacement time of

the n− 1-th manager τn−1. For any t ∈ [τn−1, τn], define the auxiliary gain process Jn as

Jn(Φn, t) =

Z t

τn−1
e−r(s−τ

n−1)(dY ns − dUns ) + e−r(t−τ
n−1)P n(Kt,W

n
t )

=

Z t

τn−1
e−r(s−τ

n−1)

"
KsdA

n
s − Ins ds−

θ (Ins )
2

2Ks

ds− dUns
#
+ e−r(t−τ

n−1)Pn(Kt,W
n
t ),

(A7)

where Wn
t evolves according to (10). Note that the process Jn is such that Jn is Ft-

21Because PFB(K,Wn) = qFBK −Wn, we have pFB(wn) = qFB − wn.
22Note that qFB = 1 + θiFB, where iFB = r + δ −

q
(r + δ)2 − 2μ−(r+δ)

θ
.
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measurable. For any t ≤ τn, any arbitrary incentive-compatible contract Φn, and any re-

placement time of the n−1-th manager τn−1, it follows from wnt = Wn
t

Kt
, int =

Int
Kt
, Pn(Kt,W

n
t )

= Ktp
n(wnt ), and Ito’s lemma that

er(t−τ
n−1)dJn(Φn, t) = Kt

½∙
μ− int −

θ

2
(int )

2 − (δ + r − int )pn(wnt ) + [γ − (int − δ)]wnt p
n0(wnt )

+
1

2
(βnt )

2
σ2pn00(wnt )

¸
dt− [1 + pn0(wnt )]dunt + [1 + βnt p

n0(wnt )]σdZt

¾
.

(A8)

Given (19) and (23), the first piece in the large bracket in the right-hand side of (A8) always

stays at zero under the optimal investment policy (24) and the optimal incentive policy βnt

= λ, whereas this term is nonpositive under the other investment and incentive policies. The

second element in the large bracket captures the optimality of the cash payment policy. This

part is nonpositive because Lemma A1 with pn0(wn) = −1 shows pn0(wnt ) ≥ −1 for all wnt ∈
[wn, wn], whereas it is equal to zero under the optimal payment policy dunt (w

n
t ) = 0 for all

wnt ∈ [wn, wn].
Define μnJt ≡ e−r(t−τ

n−1)Kt × (first element in the large bracket in the right-hand side of
(A8)). Then, the auxiliary gain process can be summarized as

dJn(Φn, t) = μnJtdt− e−r(t−τ
n−1)Kt[1 + p

n0(wnt )]du
n
t + e

−r(t−τn−1)Kt[1 + βnt p
n0(wnt )]σdZt,

where μnJtdt− e−r(t−τ
n−1)Kt[1 + p

n0(wnt )]du
n
t ≤ 0 for allwnt ∈ [wn, wn]. Let ϕnt = e−r(t−τ

n−1)Kt[1

+ βnt p
n0(wnt )]σdZt. Conditions (A1) and (A2) imply that E

hR T
0
ϕnt dZt

i
= 0 for all T > 0

(note that pn0(wnt ) is bounded). Thus, the process J
n is an Ft-supermartingale up to time

t = τn. Furthermore, the process Jn is an Ft-martingale under the contract satisfying the
conditions of this proposition up to time t = τn.

Under any Φn and τn−1, the investors’ expected payoff is

eJn(Φn) = Eτn−1

∙Z τn

τn−1
e−r(s−τ

n−1)(dY ns − dUns )− e−r(τ
n−τn−1)cfKτn

+e−r(τ
n−τn−1)P n+1(Kτn,W

n
τn)], for n < N, (A9a)
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eJN(ΦN) = EτN−1

"Z τN

τN−1
e−r(s−τ

N−1)(dY Ns − dUNs ) + e−r(τ
N−τN−1)`KτN

#
. (A9b)

Then, it follows from (A7) and (A9) with P n(Kτn ,W
n
τn) = Kτnp

n(wnτn) = Kτnp
n+1(wnτn) =

P n+1(Kτn,W
n
τn) and P

N(KτN ,W
N
τN
) = `KτN that for any t ∈ [τn−1, ∞),

eJn(Φn) = Eτn−1

h
Jn(Φn, τn)− e−r(τn−τn−1)cfKτn

i
= Eτn−1

½
Jn(Φn, t ∧ τn) + e−r(t−τ

n−1)1t≤τn
∙Z τn

t

e−r(s−t)(dY ns − dUns )

+e−r(τ
n−t)P n+1(Kτn,W

n
τn)− P n(Kt,W

n
t )
¤− e−r(t−τn−1)−r(τn−t)cfKτn

o
≤ P n(Kτn−1 ,W

n
τn−1) + (q

FB − `)Ete−r(t−τn−1)Kt, for n < N ; (A10a)

and for any t ∈ [τN−1, ∞),

eJN(Φn) = EτN−1

(
JN(ΦN , t ∧ τN) + e−r(t−τ

N−1)1t≤τN

"Z τN

t

e−r(s−t)(dY Ns − dUNs )

+e−r(τ
N−t)`KτN − PN(Kt,W

N
t )
io

≤ PN(KτN−1 ,W
N
τN−1) + (q

FB − `)Ete−r(t−τN−1)Kt. (A10b)

The first-terms in the right-hand sides of the inequalities of (A10a) and (A10b) follow from

the facts that Jn(Φn, t ∧ τn) for n < N and JN(ΦN , t ∧ τN) are a supermartingale and that

Jn(Φn, τn−1) = P n(Kτn−1,W
n
τn−1) for n < N and JN(ΦN , τN−1) = PN(KτN−1 ,W

N
τN−1). In

addition, to derive the second terms in the right-hand sides of the inequalities of (A10a) and

(A10b), let us notice that

Eτn−1

½Z τn

t

e−r(s−t)(dY ns − dUns ) + e−r(τ
n−t) £P n+1(Kτn,W

n
τn)− cfKτn

¤¾ ≤ ¡qFB − wnt ¢Kt,

and

EτN−1

(Z τN

t

e−r(s−t)(dY Ns − dUNs ) + e−r(τ
N−t)`KτN

)
≤ ¡qFB − wNt ¢Kt.

This is because the right-hand side of these inequalities is the upper bound on the principal’s

expected profit under the first-best contract. Using the facts that pn(wn) ≥ pN(0) = ` for
any wn ≥ wn and n = 1, . . . , N − 1 and that wN + pN(wN) is increasing in wN because of
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pN 0(wN) ≥ −1 for any wN ≥ 0, we have

¡
qFB − wnt

¢
Kt − P n(Kt,W

n
t ) ≤

¡
qFB − `¢Kt, for n = 1, . . . , N.

Now, it follows from (A3) that taking t → ∞ yields eJn(Φn) ≤ P n(Kτn−1 ,W
n
τn−1) for all

incentive-compatible contracts and for all n = 1, . . . , N . On the other hand, under the

optimal contract that satisfies the conditions of the proposition, the investors’ payoff eJn(Φn)
achieves P n(Kτn−1 ,W

n
τn−1) because the above inequality holds in equality when t→∞.

The remaining problem is to derive a sufficient condition for the optimality of implementing

{ant = 1 : τn−1 ≤ t < τn} for n = 1, . . . , N .

Lemma A2: The sufficient condition for the optimality of implementing {ant = 1 : τn−1 ≤
t < τn} all the time for n = 1, . . . , N is

(r + δ)pn
µ

λμ

γ + δ

¶
− (γ − r)

∙
pn( bwn)− pnµ λμ

γ + δ

¶¸
≥ [p

n(wn) + wn − 1]2
2θ

,

where bwn = argmax
wn

pn(wn).

Proof: When the n-th manager is induced to shirk, he enjoys a private benefit λμdt per

unit of capital stock. Because the n-th manager’s payoff would not need to depend on cash

flows when he is induced to shirk, his promised payoff would evolve according to

dWn
t =

⎧⎨⎩ γW n
t dt− dUnt + λKt(dA

n
t − μdt), if ant = 1,

γWn
t dt− dUnt − λμKtdt, if ant = 0.

(A11)

Using wnt =
Wn
t

Kt
, (A11) is written by

dwnt =

⎧⎨⎩ [γ − (int − δ)]wnt dt− dunt + λ(dAnt − μdt), if ant = 1,

[γ − (int − δ)]wnt dt− dunt − λμdt, if ant = 0.

Because pn(wn) is concave, it could be beneficial for the investors to reduce the volatility

of wnt by inducing the n-th manager to shirk. For that not to be the case and for a
n
t = 1 to

remain optimal, it must be that for all wn ∈ [wn, wn], the investors’ payoff rate per unit of
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capital stock under our existing contract would satisfy

rpn(wn) ≥ sup
in≥0
− c(in) + (in − δ)pn(wn) + {[γ − (in − δ)]wn − λμ} pn0(wn). (A12)

Note that dunt = 0 under our existing contract. Using (20), (23), and (24), we rewrite (A12)

so that for all wn ∈ [wn, wn],

(r + δ)pn(wn)− [(γ + δ)wn − λμ] pn0(wn) ≥ [p
n(wn)− wnpn0(wn)− 1]2

2θ
. (A13)

As (23) implies that c0(0) > 1, it follows from (20) and c00(i) > 0 that pn(wn) − wnpn0(wn)
> 1 for all wn ∈ [wn, wn]. In addition, ∂[pn(wn)−wnpn0(wn)]

∂wn
> 0 for all wn ∈ [wn, wn]. Hence,

using (17), the right-hand side of (A13) is smaller than
[pn(wn)+wn−1]2

2θ
. As a result, if the left-

hand side of (A13) is larger than (r + δ)pn( λμ

γ+δ
) − (γ − r)

h
pn(bwn)− pn( λμ

γ+δ
)
i
, a sufficient

condition for ensuring (A12) is

(r + δ)pn
µ

λμ

γ + δ

¶
− (γ − r)

∙
pn( bwn)− pnµ λμ

γ + δ

¶¸
≥ [p

n(wn) + wn − 1]2
2θ

.

The remaining problem is to show that

(r + δ)pn(wn)− [(γ + δ)wn − λμ] pn0(wn)

≥ (r + δ)pn
µ

λμ

γ + δ

¶
− (γ − r)

∙
pn(bwn)− pnµ λμ

γ + δ

¶¸
. (A14)

As pn(wn) is concave, it follows that if
³

λμ

γ+δ
− wn

´
pn0(wn) ≥ 0, then

pn
µ

λμ

γ + δ

¶
≤ pn(wn) +

µ
λμ

γ + δ
− wn

¶
pn0(wn)

≤ pn(wn) +
γ + δ

r + δ

µ
λμ

γ + δ
− wn

¶
pn0(wn). (A15)

Because the definition of bwn implies pn(bwn) ≥ pn ³ λμ

γ+δ

´
, rearranging (A15) ensures (A14).

On the other hand, if
³

λμ

γ+δ
− wn

´
pn0(wn) < 0, it also follows from the concavity of pn(wn)
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that

(r + δ)pn
µ

λμ

γ + δ

¶
− (γ − r)

∙
pn(bwn)− pnµ λμ

γ + δ

¶¸
≤ (r + δ)pn

µ
λμ

γ + δ

¶
− (γ − r)

∙
pn(wn)− pn

µ
λμ

γ + δ

¶¸
= (r + δ)pn (wn) + (γ + δ)

∙
pn
µ

λμ

γ + δ

¶
− pn(wn)

¸
≤ (r + δ)pn(wn) + (γ + δ)

µ
λμ

γ + δ
− wn

¶
pn0(wn), (A16)

which again yields (A14). k

Lemma A2 provides the sufficient condition for implementing ant = 1 all the time. ¥

Proof of Proposition 6: Let divnt denote an increasing process that represents the cu-

mulative dividends per unit of capital stock when the n-th manager is hired. Then, the

credit line balance Ktm
n
t evolves according to

d(Ktm
n
t ) = γKtm

n
t dt+Ktx

n
t dt+Ktd (div

n
t )−KtdA

n
t , (A17)

where we can assume that d (divnt ) and dA
n
t are such that d(Ktm

n
t ) ≥ 0. It follows from

(29b) and bnt =
xnt
r
that

λxnt dt = λ
£
μ− (γ − int + δ)cLn

¤
dt. (A18)

It also follows from (30) with (A17) and (A18) that

dwnt = −λdmn
t = −λ [γmn

t dt+ x
n
t dt+ d (div

n
t )− dAnt ] + λ(int − δ)mn

t dt

= (γ − int + δ)wnt dt− λd (divnt ) + λ(dAnt − μdt). (A19)

Let dunt = λd (divnt ). Given that a
n
t = 1 under the incentive—compatible contract (β

n
t = λ)

and d (divnt ) = 0 form
n
t > 0 (that is, w

n
t < w

n), it follows from Proposition 2 that the capital

structure given by this proposition is optimal for the manager.

Under the capital structure proposed by this proposition and the optimal action chosen
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by each manager ant = 1, the principal’s expected utility equals

E

∙PN

1
n

Z τn

τn−1
e−rs(μ− duns )Kt −

PN−1
1

n

e−rτ
n

cfKτn + e
−rτN `KτN

¸
,

where τ 0 = 0, τn = inf{t | wnt = wn} when n < N , and τN = inf{t | wNt = 0}. Note that
in this case, the manager’s scaled continuation utility wnt evolves according to (A19) (that

is, equation (18) for dunt = 0), as in the optimal contract. In addition, it follows from (29c)

and (30) that mn
t =

wn−wn
λ

and mn
t = 0 imply w

n
t = w

n and wnt = w
n, respectively. Hence,

the capital structure given by this proposition is also optimal for the principal. We therefore

conclude that the proposed capital structure implements the optimal contract. ¥

Appendix B

In DeMarzo, Fishman, He, andWang (2012), both the principal and the agent may achieve

an ex post Pareto-improving allocation by renegotiating the contract as long as the principal’s

scaled value function has a positive slope. Similarly, our contract may not be renegotiation-

proof either. However, in our model, the firm incurs a cost of lost productivity that is

proportional to wn − wn for n < N , when an incumbent manager is replaced. Hence, unlike
DeMarzo, Fishman, He, and Wang (2012), the investors’ scaled value function pnRP (w

n) that

is renegotiation-proof need not be weakly decreasing in wn for n < N . For simplicity, we

assume that the investors incur the renegotiation cost under renegotiation and that the

renegotiation cost is the same form as the replacement cost.

Let ewnRP be a renegotiation boundary and wnRP a replacement boundary. We characterize
the two boundaries by dividing the analysis into the two cases: n < N and n = N .

We begin with the case of n < N . Then, at wn ≤ ewnRP for n < N , the investors need to
design a lottery or stochastic replacement in order to prevent the n-th manager’s deviation:

the investors increase wn by ewnRP if they continue to hire the n-th manager as the n+ 1-th
manager or increase wn by wnRP if they fire the n-th manager and hire a new manager from

the pool of potential applicants as the n + 1-th manager. However, because the investors

under renegotiation incur the renegotiation cost that has the same form as the replacement

cost, this stochastic replacement is the same as that discussed in the absence of renegotiation

in the text. Hence, we must have ewnRP = wnRP .
41



We next discuss the case of n = N . At wN ≤ ewNRP , the investors under renegotiation would
have to design a lottery or stochastic liquidation to prevent the N-th manager’s deviation:

the investors increase wN by ewNRP if they continue to hire the N-th manager or set wN on 0
if they liquidate the firm. However, because of the concavity of pN(wN) and pN 0RP (0) = ζ, the

investors find it unprofitable to undertake such stochastic liquidation under the renegotiation

cost in the range of wN ≥ 0. Thus, renegotiation does not occur in the case of n = N .
These discussions are summarized by the following proposition.

Proposition B1: In the sense that the HJB equation and the payout and replacement

boundary conditions are identical, the main results of our model are unchanged, even when

contracts are constrained to be renegotiation-proof. Furthermore, the renegotiation boundaryewnRP is exactly equal to the replacement boundary wnRP for n = 1, . . . , N − 1.
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