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to the strategy sets. We show that an intuitive and easy-to-check property on the data set

is necessary and sufficient for it to be consistent with the hypothesis that each observation

is a pure strategy Nash equilibrium in a game with strategic complementarity. When a data
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1 Introduction

In recent years, the techniques of monotone comparative statics have been extensively applied to

economic modeling. The most basic result in this theory concerns the monotonicity of an agent’s

optimal choice as a parameter changes. To be specific, let Ái be a binary relation over pxi, ξiq P RˆR,

where xi is interpreted as agent i’s action and ξi some parameter that may affect the agent’s choice.

Assume that, for any fixed ξ̄i, the restriction of Ái to the set tpxi, ξ̄iq : ai P Ru is a preference, i.e., a

complete, reflexive and symmetric relation. Given ξi and given a feasible action set Ai Ă R, agent

i’s optimal choice (or best response) is

BRpξi, Ai,Áiq “ tx
1
i P Ai : px1i, ξiq Ái pxi, ξiq for all xi P Aiu. (1)

What conditions guarantee that BRpξi, Aiq is increasing in ξi, in the sense that every element in

BRpξ2i , Aiq is greater than every element in BRpξ1i, Aiq, when ξ2i ą ξ1i? It is known that, for this

to hold on every Ai, where Ai is an arbitrary subset of R, it is necessary and sufficient that Ái

obeys strict single crossing differences (see Milgrom and Shannon, 1994). This property says that

for every x2i ą x1i and ξ2i ą ξ1i,

px2i , ξ
1
iq Ái px

1
i, ξ

1
iq ùñ px2i , ξ

2
i q ąi px

1
i, ξ

2
i q,

where ąi is the strict preference induced by Ái. In the case where we restrict the feasible action

sets Ai to intervals of R, then strict single crossing differences can be weakened and replaced by the

strict interval dominance property (see Quah and Strulovici, 2008), which says that

px2i , ξ
1
iq Ái pxi, ξ

1
iq for all xi P rx

1
i, x

2
i s ùñ px2i , ξ

2
i q ąi px

1
i, ξ

2
i q.

Given the central role played by these properties in ensuring monotonicity, it is useful to char-

acterize those observations of an agent’s choices that are consistent with them. In other words, our

objective is to develop revealed preference tests for these properties, along the lines of Afriat’s The-

orem, which characterizes consumer data sets that are consistent with the maximization of a locally

non-satiated utility function. A test of this type is a natural starting point for a nonparametric

2



investigation of monotone comparative statics. In our setting, we assume that the observer has

access to a data set with T observations, Oi “ tpa
t
i, ξ

t
i , A

t
iqu

T
t“1, where ati is the observed choice from

the feasible action set At
i when the parameter is ξti . We assume that At

i is a compact interval of R.

The data set is said to be monotone-rationalizable if there is Ái such that (i) ati P BRpξti , A
t
i,Áiq and

(ii) Ái obeys strict interval dominance and is regular in the sense that BRpξi, Ai,Áiq is nonempty

and compact for all yi, whenever Ai is compact. This definition captures the notion that the ob-

servations are consistent with the belief that the agent is optimizing according to a preference with

strict interval dominance. The requirement (i) guarantees that Ái can actually account for the ob-

served data, while the strict interval dominance requirement in (ii) guarantees that agent i’s choice

is monotone (with respect to the parameter) on all feasible sets that are compact intervals, even at

feasible sets not amongst those observed.

It is clear that monotone-rationalizability is a refutable hypothesis. For example, consider two

observations pa1
i , ξ

1
i , A

1
i q “ p4, 1, r3, 6sq and pa2

i , ξ
2
i , A

2
i q “ p3, 2, r3, 6sq. In both observations, the

feasible set is r3, 6s. The fact that 4 is chosen in the first observation means that p4, 1q Ái pai, 1q

for all ai P r3, 4s. Strict interval dominance of Ái then requires p4, 2q ąi p3, 2q, which means that

the choice in the second observation cannot be optimal. A more elaborate example involving three

observations is the following: pa1
i , ξ

1
i , A

1
i q “ p4, 1, r3, 6sq (as before), pa2

i , ξ
2
i , A

2
i q “ p3, 2, r0, 3s and

pa3
i , ξ

3
i , A

3
i q “ p0, 2, r0, 5sq. Again, the first observation tells us that p4, 2q ąi p3, 2q. The second

observation tells us that p3, 2q Ái p0, 2q (since action 0 was available when 3 was chosen) while the

third observation tell us that p0, 2q Ái p4, 2q (since 4 was available when 0 was chosen). Since Á is

transitive, observations 2 and 3 together tell us that p3, 2q ąi p4, 2q and so we obtain a contradiction.

We show that an intuitive and easy-to-check property of the data set we call the axiom of

revealed complementarity (ARC) is both necessary and sufficient for monotone-rationalizabilty. In

essence, the axiom requires the exclusion of the phenomena depicted in the examples. In fact,

our result is somewhat stronger: whenever ARC holds, we could choose Ái to obey strict single

crossing differences (and not just strict interval dominance).1 When a data set obeys ARC, there

will typically be more than one preference that rationalizes the data, so it would be natural to ask

1Note that the result hinges on assumption that observed feasible sets are compact intervals. When we allow
for At

i to be arbitrary compact sets, ARC is not sufficient to guarantee rationalization with Ái obeying strict single
crossing differences (see Example 1 in Section 3).
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what we can robustly infer about agent i’s preference from his observed behavior. We provide a

way of precisely identifying those pairs of actions that we can safely order, in the sense that the

ordering holds for all preferences consistent with the data and obeying strict interval dominance.

An important application of monotone comparative statics is to the study of games with strategic

complementarity (see Milgrom and Robert (1990) and Vives (1990)). These are games where players’

strategies are complements in the sense that an agent’s best response increases with the action of

other players in the game. These games are known to be very well-behaved: they always have

pure strategy Nash equilibria, in fact, there is always a largest and a smallest pure strategy Nash

equilibrium and a parameter change that leads to one agent having a greater best response will

raise both the largest and smallest equilibrium. Our revealed preference tests can be applied to

this context. Specifically, consider a data set where observations are drawn from an n-player game.

For each player i (i “ 1, 2, ..., n), we observe the feasible action set At
i (assumed to be a compact

interval), the action chosen by the player, ati P A
t
i, and an exogenous parameter yti (drawn from

a poset) that affects player i’s action. An observation t may be succinctly written as pat, yt, Atq,

where at “ patiq
n
i“1, etc, and the data set is O “ tpat, yt, AtquTt“1. In other words, we observe the

outcome in T different games, played by the same players, with games differing according to the

feasible action sets available to each player and/or the exogenous parameters affecting each players’

behavior.

Our first and most basic task is to develop a test for the hypothesis that the observations

constitute Nash equilibria in games with strategic complementarity. Notice that this hypothesis

is at least internally consistent since we know that these games always have pure strategy Nash

equilibria. The resolution to this problem is straightforward given the single-agent results: all we

need to do is to check that each player’s choices are monotone-rationalizable. Formally, this involves

determining whether the data sets Oi “ tpa
t
i, ξ

t
i , A

t
iqu

T
t“1, where ξi “ pa

t
´i, y

t
iq obey ARC. The data

set O is consistent with strategic complementarity if and only if ARC holds for Oi, for all i.

When the data set O obeys ARC (in the sense that every player obeys ARC), a natural followup

is to ask how this data can be exploited to make predictions of equilibrium play in a new game, with

different feasible action sets A0 “ pA0
i q

n
i“1 and different parameters y0 “ py0

i q
n
i“1, assuming that the

players’ preferences remain unchanged. For each player, we provide a procedure for working out the
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possible response correspondence. This specifies, given an exogenous parameter yi and a profile of

other players’ strategies, a´i, the set of all actions of player i that could be a best response, in the

sense that it is a best response according to some preference for player i that obeys strict interval

dominance and is consistent with his behavior as observed in Oi. With these correspondences we

may identify Epy0, A0q, which is the set of all possible Nash equilibria in the new game. Remarkably,

we show that Epy0, A0q has properties that echo those of a set of Nash equilibrium of a game with

strategic complementarity even if they are not exactly the same. While Epy0, A0q may not have a

largest or smallest element, we show that the closure of this set does have a largest and smallest

element. Furthermore, these extremal elements increase with y0.

Our study is not the first to obtain a revealed preference-type result in a monotone choice

environment. In particular, Topkis (1998, Theorem 2.8.9) reports an early result of this type. Topkis

considers a correspondence ϕ : T Ñ R` that maps elements of a totally ordered set T to compact

sublattices of the Euclidean space Rl. He shows that this correspondence is increasing in the strong

set order if and only if there is a function f : R` ˆ T Ñ R such that ϕptq “ arg maxxPR` fpx, tq

where f is supermodular in x and has increasing differences in px, tq. In the case where ϕ is a

choice function, such a rationalization is possible even when T is a partially (rather than totally)

ordered set; this has been noted by Carvajal (2004) and Lazzati (2014), who also exploit this result

in a revealed preference analysis of games with strategic complementarity. In our paper, we confine

ourselves to the case where actions are totally ordered (rather than elements of a Euclidean space),

but the observational possibilities for the observer are allowed to be richer because we assume

that he may observe the agent choosing from different subsets of the set of all possible actions.

Consequently, at a given parameter value, the observer’s information may go beyond the set of

globally optimal actions; he may also receive partial information on the agent’s preference over

different actions. This in turn means that the problem we pose is different and (in one respect)

more complicated than the one posed by Topkis, because the rationalizing preference we construct

has to agree with this wider range of preference information, in addition to obeying single crossing

differences or interval dominance.

The paper is organized as follows. After a quick review of monotone comparative statics and

strategic complementarity in the next section, Section 3 gives a revealed preference characterization

of monotone rationalizability. This section also discusses the preference information that may be
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robustly inferred from a monotone rationalizable data set. Section 4 extends the analysis to games

with strategic complementarity and discusses out-of-sample predictions of Nash equilibria.

2 Basic concepts and theory

Our objective in this section is to give a quick review of some basic concepts and results in monotone

comparative statics and of their application to games with strategic complementarities. This will

then motivate the revealed preference theory developed later in the paper.

2.1 Monotone choice on intervals

Let Xi Ă R be the set of all conceivable actions of an agent i. A feasible action set of agent i

is a subset Ai of Xi. We assume that Ai is compact in R and that it is an interval of Xi. We

say that a set Ai Ď Xi is an interval of Xi if, whenever x2, x1 P Ai, with x2 ą x1, then, for any

element x̃ P Xi such that x2 ą x̃ ą x1, x̃ P Ai. Given that Ai is both compact and an interval,

we can refer to it as a compact interval. It is clear that there must be ai and āi in Ai such that

Ai “ tai P Xi : ai ď ai ď āiu. Given this it is sometimes convenient to denote Ai by rai, āis. We

denote by Ai the collection of all compact intervals of Xi. Given a feasible action set Ai, agent i’s

choice over different actions in Ai is affected by some parameter ξi. We assume that ξi is drawn

from a partially ordered set (or poset, for short) pΞi,ěq. For the sake of notational simplicity, we

are using the same notation for the orders on Xi and Ξi and for any other ordered sets; we do not

anticipate any danger of confusion.

A binary relation Ái on Xi ˆ Ξi is said to be a preference of agent i if, for every fixed ξi P Ξi,

Ái is a complete, reflexive and transitive relation on Xi. We call a preference Ái regular if, for all

Ai P Ai and ξi, the set BRipξi, Ai,Áiq (which we may shorten to BRipξi, Aiq when there is no danger

of confusion), as defined by (1), is nonempty and compact in R. We refer to BRipξi, Aiq as agent

i’s best response or optimal choice at pξi, Aiq. The best response of agent i is said to be monotone

or increasing in ξi if, for every ξ2i ą ξ1i,

a2i P BRipξ
2
i , Aiq and a1i P BRipξ

1
i, Aiq ùñ a2i ě a1i. (2)
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The preference Ái is said to obey strict interval dominance (SID) if, for every x2i ą x1i and ξ2i ą ξ1i,

px2i , ξ
1
iq Ái pxi, ξ

1
iq for all x P rx1i, x

2
i s ùñ px2i , ξ

2
i q ąi px

1
i, ξ

2
i q, (3)

where ąi is the asymmetric part of Ái, i.e., pxi, ξiq ąi pyi, ξiq if pxi, ξiq Ái pyi, ξiq and pxi, ξiq Ãi

pyi, ξiq. The following result is straightforward adaptation of Theorem 1 in Quah and Strulovici

(2009). We shall re-prove it here because of its central role in this paper.

Theorem A. Suppose Ái is a regular preference on Xi ˆ Ξi. Then agent i has a monotone best

response correspondence if and only if Ái obeys strict interval dominance.

Proof. To show that Ái obeys SID, suppose that, for some x2i ą x1i and ξ2i ą ξ1i, the left

side of (3) holds. Letting Ai “ rx1i, x
2
i s, we obtain x2i P BRipξ

1
i, Aiq. Hence, by (2), it also holds

that x2i P BRipξ
2
i , Aiq. If px2i , ξ

2
i q „i px

1
i, ξ

2
i q were to hold, then x1i P BRipξ

2
i , Aiq. However, then

we have that x2i P BRipξ
1
i, Aiq, x

1
i P BRipξ

2
i , Aiq, and x1i ă x2i , which contradicts (2). Therefore,

px2i , ξ
2
i q ąi px

1
i, ξ

2
i q. Conversely, suppose ξ2i ą ξ1i, a

2
i P BRipξ

2
i , Aiq and a1i P BRipξ

1
i, Aiq. If a2i ă a1i,

then pa1i, ξ
1
iq Ái pai, ξ

1
iq for every xi P ra

2
i , a

1
is Ă Ai. SID guarantees that pa1i, ξ

2
i q ąi pa

2
i , ξ

2
i q, which

contradicts the assumption that a2i P BRipξi, Aiq. l

Readers familiar with the standard theory of monotone comparative statics will notice that our

definition of monotonicity (2) is stronger than the standard notion, which merely requires that

BRipξ
2
i , Aiq dominates BRipξ

1
i, Aiq in the strong set order. This means that, for any a2i P BRipξ

2
i , Aiq

and a1iBRipξ
1
i, Aiq, maxta2i , a

1
iu P BRipξ

2
i , Aiq and minta2i , a

1
iu P BRipξ

1
i, Aiq. In turn, this weaker

notion of monotonicity can be characterized by preferences obeying interval dominance (rather

than strict interval dominance), which is defined as follows: for every a2i ą a1i and ξ2i ą ξ1i,

pa2i , ξ
1
iq Ái pąiq pai, ξ

1
iq for every ai P ra

1
i, a

2
i s ùñ pa2i , ξ

2
i q Ái pąiq pa

1
i, ξ

2
i q. (4)

(The reader can verify this claim by a straightforward modification of the proof of Theorem A or

by consulting Theorem 1 in Quah and Strulovici (2009).) Throughout this paper we have chosen

to work with this stronger notion of monotonicity; the weaker notion does not permit meaningful

revealed preference analysis because it does not exclude the possibility that an agent is simply
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indifferent to all actions at every parameter value.2

2.2 Strategic complementarity

An important application of monotone comparative statics is to the study of games with strategic

complementarity. Let N “ t1, 2, ...., nu be the set of agents in a game, and let Xi Ă R be the

set of all conceivable actions of agent i. We assume that i has a feasible action set Ai that is a

compact interval of Xi; as before, the family of compact intervals of Xi is denoted by Ai. Agent

i’s choice over different feasible actions is affected by the actions of other players and also by an

exogenous parameter yi, which we assume is drawn from a poset pYi,ěq. Let Ξi “ X´i ˆ Yi, where

X´i :“ ˆj‰iXj. A typical element of Ξi is denoted by ξi “ pa´i, yiq and Ξi is a poset if we endow

it with the product order. We assume that agent i has a preference Ái on Xi ˆ Ξi.

Given a profile of regular preferences tÁiuiPN , a joint feasible action set A P A “ ˆiPNAi, and

a profile of exogenous parameters y P Y “ ˆiPNYi, we can define a game

Gpy, Aq “ rpyiqiPN , pAiqiPN , pÁiqiPN s .

We say that the family of games G “ tGpy, Aqupy,AqPYˆA exhibits strategic complementarity if, for

every A P A, the best response of each agent i (as given by (1)) is monotone in ξi “ pa´i, yiq.

It is clear from Theorem A that the family of games G “ tGpy, Aqupy,AqPYˆA exhibits strategic

complementarity if and only if Ái is an SID preference for every agent i.

As an example of such a family, consider the case of a Bertrand oligopoly with n firms, with

each firm producing a single differentiated product. Assume that firm i has constant marginal cost

ci ą 0, faces the demand function Dippi, pi
q : R` ˆ Rn´1

`` Ñ R`, and chooses its price pi ą 0 to

maximize profit Πippi, p´i, ciq “ ppi´ciqDippi, p´iq. Suppose that the firms’ products are substitutes

in the sense that the own-price elasticity of demand,

´
pi

Dippi, p´iq

BDi

Bpi
ppi, p´iq

2Our stronger assumption here is analogous to the assumption of local non-satiation made in Afriat’s Theorem.
It is clear that without such an assumption, any type of consumption data is rationalizable since one could simple
suppose that the consumer is indifferent across all consumption bundles.
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is strictly falling with respect to p´i (the prices charged by other firms). These assumptions guar-

antee that, on any compact interval of prices, firm i’s set of profit-maximizing prices is monotone in

pp´i, ciq.
3 If this property holds for every firm in the industry, the collection of Bertrand games gen-

erated by different feasible price sets to each firm and different exogenous parameters, c “ pciqiPN ,

will constitute a collection of games exhibiting strategic complementarity.

It is known that the set of Nash equilibria of a game with strategic complementarity (even in

the weaker sense of best responses increasing in the strong set order) is particularly well-behaved.

The following result summarizes some of its properties.4

Theorem B. Suppose G “ tGpy, Aqupy,AqPYˆA exhibits strategic complementarity.

1. [Existence] Then, for every game Gpy, Aq P G, the set of pure strategy Nash equilibria

Epy, Aq is nonempty.

2. [Structure] For every game Gpy, Aq, Epy, Aq has a largest and smallest element (which we

denote by maxEpy, Aq and minEpy, Aq respectively). Furthermore, Epy, Aq forms a complete

lattice, i.e., every set K Ď Epy, Aq has a supremum and infimum in Epy, Aq, i.e., the sets

UpKq “ tz P Epy, Aq|z ě x for all x P Ku and

LpKq “ tz P Epy, Aq|z ď x for all x P Ku

are nonempty and minUpKq and maxLpKq (respectively the supremum and infimum of K in

Epy, Aq) both exist.

3. [Comparative statics] The extremal equilibria of Gpy, Aq are both increasing in y, i.e., if

y2 ą y1 then maxEpy2, Aq ě maxpy1, Aq and minEpy2, Aq ě minpy1, Aq.

The set of Nash equilibria of Gpy, Aq coincides with the fixed points of the joint best response

3Specifically, they guarantee that for any p2i ą p1i, ln Πpp2i , p´i, ciq´ln Πpp1i, p´i, ciq is strictly increasing in pp´i, ciq,
which implies SID (see Milgrom and Shannon, 1994).

4For the proof of this result see Milgrom and Roberts (1990) and Vives (1990). The complete lattice structure of
EpA, yq was first pointed out in Zhou (1994).
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correspondence BRp¨, y, Aq : A Ñ A, where

BRpa, y, Aq “ pBR1pξ1, A1q,BR2pξ2, A2q, ...,BRnpξn, Anqq .

The strong structural properties of Epy, Aq follow from the fact that this is a very well-behaved

correspondence. Indeed, under strategic complementarity, for each py, Aq P Y ˆ A, BRipξi, Aiq is

a compact subset of R and increasing in the sense of (2). Consequently, BRpa, y, Aq is a compact

sublattice (hence subcomplete sublattice) of Rn; furthermore the correspondence BRp¨, y, Aq is in-

creasing in the sense that if a2 ą a1, then ā2 ě ā1 for any ā2 P BRpa2, y, Aq and ā1 P BRpa1, y, Aq.

With these observations, parts 1 and 2 of Theorem B follow immediately from Zhou’s (1994) ex-

tension (to increasing correspondences) of Tarski’s fixed point theorem.

Tarski-Zhou fixed point theorem. Let pL,ěq be a complete lattice, and let a correspon-

dence F : L Ñ L be subcomplete sublattice-valued and increasing with respect to the strong set order.

Then pL,ěq is a nonempty complete lattice, where L is the set of fixed points of F .

To obtain Part 3 of Theorem B, notice that BRpa, y, Aq is also increasing in y. Part 3 then

follows from the following result, with F p¨q “ BRp¨, y2, Aq, Gp¨q “ BRp¨, y1, Aq, and y2 ą y1.

Monotone fixed points theorem. Suppose that both F : L Ñ L and G : L Ñ L obey the

assumptions in Tarski-Zhou fixed point theorem and, for each z P L, F pzq dominates Gpzq in the

strong set order. Then the largest and the smallest fixed points of F are respectively larger than the

largest and the smallest fixed points of G.5

In essence, our objective in this paper is to establish the choice-based counterparts of Theorems

A and B. Our starting point is a data set drawn from a family of games. We characterize those

data sets that are compatible with strategic complementarity and identify, for each player, the set

of preferences that are compatible with his observed behavior. With this information, we ask how

the same players will play in a new game, with difference strategy sets or parameters; we provide

a computable characterization of the set of possible pure strategy Nash equilibria (i.e., the set of

equilibria compatible with prior observations) and show that this set has a structure similar to that

5This result is originally shown in Milgrom and Roberts (1994) for single-valued functions, and extended to
correspondences in Topkis (1998).
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of the actual equilibria in a game with strategic complementarity (as outlined in Theorem B).

3 Revealed monotone choice

Consider an observer who collects a finite data set from agent i, where each observation consists of

the action chosen by the agent, the set of feasible actions and the value of the parameter. Formally,

the data set is Oi “ tpa
t
i, ξ

t
i , A

t
iqutPT , where T “ t1, 2, ..., T u, ati P A

t
i, and At

i P Ai. We say that Oi

(or simply, agent i) is consistent with monotonicity or monotone-rationalizable if there is a regular

and SID preference Ái on Xi ˆ Ξi such that for every t P T , pati, ξ
t
iq Ái pxi, ξ

t
iq for every xi P A

t
i.

The motivation for this definition is clear: if Oi is monotone-rationalizable then we have found

a preference that can (i) account for the observed behavior of the agent and (ii) guarantee that

the agent’s optimal choice based on this preference is increasing in the parameter, on any feasible

action set that is a compact interval. Our principal objective in this section is to characterize

monotone-rationalizability.

3.1 The axiom of revealed complementarity

It is useful to introduce the revealed preference relations induced by Oi. The direct revealed prefer-

ence relation ÁR
i is defined in the following way: px2i , ξiq ÁR

i px
1
i, ξiq if px2i , ξiq “ pa

t
i, ξ

t
iq and x1i P A

t
i

for some t P T . The indirect revealed preference relation ÁRT
i is the transitive closure of ÁR

i , i.e.,

px2i , ξiq ÁRT
i px1i, ξiq if there exists a finite sequence z1

i , z
2
i , ..., z

k
i in Xi such that

px2i , ξiq ÁR
i pz

1
i , ξiq ÁR

i pz
2
i , ξiq ÁR

i ... ÁR
i pz

k
i , ξiq ÁR

i px
1
i, ξiq. (5)

The motivation for this terminology is clear. If we observe, at t, agent i playing x2i when x1i is also

feasible and other agents’ actions and the the parameters are given by ξi, then it must be case that

px2i , ξiq Ái px
1
i, ξiq if agent i is optimizing with respect to the preference Ái. Furthermore, given that

Ái is transitive, if px2i , ξiq ÁRT
i px1i, ξiq then px2i , ξiq Ái px

1
i, ξiq.

6

A relation R on Xi ˆ Ξi said to have the interval property if, whenever pxi, ξiqR px̃i, ξiq, for xi,

6Note, however, that ÁR
i and ÁRT

i are not generally complete on Xi for every fixed ξi; as such these relations are
not preferences as we have defined them.
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x̃i in Xi, then pxi, ξiqR pzi, ξiq for any zi between xi and x̃i, i.e., xi ď zi ď x̃i or x̃i ď zi ď xi. This

property plays an important role in our results. The lemma below uses the assumption that feasible

action sets are compact intervals to guarantee that ÁRT
i has the interval property.

Lemma 1. The relation ÁRT
i in Xi ˆ Ξi induced by Oi “ ta

t
i, ξ

t
i , A

t
iu

T
t“1 has the interval property.

Proof. If px2i , ξiq ÁR
i px

1
i, ξiq, then there is At

i such that x2i “ ati and x1i P A
t
i. The interval

property the follows immediately from the assumption that At
i is a closed interval. Now suppose

px2i , ξiq ÁRT
i px1i, ξiq, but px2i , ξiq ÃR

i px
1
i, ξiq. Then, we have a sequence like (5). Suppose also that

x2i ą x1i and consider xi such that x2i ą xi ą x1i. (The case where x2i ă x1i can be handled in a

similar way.) Letting z0
i “ x2i and zk`1

i “ x1i, we know that there exists at least one 0 ď m ď k

such that zmi ě xi ě zm`1. Since pzmi , ξiq ÁR
i pz

m`1
i , ξiq, it must hold that pzmi , ξiq ÁR

i pxi, ξiq. This

in turn implies that px2i , ξiq “ pz
0
i , ξiq ÁRT

i pxi, ξiq, since pz0
i , ξiq ÁRT

i pzmi , ξiq. l

Definition 1. The data set Oi “ tati, ξ
t
i , A

t
iu

T
t“1 obeys the Axiom of Revealed Complementarity

(ARC) if, for every s, t P T ,

ξti ą ξsi , a
t
i ă asi , and pasi , ξ

s
i q ÁRT

i pati, ξ
s
i q ùñ pati, ξ

t
iq ÃRT

i pasi , ξ
t
iq. (6)

The examples presented in the Introduction show that ARC is a non-vacuous restriction on

data. So long as the number of observations Oi is finite (as it is by assumption), checking whether

two elements pasi , ξ
s
i q and pati, ξ

s
i q are related by ÁRT

i is a finite procedure and, consequently, so is

checking for ARC. It is also clear that there are no computational difficulties, whether theoretical

or practical, associated with the implementation of this test. The main result of this section

characterizes monotone-rationalizability in terms of ARC.

Theorem 1. A data set Oi “ ta
t
i, ξ

t
i , A

t
iu

T
t“1 is monotone-rationalizable if and only if it obeys ARC.

The necessity of ARC for monotone-rationalisability is relatively easy to prove and we shall do

that first. Notice that the proof makes crucial use of the interval property and hence the requirement

that At
i are intervals.

Proof: Suppose there are observation s and t such that ξti ą ξsi , a
t
i ă asi , and pasi , ξ

s
i q ÁRT

i pati, ξ
s
i q.

By Lemma 1, ÁRT
i has the interval property, and so pasi , ξ

s
i q ÁRT

i pxi, ξ
s
i q for all xi P ra

t
i, a

s
i s. Since

12



Oi is SID-rationalizable, there is an SID preference Ái on Xi ˆ Ξi such that pasi , ξ
s
i q Ái pxi, ξ

s
i q

for all xi P ra
t
i, a

s
i s. The SID property on Ái guarantees that pasi , ξ

t
iq ąi pa

t
i, ξ

t
iq, which means

pati, ξ
t
iq ÃRT

i pasi , ξ
t
iq. l

3.2 Sufficiency of ARC in Theorem 1

Our proof of the sufficiency of ARC involves first working out the (incomplete) revealed preference

relations on Xi ˆ Ξi that must be satisfied by any SID preference that rationalizes the data and

then explicitly constructing a rationalizing preference on Xi ˆ Ξi that completes that incomplete

relation. In fact the rationalizing preference we construct for each agent will obey strict single

crossing differences (SSCD), which is a stronger property than SID. A preference relation Ái is said

to obey strict single crossing differences if, for every x2i ą x1i and ξ2i ą ξ1i,

px2i , ξ
1
iq Ái px

1
i, ξ

1
iq ùñ px2i , ξ

2
i q ąi px

1
i, ξ

2
i q. (7)

It is clear that every preference that obeys SSCD will also satisfy SID.

Given Oi, the single crossing extension of the indirect revealed preference relation ÁRT
i is another

binary relation ąRTS
i defined in the following way:

(i) for x2i ą x1i, px
2
i , ξiq ąRTS

i px1i, ξiq if there is ξ1i ă ξi such that px2i , ξ
1
iq ÁRT

i px1i, ξ
1
iq;

(ii) for x2i ă x1i, px
2
i , ξiq ąRTS

i px1i, ξiq, if there is ξ2i ą ξi such that px2i , ξ
2
i q ÁRT

i px1i, ξ
2
i q.

Let ÁRTS
i be the binary relation given by ÁRTS

i “ÁRT
i Y ąRTS

i .7 It follows immediately from its

definition that ÁRTS
i also has strict single crossing differences, in the following sense: if x2i ą x1i and

ξ2i ą ξ1i or x2i ă x1i and ξ2i ă ξ1i, then

px2i , ξ
1
iq ÁRTS

i px1i, ξ
1
iq ùñ px2i , ξ

2
i q ąRTS

i px1i, ξ
2
i q. (8)

In addition, let ÁRTST
i be the transitive closure of ÁRTS

i , i.e., px2i , ξiq ÁRTST
i px1i, ξiq if there exists

7Note that, as defined, ąRTS
i is not the asymmetric part of ÁRTS

i .
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a sequence z1
i , z

2
i , ..., z

k
i such that

px2i , ξiq ÁRTS
i pz1

i , ξiq ÁRTS
i pz2

i , ξiq ÁRTS
i ... ÁRTS

i pzki , ξiq ÁRTS
i px1i, ξiq. (9)

If we can find at least one strict relation ąRTS
i in the sequence (9), then, we let px2i , ξiq ąRTST

i px1i, ξiq.

The relevance of these relations flows from the following result, which shows that any rationalizing

preference for agent i must respect the ranking implied by these revealed preference relations.

Proposition 1. Suppose that the preference Ái obeys SID and rationalizes Oi “ tati, ξ
t
i , A

t
iutPT .

Then Ái extends ÁRTST
i and ąRTST

i in the following sense:

px2i , ξiq ÁRTST
i pąRTST

i q px1i, ξiq ùñ px2i , ξiq Ái pąiq px
1
i, ξiq (10)

Proof. Without loss of generality, we may let x2i ą x1i. Since Ái is transitive, it is clear

that we need only show that px2i , ξiq Ái pąiq px
1
i, ξiq whenever px2i , ξiq ÁRTS

i pąRTS
i q px1i, ξiq. If

px2i , ξiq ÁRTS
i pąRTS

i q px1i, ξiq then there exists some ξ1i ď păq ξi such that px2i , ξ
1
iq ÁRT

i px1i, ξ
1
iq. By

the interval property of ÁRT
i , we obtain px2i , ξ

1
iq ÁRT

i pxi, ξ
1
iq for all xi P rx

1
i, x

2
i s. Since Ái rationalizes

Oi, we also have px2i , ξ
1
iq Ái pxi, ξ

1
iq for all xi P rx

1
i, x

2
i s. By SID of Ái, we obtain px2i , ξiq Ái pąiq px

1
i, ξiq

for ξ1i ď păq ξi. l

At this point, it is reasonable to ask if we could go beyond the revealed preference relations we

have already constructed and consider the single crossing extension of ÁRTST
i , the transitive closure

of that extension, and so on. The answer to that is ‘no’ because, as we shall see in Lemma 4,

ÁRTST
i obeys SSCD, so it does not admit a nontrivial single crossing extension. Thus it is intuitive

to believe that all the information on agent i’s preference conveyed by the data set Oi is encoded,

no more and no less, in the revealed preference relations ÁRTST
i and ąRTST

i ; a formal statement of

this claim is in Theorem 2 in Section 2.4. Note also that Proposition 1 has a converse: if there is

a regular and SID preference on Xi ˆ Ξi that obeys (10), then Oi is monotone-rationalizable. This

follows immediately from the fact that ÁR
i ĎÁRTST

i .

Given these observations, a reasonable way of constructing a rationalizing preference is to begin

with ÁRTST
i and ąRTST

i and then complete these incomplete relations in a way that gives a preference

with the required properties. This is precisely the approach we take. To that end, we first establish
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some relevant properties of ÁRTS
i and ÁRTST

i in Lemmas 2, 3, and 4. These pave the way for the

construction of Á˚
i in Lemma 5, which is shown to extend ÁRTST

i and ąRTST
i and to obey SSCD.

We then complete the proof of the sufficiency part of Theorem 1 with Lemma 6, which establishes

the regularity of Á˚
i .

Lemma 2. The binary relations ÁRT
i , ÁRTS

i , ąRTS
i , and ÁRTST

i on Xi ˆ Ξi induced by Oi “

tati, ξ
t
i , A

t
iu

T
t“1 all have the interval property.

Proof. We have already established in Lemma 1 that ÁRT
i has the interval property. Let

x2i ą xi ą x1i. (The case where x2i ă xi ă x1i can be proved in a similar way.) If px2i , ξiq ÁRTS
i

pąRTS
i q px1i, ξiq holds, there exists some ξ1i ď păq ξi such that px2i , ξ

1
iq ÁRT

i px1i, ξ
1
iq. By the interval

property of ÁRT
i , we obtain px2i , ξ

1
iq ÁRT

i pxi, ξ
1
iq. Since x2i ą xi and ξ1i ď păq ξi, we have that

px2i , ξiq ÁRTS
i pąRTS

i q pxi, ξiq. So we have shown that ÁRTS
i and ąRTS

i have the interval property.

If px2i , ξiq ÁRTST
i px1i, ξiq, there exists a sequence z1

i , z
2
i , ..., z

k
i such that

px2i , ξiq ÁRTS
i pz1

i , ξiq ÁRTS
i pz2

i , ξiq ÁRTS
i ... ÁRTS

i pzki , ξiq ÁRTS
i px1i, ξiq.

Letting z0
i “ x2i and zk`1

i “ x1i, since x2i ą xi ą x1i, we can find some 0 ď m ď k such that

zmi ě xi ě zm`1
i . By the interval property of ÁRTS

i , we obtain pzmi , ξiq ÁRTS
i pxi, ξiq. Thus

px2i , ξiq ÁRTST
i pxi, ξiq since px2i , ξiq ÁRTST

i pzmi , ξiq ÁRTS
i pxi, ξiq. l

Lemma 2 is used in the next two lemmas, both of which exploit the combination of the interval

property and ARC.

Lemma 3. Suppose that Oi obeys ARC. Then ÁRTS
i is cyclically consistent, i.e.,

pz1
i , ξiq ÁRTS

i pz2
i , ξiq ÁRTS

i ... ÁRTS
i pzki , ξiq ùñ pzki , ξiq čRTS

i pz1
i , ξiq. (11)

Remark: Cyclical consistency can be equivalently re-formulated as the following:

pz1
i , ξiq ÁRTS

i pz2
i , ξiq ÁRTS

i ... ÁRTS
i pzki , ξiq ÁRTS

i pz1
i , ξiq (12)

ùñ pz1
i , ξiq čRTS

i pz2
i , ξiq čRTS

i ... čRTS
i pzki , ξiq čRTS

i pz1
i , ξiq
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Thus, whenever there is a cycle like (12), it must be the case that

pz1
i , ξiq ÁRT

i pz2
i , ξiq ÁRT

i ... ÁRT
i pzki , ξiq ÁRT

i pz1
i , ξiq

Proof. We prove this by induction on the length of the chain, k, on the left side of (11).

Whenever (11) holds for chains of length k or less (equivalently, whenever the cycles in (12) have

length k or less), we say that ÁRTS
i is k-consistent. For 2-consistency, we need to show that

pz1
i , ξiq ÁRTS

i pz2
i , ξiq ùñ pz2

i , ξiq čRTS
i pz1

i , ξiq.

Suppose that z1
i ą z2

i ; the case of z1
i ă z2

i can be dealt with in a similar way. By definition,

if pz1
i , ξiq ÁRTS

i pz2
i , ξiq then there is ξ1i ď ξi such that pz1

i , ξ
1
iq ÁRT

i pz2
i , ξ

1
iq. On the other hand,

if pz2
i , ξiq ąRTS

i pz1
i , ξiq, then there is ξ2i ą ξi such that pz2

i , ξ
2
i q ÁRT

i pz1
i , ξ

2
i q and so we obtain a

violation of ARC.

Suppose that ÁRTS
i is k-consistent for all k ă k̄. To show that k̄-consistency holds, suppose the

left side of (11) holds for k “ k̄ and z1
i ă zk̄i . Clearly, there must be m ă k̄ such that zmi ă zk̄i and

zm`1
i ěi z

k̄
i . We consider two cases separately: (A) zmi ěi z

1
i and (B) zmi ă z1

i . In case (A), by the

interval property of ÁRTS
i , we obtain pzmi , ξiq ÁRTS

i pzk̄i , ξiq. By way of contradiction, suppose also

that pzk̄i , ξiq ąRTS
i pz1

i , ξiq. Then the interval property of ąRTS
i guarantees that pzk̄i , ξiq ąRTS

i pzmi , ξiq

and so we obtain a violation of 2-consistency. For case (B), since pzmi , ξiq ÁRTS
i pzm`1

i , ξiq, the interval

property guarantees that pzmi , ξiq ÁRTS
i pz1

i , ξiq. So we obtain the cycle

pz1
i , ξiq ÁRTS

i pz2
i , ξiq ÁRTS

i ... ÁRTS
i pzmi , ξiq ÁRTS

i pz1
i , ξiq (13)

which has length strictly lower than k̄. By the induction hypothesis, we obtain

pz1
i , ξiq čRTS

i pz2
i , ξiq čRTS

i ... čRTS
i pzmi , ξiq čRTS

i pz1
i , ξiq

and so we can replace each ÁRTS
i in (13) by ÁRT

i . Furthermore, pzmi , ξiq čRTS
i pz1

i , ξiq guarantees

that pzmi , ξiq čRTS
i pzm`1

i , ξiq, by the interval property of ąRTS
i . Therefore, pz1

i , ξiq ÁRT
i pxm`1

i , ξiq

and, by the interval property of ÁRT
i , we obtain pz1

i , ξiq ÁRT
i pxk̄i , ξiq. 2-consistency then ensures
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that pzk̄i , ξiq čRTS
i pz1

i , ξiq. l

Lemma 4. Suppose that Oi obeys ARC. Then ÁRTST
i obeys SSCD.

Proof. By definition, ÁRTST
i obeys SSCD if whenever x2i ą x1i and ξ2i ą ξ1i or x2i ă x1i and

ξ2i ă ξ1i, then

px2i , ξ
1
iq ÁRTST

i px1i, ξ
1
iq ùñ px2i , ξ

2
i q ąRTST

i px1i, ξ
2
i q.

We shall concentrate on the case where x2i ą x1i; the other case has a similar proof. If px2i , ξiq ÁRTS
i

px1i, ξiq, then we know that there is zji (for j “ 1, 2, ..., k) such that

px2i , ξ
1
iq ÁRTS

i pz1
i , ξ

1
iq ÁRTS

i pz2
i , ξ

1
iq ÁRTS

i ... ÁRTS
i pzki , ξ

1
iq ÁRTS

i px1i, ξ
1
iq. (14)

We can also choose a chain with the property that (writing z0
i “ x2i and zk`1

i “ x1i) pz
m
i , ξ

1
iq ÃRTS

i

pzm
1

i , ξ1iq for m1 ą m ` 1; in other words, no link in the chain can be dropped. We claim that, for

such a chain, we must have

x2i ą z1
i ą z2

i ą ... ą zki ą x1i. (15)

Once this is established, the rest is straightforward: since ÁRTS
i obeys SSCD, (14) and (15) imply

px2i , ξ
2
i q ąRTS

i pz1
i , ξ

2
i q ąRTS

i pz2
i , ξ

2
i q ąRTS

i ... ąRTS
i pzki , ξ

2
i q ąRTS

i px1i, ξ
2
i q

and so px2i , ξ
2
i q ąRTST

i px1i, ξ
2
i q.

It remains for us to establish (15). If this is false then there is m such that zm`1
i ą zmi . Let

zm`ni be the first time after zm`1
i such that zm`ni ď zmi . Then we have zm`ni ď zmi ă zm`n´1

i .

Since pzm`n´1
i , ξ1iq ÁRTS

i pzm`ni , ξ1iq,the interval property of ÁRTS
i guarantees that pzm`n´1

i , ξ1iq ÁRTS
i

pzmi , ξ
1
iq. Thus we obtain a cycle

pzmi , ξ
1
iq ÁRTS

i pzm`1
i , ξ1iq ÁRTS

i ... ÁRTS
i pzm`n´1

i , ξ1iq ÁRTS
i pzmi , ξ

1
iq.

By Lemma 3, we know that the terms in this chain cannot be related by ąRTS
i and must be related

by ÁRT
i . In particular, pzm`n´1

i , ξ1iq čRTS
i pzmi , ξ

1
iq and thus pzm`n´1

i , ξ1iq čRTS
i pzm`ni , ξ1iq (by the

interval property of ąRTS
i ). We conclude that pzmi , ξ

1
iq ÁRT

i pzm`ni , ξ1iq and thus we can shorten the
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chain in (14) to

px2i , ξ
1
iq ÁRTS

i pz1
i , ξ

1
iq ÁRTS

i ... ÁRTS
i pzmi , ξ

1
iq ÁRTS

i pzm`ni , ξ1iq ÁRTS
i ... pzki , ξ

1
iq ÁRTS

i px1i, ξ
1
iq

which contradicts our assumption that no link in the chain can be dropped. l

We are now ready to define the preference we use for rationalizing O. Define the binary relation

Á˚
i on Xi ˆ Ξi in the following manner:

px2i , ξiq Á˚
i px

1
i, ξiq if px2i , ξiq ÁRTST

i px1i, ξiq

or px2i , ξiq ‖RTST
i px1i, ξiq and x1i ě x2i , (16)

where px2i , ξiq ‖RTST
i px1i, ξiq means neither px2i , ξiq ÁRTST

i px1i, ξiq nor px2i , ξiq ÁRTST
i px1i, ξiq.

The following two lemmas will complete the proof of Theorem 1.

Lemma 5. The binary relation Á˚
i is a preference that rationalizes Oi. Furthermore, it extends

ÁRTST
i and ąRTST

i in the sense that

px2i , ξiq ÁRTST
i pąRTST

i q px1i, ξiq ùñ px2i , ξiq Á˚
i pą

˚
i q px

1
i, ξiq (17)

and obeys SSCD.

Proof. Clearly, Á˚ is complete and reflexive, so to demonstrate that it is a preference we need

only show that it is transitive. Indeed, suppose

pai, ξiq Á˚
pbi, ξiq Á˚

pci, ξiq Á˚
pai, ξiq.

There are only four fundamentally distinct cases we need to consider:

Case 1. None of the three elements are related by ÁRTST
i . Given the definition of Á˚, this means

that ai ă bi ă ci ă ai, which is impossible.

Case 2. ai ă bi ă ci, pai, ξiq ‖RTST
i pbi, ξiq, pbi, ξiq ‖RTST

i pci, ξiq, and pci, ξiq ÁRTST
i pai, ξiq. This is

again impossible since the interval property of ÁRTST
i will imply that pci, ξiq ÁRTST

i pbi, ξiq.

Case 3. ai ă bi, pai, ξiq ‖RTST
i pbi, ξiq, pbi, ξiq ÁRTST

i pci, ξiq ÁRTST
i pai, ξiq. This is also impossible
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because, by the transitivity of ÁRTST , we obtain pbi, ξiq ÁRTST
i pai, ξiq.

Case 4. pai, ξiq ÁRTST
i pbi, ξiq ÁRTST

i pci, ξiq ÁRTST
i pai, ξiq. By Lemma 3, this is only possible if

pai, ξiq ÁRT
i pbi, ξiq ÁRT

i pci, ξiq ÁRT
i pai, ξiq,

but then we also obtain, by the transitivity of ÁRT
i , pai, ξiq ÁRT

i pci, ξiq and, hence, pai, ξiq Á˚ pci, ξiq.

Since ÁRTSTĂÁ˚ by construction, it is clear that Á˚ rationalizes Oi. To prove (17), first note

that px2i , ξiq Á˚
i px

1
i, ξiq if px2i , ξiq ÁRTST

i px1i, ξiq by construction. If px2i , ξiq ąRTST
i px1i, ξiq, then

Lemma 3 says that px1i, ξiq ÃRTST
i px2i , ξiq. Thus px1i, ξiq Ã˚

i px
2
i , ξiq as obtain px2i , ξiq ą˚

i px
1
i, ξiq

Lastly, to show that Á˚ obeys SSCD, let x2i ą x1i and ξ2i ą ξ1i; then

px2i , ξ
1
iq Á˚

i px
1
i, ξ

1
iq ùñ px2i , ξ

1
iq ÁRTST

i px1i, ξ
1
iq

ùñ px2i , ξ
2
i q ąRTST

i px1i, ξ
2
i q

ùñ px2i , ξ
2
i q ą˚

i px
1
i, ξ

2
i q,

in which the first implication follows from the definition of Á˚
i , the second implication from Lemma

4, and the third from (17). l

Lemma 6. For every compact interval Ai and every ξi P Ξi, BRpξi, Ai,Á
˚q is nonempty and has

finitely many elements. In particular, Á˚
i is a regular preference.

Proof. Let rm,ns be a compact interval of Ξi. If rm,ns S ati for every t P T , then, it follows

from the definition of Á˚
i that pm, ξiq Á˚

i pzi, ξiq. In this case, m is only one maximiser of Á˚
i on

rm,ns. Suppose that rm,ns Q ati for some t. Since there are a finite number of observations, we can

find some asi P rm,ns such that pasi , ξiq Á˚
i pa

t
i, ξiq for every ati P rm,ns. We claim that either m or

asi is the maximiser of Á˚
i on rm,ns for ξi. There are two cases to consider.

Suppose pm, ξiq Á˚
i pa

s
i , ξiq and there is zi P rm,ns such that pzi, ξiq ą˚

i pm, ξiq. Then, since

m ă zi, it must hold that pzi, ξiq ąRTST
i pm, ξiq and there is t P T such that zi “ ati. Consequently,

pati, ξiq ą˚
i pm, ξiq Á˚

i pa
s
i , ξiq Á˚

i pa
t
i, ξiq,

which is a contradiction. Therefore, pm, ξiq Á˚
i pxi, ξiq for all xi P rm,ns. Now suppose pasi , ξiq Á˚

i
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pm, ξiq. For every xi P rm,ns, either pasi , ξiq ÁRTST
i pxi, ξiq, in which case pasi , ξiq Á˚

i pxi, ξiq, or

pasi , ξiq ‖RTST
i pxi, ξiq, in which case we have pasi , ξiq Á˚

i pm, ξiq Á˚
i pxi, ξiq. Thus pasi , ξiq Á˚

i pxi, ξiq

for all xi P rm,ns. l

3.3 ARC and SSCD

Theorem 1 tells us that when an agent has an SID preference, then any data set collected from this

agent must obey ARC. It also says that if a data set obeys ARC, then the agent’s actions can be

accounted for by an SID preference; indeed, we can explicitly construct a preference consistent with

those observations that obey the stronger property of SSCD (see Lemma 4).8 We know that SSCD

is necessary and sufficient for an agent’s optimal action to be increasing with the parameter on all

arbitrary constraint sets drawn from Xi (see Milgrom and Shannon, 1994). It follows that when a

data set Oi is monotone-rationalizable, we can find a preference that both explains the data and

guarantees that the optimal choices based on this preference is monotone, on any arbitrary feasible

action set (and not just intervals).

So far we have always maintained the assumption that the observed feasible action sets At
i are

intervals. Now consider a data set Oi “ tati, ξ
t
i , B

t
iutPT , where ati is the observed choice from Bt

i ,

and Bt
i is a compact subset of Xi that is not necessarily an interval. It is easy to check that if Oi

is rationalizable by an SSCD preference then it must obey ARC and, given the characterization of

SSCD preferences, we may be tempted to think that the converse is true. However, as the following

example shows, that is not the case and so a revealed preference theory built around arbitrary

observed feasible action sets and SSCD must involve a data set property different from ARC; we

leave this interesting issue to further research.

Example 1. Let Xi “ tαi, βi, γiu with αi ă βi ă γi, and let A1
i “ tαi, γiu, A

2
i “ tαi, βiu, and

A3
i “ tβi, γiu. Note that A1

i is not an interval of Xi. Suppose that ξ1
i ă ξ2

i ă ξ3
i , and that a1

i “ γi,

a2
i “ αi, and a3

i “ βi. Then pγi, ξ
1
i q ÁR

i pαi, ξ
1
i q, pαi, ξ

2
i q ÁR

i pβi, ξ
2
i q, and pβi, ξ

3
i q ÁR

i pγi, ξ
3
i q. The

8This phenomenon, which may seem surprising, is well known in revealed preference analysis, partly because it
is also present in Afriat’s Theorem. In that context, the data consist of observations of consumer’s consumption
bundles at different linear budget sets. If the agent is maximizing a locally non-satiated preference then the data set
must obey a property called the generalized axiom of revealed preference (GARP, for short); conversely, if a data set
obeys GARP then it can be rationalized by a preference that is not just locally non-satiated but also obeys strong
monotonicity, quasi-concavity, and other properties.
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indirect revealed preference relation ÁRT
i is equal to the direct revealed preference relation ÁR

i in this

example and, clearly, this set of three observations obeys ARC. However, it cannot be rationalized

by an SSCD preference. Suppose, instead that an SSCD preference Ái rationalizes the data. Then,

it must hold that pγi, ξ
1
i q Ái pαi, ξ

1
i q and, by SSCD, pγi, ξ

2
i q ąi pαi, ξ

2
i q. In addition, we have

pαi, ξ
2
i q Ái pβi, ξ

2
i q and so pγi, ξ

2
i q ąi pβi, ξ

2
i q. Since Ái obeys SSCD, we obtain pγi, ξ

3
i q ąi pβi, ξ

3
i q,

which contradicts the direct revealed preference pβi, ξ
3
i q ąi pγi, ξ

3
i q.

3.4 Robust inference

For a given data set Oi that obeys ARC, there will typically be more than one preference that

rationalizes an agent’s observed actions. For example, it is quite clear that the following simple

variation on (16) is also a regular preference on XiˆΞi that obeys SSCD (hence SID) and rationalizes

Oi (when Oi obeys ARC):

px2i , ξiq Á˚
i px

1
i, ξiq if px2i , ξiq ÁRTST

i px1i, ξiq

or px2i , ξiq ‖RTST
i px1i, ξiq and x1i ď x2i , (18)

Given this, it would be desirable to characterize that part of agent i’s preference that an observer

could robustly infer from the data; by this we mean those preference relationships that are valid for

all regular preferences that rationalize Oi and that obey SID or SSCD. The next result shows that

this is captured by the revealed preference relations ÁRTST
i and ąRTST

i .

Theorem 2. Suppose that Oi obeys ARC and let P‹i be the family of regular preferences on XiˆΞi

that obey SID and rationalize Oi. Then

(i) pxi, ξiq Ái px
1
i, ξiq for all Ái P P‹i if and only if pxi, ξiq ÁRTST

i px1i, ξiq;

(ii) pxi, ξiq ąi px
1
i, ξiq for all Ái P P‹i if and only if pxi, ξiq ąRTST

i px1i, ξiq.

The statements (i) and (ii) remain valid if P‹i is replaced with P‹‹i , the family of regular preferences

on Xi ˆ Ξi that obey SSCD and rationalize Oi.
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Proof. In Proposition 1, we show the “if” part of both statements (i) and (ii) for preferences

that obey SID and rationalize Oi. Hence they must remain valid for preferences that obey single

crossing differences (which is a stronger property than SID). It remains for us to show the “only

if” part of both statements for preferences that obey single crossing differences. This completes the

proof since P‹‹i Ă P‹i .

To show the “only if” of statement (i), suppose that pxi, ξiq ÃRTST
i px1i, ξiq. Then either

px1i, ξiq ąRTST
i pxi, ξiq or pxi, ξiq ‖RTST

i px1i, ξiq. The first case implies that px1i, ξiq ąi pxi, ξiq for

all ÁiP P‹‹i , so clearly we do not obtain pxi, ξiq Ái px
1
i, ξiq for all Ái P P‹‹i . For the second case, we

know that there exists a preference Á˚ in P‹‹i such that px1i, ξiq ą˚
i pxi, ξiq and hence, again, we do

not have pxi, ξiq Ãi px
1
i, ξiq for all Ái P P‹‹i ; indeed, either the preference in (16) or that in (18) can

serve as such a preference, depending (respectively) on whether x1i is smaller or greater than xi.

We turn now to the “only if” part of statement (ii), for preferences in P‹‹i . Suppose that

pxi, ξiq čRTST
i px1i, ξiq; then either pxi, ξiq ‖RTST

i px1i, ξiq or px1i, ξiq ÁRTST
i pxi, ξiq. In the first case,

we know that we can find a preference Á˚
i (using either (16) or (18)) such that px1i, ξiq ą˚

i pxi, ξiq,

so we do not obtain pxi, ξiq ąi px
1
i, ξiq for all Ái P P‹‹i .

For the second case, we suppose that x1i ą xi. (The argument for the case x1i ă xi is analogous.)

We expand the data set O by adding a fictitious observation s, such that agent i chooses asi “ x1i in

the closed interval As
i “ rxi, x

1
is, when other players’ actions and the parameter values are given by

ξsi “ ξi “ pa´i, yiq. For player j ‰ i, we choose As
j “ taju. We claim that the new agent i data set

O1
i (with the added observation s) continues to obey ARC. In that case, we know by Theorem 1 that

there is there is a regular preference Á˚
i obeying single crossing differences that rationalizes O1

i and

hence is also in P‹‹i ; furthermore, consistency with observation s requires that px1i, ξq Á˚
i pxi, ξq. So

it is not the case that pxi, ξq ą˚
i pxi, ξq. To see that O1

i obeys ARC, note that a violation must imply

that there are elements x2i and x3i in Xi such that following hold: (A) x3i is indirectly revealed

preferred to x2i through a chain of revealed preference (as in (5)) that includes px1i, ξiq ÁR pyi, ξiq,

for some yi P rxi, x
1
is i.e.,

px3i , ξiq ÁRT
i px1i, ξiq ÁR

i pyi, ξiq ÁRT
i px2i , ξiq (19)

and (B) px2i , ξ̃iq ÁRT
i px3i , ξ̃iq, where ξ̃i ą păq ξi if x3i ą păq ξ

2
i . Note that all the revealed relations
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listed in (A) and (B) are valid in the original data set Oi, with the exception of px1i, ξiq ÁR
i pyi, ξiq

(which arises from observation s). Those relations can be re-combined to obtain

pyi, ξiq ÁRT
i px2i , ξiq ąRTS

i px3i , ξ̃iq ÁRT
i px1i, ξiq.

Thus, we obtain, from the original data set O1
i, pyi, ξiq ąRTST

i px1i, ξiq, but this is incompatible with

our initial assumption that px1i, ξiq ÁRTST
i pxi, ξiq which implies that px1i, ξiq ÁRTST

i pyi, ξiq by the

interval property. l

4 Revealed strategic complementarity

Let G “ tGpy, Aqupy,AqPYˆA be a collection of games, as defined in the Section 2.2. We consider

an observer who has a set of observations drawn from this collection. Each observation consists

of agents’ action profiles, feasible closed interval action sets, and exogenous parameters, i.e., each

observation is a triple pat, yt, Atq, where at P At, At P A, and yt P Y . The set of observations is

finite and is denoted by O “ tat, yt, AtutPT , where T “ t1, 2, ..., T u.

Definition 2. A data set O “ tat, yt, AtutPT is consistent with strategic complementarity (or

SC-rationalizable) if there exists a profile of regular and SID preferences tÁiuiPN such that each

observation constitutes a Nash equilibrium, i.e., for every t P T , pati, ξ
t
iq Ái pxi, ξ

t
iq for every xi P A

t
i.

The motivation for this definition is clear. If O is SC-rationalizable then we have found a

profile of preference tÁiuiPN such that (i) at is a Nash equilibrium of GpAt, ytq and (ii) the family

of games G “ tGpy, Aqupy,AqPYˆA, where Gpy, Aq “ rpyiqiPN , pAiqiPN , pÁiqiPN , s exhibits strategic

complementarity (in the sense defined in Section 2.2).

For each agent i, we can define the agent data set Oi “ tpati, ξ
t
i , A

t
iqu

T
t“1 induced by O, where

ξti “ pa
t
´i, y

t
iq. We say that O “ tat, At, ytutPT obeys ARC if Oi obeys ARC, for every agent i. It

is clear that O is SC-rationalizable if and only if Oi is monotone-rationalizable for every agent i.

This leads to the following result, which is an immediate consequence of Theorem 1 and provides

with us with an easy-to-implement test of SC-rationalizability.

Corollary 1. A data set O “ tat, yt, AtuTt“1 is SC-rationalizable if and only if it obeys ARC.
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Suppose an observer collects a data set O “ tat, At, ytutPT that is SC-rationalizable and then,

maintaining that hypothesis, asks himself the following question: what do the observations in O

say about the set of possible pure strategy Nash equilibria of the game Gpy0, A0q, where A0 P A and

y0 P Y ? The issue can be formally posed in the following way. For every i P N , Oi obeys ARC and

so the set of regular and SID preferences that rationalize Oi, i.e. P‹i , is nonempty. Every observed

strategy profile at in the original data set O is supported as a Nash equilibrium by any preference

profile tÁiuiPN in P‹ :“ ˆiPNP‹i . For each tÁiuiPN P P‹, we know from Theorem B that the set of

pure strategy Nash equilibria, Epy0, A0, tÁiuiPNq, of the game Gpy0, A0q is nonempty and hence

Epy0, A0q :“
Ť

tÁiuiPNPP‹ E py
0, A0, tÁiuiPNq

is also nonempty. Epy0, A0q is the set of predicted Nash equilibria of the game Gpy0, A0q. This gives

rise to two related questions that we shall answer in this section: how can we compute Epy0, A0q

from the data and what can we say about the structure of Epy0, A0q?

4.1 Computable characterization of Epy0, A0q

Let BRipξi, A
0
i ,Áiq be player i’s best responses in A0

i to ξi “ pa´i, y
0
i q, based on the preference

ÁiP P‹i . Then the possible (best) responses of player i is given by

PRipξi, A
0
i q :“

ď

ÁiPP‹i

BRipξi, A
0
i ,Áiq (20)

and the joint possible response correspondence PRp¨, y0, A0q : A0 Ñ A0 is defined by

PRpa, y0, A0
q “

`

PR1pa´1, y
0
1;A0

1q,PR2pa´2, y
0
2, A

0
2q, ...,PRnpa´n, y

0
n, A

0
nq
˘

. (21)

The crucial observation to make is that just as the set of Nash equilibria in a game coincides with

the fixed points of its joint best response correspondence, so the set of possible Nash equilibria in

Gpy0, A0q, Epy0, A0q, coincides with the fixed points of PRp¨, y0, A0q. Equivalently, one could think

of Epy0, A0q as the intersection of the graphs of each player’s possible response correspondence, i.e.,
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Epy0, A0q “
Ş

iPN Γipy
0, A0q, where

Γipy
0, A0

q “ tpai, a´iq P A
0 : ai P PRipa´i, y

0
i , A

0
i qu. (22)

It follows from Theorem 1 that

PRipa´i, y
0
i , A

0
i q “

 

ãi P A
0
i : ĎOi “ Oi Y t

`

pãi, a´iq, y
0
i , A

0
i

˘

u obeys ARC
(

, (23)

where ĎOi is the data set Oi augmented by the (fictitious) observation tppãi, a´iq, y
0
i , A

0
i qu. Further-

more, we know that any data set that obeys ARC could in fact be rationalized by a regular and

SSCD preference. Thus PRipξi, A
0
i q, which is defined by (20), also equals

Ť

ÁiPP‹‹i
BRipξi, A

0
i ,Áiq,

where P‹‹i is the set of regular and SSCD preferences that rationalize Oi. As a result,

Epy0, A0q “
Ť

tÁiuiPNPP‹‹ E py
0, A0, tÁiuiPNq,

where P‹‹ “ ˆiPNP‹‹i . In other words, the set of possible Nash equilibria of Gpy0, A0q (and,

obviously, the properties of this set such as those outlined in Theorems 3 and 4) do not depend on

whether we are allowing all SID preferences rationalizing the data set O or all SSCD preferences

rationalizing O.

The computation of EpA0; y0q hinges on the computation of PRip¨, y
0
i , A

0q : A´i Ñ A0
i . Two

features of this correspondence together make it possible for us to compute it explicitly.

(I) For any a´i, one could show that

PRipa´i, y
0
i , A

0
i q “ tai P A

0
i : E âi P A

0
i such that pâi, a´i, y

0
i q ąRTST

i pai, a´i, y
0
i qu. (24)

In other words, PRipa´i, y
0
i , A

0
i q coincides exactly with those elements in A0

i that are not

dominated (with respect to ąRTST
i ) by another element in A0

i . Since the data set is finite,

PRipa´i, y
0
i , A

0
i q can be constructed after a finite number of steps and, in fact, one could also

show that it consists of a finite number of intervals.
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(II) The correspondence PRip¨, y
0
i , A

0q takes only finitely many distinct values. For j ‰ i, let

AT
j “ taj P Xj : D a´j such that paj, a´jq “ at for some t P T u

We denote by Ij the collection consisting of all subsets of A0
j of the following two types: the

singleton sets tãju, where ãj is in the set A0
j “

`

AT
j X A

0
j

˘
Ť

maxA0
j

Ť

minA0
j and the interval

sets ta P A0
j : ã ă a ă b̃u, where ã P A0

j and b̃ is the element in A0
j immediately above ã. We

denote by Hi the collection of hyper-rectangles

I1 ˆ I2 ˆ ...ˆ Ii´1 ˆ Ii`1 ˆ ...ˆ IN

where Ij P Ij, for j ‰ i; note that these hyper-rectangles are subsets of ˆj‰iA
0
j . Then one

could show that for any hyper-rectangle Hi P Hi,

if a1´i, a
2
´i P Hi, then PRipa

1
´i, y

0
i ;A0

i q “ PRipa
2
´i, y

0
i ;A0

i q. (25)

In other words, the correspondence PRipa´i, y
0
i ;A0

i q is constant within each hyper-rectangle

Hi. Therefore, to compute PRipa´i, y
0
i ;A0

i q we need only find its value via (24) for a typical

element within each hyper-rectangle Hi in the finite collection Hi.

It follows from observations I and II above that the graph of player i’s possible response correspon-

dence (as defined by (22)) is also given by

Γipy
0, A0

q “ tpai, a´iq P A
0 : E âi P A

0
i such that pâi, a´i, y

0
i q ąRTST

i pai, a´i, y
0
i qu (26)

and can be explicitly constructed. Furthermore, because PRipa´i, y
0
i , A

0
i q consists of a finite union of

intervals of A0
i , Γipy

0, A0q is a finite union of hyper-rectangles in A0. The theorem below summarizes

these observations.

Theorem 3. Suppose a data set O “ tat, yt, AtuTt“1 obeys ARC and let py0, A0q P Y ˆA.

(i) PRip¨, y
0
i , A

0
i q obeys (24) and (25) and, for any a´i P ˆj‰iA

0
j , PRipa´i, y

0
i , A

0
i q consists of a

finite union of intervals of A0
i .
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Figure 1: EpA0q in Example 2

(ii) The graph of PRip¨, y
0
i , A

0
i q, Γipy

0, A0q, is a finite union of hyper-rectangles in A0. Conse-

quently, the set of possible Nash equilibria, Epy0, A0q “
Ş

iPN Γipy
0, A0q, is also a finite union

of hyper-rectangles in A0.

Example 2. Figure 1(a) depicts two observations, tpa1, A1q and pa2, A2qu, drawn from games

involving two players. This data set obeys ARC and we would like to compute EpA0q, where

A0
i “ A1

i Y A2
i (for i “ 1, 2). First, we claim that the unshaded area in Figure 1(b) cannot be

contained in Γ1pA
0q. Indeed, consider the point x1 “ px11, x

1
2q in the unshaded area, at which

x11 ă a1
1, x12 ą a1

2, and x11 P A
1
1. Therefore, pa1

1, a
1
2q ÁR

1 px
1
1, a

1
2q and so pa1

1, a
1
2q ÁRT

1 px11, a
1
2q. Since

x12 ą a1
2, pa1

1, a
1
2q ąRTS

1 px11, a
1
2q, which means that px11, x

1
2q R Γ1pA

0q. Using (26), it is easy to check

that Γ1pA
0q corresponds precisely to the shaded area in Figure 1(b). Similarly, Γ2pA

0q consists of

the shaded area in Figure 1(c). The common shaded area, as depicted with the darker shade in

Figure 1(d), represents EpA0q “ Γ1pA
0q X Γ2pA

0q. Note that the dashed lines are excluded from

EpA0q, so this set is not closed.

Proof of Theorem 3. Part (ii) follows straightforwardly from part (i), so we shall focus on
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proving (i), which consists of three claims.

It follows from (23) that (24) holds provided we can show the following: Oi “ OiYtpãi, a´i, y
0
i , A

0
i qu

violates ARC if and only if there is âi P A
0
i such that pâi, a´i, y

0
i q ąRTST

i pãi, a´i, y
0
i q. Let ÁR

i , ÁRT
i ,

ÁRTS
i , and ÁRTST

i be the revealed preference relations derived from Oi “ Oi Y tpãi, a´i, y
0
i , A

0
i qu,

which must contain the analogous revealed preference relations of Oi. Suppose there is âi P A
0
i

such that pâi, a´i, y
0
i q ąRTST

i pãi, a´i, y
0q and so pâi, a´i, y

0
i q ąRTST

i pãi, a´i, y
0
i q. On the other

hand, since âi P A0
i , we have pã´i, y

0
i q ÁR

i pâi, a´i, y
0
i q. Thus, the relation ÁRTS

i is not cycli-

cally consistent, which implies (by Lemma 3) that Oi violates ARC. Conversely, suppose that

Oi “ Oi Y tpãi, a´i, y
0, A0

i qu violates ARC. Since Oi obeys ARC, this violation can only occur in

two ways: there is âi P Xi such that pãi, a´i, y
0
i q ÁRT

i pâi, a´i, y
0
i q and pâi, ā´i, ȳiq ÁRT

i pãi, ā´i, ȳiq

with either (1) âi ă ãi and pā´i, ȳiq ą pa´i, y
0
i q or (2) âi ą ãi and pā´i, ȳiq ă pa´i, y

0
i q. We need

to show that ãi is dominated (with respect to ąRTST
i ) by some element in A0

i . In either cases (1)

or (2), since pâi, ā´i, ȳiq ÁRT
i pãi, ā´i, ȳiq, we obtain pâi, a´i, y

0
i q ąRTS

i pãi, a´i, y
0
i q. If âi P A

0
i , we

are done. If âi R A
0
i then, given that pãi, a´i, y

0
i q ÁRT

i pâi, a´i, y
0
i q, there exists āi P A

0
i such that

pāi, a´i, y
0
i q ÁRT

i pâi, a´i, y
0
i q. Thus pāi, a´i, y

0
i q ąRTST

i pãi, a´i, y
0
i q.

To see that (25) holds, first note that ãi R PRipa
1
´i, y

0
i , A

0
i q if and only if O1

i “ OiYtpãi, a
1
´i, y

0
i , A

0
i qu

violates ARC. Since Hi is not a singleton, it must be an interval and so there is no a1i such that

pa1i, a
1
´iq “ at for some t P T . Therefore, O1

i violates ARC if and only if there is âi P A
0
i and ā´i such

that pâi, ā´i, ȳiq ÁRT
i pãi, ā´i, ȳiq with either (1) âi ă ãi and pā´i, ȳiq ą pa

1
´i, y

0
i q or (2) âi ą ãi and

pā´i, ȳiq ă pa
1
´i, y

0
i q. Note that there is t P T such that pâi, ā´iq “ at; in particular, this means that

ā´i P ˆj‰iA
T . It follows from our definition of Hi that pā´i, ȳiq ą pa

2
´i, y

0
i q if pā´i, ȳiq ą pa

1
´i, y

0
i q

and pā´i, ȳiq ă pa
2
´i, y

0
i q if pā´i, ȳiq ă pa

1
´i, y

0
i q. Thus O2

i “ OiYtpãi, a
2
´i, y

0
i , A

0
i qu also violates ARC.

We conclude that ãi R PRipa
2
´i, y

0
i , A

0
i q if ãi R PRipa

1
´i, y

0
i , A

0
i q, which establishes (25).

Lastly, we show that PRipa´i, y
0
i , A

0
i q consists of a finite union of intervals of A0

i . This is

equivalent to showing that A0
i zPRipa´i, y

0
i , A

0
i q is a finite union of intervals; an element ãi is

in this set if and only if there is t P T such that ati P A0
i and pati, ξ

0
i q ąRTST

i pãi, ξ
0
i q, where

ξ0
i “ pa´i, y

0q. This is turns holds if and only if is s P T such that either (1) pati, ξ
0
i q ÁRTST

i pasi , ξ
0
i q

and pasi , ξ
0
i q ąRTS

i pãi, ξ
0
i q or (2) pati, ξ

0
i q ąRTST

i pasi , ξ
0
i q and pasi , ξ

0
i q ÁRT

i pãi, ξ
0
i q. Notice for a fixed

s P T , the sets tai P A
0
i : pasi , ξ

0
i q ąRTS

i pai, ξ
0
i qu and tai P A

0
i : pasi , ξ

0
i q ÁRT

i pai, ξ
0
i qu both consist
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of intervals, because of the interval property on ąRTS
i and ąRTS

i respectively (see Lemma 2). It

follows that A0
i zPRipa´i, y

0
i , A

0
i q is a finite union of intervals. l

4.2 The structure of Epy0, A0q

As we have pointed out in Section 2, the set of pure strategy Nash equilibria in a game with strategic

complementarity forms a nonempty complete lattice, and the largest and smallest equilibria exhibit

monotone comparative statics with respect to exogenous parameters. In this subsection, we show

that these properties are largely inherited by the set of predicted pure strategy Nash equilibria

Epy0, A0q. This is illustrated in Example 2, where it is not hard to check from Figure 1(d) that

the set of predicted Nash equilibria forms a complete lattice and, in particular, the largest and the

smallest possible Nash equilibria exist; while this is not true in general, properties close to this are

always true. The next result lists the main structural properties of Epy0, A0q; we have consciously

presented them in a way that is analogous to Theorem B.

Theorem 4. Suppose a data set O “ tat, yt, AtutPT obeys ARC and let py0, A0q P Y ˆA.

1. [Existence] The set of possible pure strategy Nash equilibria, Epy0, A0q, is nonempty.

2. [Structure] (a) The set Epy0, A0q admits a largest and smallest element (denoted by

max Epy0, A0, q and min Epy0, A0q respectively. (b) Furthermore, for every set K Ď Epy0, A0q

that is closed in Rn, the sets

UpKq “ tz P Epy0, A0
q : z ě x for all x P Ku and

LpKq “ tz P Epy0, A0
q : z ď x for all x P Ku

are nonempty and minUpKq and maxLpKq both exist.

3. [Comparative statics] The strategy profiles max Epy, A0q and min Epy, A0q are both in-

creasing in y P Y .

Remark: We use S to denote the closure of S.
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Parts 2(a) and 3 in Theorem 4 tell us that the set of possible Nash equilibria effectively has

a largest and smallest element and that these increase as the parameter y increases. Note that

because A0 is a subcomplete sublattice of pRn,ěq, any set in A0 will have a supremum and an

infimum in A0. Therefore, the principal content in part 2(a) lies in the claim that the supremum

and infimum of Epy0, A0q are contained in Epy0, A0q. Clearly, the analogous statement in Theorem

B is stronger since it says that the set of pure strategy Nash equilibria (even when it is not closed)

has a largest and smallest element; Example 3 (presented later in this subsection) shows that this

conclusion cannot be strengthened. While Epy0, A0q is not generally a complete lattice, part 2(b)

of the theorem says that any closed subset K of Epy0, A0q will be bounded above by elements of

Epy0, A0q and the closure of this set of upper bounds, UpKq, has a smallest element. In this sense,

its structure is close to that of a complete lattice. In the special but important case where A0 is

finite, every subset of A0 is closed and so it follows immediately from Theorem 4 that Epy0, A0q is

a bona fide lattice; we record this as a corollary.

Corollary 2. Suppose a data set O “ tat, yt, AtutPT obeys ARC and let py0, A0q P Y ˆA. Then

Epy0, A0q is a nonempty complete lattice if A0 is a finite set.

The conclusion of Theorem 4 may also be strengthened in the case where the feasible action set of

every agent is unchanged throughout the observations, i.e. At “ A0 P A for all t P T . In this setting,

and allowing for agents to have multi-dimensional actions, Lazzati (2014) shows that Epy0, A0q has

a largest and smallest element. Applying Theorem 4 to this case gives the stronger conclusion that

Epy0, A0q forms a complete lattice. Indeed, by (23), a necessary and sufficient condition for ãi P A
0

to be contained in PRipa´i, y
0
i ;A0

i q is that ĎOi “ Oi Y tpãi, pa´i, y
0
i q, A

0
i qu obeys ARC. If A0 “ At

for all t P T , then it is straightforward to check that this is equivalent to

asi ě ãi ě ati for all s, t P T such that ξsi ě pa´i, y
0
i q ě ξti , (27)

which is precisely the “sandwich” condition obtained by Lazzati (2014). It follows that PRipa´i, y
0
i , A

0
i q

must be a closed interval in A0
i and (by Theorem 3) its graph Γipy

0, A0q is a finite union of closed

hyper-rectangles. Therefore, Epy0;A0q “
Ş

iPN Γipy
0, A0q is also closed and, by Theorem 4, it must

contain its largest and smallest element. Furthermore, for any arbitrary set K Ă Epy0, A0q, its
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Figure 2: EpA0q in Example 3

closure sK Ă Epy0, A0q because the latter is closed. It follows that UpKq “ UpK̄q and is also a

closed set and, by Theorem 4, minUpKq exists. By an analogous argument, we may conclude that

maxLpKq exists and thus Epy0, A0q is a complete lattice. The following corollary summarizes our

observations.

Corollary 3. Suppose that a data set O “ tat, yt, AtutPT obeys ARC and let At “ A0 for all t P T .

Then Epy0, A0q forms a nonempty complete lattice.

In the case where agents’ constraint set changes across observations, the Epy0, A0q is not generally

closed and may not contain its largest or smallest element, as the following example illustrates.

Example 3. Suppose that we have two observations as depicted in Figure 2, where A1
1 and A2

1 are

the strategy sets available to player 1 at observations 1 and 2 respectively, and with player 2 having

singleton strategy sets at each observation. Let A0
1 be the blue segment in the figure, with A0

2 “ ta
1
2u.

It is easy to confirm that observations 1 and 2 obey ARC, and the set of possible equilibria EpA0q

is equal to Γ1pA
0q, which is not a complete lattice because max EpA0q R EpA0q. To see this, it

suffices to show that a˚1 R PR1pa
1
2;A0

1q. Since pa2
1, a

2
2q ÁR

1 pa
˚
1 , a

2
2q, we obtain pa2

1, a
1
2q ąRTS

1 pa˚1 , a
1
2q.

In addition, pa1
1, a

1
2q ÁR

1 pa
2
1, a

1
2q and so pa1

1, a
1
2q ąRTS

1 pa˚1 , a
1
2q. On the other hand, it is clear that

pa˚1 , a
1
2q “ max EpA0q.

We end this section with the proof of Theorem 4. The proof uses the following lemma.
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Lemma 7. Suppose O “ tat, yt, AtuTt“1 obeys ARC and let A0 P A. Then the map p˚˚i : A0
´iˆY Ñ A0

i

given by

p˚˚i pa´i, yiq “ sup PRipa´i, yi, A
0
q

has the following properties: (i) it is increasing in pa´i, yiq P A
0
´i ˆ Yi; (ii) for a1´i and a2´i in Hi,

p˚˚i pa
2
´i, yiq “ p˚˚i pa

1
´i, yiq; and (iii) if, for some pā´i, ȳiq, p

˚˚
i pā´i, ȳiq P PRipā´i, ȳi, A

0q and for some

pâ´i, ŷiq ą pā´i, ȳiq, p
˚˚
i pā´i, ȳiq “ p˚˚i pâ´i, ŷiq, then p˚˚i pâ´i, ŷiq P PRipâ´i, ŷi, A

0q.

Remark: In a similar way, we define p˚i : A0
´i ˆ Yi Ñ A0

i by p˚i pa´i, yiq “ inf PRipa´i, yi, A
0q. This

function will obey properties (i) and (ii) and, instead of property (iii), it will have the following

property (iii)1: if, for some pā´i, ȳiq, p
˚
i pā´i, ȳiq P PRipā´i, ȳi, A

0q and for some pâ´i, ŷiq ă pā´i, ȳiq,

p˚i pā´i, ȳiq “ p˚i pâ´i, ŷiq, then p˚i pâ´i, ŷiq P PRipâ´i, ŷi, A
0q.

Proof. Since PRipa´i, yi, A
0q is the union of a collection of best response correspondences (see

(20)), each of which is increasing in pa´i, yiq, p
˚˚
i must be increasing. Claim (ii) is an immediate

consequence of (25) (which was proved in Theorem 3). Lastly, if p˚˚i pā´i, ȳiq P PRipā´i, ȳi, A
0q

then there is ÁiP P˚i such that p˚˚i pā´i, ȳiq P BRipā´i, ȳi, A
0
i ,Áiq. Since the best response corre-

spondence is increasing, there is a1i P BRipâ´i, ŷi, A
0
i ,Áiq, and thus in PRipâ´i, ŷi, A

0
i q, such that

a1i ě p˚˚i pā´i, ȳiq. This establishes (iii). l

We are now ready to prove Theorem 4. It is worth pointing out an obvious first approach that

will not work. Given p˚˚i , we can define, for each a P A0, p˚˚pa, y0q “ pp˚˚i pa´i, y
0
i qqiPN , and since

p˚˚i is increasing in a´i, so p˚˚pa, y0q is increasing in a. By Tarski’s fixed point theorem, p˚˚p¨, y0q

will have a fixed point and indeed a largest fixed point a‹; thus the existence of max Epy0, A0q is

ensured if it could be identified with a‹. However, they are not generally the same points: it is

straightforward to construct an increasing (but not compact-valued) correspondence such that its

largest fixed point does not coincide with the largest fixed point of its supremum function. Our

proof of Theorem 4 takes a different route. We have already explained at the beginning of this

section why Epy0, A0q is nonempty, so we shall concentrate on proving statements 2 and 3.

Proof of 2(a) and 3 in Theorem 4: We shall confine our attention to max Epy0, A0q; the proof for

the other case is similar. Firstly, note that the properties of p˚˚i listed in Lemma 7 guarantee that

there exists a sequence of functions tpki p¨, y
0
i , A

0
i qukPN selected from PRip¨, y

0
i , A

0
i q with the following
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properties: (i) for a1´i and a2´i in Hi, p
k
i pa

2
´i, y

0
i q “ pki pa

1
´i, y

0
i q; (ii) pki pa´i, y

0
i , A

0
i q is increasing in

a´i and in k; (iii) pki pa´i, y
0
i , A

0
i q “ p˚˚i pa´i, y

0
i , A

0
i q if p˚˚i pa´i, y

0
i , A

0
i q P PRipa´i, y

0
i , A

0
i q; and (iv)

limkÑ8 p
k
i pa´i, y

0
i , A

0
i q “ p˚˚i pa´i, y

0
i , A

0
i q. In other words, there is a sequence of increasing selections

from PRip¨, y
0, A0q that has p˚˚i pa´i, y

0, A0q as it limit, with the sequence being exactly equal to

p˚˚i pa´i, y
0
i , A

0
i q if the latter is a possible response of player i.

The function pkpa, y0, A0q “ ppki pa´i, y
0
i , A

0
i qqiPN is increasing in a, since pki is increasing in a´i.

By Tarski’s fixed point theorem, pk has a largest fixed point, which we denote by xkpy0, A0q. Since

pki p¨, y
0
i , A

0
i q is a selection from PRip¨, y

0
i , A

0
i q, x

kpy0, A0q P Epy0, A0q. By the monotone fixed points

theorem (see Section 2), the sequence xkpy0, A0q is increasing with k. Since A0 is compact, this

sequence must have a limit. This limit, which we denote by a˚˚py0, A0q, lies in Epy0, A0q.

We claim that a˚˚py0, A0qq ě x̃, for any x̃ P Epy0, A0q. Indeed, since x̃i P PRipx̃´i, y
0
i , A

0
i q for all

i P N , for k sufficiently large, pki px̃´i, y
0
i , A

0
i q ě x̃i. Now consider the map pk confined to the domain

S “ ˆiPNtai P A
0
i : ai ě x̃iu. Since pk is increasing, the image of pk also falls on S; in other words,

pk can be considered as a map from S to itself. It is also an increasing map and, by Tarski’s fixed

point theorem will have a largest fixed point. The largest fixed point of pk restricted to S must

again be xkpy0, A0q and it follows from our construction that xkpy0, A0qq ě x̃. In turn this implies

that a˚˚py0, A0qq ě x̃. So a˚˚py0, A0qq is an upper bound of Epy0, A0q and thus also an upper bound

of Epy0, A0q. Given that a˚˚py0, A0qq P Epy0, A0q, we conclude that a˚˚py0, A0qq “ max Epy0, A0q.

To see that a˚˚py, A0q is increasing with respect to the parameter, consider y2 ą y1. Given

the properties of p˚˚i listed in Lemma 7, we can choose functions tpki p¨, yi, A
0
i qukPN selected from

PRip¨, yi, A
0
i q (for yi “ y1i and y2i ) satisfying properties (i) – (iv) and, in addition, pki pa´i, y

2
i , A

0
i q ě

pki pa´i, y
1
i, A

0
i q for all a´i. The map pkp¨, y2i , A

0
i q is increasing and will have a largest fixed point

xkpy2, A0q which, by the monotone fixed points theorem satisfies xkpy2, A0q ě xkpy1, A0q. Taking

limits as k Ñ 8, we obtain a˚˚py2, A0q ě a˚˚py1, A0q. l

Proof of 2(b) in Theorem 4: For each i, let zi “ arg maxaPK ai. Then supK “ pz1
1 , z

2
2 , ..., z

n
nq P A

0

and we shall denote this profile of strategies by z̄. Since zi P K, there is Á˚
i P P˚i such that

zii P BRipz
i
´i, y

0
i , A

0
i ,Á

˚
i q. Since the best response correspondence is increasing, ai ě zii for all

ai P BRipa´i, y
0
i , A

0
i ,Á

˚
i q, where a´i ě zi´i; this holds, in particular, for all a´i ě z̄´i. Thus

PRipa´i, y
0
i , A

0
i q X rz̄i,maxA0

i s is nonempty for all a´i ě z̄´i since it contains BRipx´i, y
0
i , A

0
i ,Ái
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q X rz̄i,maxA0
i s and the latter is nonempty. Therefore, the correspondence Fi : ˆj‰irz̄j,maxA0

j s Ñ

rz̄j,maxA0
j s, given by

Fipa´iq “ PRipa´i, y
0
i , A

0
i q X rz̄i,maxA0

i s

is well-defined. With this, we may define F : rz̄,maxA0s Ñ rz̄,maxA0s, where F paq “ pFipa´iqqiPN .

The fixed points of F coincide with the set UpKq. Firstly, note that F does have a fixed point

and thus UpKq is nonempty. Indeed, F contains the correspondence G : rz̄,maxA0s Ñ rz̄,maxA0s

given by Gipaq “ BRipa´i, y
0, A0,Á˚

i q; since G is increasing and compact-valued, the Tarski-Zhou

fixed point theorem guarantees that G, and thus F , has a fixed point.

To show that minUpKq exists, we can adopt essentially the same proof strategy as the one used

to show the existence of min Epy0, A0q. We shall sketch the argument, leaving the details to the

reader. By adapting the proof of Lemma 7, we can show that the function q˚i : ˆj‰irz̄j,maxA0
j s Ñ

rz̄j,maxA0
j s defined by q˚i pa´iq “ inf Fipa´iq has the following properties: (i) it is increasing in

a´i; (ii) for a1´i and a2´i in Hi X ˆj‰irz̄j,maxA0
j s, q

˚
i pa

2
´iq “ q˚i pa

1
´iq; and (iii) if, for some ā´i,

q˚i pā´iq P Fipā´iq and for some â´i ă ā´i, q
˚
i pā´iq “ q˚i pâ´iq, then q˚i pâ´iq P Fipā´iq. Given

this, we may then construct a sequence of increasing functions qki selected from Fi that converges

monotonically to q˚i and with the property that qki “ q˚i if q˚i pa´iq P Fipa´iq. We define the function

qk : rz̄,maxA0s Ñ rz̄,maxA0s by qkpaq “ pqki pa´iqqiPN and denote the smallest fixed point of qk by

xk. The point xk is also a fixed point of F and thus xk P UpKq. Furthermore, it is decreasing in k,

with a limit x˚, which is a lower bound UpKq. Consequently, x˚ “ minUpKq. l
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