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Abstract

We study the optimal portfolio choice problem of an investor who is averse to both risk

and ambiguity. Using the class of utility functions proposed by Klibanoff, Marinacci, and

Mukerji (2005), we establish a generalized mutual fund theorem, which shows that there are

a fixed number of mutual funds that cater for all investors, regardless of their ambiguity

aversion. We prove that the optimal portfolio is decomposed into two, one remaining and

the other vanishing as the degree of ambiguity aversion goes to infinity. We also introduce

factor models with ambiguity and compare our results with the Bayesian portfolio approach.

JEL Classification Codes: C38, D81, G11.

Keywords: Ambiguity aversion, optimal portfolio, 1/N portfolio, mutual fund theorem,

factor model, Bayesian portfolio choice problem.

1 Introduction

In many uncertain situations, it is extremely difficult or merely impossible to estimate the distri-

butions of possible outcomes, because there are only few samples or the underlying mechanism

is complex. When the asset returns depend on these uncertainties, it is unreasonable to assume

that investors have expected utility functions, because, to calculate expected utilities, it would

be necessary to know the distributions of asset returns, which are, in fact, unknown to them. In

the presence of such ambiguous uncertainties, it is more reasonable to use utility functions that

are averse not only to risk but also to ambiguity. In this paper, we study the optimal portfolio

choice problem of an investor who exhibits ambiguity aversion.

More specifically, in the traditional single-period setting, we consider an investor who has

a utility function in the class proposed by Klibanoff, Marinacci, and Mukerji (2005) (hereafter

KMM). It has an advantage over the more commonly used class of ambiguity-averse preferences
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proposed by Gilboa and Schmeidler (1989), in that it can control the degree of ambiguity

aversion simply by varying some parameter values. With this flexibility, we can investigate how

the optimal portfolio changes as the degree of ambiguity aversion increases, while the degree of

risk aversion remains fixed.

Our analysis specializes in the case where the degree of absolute risk aversion and the degree

of ambiguity aversion are constant (independent of consumption levels) and the asset returns are

normally distributed. The ambiguity lies in the means (expectations) of the asset returns, which

are themselves random variables. As is well known, in the standard setting without ambiguity,

the joint assumption of constant absolute risk aversion (CARA) and normally distributed asset

returns would give rise to many interesting implications on equilibrium asset prices and risk

allocations. Of particular interest is the mutual fund theorem, which claims that a single mutual

fund is sufficient to cater for all investors, in the sense that every investor’s optimal portfolio

of risky assets is a positive multiple of the single mutual fund. Our main question is how

the optimal portfolio of the ambiguity averse investor differs from the case of the mutual fund

theorem.

Our first main result, Theorem 1, answers the question. This theorem is stated in terms of a

matrix, denoted by Q, that roughly measures the ratio of the variance of asset returns due solely

to ambiguity to the total variance of these asset returns. It represents the optimal portfolio as

a linear combination of the eigenvectors of Q, with the associated coefficients depending on the

degree of ambiguity aversion. Among other things, it implies that any single mutual fund is no

longer sufficient to cater for all investors.

Our second main result, Theorem 2, characterizes the optimal portfolio by decomposing it

into two portfolios: one remaining and the other vanishing as the degree of ambiguity aversion

goes to infinity. Each of the two portfolios is characterized as an expected-utility maximizer’s

optimal portfolio for an appropriately chosen pair of a mean vector and a covariance matrix.

In this sense, we decompose the expected returns and the covariance matrix, in addition to the

optimal portfolio, into the unambiguous (purely risky) part and the ambiguous part.

Abstract and barren as they may seem, they are rich in implications, as presented in Section

4. Among them are a justification for choosing the so-called 1/N portfolio, in which the wealth

is allocated equally among all the risky assets (N in number) based on an optimization behavior,

and a sufficient condition under which the optimal holding of assets with ambiguous returns

decreases as the degree of ambiguity aversion increases. The former is important, as choosing

the 1/N portfolio has been regarded as a rule of thumb, rather than as a consequence of solving

an optimization problem. The latter is significant, as it generalizes a main result by Maccheroni,

Marinacci, and Ruffino (2013) (hereafter MMR), whom we shall repeatedly refer to.

Once we have a good grasp of the nature of optimal portfolios for ambiguity-averse investors,

we can investigate how much the traditional finance theory has missed by ignoring ambiguity

aversion. Of these, we take up two questions. The first one, to be discussed in Section 5, is

how to extend the so-called factor model, which is a most commonly used model of asset prices

as it allow us to avoid the curse of dimensionality, to accommodate ambiguity aversion. The

second one, to be discussed in Section 6, is how to compare the ambiguity-averse investor’s

portfolio choice problem with the so-called Bayesian portfolio choice problem, a question that

2



arises naturally because, in both problems, it is the lack of sufficient information on the re-

turn distributions that induces investors behave differently from those who know the return

distributions and maximize expected utility.

In the factor model, the asset returns are linear combinations of a few factors and idiosyn-

cratic shocks. Choosing an appropriate set of factors is, however, a highly nontrivial task. In

fact, a recent study by Harvey, Liu, and Zhu (2014) catalogue 316 different factor candidates

mainly from already published papers. Moreover, an inappropriate choice of factors results in

the non-zero alphas, or the non-zero intercepts of the excess returns of risky assets when re-

gressed on the returns of those factors. Instead of tirelessly searching for the right set of factors

and assuming that the investors knows what they are, a more sensible modeling strategy is to

assume that the investor is unsure of the validity of the factor model, by formulating that the

factors and idiosyncratic risks are ambiguous. We shall do so, thereby generalizing, in some

respects, the models by Pástor (2000), Pástor and Stambaugh (2000), and Wang (2005) of

ambiguous alphas.

The Bayesian portfolio choice problem arises from the recognition that the means, variances,

and covariances of asset returns are unknown and need to be estimated from the market data. It

postulates prior distributions of these unknown quantities and assumes that the investor maxi-

mizes his expected utility calculated from the conditional distributions of asset returns given the

past data (realized returns). It is, on the surface, similar to the maximization problem for our

ambiguity-averse investor, since they both treat the expected returns as random quantities. Yet

they are, in fact, different, since our ambiguity-averse investor has different attitudes towards

estimation errors and risky asset returns, while they are implicitly assumed to be the same in

the Bayesian portfolio choice problem. Garlappi, Uppal, and Wang (2007) already made this

point, but we will make it more apparent, by decomposing the conditional covariance matrix of

asset returns into the ambiguous part and the unambiguous part.

We also present, in Section 7, a numerical analysis on the US stock returns along the lines

of Fama and French’s three factor model, for which the parameter values are chosen to match

the past return data. We take the sample covariance matrix of asset returns as consisting of the

ambiguous part and the unambiguous part, and investigate how the optimal portfolio is affected

by the way in which the sample covariance matrix is decomposed into the two parts and the

investor’s attitudes towards ambiguity. While the way in which the matrix is decomposed has

no impact on the optimal portfolio for the ambiguity-neutral investors, the lesson to be learned

from our numerical analysis is that it has a significant impact for the ambiguity-averse investor,

even on the allocation of wealth only among the risky assets (excluding the risk-free asset).

There is a growing literature on the use of ambiguity-averse investors to investigate optimal

portfolios and asset pricing in finance and macroeconomics. The most relevant work is MMR, to

whom the extended notion of certainty equivalents for general KMM preferences is attributed.

They then considered the same CARA-type utility functions as we do in this paper. Our contri-

butions over and above their contributions are the mutual fund theorem and the generalization

of their sufficient condition under which an increase in ambiguity aversion leads to a decrease in

the optimal holding of an asset with ambiguous returns. Ruffino (2014) investigated under what

conditions the single mutual fund is sufficient to cater for all ambiguity-averse investors. Her
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main result, Theorem 1, is identical to our Proposition 1, which is a special case of our Theorem

1 where the ratio between the degree of risk aversion and that of ambiguity aversion is assumed

to be common across all investors. Under the same conditions, Wakai (2014) showed that if we

(incorrectly) calculate the beta of an asset with ambiguous returns using the covariance of the

purely risky parts of the returns of the asset and the market portfolio, then the alpha of the

asset is positive if and only if the beta thus calculated is larger than the beta that we (correctly)

obtain when the ambiguity in asset returns is taken into consideration. Ju and Miao (2012)

introduced a generalized class of recursive ambiguity-averse utility functions in a discrete-time

stochastic model to study asset-pricing implications. The literature on the factor model and

the Bayesian portfolio analysis will be surveyed in Sections 5 and 6.

The rest of this paper is organized as follows. Section 2 sets up the model. The main results

are presented in Section 3. Section 4 gathers some applications of the main results. The factor

model with ambiguity is presented and explored in Section 5. Section 6 compares the ambiguity-

averse investor’s optimal portfolio choice problem and the Bayesian portfolio choice problem.

Section 7 presents numerical applications of the factor model based on the U.S. equity data.

Section 8 concludes and suggests directions of future research. All proofs and most lemmas are

given in the appendix.

2 Model

Let (Ω,F , P ) be a probability space. We incorporate ambiguity in the CARA-Normal setting,

often used in the study of rational expectations equilibrium, in the following manner. Let M be

a random vector defined on Ω. We regard the ranges of M as the set of (names of) conceivable

probabilistic models and may, though not formally necessary, take Ω to be the product of

the range of M and some space representing physical uncertainties. For each θ > 0, define

uθ : R → R by letting uθ(x) = − exp(−θx) for every x ∈ R. This felicity function exhibits

constant absolute risk aversion (CARA) and its coefficient is equal to θ. For each γ > 0 and

each θ > 0, define a utility function Uγ,θ by letting

Uγ,θ(Z) = E
[
uγ
(
u−1
θ (E [uθ(Z)|M ])

)]
. (1)

If we write ϕγ,θ = uγ ◦ u−1
θ , then

ϕγ,θ(z) = −(−z)γ/θ (2)

for every z < 0, and

Uγ,θ(Z) = E [ϕγ,θ (E [uθ(Z)|M ])] .

If γ = θ, then ϕγ,θ is the identity map and, by the law of iterated expectation, Uγ,θ(Z) =

E [uθ(Z)]. In this case, therefore, Uγ,θ is an expected utility function with CARA coefficient θ.

We then say that the investor is ambiguity-neutral. We say that an investor who has the utility

function Uγ,θ with γ > θ is ambiguity-averse. If γ < θ, then the investor is ambiguity-loving,

though we will not pay any special attention to this case.

Assume that two types of assets are traded. The first one is N risky assets, whose gross

returns are represented by an N -variate random vector X defined on Ω. The second one is the
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risk-free bond, whose gross return is equal to R ∈ R. We assume also that M (as well as X) is

an N -variate random vector, and M and X are jointly normally distributed. We further assume

that E[M ] = E[X] and Cov[M,X] = Var[M ]. We can thus write(
M

X

)
∼ N

((
µM

µM

)
,

(
ΣM ΣM

ΣM ΣX

))
.

This assumption involves no loss of generality. It can indeed be shown that even if M did not

satisfy this assumption (possibly with a dimension different from N), some linear transformation

of M added by some (deterministic) vector of RN would satisfy this assumption.

Then the conditional return of X given M is normally distributed:

X|M ∼ N
(
M,ΣX|M

)
,

where ΣX|M = ΣX − ΣM . The interpretation along the lines of KMM and MMR would be

that the investor believes that the expected returns of the risky assets are ambiguous and the

covariance matrix ΣX|M is unambiguous, that, in model M , the expected returns are equal to

M , and that these models are distributed according to mean µM and covariance matrix ΣM .

We take a more lax interpretation in this paper: the asset prices follow the distribution of

N (µM ,ΣX), but the investor has different coefficients of aversion to the part of randomness

in prices which is due to (can be explained by) the random vector M and the part which is

independent of (cannot be updated by) M . In fact, in the numerical examples of Section 7,

we take ΣX as fixed but vary ΣM while keeping ΣX − ΣM positive semidefinite to see how the

optimal portfolios depend on the choice of ΣM .

Denoted by S N the set of all N × N symmetric matrices. Denote by S N
++ the set of all

symmetric and positive definite N × N matrix, and by S N
+ the set of all symmetric positive

semidefinite N × N matrix. Then S N
++ ⊂ S N

+ ⊂ S N . We assume that ΣX ∈ S N
++ but

allow for ΣM ∈ S N
+ \ S N

++ and ΣX|M ∈ S N
+ \ S N

++. That is, while we allow for perfect

correlation between the linear combinations of X with respect to the ambiguity covariance

matrix ΣM or the unambiguous covariance matrix ΣX|M , we exclude perfect correlation among

the linear combinations of N random variable having covariance matrix ΣX . Note that for every

Σ ∈ S N , Row Σ = Col Σ and Ker Σ = (Row Σ)⊥ = (Col Σ)⊥ and that, for every Σ ∈ S N
+ and

every v ∈ RN , v ∈ Ker Σ if and only if v>Σv = 0.

Denote by (a, b) ∈ RN × R a portfolio of these N + 1 assets, representing the monetary

amounts invested in each of these assets. Once the state is realized, the portfolio pays out

a>X + bR. Denote the initial wealth by W ∈ R. Let 1 be the vector in RN of which the N

coordinates are all equal to one. Then the budget constraint on the portfolio (a, b) ∈ RN ×R

is 1>a+ b ≤W . The decision maker’s utility maximization problem is given by

max
(a,b)∈RN×R

Uγ,θ(a
>X + bR)

subject to 1>a+ b ≤W.
(3)
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Define Vγ,θ : RN ×R→ R by letting

Vγ,θ(a, b) = µ>Ma+Rb− 1

2
a>
(
γΣM + θΣX|M

)
a

for every (a, b) ∈ RN ×R. Since ΣX|M = ΣX − ΣM , this can be rewritten as

Vγ,θ(a, b) = µ>Ma+Rb− θ

2
a>ΣXa−

γ − θ
2

a>ΣMa.

Thus, it is a robust mean-variance utility function of MMR.

Lemma 1 For every (a, b) ∈ RN ×R, Uγ,θ(a
>X + bR) = − exp (−γVγ,θ(a, b)).

If (a, b) is a solution to the utility maximization problem (3), then 1>a+ b = W . Hence, by

Lemma 1, for every (a, b) ∈ RN ×R, (a, b) is a solution to (3) if a is a solution to

max
a∈RN

Vγ,θ(a,W − 1>a) (4)

and b = W − 1>a. Since γΣM + θΣX|M ∈ S N
++, the first-order condition gives the solution to

the problem (3):

a = (γΣM + θΣX|M )−1(µM −R1). (5)

The equality (24) of MMR is an equivalent characterization of the optimal portfolio.

3 Main results

In this section, we give a generalized version of the mutual fund theorem and a decomposition of

the optimal portfolio into two portfolios, one remaining and the other vanishing as the investor

becomes extremely ambiguity-averse. These results characterize the way in which the original

version of the theorem fails and the nature of portfolios held by ambiguity-averse investors.

We write

η ≡ γ

θ
− 1 and Q ≡ Σ−1

X ΣM .

A parameter η is a coefficient of ambiguity aversion.1 A matrix Q roughly measures the ratio of

the variance of asset returns due solely to ambiguity to the total variance of these asset returns.

Both Σ−1
X and ΣM , but Q need not be symmetric.

We define ζ : (−1,∞)→ RN by letting

ζ(η) = (I + ηQ)−1 Σ−1
X (µM −R1)

for every η ∈ (−1,∞). Then the solution (5) to the problem (3) satisfies a = θ−1ζ(η). In

other words, the function ζ tells us how the investor’s portfolio depends on the η. In particular,

ζ(0) = Σ−1
X (µM − R1), and θ−1ζ(0) is the portfolio that the expected-utility maximizer would

hold. Moreover, the portfolio of the investor whose coefficient of ambiguity aversion η can be

1Theorem 2 of KMM implies, in our setting, that the more concave the function ϕγ,θ is, the more ambiguity-
averse the investor is. The function ϕγ,θ is more concave the larger the value of γ/θ. For this reason, it is
appropriate to think of η as a coefficient of ambiguity aversion.
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obtained by transforming ζ(0) by the matrix (I + ηQ)−1. That is, ζ(η) = (I + ηQ)−1 ζ(0) for

every η > −1. Our analysis is focused on how ζ(η) varies with η.

The following theorem is a generalized version of the mutual fund theorem, which is ap-

plicable to the utility functions Uγ,θ with γ 6= θ. We eliminate the case where µM − R1 = 0,

because the portfolio demand is equal to zero for all values of γ and θ.

Theorem 1 (Generalized Mutual Fund Theorem) Suppose that µM − R1 6= 0. Then

there are a K ∈ {1, 2, . . . , N} and K eigenvectors v1, v2, . . . , vK of Q with corresponding eigen-

values λ1 < λ2 < · · · < λK such that

ζ(η) =

K∑
k=1

1

1 + λkη
vk. (6)

This theorem is rich in interpretation. First, it is a generalized mutual fund theorem: there

are K mutual funds, or portfolios of the N risky assets, v1, v2, . . . , vK , that cater for all investors

who exhibit any degrees of ambiguity aversion. Second, if K = 1, that is, ζ(0) is an eigenvector

of Q, then the original mutual fund theorem holds: a single mutual fund v1 is sufficient to

satisfy all investors’ portfolio demands. Third, if λk > 0, then the demand for the k-th mutual

fund vk decreases and converges to zero as the coeffieint η of ambiguity aversion diverges to the

infinity; but if λk = 0, which implies that k = 1, then the demand for the first mutual fund v1

does not depend on η. This should come as no surprise because, then, v1 ∈ Ker ΣM and v1 is a

fund that involves no ambiguity. Finally, since

(1 + λkη)−1

(1 + λ`η)−1
=

1 + λ`η

1 + λkη
=
λ`
λk

+

(
1− λ`

λk

)(
1

1 + λkη

)
,

if k > `, then (1 + λkη)−1/(1 + λ`η)−1 is a strictly decreasing function of η and converges to

λ`/λk. Therefore, as η →∞, ζ(η) converges to v1 if λ1 = 0, and ζ(η) converges to 0 but tends

to be proportional to (λ−1
1 , λ−1

2 , . . . , λ−1
K ) if λ1 > 0.

Theorem 1 suggests that it is important to distinguish between the mutual fund that cor-

responds to the zero eigenvalue and the mutual funds that correspond to the strictly positive

eigenvalues. The former remains to be demanded but the demand for the latter vanishes as the

coeffieint η of ambiguity aversion diverges to infinity. The next theorem represents the optimal

portfolio as the sum of two portfolios, one corresponding to the zero eigenvalue and the other

corresponding to the strictly positive eigenvalues. We shall do so by decomposing the total

covariance matrix ΣX into two parts, say Σ1 and Σ2, in a way that respects the ambiguity

covariance matrix ΣM .

To see how we should determine the way to decompose the total covariance matrix ΣX ,

let’s think about what properties the constituent matrices Σ1 and Σ2 ought to satisfy. First, we

ought to require Σi ∈ S N
+ for each i = 1, 2, since they should themselves be covariance matrices.

Second, we should of course require ΣX = Σ1 + Σ2. With these two requirements, rank Σ1 +

rank Σ2 ≥ rank ΣX = N . The third requirement is, in fact, that rank Σ1 +rank Σ2 = N , that is,

the ranks of the Σi’s are minimal. This requirement is met if and only if Row Σ1∩Row Σ2 = {0},
that is, there is no overlap between Σ1 and Σ2 in the linear subspaces spanned by the eigenvectors
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corresponding to the strictly positive eigenvalues. The fourth requirement, which finally takes

ΣM into consideration, is that one of the Ker Σi’s, say Ker Σ1, coincides with Ker ΣM . In other

words, a portfolio has zero variance with respect to ΣM (or, equivalently, a portfolio involves

no ambiguity) if and only if it does so with Σ1. The following definition formalizes the way we

decompose ΣX in a more general manner, which allows the matrix not to be of full rank, for

future references.

Definition 1 Let Σ ∈ S N
+ and S be a linear subspace of RN . Let (Σ1,Σ2) ∈ S N

+ ×S N
+ . We

say that (Σ1,Σ2) is an S-based decomposition of Σ if Σ1 + Σ2 = Σ, rank Σ1 + rank Σ2 = rank Σ,

and Ker Σ1 = S.

If S = RN , then (0,Σ) is the unique S-based decomposition of Σ, while if S = Ker Σ, then

(Σ, 0) is the unique S-based decomposition of Σ. If there is an S-based decomposition of Σ, then

S ⊇ Ker Σ, because S = Ker Σ1 ⊇ Ker Σ whenever (Σ1,Σ2) is an S-based decomposition of S.

The following lemma shows the existence and uniqueness of the decomposition when S ⊇ Ker Σ.

Lemma 2 For every Σ ∈ S N
+ and every linear subspace S of RN that includes Ker Σ, there is

a unique S-based decomposition of Σ.

Our second main result can be stated as follows.

Theorem 2 (Risk-Ambiguity Decomposition Theorem) There is a unique (Ker ΣM )-based

decomposition (ΣA,ΣR) of ΣX . Moreover, there exist a unique (wA, wR) ∈ Row ΣA × Row ΣR

such that µM −R1 = wA +wR, and a unique (vR, vA) ∈ Ker ΣA×Ker ΣR such that ΣRvR = wR

and ΣAvA = wA. Furthermore, ζ(0) = vR + vA and ζ(η)→ vR as η →∞.

This theorem shows that the expected-utility maximizer’s optimal portfolio ζ(0) can be

decomposed into two portfolios vR and vA, where the return from vR is unambiguous, or purely

risky (whence the subscript R), while the second sub-portfolio vA involves ambiguity (whence

the subscript A). Since ζ(0) = Σ−1
X (µM −R1), the definition of (wA, wR) implies that

ζ(0) = Σ−1
X wR + Σ−1

X wA.

But what this theorem implies is something more than this. Interpreting Σ−1
A and Σ−1

R as the

inverse mappings defined on Row ΣA and Row ΣR and taking values in Ker ΣR and Ker ΣA,2

we can write vR = Σ−1
R wR and vA = Σ−1

A wA. Then,

ζ(0) = Σ−1
R wR + Σ−1

A wA,

which represents the optimal portfolio as the sum of two portfolios, each represented as if

a mean-variance-efficient portfolio with respect to ΣR or ΣA, which is, unlike ΣX , positive

definite only on Row ΣA or Row ΣR. More specifically, ΣR is the covariance matrix and wR is

2Since Ker ΣA ∩ Ker ΣA = {0}, ΣA defines a one-to-one mapping from Ker ΣR into Row ΣA. Since
dim Row ΣA = N − dim Ker ΣA = dim Ker ΣR, this mapping is onto. Hence we can think of Σ−1

A as the
mapping of Row ΣA onto Ker ΣR. For the same reason, we can think of Σ−1

R as the mapping of Row ΣR onto
Ker ΣA.
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the expected excess return for portfolios yielding purely risky returns, while ΣA is the covariance

matrix and wA is the expected excess return for portfolios involving ambiguity. If ΣM ∈ S N
++,

then ΣA = ΣX ∈ S N
++ and vR = 0. The theorem, then, implies that ζ(η)→ 0 as η →∞.

4 Applications

4.1 Heterogeneous Investors

The Generalized Mutual Fund Theorem (Theorem 1) can probably be most clearly grasped if it

is cast in a model of heterogeneous investors. Consider a model in which there are I investors,

indexed by i = 1, 2, . . . , I and each investor i has has utility function Uγi,θi . Write ηi = γi/θi−1.

Then his demand ai for the risky assets are equal to (θi)−1ζ(ηi). The following proposition is

an immediate consequence of the definition of ζ(·). Part 1 of the proposition is essentially the

same as Theorem 1 of Ruffino (2014).

Proposition 1 Suppose that η1 = η2 = · · · = ηI . Then:

1. The demands ai for risky assets are positive multiples of one another.

2. Denote the common value of the ηi by η. Define θ and γ by θ−1 =
∑

i(θ
i)−1 and η =

γ/θ − 1. Then θ−1ζ(η) =
∑

i ai.

This proposition deals with the case where all investors share a common coefficient ηi of

ambiguity aversion. It includes not only the standard case of expected utility functions, where

the ηi are all equal to zero, but also the case of ambiguity aversion, where the ηi are strictly

positive. The first part implies that all investors can attain their demands for risky asset by

buying a single mutual fund. The second part shows that the aggregate demand coincides

with the demand of the representative investor whose risk tolerance (the reciprocal of the

coefficient of absolute risk aversion) is equal to the sum of the investors’ risk tolerances, and

whose degree of ambiguity is equal to each individual investor’s counterpart. This equality

between the representative investor’s risk tolerance and the the sum of the individual investors’

counterparts is well known for expected utilities,3 and the second part generalizes this relation

to ambiguity-averse investors.

4.2 Asymptotically optimal wealth allocations

As an application of the Generalized Mutual Fund Theorem (Theorem 1), we consider how

the allocation of wealth over the N risky asset will vary as the investor becomes unboundedly

ambiguity-averse. The following proposition deals with the case where ΣM ∈ S N
++ and hence

λk > 0 for every k. Then ζ(η)→ 0 as η →∞. That is, the portfolio demand converges to zero

as the degree of ambiguity aversion diverges to infinity. But it is still interesting to see how the

proportional allocation of wealth among the N risky assets, (1>ζ(η))−1ζ(η), varies.

3This equality can be traced back at least to Wilson (1968).
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Proposition 2 If ΣM ∈ S N
++ and 1>ζ(η) > 0 for every sufficiently large η, then

1

1>ζ(η)
ζ (η)→ 1

1>Σ−1
M

(
µM −R1

)Σ−1
M (µM −R1)

as η →∞.

This proposition states that an extremely ambiguity averse investor would allocate his wealth

among the N risky assets in the same way as the ambiguity-neutral investor would do when the

gross returns of the risky assets follow a multivariate normal distribution with mean vector µM

and covariance matrix ΣM . Note that the covariance matrix that is relevant here is not ΣX|M

but ΣM .

4.3 Optimality of the 1/N portfolio

Some empirical studies report that the out-of-sample performance of the sample-based mean-

variance model is no better than the 1/N -portfolio, in which the total wealth is allocated

equally over the N assets. For example, DeMiguel, Garlappi, and Uppal (2009) conclude that

the out-of-sample performance of the models that are designed to reduce estimation errors is

not consistently better than that of the 1/N -portfolio. This result is shocking because, unlike

the portfolio of the sample-based mean-variance model, the 1/N -portfolio is not derived from

solving the utility maximization problem, but regarded, rather, as a rule of thumb.

In this subsection, we show that the 1/N -portfolio is, at least approximately and, in some

cases, exactly, a solution to the utility maximization problem of an investor who is extremely

ambiguity averse. This result provides a theoretical justification to the prevalent use of the 1/N -

portfolio. The key assumption is that the covariance matrix ΣM , which represents ambiguity,

has the following form: 

σ2

σ2 κ
. . .

κ σ2

σ2


, (7)

that is, all diagonal elements are equal to σ2 and all off-diagonal elements are equal to κ. This

class can be justified along the lines of the principle of insufficient reason of Savage (1954, Section

4.5).4 Indeed, ΣM must necessarily have the above form whenever the ambiguity regarding the

expected returns of the N risky assets is represented by a distribution having a common variance

and being symmetric with one another when it comes to calculating covariances. As we shall

explain later in Subsection 6.2, this form of covariance matrices was used by Frost and Savarino

(1986) to estimate an unknown covariance matrix of risky asset returns.

It can easily be shown that the matrix (7) has two eigenspaces. One is the line spanned by

1, which corresponds to eigenvalue σ2 + (N − 1)κ. The other is the hyperplane with normal

vector 1, which corresponds to eigenvalue σ2 − κ. From this fact, we can derive a couple of

4But we do not claim that the principle is justifiable for the covariance matrix ΣX|M , which represents risk.
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useful facts. First, since ΣM ∈ S N
+ ,

− 1

N − 1
σ2 ≤ κ ≤ σ2.

Second, if

− 1

N − 1
σ2 < κ < σ2, (8)

then ΣM = S N
++. Third, if κ = −(N − 1)−1σ2, then Ker ΣM coincides with the line consisting

of all scalar multiples of 1.

The following proposition gives the limiting proportional wealth distribution as η → ∞
when (8) is met. It also impose the assumption that µM is a scalar multiple of 1, which can

also be justified by the principle of insufficient reason.

Proposition 3 Suppose that there is a δ ∈ R with δ 6= R such that µM = δ1, and there are a

σ ∈ R++, and a κ ∈ R satisfying (8) such that ΣM satisfies (7). Then

1

ζ (η)> 1
ζ (η)→ 1

N
1

as η →∞.

The next proposition gives the limiting wealth distribution as η → ∞ in the case of κ =

−(N − 1)−1σ2. It is different from the previous proposition in that it deals with the absolute,

but not proportional, wealth distributions, it does not impose any assumption on µM , and it

follows immediately from the Risk-Ambiguity Decomposition Theorem (Theorem 2) because

Ker ΣM coincides with the line spanned by 1.

Proposition 4 Suppose that there are a σ ∈ R++, and a κ ∈ R satisfying κ = −(N − 1)−1σ2

such that ΣM satisfies (7). Then ζ (η) converges to a scalar multiple of 1 as η →∞.

4.4 Optimal portfolios with one or two mutual funds

In this subsection, we give sufficient condition for one or two mutual funds to cater for all

investors. We also show how the optimal portfolio depends on the coefficient η of ambiguity

aversion.

We start with the case of just one mutual fund.

Proposition 5 If there is a λ ≥ 0 such that λΣX = ΣM , then there is a v ∈ RN such that

ζ(η) =
1

1 + λη
v

for every η > −1.

If λΣX = ΣM , then Q = λIN , where IN is the N × N identity matrix, and, in particular,

µM − R1 is an eigenvector of Q. This proposition, thus, follows from the Generalized Mutual

Fund Theorem (Theorem 1).

11



Under the assumption of Proposition 5,

γΣM + θΣX|M = (λγ + (1− λ)θ) ΣX .

Thus

Vγ,θ(a, b) = Vλγ+(1−λ)θ,λγ+(1−λ)θ(a, b)

for every (a, b) ∈ RN ×R. The utility function of an ambiguity-averse investor coincides with

the utility function of the ambiguity-neutral investor with the degree of risk aversion equal to

λγ + (1 − λ)θ. Therefore the mean-variance utility function for the ambiguity-averse investor,

where the mean and variance are calculated using µM and ΣX , is well defined, and all the

standard results for the mean-variance utility functions are valid in our setting. In fact, they

can be obtained simply by assuming that µM − R1 is an eigenvector of Q, although the proof

is much more complicated and thus skipped.

An immediate consequence of Proposition 5 can be obtained regarding how an increase in

the coefficient η of ambiguity aversion affect optimal portfolios. Denote by ζn(η) the n-the

coordinate of ζ(η).

Corollary 1 Let n ∈ {1, 2, . . . , N}. Under the assumption of Proposition 5, if ζn(η) > 0 for

some η > −1, then ζn(η) > 0 for every η > −1. Moreover, then, ζn(η) is converges strictly

decreasingly to 0 as η →∞.

This corollary implies that there is an investor who holds a long position of an asset, then

all investors hold long position of the asset, and that for any two investors having the same

coefficient of risk aversion, the investor with a higher coefficient of ambiguity aversion holds less

of it.

Next, we give a sufficient condition for two mutual funds to be sufficient, one of which

remains demanded even when the coefficient η of ambiguity aversion becomes unboundedly

large. The sufficient condition requires, roughly, that a scalar multiple of ΣM should give a

(Ker ΣM )-based decomposition of ΣX .

Proposition 6 If there is a λ > 0 such that (λ−1ΣM ,ΣX − λ−1ΣM ) is a (Ker ΣM )-based

decomposition of ΣX , then there are a vR ∈ RN and a vA ∈ RN such that

ζ(η) = vR +
1

1 + λη
vA

for every η > −1.

Now, in the case of two mutual funds, we consider how an increase in the coefficient η of

ambiguity aversion affect the optimal portfolio. To start, note that even when ζn(η) > 0 for

some η, we cannot guarantee that the n-th coordinates of vR and vA are strictly positive. In

general, therefore, we cannot conclude that ζn(η) > 0 for every η or it is a strictly decreasing

function of η. However, if there are some assets of which the returns are unambiguous, such

predictions are possible for assets with ambiguous returns.
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Corollary 2 Under the assumption of Proposition 6, suppose in addition that there are an

L < N and a Σ̂M ∈ S N−L
+ such that

ΣM =

(
0 0

0 Σ̂M

)
(9)

Let n > L. If ζn(η) > 0 for some η > −1, then ζn(η) > 0 for every η > −1. Moreover, then,

ζn(η) converges strictly decreasingly to 0 as η →∞.

Under the assumption of Proposition 6, if (9) is met, then the upper-left L × L submatrix

of ΣX|M belongs to S L
++ and its first L row vectors span Row

(
ΣX − λ−1ΣM

)
.

Note that Corollary 2 generalizes Proposition 8 of MMR in two respects. First, the assump-

tion is given only in terms of the positivity of optimal holdings for an risky asset. Second, the

number of risky assets (and those of purely risky assets and ambiguous assets) is arbitrary.

5 Factor model with ambiguity

In this section, we develop a factor model with ambiguity. Although the model appears to

be more complicated than the model we have been analyzing, the two models are, in fact,

equivalent to each other, as we shall prove in subsection 5.1. The reduction in the dimension by

factor model structure makes calculations much simpler in the portfolio selection problem. In

subsection 5.2, we present a more specialized factor model, in which the factors are traded assets.

In subsection 5.3, we present an even more specialized factor model, which still generalizes some

aspects of the models of Pástor (2000) and Pástor, Stambaugh (2000), and Wang (2005), who

investigated investors who believe the validity of the factor model probabilistically, rather than

deterministically.

5.1 General theory

To give a factor model with ambiguity, we start with two L-variate random vectors G and

Y , and two N -variate random vectors H and Z. We interpret Y as common factors, with

an ambiguous (conditional) mean vector G, and Z as idiosyncratic shocks, with an ambiguous

(conditional) mean vector H. We assume that G, Y , H, and Z are jointly normally distributed

and

Var [G] = Cov [G, Y ], E[G] = E[Y ], (10)

Var [H] = Cov [H,Z], E[H] = E[Z], (11)

Cov [G,H] = Cov [Y,H], (12)

Cov [G,H] = Cov [G,Z], (13)

Cov [Y,Z] = 0. (14)

The first two constraints, (10) and (11), involve no loss of generality. As pointed out in Section 2,

if these constraints are not met, then we can always replaceG andH by some linear combinations

of them added with some (deterministic) vectors. The next constraint (12) implies, as we will

13



soon see, that once mean G of factor Y are known, knowing mean H of idiosyncratic shock Z

does not help us to further update the distribution of factors Y . Similarly, (13) implies that once

the mean H of the idiosyncratic shock Z is known, knowing the mean G of the factor Y does

not help us to further update the distribution of idiosyncratic shocks Z. The last constraint

(14) says that Y and Z are independent. It allows us to interpret Y as common factors and Z

as idiosyncratic shocks. Under these assumptions, we can write
G

Y

H

Z

 ∼ N




µG

µG

µH

µH

 ,


ΣG ΣG ΣGH ΣGH

ΣG ΣY ΣGH 0

ΣHG ΣHG ΣH ΣH

ΣHG 0 ΣH ΣZ


 . (15)

Then, (
Y

Z

)∣∣∣∣∣
(

G

H

)
∼ N

((
G

H

)
,

(
ΣY − ΣG −ΣGH

−ΣHG ΣZ − ΣH

))
. (16)

Let β ∈ RL×N and define the gross returns of N risky assets and the ambiguities involved

in them by

X = β>Y + Z, (17)

M = β>G+H. (18)

Then β is the matrix of factor exposures, whose (`, n) element is the exposure, or loading, of

asset n to factor `. Moreover,
M

X

G

Y

 ∼ N




µM

µM

µG

µG

 ,


ΣM ΣM ΣMG ΣMG

ΣM ΣX ΣMG ΣXY

ΣGM ΣGM ΣG ΣG

ΣGM ΣY X ΣG ΣY


 (19)

where

µM = β>µG + µH , (20)

ΣM = β>ΣGβ + β>ΣGH + ΣHGβ + ΣH , (21)

ΣX = β>ΣY β + ΣZ , (22)

ΣMG = β>ΣG + ΣHG, (23)

ΣXY = β>ΣY . (24)

This implies that (M,X) is nothing but the model of risky assets that we have been considering

so far, as long as ΣX ∈ S N
++. This latter condition is satisfied if ΣY ∈ S L

++ and Kerβ ∩

14



Ker ΣZ = {0}. Then,(
X

Y

)∣∣∣∣∣
(
M

G

)
∼ N

((
M

G

)
,

(
ΣX − ΣM −ΣMG

−ΣGM ΣY − ΣG

))
.

In particular, the conditional distribution of X given M is not changed by further conditioning

X on G, and the conditional distribution of Y given G is not changed by further conditioning

Y on M .

The converse also holds. Let (M,X) be the model of N risky assets that we have been

considering so far, and (G, Y ) be L factors involving ambiguity. We assume that M , X, G, and

Y satisfies (19). Assume also that ΣY ∈ S L
++. Define β = Σ−1

Y ΣY X ∈ RL×N . Then define H

and Z to satisfy (17) and (18). Then G, Y , H, and Z satisfy (15) and (20) to (24). Moreover,

since ΣX ∈ S N
++ and ΣY ∈ S L

++, Kerβ ∩ Ker ΣZ = {0}.
To summarize, we have shown that there are two equivalent ways to define a factor model

with ambiguity. The first one is to specify any (G, Y,H,Z) satisfying ΣY ∈ S L
++ and (15) and

any β ∈ RL×N satisfying Kerβ ∩ Ker ΣZ = {0}. Then ΣX ∈ S N
++. The other is to specify any

(M,X,G, Y ) satisfying ΣX ∈ S N
++, ΣY ∈ S L

++, and (19), and define β = Σ−1
Y ΣY X ∈ RL×N .

Then Kerβ ∩ Ker ΣZ = {0}. The two are related via (17) and (18).

In a factor model (G, Y,H,Z, β), if rankβ = L and X is defined by (17), then rank ΣY X = L

by (24). Conversely, in a factor model (M,X,G, Y ), if rank ΣY X = L and β = Σ−1
Y ΣY X , then

rankβ = L. In other words, these assumptions are equivalent to each other. Moreover, either of

these two assumptions involves no loss of generality. It can indeed be easily shown that if either

(and, hence, both) of the two ranks is equal to K, where K < L, then some linear combination

of the L coordinates of Y that results in a K-dimensional random vector admits an equivalent

factor model satisfying these assumptions.

5.2 Factor portfolios

Consider a factor model defined by a (G, Y,H,Z) satisfying ΣY ∈ S L
++ and (15), and a β ∈

RL×N satisfying Kerβ ∩ Ker ΣZ = {0}. Assume in addition that rankβ = L and Kerβ +

Ker ΣZ = RN . The first assumption is without loss of generality, as we showed at the end

of the previous subsection. The second one means that any portfolio can be decomposed into

two portfolios, one without any common shock and the other without any idiosyncratic shock.

Given the first assumption, we can state the second assumption in a number of equivalent ways,

and one of them is that the linear mapping defined by β maps Ker ΣZ onto RL.5 Then the

linear mapping defined by ΣY β maps Ker ΣZ onto RL. This can be interpreted as saying that

each of the L factors is a return of a portfolio of traded assets, which we call factor portfolios.

Although we do not need to assume the existence of the factor portfolios to derive the arbitrage

pricing relation (Ross (1976)), the factor portfolios are often assumed to exist to simplify the

theoretical deviation.6 The assumption is also common in empirical studies, since the estimation

5Since Kerβ ∩ Ker ΣZ = {0}, this mapping is one-to-one on Ker ΣZ . Since, in addition, Kerβ+Ker ΣZ = RN ,
dim (Ker ΣZ) = rankβ. Since rankβ = L, Ker ΣZ is of dimension L and mapped onto RL.

6Huang and Litzenberger (1988, Chapter 4) contained such a derivation.
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and interpretation of factor risk premia are less complicated.7

Let us now characterize the (Ker ΣM )-based decomposition of ΣX in the case of factor

portfolios. Once this is done, the Risk-Ambiguity Decomposition Theorem (Theorem 2) allows

us to characterize the optimal portfolio. We start with establishing a lemma, which is necessary

to accommodate the case where the ambiguous mean vector G of factors Y and the ambiguous

mean vector H of idiosyncratic shocks Z are correlated (although Y and Z are uncorrelated by

assumption). For Σ ∈ S L and Σ ∈ S L, we write Σ ≤ Σ whenever Σ− Σ ∈ S L
+ .

Lemma 3 If rankβ = L and RN = Kerβ + Ker ΣZ , then there is a Γ ∈ S L
+ such that

β>ΣGH + ΣHGβ = β>Γβ and ΣG + Γ ≤ ΣY .

With this lemma, we can characterize the two matrices ΣA and ΣR of the Risk-Ambiguity

Decomposition Theorem (Theorem 2) in the case of factor portfolios.

Proposition 7 Assume that rankβ = L and RN = Kerβ + Ker ΣZ . Let Γ be the one defined

in Lemma 3. Let
(
ΣA
Y ,Σ

R
Y

)
be the (Ker (ΣG + Γ))-based decomposition of ΣY and

(
ΣA
Z ,Σ

R
Z

)
be the (Ker ΣH)-based decomposition of ΣZ . Write (ΣA,ΣR) =

(
β>ΣA

Y β + ΣA
Z , β

>ΣR
Y β + ΣR

Z

)
.

Then (ΣA,ΣR) is the (Ker ΣM )-based decomposition of ΣX .

Proposition 7 shows that the (Ker ΣM )-based decomposition of ΣX can be obtained by ap-

plying the Risk-Ambiguity Decomposition Theorem (Theorem 2) twice. The covariance matrix

ΣY of factors Y is decomposed into ambiguity-related ΣA
Y and risk-related ΣR

Y . The covariance

matrix ΣZ of idiosyncratic shocks Z is decomposed into ambiguity-related ΣA
Z and risk-related

ΣR
Z . Thus the ambiguity-related covariance ΣA consists of the systematic part ΣA

Y and the

idiosyncratic part ΣA
Z . The risk-related covariance ΣR consists of the systematic part ΣR

Y and

the idiosyncratic part ΣR
Z . For both ΣA and ΣR, the factor-related part is also affected by the

factor exposure matrix β.

5.3 Ambiguous alphas

Recall that a factor model is regarded as valid when the expected excess return of each risky

asset is a linear combination of the expected excess return of factor portfolios, or, equivalently,

when the intercept, known also as the alpha of the risky asset, of the linear regression of the

excess return of the risky asset onto the excess returns of the factor portfolios is equal to zero.

Given this, the investor’s belief in the the validity of the factor model can be formulated as a

distribution of the values of the alphas, where the investor believing dogmatically in the factor

model has the prior distribution concentrated on zeros. This has been done by Pástor (2000),

Pástor and Stambaugh (2000), and Wang (2005). In this subsection, we further specialize the

model of factor portfolios in the previous subsection to accommodate ambiguous alphas as

well as ambiguous factor returns. To do so, consider the following jointly normally distributed

7Campbell, Lo, and MacKinlay (1997, Section 6.2) explored this case.
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random vectors: 
G

Y

F

U

 ∼ N




µG

µG

µF

µF

 ,


ΣG ΣG ΣGF ΣGF

ΣG ΣY ΣGF 0

ΣFG ΣFG ΣF ΣF

ΣFG 0 ΣF ΣU


 , (25)

where G and Y are L-variate and F and U are N -variate. In the following, we interpret F as

alpha and U as the mean of alpha. Assume that

µF =

(
0

µ̂F

)
, ΣU =

(
0 0

0 Σ̂U

)
(26)

and Σ̂U ∈ S N−L
++ . Since 0 ≤ ΣF ≤ ΣU , the matrix ΣF also has the same form as in (26). Let

β ∈ RL×N and assume that

β =
(
IL β̂

)
, (27)

where β̂ ∈ RL×(N−L). This specification of β involves no loss of generality, given that rankβ =

L. Denote by 1L the L-dimensional vector of which the coordinates are all equal to one. To

avoid confusion, we write 1N in place of 1, which has been defined as the N -dimensional vector

of which the coordinates are all equal to one. Then we define the risky asset returns X by

X −R1N = β>(Y −R1L) + U. (28)

The definition (28) indeed falls into the case of factor portfolios of the previous subsection.

Indeed, let H = F + R(1N − β>1L) and Z = U + R(1N − β>1L). Then ΣY Z = 0 and

X = β>Y +Z. Moreover, rankβ = L, Kerβ ∩ Ker ΣZ = {0}, and Kerβ + Ker ΣZ = RN . The

mean vector µM and the covariance matrix σX are then given by

µM =

(
µG

β̂>µG

)
+

(
0

µ̂F +R1N−L −Rβ̂>1L

)
, (29)

ΣX =

(
ΣY ΣY β̂

β̂>ΣY β̂>ΣY β̂

)
+

(
0 0

0 Σ̂U

)
. (30)

By (27), the L factors are, in fact, the first L risky assets and β̂ represents the factor loadings

of the last N − L risky assets. By (26), the returns of the first L assets are not subject to the

idiosyncratic shocks represented by U . Then

E [X −R1N |G,F ] = β>(G−R1L) + F. (31)

Thus, conditional on the expected return G of the L factors and the alphas F of the N risky

assets, the expected excess returns of the N risky assets are equal to those of the factors,

multiplied by the factor loadings β, plus the alphas F . Thus the covariance matrix ΣF of F

represents the degree of the investors (dis-)belief in the alphas being zero, or the factor model
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being valid. Since the returns Y of the factors may also be ambiguous, this factor model is

more general than those of Pástor (2000), Pástor and Stambaugh (2000), and Wang (2005).

The following proposition characterizes the optimal portfolios in two extreme cases of model

uncertainty.

Proposition 8 In the case of factor portfolios with model uncertainty, if ΣG = 0 and Σ̂U ∈
S N−L

++ , then define

vR =

(
Σ−1
Y (µG −R1L)

0

)
,

vA =

(
−β̂Σ̂−1

U µ̂F

Σ̂−1
U µ̂F ,

)

where 1L and 1N−L be the vectors of N 1’s and (N − L) 1’s. If ΣG ∈ S L
++ and ΣF = 0, then

define

vR =

(
−β̂Σ̂−1

U µ̂F

Σ̂−1
U µ̂F ,

)
,

vA =

(
Σ−1
Y (µG −R1L)

0

)
.

In either case, ζ(0) = vR + vA and ζ(η)→ vR as η →∞.

In the first one of this proposition, the factor returns are unambiguous but the validity of

the factor model is ambiguous. In the second case, all the factor returns are ambiguous but the

validity of the factor model are unambiguous. There are good reasons to assume that the factors

are ambiguous. One of them is that the factors are difficult to identify, and one shortcut to

capture this difficulty is to assume that the factors are ambiguous.8 Another reason is that the

expected returns of factors are time-varying and, thus, hard to identify. Yet another reason is

that since the factors are much fewer than assets, and hence each one of them has a widespread

impact on asset returns, the investor may well be more averse to the randomness of factors

(which is measured by the coefficient γ) than to the randomness of individual asset returns

(which is measured by the coefficient θ).

Note that the two portfolios vR and vA are swapped between the two extreme cases. In

the first extreme case, where there is no ambiguity in the factors, there is no demand for the

N − L non-factor assets in the ambiguity-free portfolio vR. In the second extreme case, where

there is no ambiguity in the alphas, there is no demand for the N − L non-factor assets in the

ambiguity-related portfolio vA.

8Campbell, Lo, and MacKinlay (1997) presented three approaches to identify factors. An alternative, probably
more appropriate, way to capture the difficulty of identifying factors is to assume that the factor loadings β are
ambiguous, and hence random variables for which the prior distributions need to be postulated.
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6 Bayesian portfolio choice problem

6.1 Bayesian portfolio choice with ambiguity aversion

In the model of this paper, the parameters of the distributions of asset returns are assumed

to be known but ambiguous. In reality, those parameters are unknown. It is necessary to

estimate them to hold an optimal portfolio dictated by the model, such as a in (5). Merely

plugging the estimated values in the formula of the optimal portfolio, however, tends to lead

to suboptimal portfolios, because doing so ignores estimation errors. A potentially attractive

approach to the optimal portfolio choice problem, initiated by Zellner and Chetty (1965), is the

Bayesian approach, in which we postulate that the expected rates of returns of risky assets are

random variables that follow some joint distribution, called the prior distribution, and obtain the

predictive distribution of future asset returns based on past asset prices. The Bayesian optimal

portfolio rule is derived from maximizing the expected utility with respect to the predictive

distribution.

The setting of this paper is quite similar to that of the Bayesian approach. Indeed, since

M ∼ N (µM ,ΣM ) and X|M ∼ N (M,ΣX − ΣM ), we could think of M as representing the

unknown means of risky asset returns, N (µM ,ΣM ) as the prior distribution of the means, and

N (M,ΣX−ΣM ) as the conditional distribution of asset returns when the true parameter value is

M . The Bayesian approach can then be stated as follows. Suppose that T past returns, denoted

by X1, . . . , XT , have been observed. Suppose also that these past returns and the return X, to

be resolved after the investor chooses a portfolio, are independently and identically distributed

conditional on M . Denote the sample mean (1/T )
∑T

t=1X
t by X̄, which is a sufficient statistic

for M . Then its covariance matrix, ΣX̄ , is equal to ΣM + T−1(ΣX − ΣM ).

Now consider the following maximization problem:

max
(a,b)∈RN×R

E
[
uγ
(
u−1
θ

(
E
[
uθ(a

>X + b) |M
]))
| X̄
]

subject to 1>a+ b ≤W.
(32)

This is nothing but the optimal portfolio choice problem for the ambiguity-averse investor having

the utility function Uγ,θ and knowing X̄. The optimal portfolio in the Bayesian approach is a

special case of this problem in which θ = γ. It can thus be written as

max
(a,b)∈RN×R

E
[
uθ(a

>X + b) | X̄
]

subject to 1>a+ b ≤W.
(33)

Proposition 9 The solution to the problem (32) is given by

a =
(
θ(ΣX − ΣM ) + γ

(
ΣM − ΣMΣ−1

X̄
ΣM

))−1 (
µM + ΣMΣ−1

X̄

(
X̄ − µM

)
−R1

)
. (34)

In particular, if θ = γ, then

a =
1

θ

(
ΣX − ΣMΣ−1

X̄
ΣM

)−1 (
µM + ΣMΣ−1

X̄

(
X̄ − µM

)
−R1

)
. (35)
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This proposition shows that in the Bayesian approach, to find the optimal portfolio for an

ambiguity-neutral investor, it is sufficient to know the predictive distribution

N
(
µM + ΣMΣ−1

X̄
(X̄ − µM ),ΣX − ΣMΣ−1

X̄
ΣM

)
; and to find the optimal portfolio of an ambiguity-

averse investor it is necessary to know how its covariance matrix ΣX − ΣMΣ−1
X̄

ΣM can be

decomposed into two parts. Indeed,

ΣX − ΣMΣ−1
X̄

ΣM = (ΣX − ΣM ) +
(

ΣM − ΣMΣ−1
X̄

ΣM

)
(36)

and the first term on the right hand side coincides with the covariance matrix of the purely

risky asset returns (that is, the conditional covariance matrix given M), to which the aversion

coefficient θ is applied, and the second term coincides with the conditional covariance matrix of

parameter uncertainty given X̄, to which the aversion coefficient γ is applied.

Garlappi, Uppal, and Wang (2007), Wang (2005), and Lutgens and Schotman (2010) con-

sidered ambiguity-averse investors with utility functions of Gilboa and Schmeidler (1989). Gar-

lappi, Uppal and Wang (2007, Section 2.2) assumed that the set of possible values of unknown

expected mean returns (the set of probability distributions over which the expected utility level

is minimized) coincides with the confidence interval constructed from past asset returns. They

also pointed out that an ambiguity-averse investor needs to know a sort of decomposition (36)

to form the optimal portfolio, and we obtain an easier-to-grasp expression (36) thanks to the as-

sumptions in this paper on asset returns and utility functions. In a factor model similar to that

introduced in Section 5, Wang (2005) derived the optimal portfolio for investors who have the

utility functions of Gilboa and Schmeidler (1989) of which the ambiguity is with regards to the

validity of the factor model. Lutgens and Schotman (2010) assumed that an ambiguity-averse

investor’s utility function coincides with the minimum of the mean-variance utility functions,

each based on a mean vector and a covariance matrix provided by an expert. They showed

that the optimal portfolio coincides with the optimal portfolio of an ambiguity-neutral investor

having the mean-variance utility function based on an weighted average of the mean vectors and

the covariance matrices provided by the experts. They also established the mutual fund theo-

rem, in the sense that the optimal portfolios in risky assets for such ambiguity-averse investors

are scalar multiples of one another. This should be contrasted with our generalized mutual

fund theorem (Theorem 1), and the difference can be attributed to the fact that Lutgens and

Schotman (2010) assumed that all investors receive recommendations from the same group of

experts and they all set their objective functions as the minimum of the mean-variance utility

functions based on the experts’ recommendations.

6.2 Various types of Bayesian priors

Although we mentioned some affinity between the Bayesian approach and the approach of

this paper in the previous subsection, a fundamental difference lies in the way in which the

distribution of M ∼ N (µM ,ΣM ) is used and interpreted. The approach of this paper follows

KMM’s axiomatization, in which N (µM ,ΣM ) is built in the preference relation defined over

a set of acts in the sense of Savage (1954, Section 2.5). Then the optimal portfolio is, quite

legitimately, defined as the portfolio that is the most preferred one with respect to the preference
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relation. On the other hand, the prior distribution in the Bayesian approach is somewhat

arbitrarily chosen based on the observer’s prior knowledge regarding the source of randomness

under consideration or on the ease with which the predictive distribution is derived from the

prior distribution. This indicates the possibility for a host of alternative prior distributions.

The most commonly used prior distribution in the Bayesian approach is the diffuse prior,

which embodies the idea that there is no prior knowledge on the process generating risky

asset returns. For example, Zellner and Chetty (1965), Barry (1974), and Klein and Bawa

(1976, Section 3) assumed that both the mean vector and covariance matrix of asset returns are

unknown and the prior distribution of the mean vector is diffuse on RN . To see how our analysis

will be modified in the context of the diffuse prior, assume that the distribution of M is diffuse

(uniform) on RN and that X|M ∼ N (M,ΣX),9 then M |X̄ ∼ N
(
X̄, T−1ΣX

)
, X|(M, X̄) ∼

N (M,ΣX), and X|X̄ ∼ N
(
X̄, (1 + T−1)ΣX

)
. Then the Bayesian optimal portfolio, or the

solution to the maximization problem (33), coincides with

1

(1 + T−1)θ
Σ−1
X (X̄ −R1).

This is the same as the solution to the maximization problem (3) in the case of an ambiguity-

neutral investor (that is, γ = θ) when the estimator X̄ of the unknown mean M is plugged into

the formula (5), except that the entire portfolio (for the risky assets) is scaled down by factor

(1 + T−1)−1 due to the parameter uncertainty. This point was made by Barry (1974, Section

2), Klein and Bawa (1976, Section 3), and Avramov and Zhou (2010, Section 2.1).

The ambiguity-averse investor with the utility function Uγ,θ, knowing X̄, would optimally

choose
1

θ + T−1γ
Σ−1
X

(
X̄ −R1

)
.

Again, this is a scaled-down version of the the solution to the maximization problem (3) in the

case of an ambiguity-neutral investor, but scaled-down factor is now equal to
(
1 + T−1 + T−1η

)−1
,

where η = γ/θ − 1. Thus, if the investor is ambiguity-averse, then η > 0 and the factor is even

lower than the factor of the Bayesian optimal portfolio. Thus, although the scaled-down factor

is different, incorporating ambiguity does not change the proportions of wealth invested into

the risky assets. This result is in sharp contrast with our generalized mutual fund theorem

(Theorem 1), as the latter shows that an increase in η, in general, does not scale down the

holding of a single mutual fund but changes the composition of multiple mutual funds. The

difference arises from the specifications of prior distributions, in that while the prior is diffuse

in the above-mentioned contributions, our distribution of M , N (µM ,ΣM ), is informative.

Unlike Zellner and Chetty (1965), Barry (1974), and Klein and Bawa (1976, Section 3),

Frost and Savarino (1986) introduced, in their section III, informative priors such that both the

mean vector and covariance matrix of asset returns are unknown and the prior (conditional)

distribution of expected returns follow a normal distribution given a covariance matrix, and the

prior (marginal) distribution of the covariance matrices is a Wishart distribution of which the

9Since M follows the uniform distribution on RN , the mean vector and the covariance matrix, which were
denoted by µM and ΣM , do not exist. We thus let X|M ∼ N (M,ΣX), rather than X|M ∼ N (M,ΣX − ΣM ).
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mean has the form (7).10

Given the intrinsic arbitrariness of the choice of prior distributions, one could employ the

so-called empirical Bayesian approach: While one posits a single prior distribution of the un-

known parameter in the traditional Bayesian approach, one posits a parametric family of prior

distributions of the unknown parameter in the empirical Bayesian approach. In the traditional

Bayesian approach, one often uses a Bayesian estimator, which minimizes the mean squared er-

ror of estimating the unknown parameter. A Bayesian estimator, however, depends typically on

the prior distribution being used and is not implementable in the empirical Bayesian approach.

To circumvent this problem, one first constructs an estimator of the parameter specifying the

prior distribution based on observed data and then plug it into a Bayesian estimator. The

statistic thus constructed is called an empirical Bayesian estimator.

Although there is variety of empirical Bayesian estimators, many of them can be given the

Bayes-Stein shrinkage interpretation. For example, Frost and Savarino (1986) applied, in their

section IV, the empirical Bayesian estimators of the parameters defining the prior distributions

that they introduced in their section III. Jorion (1986) assumed that the prior distributions of

expected asset returns constitute a parametric family of normal distributions in which, in our

notation, µM is always a scalar multiple of 1 (that is, the first assumption of Proposition 3 is met

by every member of the parametric family) and ΣM is always a positive multiple of ΣX (that

is, the assumption of Proposition 5 is met by every member of the parametric family). He then

used the James-Stein estimator, which can be regarded as an empirical Bayesian estimator,

to construct a portfolio. Ledoit and Wolf (2003) also propose a variant of the James-Stein

estimator to estimated the covariance matrix of stock returns. They derived the optimal level

of the so-called shrinkage factor, relative to the loss function based on the Frobenius norm on

the set of symmetric matrices, towards the covariance matrix in a single-factor model, paying

special attention to the fact that the sample estimate of the covariance matrix and the estimator

for the parameter specifying the prior distribution can be correlated. The portfolio they propose

has a similar structure to our optimal portfolio (5) in the sense that covariance matrix used

in the portfolio choice is a linear combination of two matrices. However the portfolio (5) is

different from theirs because it combines two known covariance matrices with the weight solely

determined by risk and ambiguity aversion coefficients. As mentioned in subsection 5.2, Pástor

(2000) and Pástor and Stambaugh (2000) introduced priors that reflect an investor’s belief in

the validity of a factor model. Wang (2005) showed that the shrinkage factor of his variant of

the James-Stein estimator is equal to 1/2, which means roughly that the factor model is valid

with probability 1/2.

In the Bayesian approach, no single probability distribution, such as N (µM ,ΣM ) in our

specification of smooth-ambiguity utility functions, can be used to assess which prior distribu-

tion is more desirable than another in the portfolio choice problem. In some cases, however,

alternative estimators can be compared analytically without knowing true parameters. For

example, Kan and Zhou (2007) showed that the Bayesian portfolio under the diffuse prior dom-

inates that obtained simply by plugging in the sample mean. They also proposed (in Section

10We have, in contrast, assumed that the covariance matrix is known and the matrix of the form (7) is used
for the covariance matrix of the normally distributed unknown mean vectors.
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IV) a portfolio that invests in three funds, the risk-free asset, the sample tangency portfolio,

and the sample global minimum variance portfolio, and showed that it is similar to the portfolio

based on the James-Stein estimator in Jorion (1986), but differs in ratios in which the three

funds are invested in.

When no such comparison is possible, simulations of asset returns of which the means,

variances, and covariances mimic those of historical stock returns are used. To name just a

few example, Frost and Savarino (1986) used the average returns in certainty equivalents of

CARA utility functions in simulations of asset returns. Jorion (1986) used the percentage loss

in utility levels attained by CARA utility functions in simulations and showed that the portfolio

he constructed dominates the portfolio obtained by simply plugging estimated expected returns

into the formula of the optimal portfolio (5) and the portfolio obtained from the diffuse prior as

in Zellner and Chetty (1965). Kan and Zhou (2007, Section V) also used CARA utility functions

to show in simulations that the three-fund portfolio they proposed dominates the portfolio in

Jorion (1986). In contrast, Garlappi, Uppal, and Wang (2007, Section 3) used the historical

data on international stock market indices to construct confidence intervals of expected index

returns for a 121st month from the preceding 120-month observations, for 259 rounds. They

showed that the optimal portfolio for the ambiguity-averse investor (having CARA coefficient

equal to one) they constructed attains a higher Sharpe ratio than the plug-in portfolio and the

portfolio proposed by Jorion (1986).

Unfortunately, as we mentioned in Subsection 4.3, DeMiguel, Garlappi, and Uppal (2009)

showed that these Bayesian optimal portfolios do not consistently perform better than the 1/N

portfolio. They used, in addition to simulations of single-factor models of various numbers of

assets, eight data sets of historical returns, such as those containing sector portfolios of S&P 500

portfolio, equity indices of eight countries, and Fama and French’s HML and SMB portfolios

(which will be mentioned again in Section 5). They calculated the Sharpe ratios and the average

returns in certainty equivalents for a CARA utility function (with CARA coefficient equal to

one) of fourteen portfolio selection rules that have been proposed in the literature, including

the plug-in portfolio and the portfolios proposed by Jorion (1986) and Kan and Zhou (2007),

and concluded that none of them consistently outperforms the 1/N portfolio in any data set in

terms of either criterion.

7 Examples based on the U.S. equity data

In this section, to see if the ambiguity aversion in our model has any quantitatively significant

impact on the optimal portfolio in the real-world financial markets, we use the monthly data

in the U.S. equity market for the period of August 1926 to December 2013, obtained from Ken

French’s website. In the first subsection, we conduct the numerical exercise for the so called FF6

portfolios. In the second subsection, we do so in a factor model using the principal component

analysis.
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7.1 Optimal Portfolio using the FF6 portfolios

The FF6 portfolios are formed according to the values of market equity (abbreviated as ME,

which is either Big or Small) and the ratio of book to market equity (abbreviated as B/M,

which is either High, Neutral, or Low). The ME is the market cap at the end of June. Firms

with negative book equity are not included in any portfolio.

Table 1 reports the sample mean, the sample standard deviation, and the Sharpe ratio of the

FF6 portfolios, in addition to the risk-free rate and the market returns. Within each group of a

common B/M, the Small ME portfolios (SH, SN, and SL) have higher average returns than the

Big ME portfolios (BH, BN, and BL). Within each group of a common ME, a higher B/M leads

to a higher average returns. Table 2 shows the sample covariance matrix of the FF6 portfolios.

The sample variances of FF6 portfolios are not too dissimilar, except that those of BL and BN

are smaller than the others’. In the examples of this subsection, we let the mean vector µM be

the the sample mean in Table 1 for the six FF portfolios, the risk-free rate R be the average

risk-free rate in Table 1, and the unconditional covariance matrix ΣX be the sample covariance

matrix in Table 2.

The following tables report the value of ζ(η), which coincides with the optimal portfolio for

the investor with the coefficient θ of constant absolute risk aversion equal to one. Although

there is an agreement among researchers that risk aversion is an important determinant of the

optimal portfolio selection, there is no unanimous agreement on how large it actually is. For

example, Beetsma and Schotman (2001) conclude, based on data from a Dutch television game

show, that it is about 0.12. If this is the case, then ζ(η) in the following examples should be

multiplied by 1/0.12, according to (5).

The ambiguity-neutral investor’s optimal portfolio ζ(0) = Σ−1
X (µM−R1) is shown in Table 3,

which is a mean-variance-efficient portfolio. As is often pointed out, such a portfolio is very

sensitive to sample estimates and tends to involve large long and short positions. Our example

is no exception: the portfolio ζ(0) sells short the SL portfolio, which has low Sharpe ratio, and

holds long the SN portfolio, which has high Sharpe ratio. The SH and BL portfolios have high

Sharpe ratios and are also held long. Although BN and BH portfolios have reasonably high

Sharpe ratios, they are sold short, presumably due to the covariance structure. Although the

investor with the coefficient θ = 1 of constant absolute risk aversion allocates only 2.66% of his

wealth into the risky assets, the investor with θ = 0.12 allocates 2.66/0.12 = 22.17% into the

risky assets.

Here we consider four examples of the matrix ΣM , which represents ambiguity in the ex-

pected return of the FF6 portfolios. In the first example, we let ΣM = (1/60)ΣX . The optimal

portfolio ζ(η) is reported in Table 3. The matrix ΣM roughly measures the standard error of the

sample mean estimate with sixty-month observations. Since Q = (1/60)I6, where I6 is the 6×6

identity matrix, Theorem 1 implies that ζ(η) is a positive multiple of ζ(0) for every η. Thus the

optimal portfolio weight of ambiguity-averse decision makers (η > 0) are indistinguishable from

an ambiguity-neutral investor’s optimal portfolio. However, the weight of wealth held in the

risk-free asset is different and the wealth invested into each asset is also different. The investor

with η = 0 allocates 97.34% of the wealth into the risk-free asset, although the investor with

η = 1000 allocates 99.85%.
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In the second example, we assume that the matrix ΣM has the form of (7) of which the

diagonal elements (variances) are strictly positive and the off-diagonal elements (covariances) are

zero. The value of the diagonal elements cannot be arbitrarily chosen, because the conditional

covariance matrix ΣX−ΣM must be positive semidefinite. Indeed, ΣX−ΣM is positive definite if

the diagonal elements are equal to 0.5, which is, roughly, 1/60 of the smallest diagonal elements

of ΣX in Table 2, but not if they are large, say, 5. Thus the value of each diagonal element of

the matrix ΣM in this example is smaller than the value of the corresponding diagonal element

of the matrix ΣX . However this does not mean that the impact of ΣM on the optimal portfolios

is negligible.

Table 4 reports the optimal portfolio ζ(η) in the second example, with the diagonal elements

of ΣM all equal to 0.5. The investors with larger η invest less in the risky assets. For example,

when η = 1000, only 0.67% of the total wealth is invested into the risky assets. There is no short

sale in any assets. Proposition 2 shows that as η →∞, the proportion of wealth invested in each

risky asset in the wealth invested in the N risky assets converges to Σ−1
M (µM−R16). Since Σ−1

M =

2I6, using the values in Table 1, we obtain Σ−1
M (µM −R16) = (1.41, 2.01, 2.41, 1.24, 1.38, 1.81)>.

We can observe that ζ(1000) in Table 4 is almost a scalar multiple of Σ−1
M (µM −R16). Indeed,

once we normalize these two vectors so that the elements add up to one, then we see that the

difference in the proportion of wealth invested in each FF6 portfolio is no larger than 3%.

In our third example, we assume that the diagonal elements of ΣM are all equal to 0.5 and

the off-diagonal elements are all equal to 0.1. Since the off-diagonal elements of ΣM are positive,

the mean returns of the risky assets tend to move together in the same direction. Table 5 reports

the optimal portfolio ζ(η) in this case. As in the previous case, the portfolio ζ(1000) is nearly

a scalar multiple of Σ−1
M (µM − R16) = (0.48, 1.23, 1.73, 0.27, 0.45, 0.98)>. Once we normalize

these two vectors so that the elements add up to one, then we see that the difference in the

proportion of wealth invested in each FF6 portfolio is less than 2%.

In our fourth example, we assume that all the diagonal elements of ΣM are equal to 0.5 and

all off-diagonal elements are equal to −0.1. The mean returns of each pair of two risky assets

tend to move in the opposite direction. Furthermore, since −(6−1)−1 ·0.5 = −0.1, Proposition 4

is applicable: the portfolio ζ(η) converges to a scalar multiple of 1 as η → ∞. Moreover, as

shown in the proof of Proposition 4, Ker ΣM coincides with the set of all scalar multiples of 1.

Theorem 2, therefore, implies that there are a unique (Ker ΣM )-based decomposition (ΣA,ΣR)

of ΣX and a unique (vR, vA) ∈ Ker ΣA ×Ker ΣR such that ζ(0) = vA + vR with ζ(η)→ vR as

η →∞.

Table 6 shows the optimal portfolio ζ(0) and its decomposition vR and vA in our fourth

example, which are obtained by following the proof method of Lemma 2 and Theorem 2. The

ambiguity-related portfolio vA allocates less than one percent in the risky asset but, once nor-

malized so that their components add up to one, the weights among the risky assets can be

seen to involve large long/short positions. On the other hand, the unambiguous portfolio vR

is nothing but the 1/N portfolio. Thus highly ambiguous averse investor holds the portfolio

similar to the 1/N portfolio in this example, not as a rule of thumb but as a solution to the

utility maximization problem.
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7.2 Factor model based on the principal component analysis

In this subsection, we conduct a numerical exercise using a factor model with ambiguous al-

phas in subsection 5.3. The model is derived from the same data of the FF6 portfolios as in

subsection 7.1 but based on a different numerical specification of the covariance matrix ΣZ .

Our purpose is to calculate the optimal portfolios for two specifications of ambiguity-related

matrices ΣG and ΣF using Proposition 8.

Recall that a factor model of subsection 5.3 is given by (28), which is

X −R1N = β>(Y −R1L) + U.

To specify a factor model, we need to determine the number N of risky assets, the number

L of factors, the mean vector µG and the covariance matrix ΣY of factor returns, the mean

vector µF and the covariance matrix ΣU of idiosyncratic shocks, and the factor loading matrix

β =
(
IL β̂

)
∈ RL×N with β̂ ∈ RL×(N−L). We shall do so in six steps, spelt out below. The

underlying ambiguity, on the other hand, is given by

M −R1N = β>(G−R1L) + F,

and we will specify the covariance matrices ΣG and ΣF just before deriving the optimal port-

folios.

Step 1 Let N = 9 and L = 3.

Step 2 Find the three largest eigenvalues and the corresponding eigenvectors v1, v2, v3 of the

sample covariance matrix of Table 2. By multiplying scalars if necessary, we can assume

without loss of generality that the N coordinates of vk sum to one for each k = 1, 2, 3.

This normalization allows us to regard each vk as a portfolio of the FF6 portfolios, with

its coordinates representing the wealth shares allocated to them. We thus call vk the PCk

portfolio (the k-th principal component of the sample covariance matrix), or, simply, PCk,

for each k = 1, 2, 3.

Step 3 Using the return data of the FF6 portfolios, generate the return data of PC1, PC2,

and PC3.

Step 4 Let µG and ΣY be the sample mean vector and the sample covariance matrix of the

return data of PC1, PC2, and PC3 that are generated in step 7.2.

Step 5 Define β̂ ∈ R3×6 so that its transpose, β̂>, coincides with the regression coefficients of

the return data of the FF6 portfolios on the return data of PC1, PC2, and PC3 generated

in step 7.2. Let β =
(
I3 β̂

)
∈ R3×9. Let µ̂F be the estimated regression intercepts

and Σ̃U be the estimated covariance matrix of the regression residuals.

Step 6 Denote by Σ̂U the 6 × 6 matrix that can be obtained from Σ̃U by replacing all its
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off-diagonal elements by zeros, and let

µF =

(
0

µ̂F

)
∈ R9, ΣU =

(
0 0

0 Σ̂U

)
∈ S 9

+.

We have thereby determined µG, ΣY , µF , ΣU , and β. In the factor model we have just

constructed, there are three factors and nine assets. The three factors are the three principal

components of the sample covariance matrix of the FF6 portfolios. They constitute the first

three assets. The other six assets are similar but not identical to the FF6 portfolios, because

the off-diagonal elements of the covariance matrix of the residuals in the regression of the FF6

have all been replaced by zeros. Thanks to this replacement, the nine assets are not redundant.

Let us now review some quantitative properties of this factor model.

Table 7 reports that the wealth shares in the factors PC1, PC2, and PC3, and the value

weight (VW) portfolio. Among these four, PC1 is the closest to the 1/N portfolio. PC1 holds

more Small ME portfolios and High B/E portfolios than VW. In other words, PC1 is the

portfolio tilting towards small and value stocks.

PC2 contains large long/short positions in the FF6 portfolios. In particular, it holds SL and

BH by more than 300% of the net wealth invested in this factor. The Small portfolios are sold

short and the Big portfolios are held long. The High B/M portfolios are held more than the

Low B/M portfolios. Thus PC2 is the portfolio tilting towards big and value portfolios.

PC3 also holds long/short positions by more than 100% of the net wealth invested in this

factor. The differences in the holdings between the Small and Big portfolios is smaller in PC3

than in PC2. PC3 holds more of the Low B/M portfolios than PC2. In particular, it holds the

BL portfolio by 200% of the net wealth invested in the factor. Thus PC3 is the portfolio tilting

towards big and growth portfolios.

Table 8 reports that the sample mean vector and the sample covariance matrix of the returns

of PC1, PC2, and PC3. PC1 has a larger monthly average return of 1.17% than the market

return shown in Table 1, but also a larger variance of 45.27. PC2 also has a higher average

return of 1.09% but also a huge variance of 444.88, due to its large long/short position. PC3

has a negative average return due to its big and growth property. By the construction using the

principal component analysis, the estimated covariance between each factor portfolio returns is

close to zero.

Table 9 shows the expected alphas µ̂F of the FF6 returns and their factor loadings β̂. The

expected alphas of SN, SH, and BL portfolios are positive but those of SL, BN, and BH are

negative. The loadings of PC1 in BL and BN are 0.71 and 0.80, reflecting the fact that the

weights on these two are much smaller (12.19% and 13.75%) than the value weighted portfolio

(50.84% and 31.19%).

Table 10 shows the estimated covariance matrix Σ̃U of the residuals. The inverse of the

matrix cannot be found numerically. The covariance matrix matrix Σ̂U that we use in this

subsection can be obtained by replacing all its off-diagonal elements by zeros. Its inverse matrix

can be found numerically.

In the rest of this subsection, we consider the two extreme cases in subsection 5.3. The first
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extreme case is where the factor returns are unambiguous but the validity of the factor model is

ambiguous. That is, ΣG = 0. In the second extreme case, all the factor returns are ambiguous

but the validity of the factor model are unambiguous. For this case, we assume that ΣG = ΣY

and ΣF = 0.

Table 11 reports the optimal portfolio ζ(0) and its decomposition vA and vR for the first

case. The unambiguous (purely risky) portfolio vR consists only of factor portfolios PC1, PC2,

and PC3. PC1 is held long, PC2 is held only slightly, and PC3 is sold short. On the other hand,

the ambiguity-related portfolio vA essentially consists of FF6 portfolios. The portfolio weight

for FF6 part depends largely on the value of alphas in Table 9. In fact, as shown in Table 9,

SL, BN, and BH that have negative alpha are sold short. Others that have positive alpha are

held long. PC1, PC2, and PC3 are also held in the ambiguity-related portfolio vA to cancel out

the purely risky parts of the returns of the FF6 portfolios, as indicated by Theorem 2.

Table 12 reports the optimal portfolio ζ(0) and its decomposition vR and vA in the second

extreme case, where the three factors are ambiguous but the idiosyncratic shocks are unam-

biguous. As shown in Proposition 8, the optimal portfolio ζ(0) is the same as in the first case,

but the two portfolio vR and vA are now swapped.

For the risk-neutral investor, the portfolios ζ(0) are identical in the two extreme cases.

However, as the ambiguity parameter η becomes large, the optimal portfolios ζ(η) diverge from

each other. In the first case, the alphas are ambiguous and the optimal portfolio is chosen to

capture the (unambiguous) factor returns. The highly ambiguity averse investor holds almost

none of each individual portfolio of FF6, as predicted by Proposition 8. In the second case,

the factor returns are ambiguous, and the optimal portfolio is chosen to capture returns in

(unambiguous) alphas. Our numerical analysis shows that the highly ambiguity averse investor

hold large long/short positions in the FF6 portfolios.

To summarize this section, we have shown that the optimal portfolio based on the actual

stock market data depends critically on ambiguity aversion. Moreover, the way we specify the

ambiguity-related covariance matrix ΣM has a significant impact on the optimal portfolio when

the investor exhibits ambiguity aversion. Of particular interest is the factor model in which

either the factor returns or the assets’ alphas, but not both, are ambiguous. The ambiguity-

neutral investor would hold the same portfolio, but the ambiguity-averse investor would hold

rather different portfolios, depending on which of the two are ambiguous.

8 Conclusion

In this paper, we have studied the nature of the optimal portfolio for an investor who is not only

risk-averse but also ambiguity-averse. Our focus has been on the validity of the mutual fund

theorem and the asymptotic behavior of the optimal portfolio as the investor becomes extremely

ambiguity-averse. We have introduced a factor model accommodating ambiguity aversion and

compared the ambiguity-averse investor’s portfolio choice problem with the Bayesian portfolio

choice problem.

There are at least three possible directions of future research. The first one is to establish

the generalized mutual fund theorem in a more general setting where the KMM utility functions
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need not be of the CARA type and the asset returns need not be normally distributed. The

second one is to identify optimal portfolios when the covariance matrix of asset returns is also

ambiguous. If this can be done, the connection with the Bayesian portfolio choice problem

can be made clearer, as there is a large body of literature on the Bayesian portfolio choice

problem that postulates a prior distribution on covariance matrices. The third one is to explore

the implications on the equilibrium asset prices of the heterogeneity in investors’s ambiguity

aversion.

A Lemmas and Proofs

Proof of Lemma 1 By the properties of the moment generating function,

E
[
uθ

(
a>X + bR

)
|M
]

=− exp(−θbR)E
[
exp

(
(−θa)>X

)
|M
]

=− exp(−θbR) exp

(
(−θa)>M +

1

2
(θa)>ΣX|M (θa)

)
=− exp

(
−θ
(
a>M +Rb− θ

2
a>ΣX|Ma

))
.

Then it follows from (2) that

ϕγ,θ

(
E
[
uθ

(
a>X + bR

)
|M
])

= − exp

(
−γ
(
a>M +Rb− θ

2
a>ΣX|Ma

))
.

Thus, again by the properties of the moment generating function,

Uγ,θ(a
>X + bR)

=E

[
− exp

(
−γ
(
a>M +Rb− θ

2
a>ΣX|Ma

))]
=− exp

(
−γ
(
Rb− θ

2
a>ΣX|Ma

))
E
[
exp

(
(−γa)>M

)]
=− exp

(
−γ
(
Rb− θ

2
a>ΣX|Ma

))
exp

(
µ>M (−γa) +

1

2
(−γa)>ΣM (−γa)

)
=− exp (−γVγ,θ(a, b)) .

///

The following lemma is not covered by Bosch (1987) but can be proved by modifying the

proof of his Theorem 5.

Lemma 4 There is a basis of RN that consists of eigenvectors of Q, and all the eigenvalues of

Q belong to the closed unit interval [0, 1].

Proof of Lemma 4 Since Σ−1
X ∈ S N

++, there are an orthonormal matrix H (that is, H−1

exists and coincides with H>) and a diagonal matrix Γ, of which all the diagonal elements are

strictly positive, such that Σ−1
X = HΓH−1. Denote by Γ1/2 the diagonal matrix of which the
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diagonal elements are the square roots of those of Γ, and write A = HΓ1/2H−1. Since H is

orthonormal, A is symmetric and positive definite. Hence AΣMA is symmetric and positive

semidefinite. Therefore, there are an orthonormal matrix Ĥ and a diagonal matrix Γ̂, of which

all the diagonal elements are nonnegative, such that AΣMA = ĤΓ̂Ĥ−1. Since A2 = Σ−1
X ,

Q = A(AΣMA)A−1 = (AĤ)Γ̂(Ĥ−1A−1) = (AĤ)Γ̂(AĤ)−1.

This shows that there is a basis of RN that consists of eigenvectors of Q, and all the corre-

sponding eigenvalues of are non-negative.

It remains to show that all the eigenvalues are less than one. To do so, let v be an eigenvalue

of Q and λ be the eigenvalue that corresponds to v. Then Qv = λv and hence ΣMv = λΣXv.

Thus v>ΣMv = λv>ΣXv, that is,

λ =
v>ΣMv

v>ΣMv + v>ΣX|Mv
.

Since v>ΣX|Mv ≥ 0, 0 ≤ λ ≤ 1. ///

Proof of Theorem 1 Let Λ be the set of all eigenvalues of Q. It follows from Lemma 4 that

Λ ⊂ [0, 1]. For each λ ∈ Λ, denote by Vλ the eigenspace that correspond to λ. It also follows

from Lemma 4 that Vλ is a linear subspace of RN , (Vλ)λ∈Λ is linearly independent (that is, if

vλ ∈ Vλ for every λ ∈ Λ and
∑

λ∈Λ vλ = 0, then vλ = 0 for every λ ∈ Λ), and
∑

λ∈Λ Vλ = RN .

Then, for each λ ∈ Λ, there is a vλ ∈ Vλ such that ζ(0) =
∑

λ∈Λ vλ. Since ζ(0) 6= 0, there is

a λ ∈ Λ such that vλ 6= 0. Let {λ1, λ2, . . . , λK} be the set of all such λ’s. We can assume that

λ1 < λ2 < · · · < λK . For each k, write vk = vλk , then ζ(0) =
∑K

k=1 vk.

Since (I + ηQ)vk = (1 + ηλk)vk, (I + ηQ)−1vk = (1 + ηλk)
−1vk. Thus,

ζ(η) = (I + ηQ)−1ζ(0) =
K∑
k=1

(I + ηQ)−1vk =
K∑
k=1

1

1 + λkη
vk.

///

Proof of Lemma 2 First, we prove this lemma when Σ ∈ S N
++. Then we prove it for the

general case.

Assume that Σ ∈ S N
++. Let S1 = S, and S2 be the Σ-orthogonal complement of S1. For

each i = 1, 2, let Wi be the N×N matrix that represents the Σ-orthogonal projection onto S3−i,

that is, Wix = x for every x ∈ S3−i and Wix = 0 for every x ∈ Si. Then W1 + W2 = IN and

W>1 ΣW2 = 0. For each i, define Σi = W>i ΣWi. Then (Σ1,Σ2) ∈ S N
+ ×S N

+ . Since Σ ∈ S N
++,

Ker Σi = KerWi = Si. Moreover,

Σ = (W1 +W2)>Σ (W1 +W2)

= W>1 ΣW1 +W>1 ΣW2 +W>2 ΣW1 +W>2 ΣW2 = Σ1 + Σ2.

The proof of the existence of an S-based decomposition is thus completed.

To prove the uniqueness, it suffices to show that Σ1 = W>1 ΣW1 whenever (Σ1,Σ2) is an
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S-based decomposition of Σ. Note, then, that for each i, ΣiW3−i = 0 because ColW3−i = Si =

Ker Σi. Thus

W>1 ΣW1 = W>1 (Σ1 + Σ2)W1 = W>1 Σ1W1 +W>1 Σ2W1

= W>1 Σ1W1 = (IN −W2)>Σ1(IN −W2)

= Σ1 −W>2 Σ1 − Σ1W2 +W>2 Σ1W2 = Σ1.

As for the general case where Σ 6∈ S N
++, write K = rank Σ and let V ∈ RN×K . Assume

that the column vectors of V constitutes an orthonormal basis of Col Σ. Then V >ΣV ∈ SK
++.

Define T = {w ∈ RK | V w ∈ S}. By this lemma for the case where Σ has a full rank, there

is a unique T -based decomposition (Γ1,Γ2) of V >ΣV . For each i = 1, 2, define Σi = V ΓiV
>.

We shall prove that (Σ1,Σ2) is an S-based decomposition of Σ. Since Γi ∈ SK
+ , Σi ∈ S N

+ .

Moreover,

Σ1 + Σ2 = V
(
V >ΣV

)
V > =

(
V V >

)
Σ
(
V V >

)
.

It can be easily shown that V V > belongs to S N
+ and represents the orthogonal projection onto

ColV . Since ColV = Col Σ,
(
V V >

)
Σ
(
V V >

)
= Σ. Thus Σ1 + Σ2 = Σ. Since rank Σi =

rank Γi and rank Γ1 + rank Γ2 = K, rank Σ1 + rank Σ2 = rank Σ. It remains to prove that

S = Ker Σ1. Since V >V = IK , V >Σ1V = Γ1. Thus Ker Γ1 = {w ∈ RK | V w ∈ Ker Σ1}.
Since Ker Γ1 = T , {w ∈ RK | V w ∈ S} = {w ∈ RK | V w ∈ Ker Σ1}. Since rankV = K,

S ∩ ColV = Ker Σ1 ∩ ColV . Thus S ∩ Col Σ = Ker Σ1 ∩ Col Σ. It can be easily shown that

since S ⊇ Ker Σ, S = (S ∩ Col Σ) + Ker Σ. Since Σ− Σ1 = Σ2 ∈ S N
+ , Ker Σ1 ⊇ Ker Σ. It can

thus be analogously shown that Ker Σ1 = (Ker Σ1 ∩ Col Σ) + Ker Σ. Hence S = Ker Σ1.

Let V and T be as in the previous paragraph. To show the uniqueness in the general

case, it suffices to prove that for every S-based decomposition (Σ1,Σ2) of Σ,
(
V >Σ1V, V

>Σ2V
)

coincides the unique T -based decomposition of V >ΣV . Indeed, if this is the case, then let

(Γ1,Γ2) be the unique T -based decomposition of V >ΣV . Then, for every S-based decomposi-

tion (Σ1,Σ2) of Σ, Γi = V >ΣiV for each i = 1, 2. Since V V > represents the orthogonal onto

Col Σ and Col Σi ⊆ Col Σ, V ΓiV
> = Σi. Since this is true for every S-based decomposition

(Σ1,Σ2) of Σ, such a decomposition is, in fact, unique. Let’s prove that for every S-based de-

composition (Σ1,Σ2) of Σ,
(
V >Σ1V, V

>Σ2V
)

coincides with the unique T -based decomposition

of V >ΣV . By construction,
(
V >Σ1V, V

>Σ2V
)
∈ SK

+ ×SK
+ and V >Σ1V + V >Σ2V = V >ΣV .

Since Col Σi ⊆ Col Σ = ColV , rankV >ΣiV = rank Σi and rankV >ΣV = rank Σ. Hence

rankV >Σ1V +rankV >Σ2V = rank Σ1+rank Σ2 = rank Σ. For every w ∈ RK , w ∈ KerV >Σ1V

if and only if V w ∈ Ker Σ1. Since S = Ker Σ1, this holds if and only if V w ∈ S. Thus

KerV >Σ1V = T . The proof is thus completed. ///

Lemma 5 Let (Σ,Σ) ∈ S N
+ ×S N

+ and assume that Σ− Σ ∈ S N
+ . Let (Σ1,Σ2) ∈ S N

+ ×S N
+

be the (Ker Σ)-based decomposition of Σ. Then, for every v ∈ RN and every λ 6= 0, λΣv = Σv

if and only if v ∈ Ker Σ2 and λΣ1v = Σv.

Proof of Lemma 5 If v ∈ Ker Σ2 and λΣ1v = Σv, then λΣ = λ(Σ1 + Σ2)v = λΣ1v = Σv.

Suppose, conversely, that λΣ = Σv. Then there is a (v1, v2) ∈ Ker Σ1 × Ker Σ2 such that

v = v1 + v2. Then Σv = (Σ1 + Σ2)(v1 + v2) = Σ1v2 + Σ2v1. Thus, Σv − λΣ1v2 = λΣ2v1. Since
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Col Σ = Col Σ1, Σv − λΣ1v2 ∈ Col Σ1. Since λ 6= 0, Σ2v1 ∈ Col Σ1 ∩ Col Σ2 = {0}. Thus,

v1 ∈ Ker Σ2 and hence v1 = 0. Thus v = v2 ∈ Ker Σ2. Hence Σv = (Σ1 + Σ2)v = Σ1v. Since

λΣ = Σv, λΣ1v = Σv. ///

Proof of Theorem 2 The existence of (ΣA,ΣR) follows from Lemma 2 by letting Σ = ΣX

and S = Ker ΣM . Since RN is the direct sum of Row ΣA and Row ΣR, there exists a unique

(wA, wR) ∈ Row ΣA × Row ΣR such that µM − R1 = wA + wR. Note, then, that the linear

transformation defined by ΣA maps Ker ΣR onto Row ΣA. Indeed, the linear transformation is

one-to-one when its domain is restricted on Ker ΣR, because Ker ΣA ∩ Ker ΣR = {0}. Since

dim Ker ΣR = N − dim Row ΣR = dim Row ΣA, the linear transformation maps Ker ΣR onto

Row ΣA. Thus, there exists a unique vA ∈ Ker ΣR such that ΣAvA = wA. Similarly, there exists

a unique vR ∈ Ker ΣA such that ΣRvR = wR. Therefore,

ΣX(vR + vA) = (ΣA + ΣR)(vR + vA) = ΣAvA + ΣRvR = wA + wR = µM −R1

and ζ(0) = vR+vA. Thanks to Theorem 1, to prove that ζ(η)→ vR as η →∞, it suffices to prove

that vR ∈ KerQ and vA is a linear combination of the eigenvectors of Q that correspond to the

strictly positive eigenvalues. Since Ker ΣA = KerQ, vR ∈ KerQ. Since vA ∈ Ker ΣR, it suffices

to show that there is a basis of Ker ΣR that consists of the eigenvectors of Q that corresponds to

the strictly positive eigenvalues. By Lemma 5, all eigenvectors of Q that correspond to strictly

positive eigenvalues belong to Ker ΣR. Moreover, since dim Ker ΣR = N−Ker ΣA = N−KerQ,

there is a basis of Ker ΣR that consists of these eigenvectors. ///

Proof of Proposition 2 Since ΣM ∈ S N
++, all of its eigenevalues are strictly positive. In

particular, λ1 > 0. Hence, by Theorem 1,

1

1>ζ(η)
ζ(η) =

1

1>

(
K∑
k=1

1

1 + λkη
vk

) K∑
k=1

1

1 + λkη
vk =

1

1>

(
K∑
k=1

1 + λ1η

1 + λkη
vk

) K∑
k=1

1 + λ1η

1 + λkη
vk

→ 1

1>

(
K∑
k=1

λ1

λk
vk

) K∑
n=1

λ1

λk
vk =

1

1>

(
K∑
k=1

λ−1
k vk

) K∑
k=1

λ−1
k vk

as η →∞. Since Q
(∑K

k=1 λ
−1
k vk

)
=
(∑K

k=1 λ
−1
k Qvk

)
=
∑K

k=1 vk = ζ(0),

K∑
k=1

λ−1
k vk = Q−1ζ(0) = Σ−1

M (ΣX) (ΣX)−1 (µM −R1) = Σ−1
M (µM −R1)

Thus the proof is completed. ///

Proof of Proposition 3 Since ΣM is invertible, Σ−1
M 1 = (σ2 + (N − 1)κ)−11. Hence

Σ−1
M (µM −R1) = (δ −R)(σ2 + (N − 1)κ)−11.
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Since δ −R 6= 0,
1

1>Σ−1
M (µM −R1)

Σ−1
M (µM −R1) =

1

N
1,

and the proof is completed by Proposition 2. ///

Proof of Corollary 1 Since ΣX −ΣM = (1−λ)ΣM ∈ S N
+ , λ ≤ 1. Thus 1 +λη > 0 for every

η > −1. Hence, if ζn(η) > 0 for some η > −1, then the n-th coordinate of v is also strictly

positive. Thus ζn(η) > 0 for every η > −1. ///

Proof of Proposition 6 By Theorem 1, it suffices to prove that λ is, if any, the only strictly

positive eigenvalue of Q. So let v ∈ RN \ {0} and κ > 0 and suppose that Qv = κv. Then,

by the only-if part of Lemma 5, v ∈ Ker
(
ΣX − λ−1ΣM

)
and κ

(
λ−1ΣM

)
v = ΣMv. Thus

ΣXv = λ−1ΣMv and (κλ−1)ΣMv = ΣMv. Hence λv = Qv and κ = λ because ΣMv 6= 0. Thus

λ is, if any, the only strictly positive eigenvalue of Q. ///

Proof of Corollary 2 If λ > 1, then ΣX − λ−1ΣM = (1− λ−1)ΣX + λ−1(ΣX − ΣM ) ∈ S N
++

because (1−λ−1)ΣX ∈ S N
++ and λ−1(ΣX −ΣM ) ∈ S N

+ . Since vA ∈ Ker
(
ΣX − λ−1ΣM

)
under

the assumption of Proposition 6, vA = 0. On the other hand, since vR ∈ Ker ΣM = RL × {0},
the n-th coordinate of vR is equal to zero for every n > L. Thus this corollary has been trivially

established for the case of λ > 1.

As for the case of λ ≤ 1, note that 1 + λη > 0 for every η > −1. Since the n-th coordinate

of vR is equal to zero for every n > L, if ζn(η) > 0 for some η > −1, the n-th coordinate of vA

is strictly positive. Hence, for every n > L, ζn(η) > 0 for every η > −1 and converges strictly

decreasingly to 0 as η →∞. ///

Proof of Proposition 9 Since X̄|M ∼ N (M, (1/T )(ΣX − ΣM )), the law of total variance

implies that  M

X

X̄

 ∼ N


 µM

µM

µM

 ,

 ΣM ΣM ΣM

ΣM ΣX ΣM

ΣM ΣM ΣX̄


 ,

where ΣX̄ = ΣM + T−1(ΣX − ΣM ). Thus(
M

X

)∣∣∣∣∣ X̄ ∼ N

((
µM + ΣMΣ−1

X̄
(X̄ − µM )

µM + ΣMΣ−1
X̄

(X̄ − µM )

)
,

(
ΣM − ΣMΣ−1

X̄
ΣM ΣM − ΣMΣ−1

X̄
ΣM

ΣM − ΣMΣ−1
X̄

ΣM ΣX − ΣMΣ−1
X̄

ΣM

))
.

(37)

Hence,

X

∣∣∣∣∣
(
M

X̄

)
∼ N (M,ΣX − ΣM ). (38)

The predictive distribution of return X given the sample estimate X̄ thus coincides with

N
(
µM + ΣMΣ−1

X̄
(X̄ − µM ),ΣX − ΣMΣ−1

X̄
ΣM

)
. We can then apply (37), (38), and (5) to

establish (34). By putting θ = γ, we obtain if (35). ///

Lemma 6 For every A ∈ S N with RowA ⊆ Row β, there is a C ∈ S L such that A = β>Cβ.
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Proof of Lemma 6 Since A is symmetric, there are an orthonormal N × N matrix V and

a diagonal N × N matrix D such that A = V >DV . Denote the diagonal elements of D by

d1, d2, . . . , dN . Denote by D1 the diagonal N × N matrix of which the n-diagonal elements

is equal to (max {dn, 0})1/2, and denote by D2 the diagonal N × N matrix of which the n-th

diagonal elements is equal to (max {−dn, 0})1/2. For each k = 1, 2, write Ak = V >DkV ∈ S N
+ ,

then RowAk ⊆ RowA ⊆ Row β. Thus there is a Bk ∈ RN×L such that Ak = Bkβ. Write

Ck = B>k Bk ∈ S L
+ and C = C1 − C2, then C ∈ S L and

A = V >DV = V >
(
D2

1 −D2
2

)
V = V >D2

1V − V >D2
2V

= A>1 A1 −A>2 A2 = β>C1β − β>C2β = β>Cβ.

///

Proof of Lemma 3 For every v ∈ RN , if βv = 0, then v>
(
β>ΣGH + ΣHGβ

)
v = 0. Thus

Kerβ ⊆ Ker
(
β>ΣGH + ΣHGβ

)
, or, equivalently, Row β ⊇ Row

(
β>ΣGH + ΣHGβ

)
. Lemma 6

implies that there is a Γ ∈ S L such that β>ΣGH + ΣHGβ = β>Γβ.

For every such Γ, we shall now prove that 0 ≤ ΣG + Γ ≤ ΣY . As we showed in Footnote

5, for every w ∈ RL, there is a v ∈ Ker ΣZ such that w = βv. Thus, it suffices to prove that

0 ≤ (βv)> (ΣG + Γ) (βv) ≤ (βv)>ΣY (βv) for every v ∈ Ker ΣZ . Indeed, for every v ∈ Ker ΣZ ,

v>ΣXv = v>
(
β>ΣY β + ΣZ

)
v = v>β>ΣY βv,

v>ΣMv = v>
(
β> (ΣG + Γ)β + ΣH

)
v = v>β> (ΣG + Γ)βv,

because Ker ΣH ⊇ Ker ΣZ . Since 0 ≤ v>ΣMv ≤ v>ΣXv (which is, in turn, because 0 ≤ ΣM ≤
ΣX), the proof is completed. ///

Proof of Proposition 7 By construction, (ΣA,ΣR) ∈ S N
+ ×S N

+ and ΣA + ΣR = ΣX . Note

that

Ker ΣM = Kerβ>(ΣG + Γ)β ∩ Ker ΣH ,

Ker ΣA = Kerβ>ΣA
Y β ∩ Ker ΣA

Z .

Since Kerβ> = {0},

Kerβ>(ΣG + Γ)β = {v ∈ RN | βv ∈ Ker (ΣG + Γ)},

Kerβ>ΣA
Y β = {v ∈ RN | βv ∈ Ker ΣA

Y }

Since Ker (ΣG + Γ) = Ker ΣA
Y , Kerβ>(ΣG + Γ)β = Kerβ>ΣA

Y β. By assumption, Ker ΣH =

Ker ΣA
Z . Hence Ker ΣM = Ker ΣA.

It remains to prove that Row ΣA ∩ Row ΣR = {0}. Let v ∈ Row β>ΣA
Y β ∩ Row β>ΣR

Y β.

Then there are a w1 ∈ RN and a w2 ∈ RN such that w>1 β
>ΣA

Y β = v = w>2 β
>ΣR

Y β. Since

rankβ = L, w>1 β
>ΣA

Y = w>2 β
>ΣR

Y , and this vector belongs to Row ΣA
Y ∩ Row ΣR

Y , which

coincides with {0} by assumption. Hence v = 0. Thus Row β>ΣA
Y β ∩ Row β>ΣR

Y β = {0}. By

assumption, Row ΣA
Z ∩ Row ΣR

Z = {0}. Since Row β>Σi
Y β ⊆ Row β and Row Σi

Z ⊆ Row ΣZ for
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each i = 1, 2 and since Row β ∩ Row ΣZ = {0} by assumption,

Row ΣA ∩ Row ΣR = Row
(
β>ΣA

Y β + ΣA
Z

)
∩ Row

(
β>ΣR

Y β + ΣR
Z

)
= {0}.

///

Proof of Proposition 8 Since ΣG = 0 or ΣH = ΣF = 0, Γ = 0 in Lemma 3 in either of the

two extreme cases. As noted right after Definition 1, in the first case, (ΣA
Y ,Σ

R
Y ) = (0,ΣY ) is the

unique (Ker ΣG)-based decomposition of ΣY and (ΣA
Z ,Σ

R
Z) = (ΣZ , 0) is the unique (Ker ΣH)-

based decomposition of ΣZ . By Proposition 7, (ΣA,ΣR) = (ΣZ , β
>ΣY β). Define

wA =

(
0

µ̂F

)
, wR =

(
µG −R1L

β̂>(µG −R1L)

)
.

Then wA + wR = µM −R1N . It remains to prove that ΣRvR = wR, and ΣAvA = wA. Indeed,

ΣAvA =

(
0 0

0 Σ̂U

)(
−β̂Σ̂−1

U µ̂F

Σ̂−1
U µ̂F

)
= wA,

ΣRvR =

(
ΣY ΣY β̂

β̂>ΣY β̂>ΣY β̂

)(
Σ−1
Y (µG −R1L)

0

)
= wR.

Then the optimal portfolio ζ(0) coincides with the sum of vA and vR:

ζ(0) =

(
Σ−1
Y (µG −R1L)− β̂Σ̂−1

U µ̂F

Σ̂−1
U µ̂F

)
= wA + wR.

The other extreme case can analogously be proven. ///
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Table 1: Average Monthly Returns, Standard Deviations, and Sharpe Ratio of FF 6 Portfolios:
July 1926-December 2013.

Mean Stand Dev Sharpe Ratio

R 0.29 0.25
Rm 0.94 5.40 0.12
SL 0.99 7.69 0.09
SN 1.29 7.04 0.14
SH 1.49 8.24 0.15
BL 0.90 5.36 0.12
BN 0.98 5.75 0.12
BH 1.19 7.17 0.13

Table 1 reports the average, the standard deviation, and the Sharpe ratio of the risk-free rate
(R), the market portfolio (Rm), and the FF6 portfolio returns. “S” means small ME and “B”
means big ME. “L” means low B/M, “N” means neutral, and “H” means high B/M.

Table 2: Sample Covariance Matrix of the FF6 Portfolios: July 1926-December 2013.

SL SN SH BL BN BH

SL 59.07 51.57 57.07 35.18 36.44 44.99
SN 51.57 49.60 55.87 31.89 35.77 45.27
SH 57.07 55.87 68.04 34.73 41.35 54.40
BL 35.18 31.89 34.73 28.66 27.48 31.72
BN 36.44 35.77 41.35 27.48 33.00 38.54
BH 44.99 45.27 54.40 31.72 38.54 51.49

Table 2 reports the covariance matrix of the FF 6 portfolio returns.
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Table 3: Optimal Portfolios ζ(η) in the First Example.

ζ(0) ζ(1) ζ(10) ζ(100) ζ(1000)

R 97.34 97.39 97.72 99.00 99.85
SL −8.57 −8.43 −7.35 −3.21 −0.49
SN 8.77 8.62 7.51 3.29 0.50
SH 3.06 3.01 2.62 1.15 0.17
BL 4.40 4.33 3.77 1.65 0.25
BN −2.38 −2.34 −2.04 −0.89 −0.13
BH −2.62 −2.58 −2.25 −0.98 −0.15

Table 3 reports the optimal portfolio weight in percent of ζ(η) for η = 0, 1, 10, 100, 1000 for
the first case. The total wealth is assumed to be W = 1. The diagonal element of the matrix
ΣM is (1/60)ΣX . “R” means the fraction (%) of wealth invested into the risk-free asset. The
remaining “SL”, “SN”, “SH”, “BL”, “BN”, and “BH” are the ratio of wealth invested into FF6
risky assets.

Table 4: Optimal Portfolios ζ(η) in the Second Example.

ζ(0) ζ(1) ζ(10) ζ(100) ζ(1000)

R 97.34 97.58 98.06 98.38 99.33
SL −8.57 −6.64 −2.33 −0.14 0.08
SN 8.77 6.3 1.97 0.48 0.14
SH 3.06 3.02 1.84 0.61 0.17
BL 4.40 3.33 0.93 0.21 0.08
BN −2.38 −1.57 −0.19 0.19 0.09
BH −2.62 −2.03 −0.29 0.28 0.12

Table 4 reports the optimal portfolio weight in percent of ζ(η) for η = 0, 1, 10, 100, 1000 for the
first case. The total wealth is assumed to be W = 1. The diagonal element of the matrix ΣM is
σ2 = 0.5 and the off-diagonal element is κ = 0. “R” means the fraction (%) of wealth invested
into the risk-free asset. The remaining “SL”, “SN”, “SH”, “BL”, “BN”, and “BH” are the ratio
of wealth invested into FF6 risky assets.

Table 5: Optimal Portfolios ζ(η) in the Third Example.

ζ(0) ζ(1) ζ(10) ζ(100) ζ(1000)

R 97.34 97.56 98.09 98.64 99.6
SL −8.57 −6.94 −2.70 −0.26 0.03
SN 8.77 6.66 2.28 0.49 0.10
SH 3.06 3.05 2.03 0.68 0.14
BL 4.40 3.49 1.07 0.12 0.02
BN −2.38 −1.69 −0.32 0.09 0.03
BH −2.62 −2.13 −0.44 0.24 0.08

Table 5 reports the optimal portfolio weight in percent of ζ(η) for η = 0, 1, 10, 100, 1000 for the
first case. The total wealth is assumed to be W = 1. The diagonal element of the matrix ΣM is
σ2 = 0.5 and the off-diagonal element is κ = 0.1. “R” means the fraction (%) of wealth invested
into the risk-free asset. The remaining “SL”, “SN”, “SH”, “BL”, “BN”, and “BH” are the ratio
of wealth invested into FF6 risky assets.
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Table 6: Decomposition of the Optimal Portfolio ζ(0) by Theorem 2 in the Fourth Example.

ζ(0) vA vA

R 97.34 99.35 97.99

SL −8.57 −8.91 0.33
SN 8.77 8.43 0.33
SH 3.06 2.73 0.33
BL 4.40 4.07 0.33
BN −2.38 −2.71 0.33
BH −2.62 −2.96 0.33

Table 6 reports the optimal portfolio ζ(0) and its decomposition vA and vR by Theorem 2 for
the fourth example. The total wealth is assumed to be W = 1. The diagonal element of the
matrix ΣM is σ2 = 0.5 and the off-diagonal element is κ = −0.1. “R” means the fraction (%) of
wealth invested into the risk-free asset. The remaining wealth is invested into FF6 risky assets
with the portfolio weights (%) described by “SL”, “SN”, “SH”, “BL”, “BN”, “BH”.

Table 7: Value-weighted portfolio and the three factors

VW PC1 PC2 PC3

SL 2.46 18.59 −387.31 56.37
SN 2.95 17.67 −142.83 −34.24
SH 2.08 20.45 −21.60 −157.27
BL 50.84 12.19 43.37 199.42
BN 31.19 13.75 253.92 77.22
BH 10.48 17.34 354.44 −41.50

Table 7 reports both the value weighted portfolio (“VW”) and the factor portfolio corresponding
to the three largest principal components (“PC1”, “PC2”, “PC3”). The value weighted portfolio
is the time-series average of capitalization weight (%) of the FF6 portfolios. From the return data
of FF6 portfolio, the factor mimicking portfolio weight (%) is constructed using the principal
component analysis.

Table 8: Sample Mean µG and Covariance ΣY of factor portfolio

µG ΣY

PC1 1.17 45.27 −0.18 0.10
PC2 1.09 −0.18 444.88 −0.25
PC3 −0.18 0.10 −0.25 74.73

Table 8 reports the average monthly return (%) of the factor portfolio. The covariance matrix
of the factors are also reported. The former is used for the parameter µG and the latter is for
ΣY in the following examples.

39



Table 9: Alpha µ̂G and beta β̂ of the FF6 portfolios

µ̂Y β̂>

PC1 PC2 PC3

SL −0.13 1.08 −0.11 0.07
SN 0.11 1.03 −0.04 −0.04
SH 0.06 1.19 −0.01 −0.21
BL 0.10 0.71 0.01 0.26
BN −0.03 0.80 0.07 0.10
BH −0.09 1.01 0.10 −0.05

Table 9 reports the estimated value of intercept and coefficients that are found by regressing
excess returns of FF6 portfolio on factor portfolio returns (PC1, PC2, and PC3). The former
is used as an input parameter µ̂Y and the latter is used for β̂.

Table 10: Sample Covariance Matrix Σ̃U

Σ̂U

SL SN SH BL BN BH

SL 0.60 −0.41 −0.37 −0.45 0.04 0.49
SN −0.41 0.91 −0.31 −0.05 0.11 −0.17
SH −0.37 −0.31 0.75 0.53 −0.00 −0.55
BL −0.45 −0.05 0.53 0.72 −0.55 −0.17
BN 0.04 0.11 −0.00 −0.55 1.10 −0.64
BH 0.49 −0.17 −0.55 −0.17 −0.64 0.91

Table 10 reports the sample covariance matrix of the regression residuals. The estimated value
is used as an input parameter Σ̂U .

Table 11: Decomposition in the first case

ζ(0) vR vA

R 95.86 98.49 97.37

PC1 5.87 1.95 3.92
PC2 −0.68 0.18 −0.86
PC3 −0.57 −0.62 0.05
SL −22.04 0 −22.04
SN 11.63 0 11.63
SH 8.61 0 8.61
BL 13.70 0 13.70
BN −2.41 0 −2.41
BH −9.97 0 −9.97

Table 11 reports the optimal portfolio ζ(0) and its decomposition vR and vA. The total wealth
is assumed to be W = 1. “R” means the fraction (%) of wealth invested into the risk-free asset.
The remaining wealth is invested into factor portfolio and FF6 risky assets with the portfolio
weights (%) described by “PC1”, “PC2”, “PC3”, “SL”, “SN”, “SH”, “BL”, “BN”, “BH”.
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Table 12: Decomposition in the second case

ζ(0) vR vA

R 95.86 97.37 98.49
PC1 5.87 3.92 1.95
PC2 −0.68 −0.86 0.18
PC3 −0.57 0.05 −0.62
SL −22.04 −22.04 0
SN 11.63 11.63 0
SH 8.61 8.61 0
BL 13.70 13.70 0
BN −2.41 −2.41 0
BH −9.97 −9.97 0

Table 12 reports the optimal portfolio ζ(0) and its decomposition vR and vA. The total wealth
is assumed to be W = 1. “R” means the fraction (%) of wealth invested into the risk-free asset.
The remaining wealth is invested into factor portfolio and FF6 risky assets with the portfolio
weights (%) described by “PC1”, “PC2”, “PC3”, “SL”, “SN”, “SH”, “BL”, “BN”, “BH”.
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